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Dynkin isomorphism theorems revisited

Nathalie Eisenbaum

Abstract Dynkin’s isomorphism Theorem as well as its derivatives, are identities in
law providing the law of the sum of two independent processes. Most of the time
these two processes are respectively the local time process of a Markov process and
a permanental process. In spite of their various applications, these identities still
remain mysterious in the sense that there is no natural reason for summing these two
independent processes. We will present an explanation available in particular for the
so-called ”generalized Ray-Knight Theorem”.

Keywords Markov process; local time; Gaussian free field; permanental process; iso-
morphism theorem; loop measure; loop soup.

MSC 2020 subject classification: 60E07; 60G15; 60J55; 60J25

1 Introduction

The most known version of Dynkin’s isomorphism Theorem [4] is a relation in law
connecting the local time process of a transient symmetric Markov process with finite
Green function to a Gaussian centered process with this Green function as covariance.
More precisely for a transient Markov process X with state space E, admitting a
finite symmetric Green function (0-potential density) g with respect to some reference

measure, denote by (L
(a,b)
∞ (x), x ∈ E) the total accumulated local time process of X

starting from a and killed at its last visit to b. Let (ηx, x ∈ E) be a centered Gaussian
process with covariance (g(x, y), (x, y) ∈ E × E), independent of X, one has then:

(
1

2
η2x + L(a,b)

∞ (x), x ∈ E)
(law)
= (

1

2
η2x, x ∈ E) under IE[

ηaηb
g(a, b)

, . ] (1.1)

Several identities in law of the same type have been derived from this original identity.
Among them, we mention its extension to transient non symmetric Markov processes
[13], an unconditioned version [5], and the so-called generalized second Ray-Knight
Theorem [16] from which a version for occupation times of random interlacements of
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continuous symmetric Markov processes on graphs has been deduced [23]. We also
mention that this last version [23] has been refined [24], [20], [2] to provide identities
relating the sign of the Gaussian process to the loop clusters of the Markov process.
Paths continuity is a necessary condition to obtain these identities involving the sign
of the Gaussian process.

Dynkin’s type isomorphism theorems turn out to be useful to transfer properties from
the Gaussian processes to the local times (see e.g. Marcus and Rosen’s book [21]) and
to solve various questions on covering or percolation (see e.g. [3] and [1]).
Nevertheless, as was already pointed by Marcus and Rosen in p.3 of their book [21],
one does not really understand the meaning of these identities in law. The main reason
of this mystery is that they are precisely identities ”in law”. There are several kinds
of proof of these identities (we describe some of them shortly in section 2) but in the
general case none goes beyond this equality ”in law” and none gives a natural reason
for summing this two independent processes. The aim of this note is to present such
a reason for some Dynkin type isomorphism theorems. We actually show that each of
these identities in law can be seen as an illustration of a richer a.s. identity with an
obvious meaning.
These results are presented in section 3. Section 2 is a preliminary section which
reminds some Dynkin type identities and the connected known results used in section
3.

2 Dynkin type identities

We briefly remind in chronological order, some of Dynkin type identities together with
the nature of their proof. The considered Markov processes are assumed to be strong
Markov processes with right continuous left limits paths. One starts by the so-called
“Dynkin’s isomorphism Theorem” (1.1). Dynkin’s intuition of the first isomorphism
theorem came from the expression of the joint moments of the total accumulated local
times of a transient symmetric Markov process. Comparing with the expression of the
joint moments of the associated squared Gausssian vector (η2x, x ∈ E), he obtained his
identity with combinatorial arguments.

The so-called “generalized second Ray-Knight Theorem” requires a recurrent Markov
process X such that gTa the Green function of X killed at Ta, the first hitting time of
a point a of its space state E, is symmetric with respect to some reference measure.
Denote by (Lxτr , x ∈ E) the local time process of X at time τr, where τr = inf{s > 0 :
Las > r}. Denote by IPa the probability under which X starts at a. Let (ηx, x ∈ E)
be a centered Gaussian process with covariance (gTa(x, y), (x, y) ∈ E2), independent of
X. One has under IPa

(
1

2
η2x + Lxτr , x ∈ E)

(law)
= (

1

2
(ηx +

√
2r)2, x ∈ E) (2.1)

The proof of the generalized second Ray-Knight Theorem [16] is simpler to handle
because it is based on a direct computation of Laplace transforms.
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At this point, authors started to try to characterize the Gaussian processes which
were involved in the isomorphism theorems. The first motivation was to catch the
properties that could be transferred via these identities from the Gaussian processes
to the local time process. But a characterization would maybe also lead to another
kind of explanation of the existence of these identities. In [7], [6] and [11], the property
of infinite divisibility appears as a characteristic property of the squared Gaussian
processes involved in these identities. More precisely a centered Gaussian process
(ηx, x ∈ E) admits the Green function of a transient Markov process for covariance iff
((ηx + r)2, x ∈ E) is infinitely divisible for every real r.
In [8], we have shown that every nonnegative infinitely divisible process generates a
Dynkin type isomorphism theorem. Still, the reason why in the case of an infinitely
divisible squared Gaussian process, the process involved in the corresponding identity
should be a local time process was not clear.
In the mean time, we could relax the assumption of symmetry for the Green function
[13] and could extend (1.1) in the special case when a = b to obtain:

(
1

2
φx + L(a,a)

∞ (x), x ∈ E)
(law)
= (

1

2
φx, x ∈ E) under IE[

φa
IE[φa]

, . ] (2.2)

where the process (φx, x ∈ E) is a so-called “permanental process” with kernel g the
Green function of X and index 1/2.
We remind that a nonnegative process (ϕx, x ∈ E) is a permanental process with index
β > 0 and kernel (u(x, y), (x, y) ∈ E × E) if its finite dimensional Laplace transforms
are given by:

IE[exp{−1

2

n∑
i=1

αiϕxi}] = [det(I + αU)]−β, (2.3)

for every α1, .., αn ≥ 0, x1, .., xn in E, where I is the n × n identity matrix, α is the
diagonal matrix with entries αi, 1 ≤ i ≤ n and U = (u(xi, xj))1≤i,j≤n.
The proof of (2.2) makes use of the computation of the finite-dimensional Laplace

transforms of L
(a,a)
∞ and of the existence of permanental processes with kernel g. From

(2.2) we could immediately relax the assumption of symmetry in (2.1) to obtain under
IPa:

(
1

2
φx, x ∈ E|φa = 0) + (Lxτr , x ∈ E)

(law)
= (

1

2
φx, x ∈ E|

1

2
φa = r), (2.4)

where φ is a permanental process, independent of X, with index 1/2 and with kernel
gTa + 1, with gTa the Green function of X killed at its first hitting time of a.
Note that (φx, x ∈ E|φa = 0) is a permanental process with kernel gTa [13]. Besides

when X is symmetric: (φ|φa = 2r)
(law)
= (η +

√
2r)2, with η centered Gaussian process

with covariance gTa .
Moreover, we showed [13] that the property of infinite divisibility characterizes the
permanental processes admitting the Green function of a transient Markov process for
kernel. We mention that (2.2) is available for φ permanental process with kernel g and
index β > 0 whatever the value of β.

3



The property of infinite divisibility of a nonnegative process (ψx, x ∈ E) is equivalent
to the existence of a Lévy measure ν on IRE

+ such that

(ψx, x ∈ E)
(law)
= (

∑
y∈χ

y(x), x ∈ E),

where χ is a Poisson point process (i.e. a Poisson random measure) on IRE
+ with inten-

sity measure ν. For a complete presentation of the notion of Lévy measure of infinitely
divisible processes, we recommend Rosinski’s paper [22] ([17] presents illustrations in
the case of positive infinitely divisible processes). In the sequel we will write PPP for
Poisson point process (e.g. χ = PPP(ν)).

The interest of the knowledge of the Lévy measure of the permanental processes ad-
mitting for kernel the Green function of a transient Markov process was hence clear. In
case of a discrete state space and a symmetric transient time continuous Markov chain,
the first identification of the Lévy measure ν of (1

2
η2x, x ∈ E) is done in [19]. This result

is then extended in [18] to any transient Markov process X with continuous finite Green
function g (without assumption of symmetry) with respect to a reference measure m.
In this general framework, ν denotes the Lévy measure of 1

2
ψ for ψ permanental process

with kernel g and index 1/2. The measure ν is supported by the set of measurable
paths y from E to IR+. There was an attempt to give the expression of ν in [11] but

as explained in [9] we actually computed the Lévy measure of (L
(a,a)
∞ (x), x ∈ E). In

[9] we have established that the Lévy measure of L
(a,a)
∞ is 2ν(dy)1{y(a)>0}. Besides in

[9], we do not need the continuity of the Green function to obtain the expression of ν
established in [18].
The measure ν equals the law of the occupation times under the so-called loop measure.
More precisely, let µ be defined by

µ(F ) =

∫
E

IPx[

∫ ∞
0

1

t
F ◦ kt dtLxt ]dm(x), (2.5)

where kt is the killing operator at time t defined on a path (z(t), t ≥ 0) by ktz(s) = z(s)
if s < t and ktz(s) = ∆ if s ≥ t (∆ /∈ E), and (Lxt , x ∈ E, t ≥ 0) is the local time
process of X such that for any x, y in E: IEx[L

y
∞] = g(x, y). One denotes by dtL

x
t the

nonnegative measure generated by the increasing process (Lxt , t ≥ 0).
We mention that when X has transition densities, there is an alternative expression
of µ in terms of bridge measures (see [18]). We also mention a first appearance of the
loop measure in [25].
The measure µ is supported by a set of right continuous with left limits E-valued paths
γ with finite length t(γ) such that γ(0) = γ(t(γ)−) = γ(t(γ)) i.e. a set of ”loops” (see
[18]). A loop γ in the support of µ admits occupation times (`(γ)(x), x ∈ E). Moreover
they satisfy: ∫ t(γ)

0

f(γs)ds =

∫
E

`(γ)(x)f(x)m(dx),
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for every bounded nonnegative with compact support function f .
The measure ν is then given by

ν(F ) =
1

2
µ(F (`)) =

1

2

∫
E

IPx[

∫ ∞
0

1

t
F (Lt) dtL

x
t ]dm(x). (2.6)

The satisfying point with (2.6) is that 1
2
ψ appears then as the field of occupation times

of PPP(1
2
µ). Indeed, one has:

(
1

2
ψx, x ∈ E)

(law)
= (

∑
y∈PPP(ν)

y(x), x ∈ E)
(law)
= (

∑
γ∈PPP( 1

2
µ)

`(γ)(x), x ∈ E). (2.7)

In [18], the isomorphism theorem (2.2) is then presented as a simple application of
the Palm formula to PPP(1

2
µ) and some computations under the loop measure. Note

that this proof of the isomorphism theorem boils down to deduce it from the infinite
divisibility of ψ. Although (2.2) looks then as the law of the sum of two independent
occupation time processes, the use of the Palm formula to obtain it prevents from a
convincing interpretation.

Taking up the chronological description of some of the Dynkin type isomorphism theo-
rems, we present now Sznitman’s identity in its simplest version. Let (ηx, x ∈ Zd) be a
centered Gaussian process with covariance the Green function of the time continuous
simple random walk X on Zd (d ≥ 3), then for every r > 0:

(
1

2
η2x + Lr(x), x ∈ Zd) (law)

= (
1

2
(ηx +

√
2r)2, x ∈ Zd), (2.8)

where Lr is the field of the occupation times of the random interlacements of X at level
r, independent of η. The random interlacements at level r is a PPP with intensity rκ
where κ is a measure on the doubly-infinite nearest neighbors trajectories on Zd modulo
time-shift (see [23] for a full description).
Sznitman deduced (2.8) from (2.1) (see also [19]) by first considering the vertex sets
of an increasing sequence (Kn)n≥0 of connected compact sets of the graph Zd (e.g. for
n ∈ N, Kn = {k ∈ Z : −n ≤ k ≤ n}d and identifying the boundary of the compact
set Kn to a point an, to obtain a sequence of recurrent Markov processes. For each n,
(2.1) is available and (2.8) is obtained by sending n to ∞.
In [14], we have shown that (2.8) is actually (2.1) applied to a recurrent Markov process
(Yt, t ≥ 0) with state space Zd ∪ {δ} (δ /∈ Zd) such that (Lr(x), x ∈ Zd) has the same
law as the local time process of Y starting from δ, at the first time the local time at δ
is greater than r.
We have established an identity analogue to (2.8) for any transient Markov process X
admitting local times [14] [15]. We will detailed the obtained identity in section 3.3.

Recently, we have established [9] the following Dynkin type isomorphism theorem for
any transient Markov process X admitting a finite Green function g. Denote by gTa
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the Green function of X killed at the first time X hits a element of its state space E
and by L

(a,a)
∞ the process of the total accumulated local times of X starting from a,

up to its last visit to a. Let Ψg and ΨgTa
be two permanental processes with index 1

and respective kernels g and gTa , independent of X (see the definition of permanental
processes (2.3)). One has then:

(
1

2
ΨgTa

(x) + L(a,a)
∞ (x), x ∈ E)

(law)
= (

1

2
Ψg(x), x ∈ E). (2.9)

To establish (2.9) we took inspiration from a general decomposition of nonnegative
infinitely divisible processes [9]. We have shown [9] that (2.1) and more generally
(2.4) are immediate consequences of (2.9). Actually (2.9) can generate several other
identities. But as we will emphasize in the next section, now our interest in (2.9) is
that it allows to catch a key to visualize some of these identities as consequences of the
splitting of loop soups into independent pieces.

3 Interpretations of some Dynkin type identities

3.1 Identity (2.9)

We now present an interpretation of (2.9) which will allow to better understand the
content of some others Dynkin type isomorphism theorems.
Consider the loop measure µ, defined by (2.5), of a transient Markov process X with
a finite Green function g with respect to a measure m. Select a point a in the state
space to write: µ(dγ) = µ(dγ)1{a∈γ} + µ(dγ)1{a/∈γ}. One has:

PPP(µ)
a.s.
= PPP(µ(dγ)1{a∈γ}) ∪ PPP(µ(dγ)1{a/∈γ}). (3.1)

Note that the above equality is just the splitting of PPP(µ) according to a belongs
to the loop or not. It is not an equality in law. Moreover the two components are
independent since they do not intersect.
Then one takes the occupation times field on both sides of (3.1) to obtain an equality
which is not an equality in law (we abbreviate occupation times field by O.T.):

O.T of PPP(µ)
a.s.
= O.T of PPP(µ(dγ)1{a∈γ}) + O.T of PPP(µ(dγ)1{a/∈γ}), (3.2)

with the two occupation times fields on the right hand side independent.

Proposition 3.1 The translation in terms of law of (3.2) is the identity (2.9).

Proof One knows thanks to (2.7) that: O.T of PPP(µ)
(law)
= 1

2
Ψg , where Ψg is a

permanental process with index 1 and kernel g. Besides we have established in [9]

that: O.T of PPP(µ(dγ)1{a∈γ})
(law)
= L

(a,a)
∞ , and

O.T of PPP(µ(dγ)1{a/∈γ})
(law)
=

1

2
ΨgTa

, (3.3)
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where ΨgTa
is a permanental process with index 1 and kernel gTa the Green function

of X killed at Ta. �

Remark 3.2 Note that (3.1) is richer than (3.2) and can give rise to many other
identities. As an example, for Λ compact subset of E, denote by N(Λ) the number of
loops of PPP(µ) included in Λ. The Poisson variable N(Λ) can not be expressed in
terms of occupation times of the points in Λ since loops intersecting Λ contribute to
these quantities. Assume that a /∈ Λ, then one obtains:

(O.T of PPP(µ)|N(Λ))
a.s.
= O.T of PPP(µ(dγ)1{a∈γ})+ (O.T of PPP(µ(dγ)1{a/∈γ})|N(Λ)),

with the two occupation times fields on the right hand side independent.

3.2 Generalized second Ray-Knight Theorem

In [9], we have shown that the generalized second Ray-Knight Theorem (2.1), and its
extension to the non-symmetric case (2.4), are immediate consequences of (2.9). But
a posteriori one can also directly justify their existence by using random sets of paths
which are conditionned loop soups.
Consider a recurrent Markov process X with state space E, admitting a local time
process (Lxt , x ∈ E, t ≥ 0) with respect to a reference measure m. We fix a point a in E,
and use the notation of (2.4). Set τr = inf{t > 0 : Lat > r} and τe = inf{t > 0 : Lat > e},
where e is an exponential variable with mean 1, independent of X.
Let µ be the loop measure of X killed at τe, hence

µ(F ) =

∫
E

IPx[

∫ τe

0

1

t
F ◦ kt dtLxt ]dm(x). (3.4)

One writes: µ(dγ) = µ(dγ)1{a/∈γ} + µ(dγ)1{a∈γ}. One has:

PPP(µ(dγ))
a.s.
= PPP(µ(dγ)1{a/∈γ}) ∪ PPP(µ(dγ)1{a∈γ}),

the two components on the right hand being independent.
Let L(a) be the occupation time of a by PPP(µ(dγ)): L(a) =

∑
γ∈PPP(µ) `(γ)(a). Note

that L(a) is also equal to the occupation time of a by PPP(µ(dγ)1{a∈γ}), and is hence
independent of PPP(µ(dγ)1{a/∈γ}). One has:

(PPP(µ(dγ)), L(a))
a.s.
= (PPP(µ(dγ)1{a/∈γ}) ∪ PPP(µ(dγ)1{a∈γ}, L(a))),

and hence:

(PPP(µ(dγ)) | L(a))
a.s.
= (PPP(µ(dγ)1{a/∈γ}) ∪ PPP(µ(dγ)1{a∈γ} | L(a)))

= (PPP(µ(dγ)1{a/∈γ}) ∪ (PPP(µ(dγ)1{a∈γ} | L(a)))
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This implies for almost every r ≥ 0

(PPP(µ) |L(a) = r)
a.s.
= PPP(µ(dγ)1{a/∈γ}) ∪ (PPP(µ(dγ)1{a∈γ})|L(a) = r) (3.5)

with the two random sets on the right hand side independent.
We then take the occupation time field on both sides of (3.5) to obtain:

O.T of (PPP(µ)|L(a) = r)
a.s.
= O.T of PPP(µ(dγ)1{a/∈γ})

+ O.T of (PPP(µ(dγ)1{a∈γ})|L(a) = r) (3.6)

Proposition 3.3 The translation in terms of law of (3.6) is

(
1

2
Ψ | 1

2
Ψ(a) = r)

(law)
=

1

2
ΨgTa

+ Lτr under IPa (3.7)

where Lτr is the local time process of X at time τr, and Ψ and ΨgTa
are permanental

process with index 1 and respective kernels gTa + 1 and gTa, with ΨgTa
independent of

Lτr .

Before proving Proposition 3.3, we show how to obtain the second Ray-Knight Theorem
(2.1) from (3.7). In the symmetric case (3.7) is:

1

2
||ϕ+

√
r||2(law)

=
1

2
||ϕ||2 + Lτr under IPa (3.8)

where ϕ = (η, η̃) is a 2-dimensional centered Gaussian process independent of X,
with η and η̃ two iid centered Gaussian processes with covariance gTa (ϕ +

√
r =

(η +
√
r, η̃ +

√
r)).

Actually (3.8) has exactly the same content as the generalized second Ray-Knight
Theorem (2.1). More generally (3.7) has the same content as (2.4). Indeed we know

[9] that ΨgTa

(law)
= (Ψ | Ψ(a) = 0). We use then the following additivity property of

permanental processes with index 1/2 (see Remark 2.5.1 in [13]). For (φx, x ∈ E) and
(φ̃x, x ∈ E) two independent permanental process with index 1/2 and kernel gTa + 1,
one has:

(φ | φa = p) + (φ̃ | φ̃a = p̃)
(law)
= (φ | φa = q) + (φ̃ | φ̃a = q̃)

(law)
= (Ψ | Ψa = p+ p̃)

for every nonnegative p, p̃, q, q̃ such that p+ p̃ = q + q̃.
One has in particular:

(
1

2
Ψ | 1

2
Ψ(a) = r)

(law)
= (

1

2
φ | 1

2
φa = r) + (

1

2
φ̃ | 1

2
φ̃a = 0)

and obviously:

(
1

2
Ψ | 1

2
Ψ(a) = 0)

(law)
= (

1

2
φ | 1

2
φa = 0) + (

1

2
φ̃ | 1

2
φ̃a = 0)
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Together these two identities with (3.7) give (2.4):

(
1

2
φ | 1

2
φa = r)

(law)
= (

1

2
φ | 1

2
φa = 0) + Lτr under IPa

In particular when X is symmetric, one has: (1
2
φ | 1

2
φa = r)

(law)
= 1

2
(η +

√
2r)2, which

gives the generalized second Ray Knight Theorem of [16].

Proof To prove Proposition 3.3, it is sufficient to establish the following identities:

(i) O.T. of (PPP(µ(dγ))|L(a) = r)
(law)
= (1

2
Ψ|1

2
Ψ(a) = r),

where Ψ is a permanental process with index 1 and kernel gTa + 1.

(ii) O.T. of PPP(µ(dγ)1{a/∈γ})
(law)
= (1

2
ΨgTa

(x), x ∈ E),

where ΨgTa
is a permanental process with index 1 and kernel gTa .

(iii) O.T. of (PPP(µ(dγ)1{a∈γ})|L(a) = r)
(law)
= (Lxτr , x ∈ E) under IPa.

The computation of the law of the occupation time field of a random set of finite
length paths R boils down to the computation of the Laplace transform of F (R) for

any functional F given by F (γ) =
∫ t(γ)
0

f(γ(s))ds, where f is nonnegative function on
E (and F (R) =

∑
γ∈R F (γ)). Denote by χr the conditioned loop soup (PPP(µ)|L(a) =

r). One has: IE[exp{−F (χr)}] = IE[exp{−F (PPP(µ))}|L(a) = r], hence one can claim
that

O.T. of (PPP(µ)|L(a) = r)
(law)
= (O.T. of PPP(µ)|L(a) = r).

We already know that the field of occupation time of PPP(µ) has the law of a per-
manental process with index 1 and kernel gτe , the Green function of X killed at
τe = inf{t > 0 : Lat > e}. As it has been shown in [12]: gτe = gTa + 1. Hence

one has: O.T. of PPP(µ)
(law)
= 1

2
Ψ, which implies:

O.T. of (PPP(µ)|L(a) = r)
(law)
= (

1

2
Ψ|1

2
Ψ(a) = r).

Similarly:

O.T. of (PPP(µ(dγ)1{a∈γ})|L(a)) = r)
(law)
= (O.T. of PPP(µ(dγ)1{a∈γ})|L(a) = r).

Since: (O.T. of PPP(µ(dγ)1{a∈γ}),L(a))
(law)
= (L

(a,a)
τe , e)

a.s.
= (Lτe , e) under IPa,

one obtains

O.T. of (PPP(µ(dγ)1{a∈γ})|L(a)) = r)
(law)
= Lτr under IPa

Hence (i) and (iii) are established.

To obtain (ii) one first notes that X killed at τe and then killed at its first hitting time
of a is X killed at its first hitting time of a. One uses then (3.3) to conclude. �
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3.3 Sznitman’s identity

Sznitman wrote the identity (2.8) in a larger framework than continuous time simple
symmetric random walks on Zd. Indeed in [23] Zd can be replaced by the vertex
set of any locally finite, connected, transient weighted graph G. The corresponding
continuous time random walks all share the following continuity property: a jump
between two vertices x and y is allowed if [x, y] is an edge of G. Lupu [19] extended then
(2.8) to Brownian motion of such graphs G. In [14] [15] we could extend Sznitman’s
identity to a much more general framework. For sake of clarity we limit ourselves to
the symmetric case.
Let X be a transient Markov process with state space E, a measurable metric space,
admitting a finite symmetric Green function g with respect to a reference measure m
such that:

- either X is a standard process,
- or E is discrete.

For such an X, there exists a positive function q on E such that m̃(dx) = q(x)m(dx)
is finite and

∫
E
g(x, x)m̃(dx) < ∞, and there exists a recurrent symmetric Markov

process (Yt)t≥0 with state space E ∪ {a∗} (a∗ /∈ E) admitting a local time process on
E, (Lxt (Y ), x ∈ E ∪ {a∗}, t ≥ 0) satisfying for every f with compact support in E:∫ t
0
f(Ys)ds =

∫
E
Lxt (Y )f(x)m̃(dx), and for every b in E:

(Lx∞(X), x ∈ E|X0 = b)
(law)
= (Lx

T̃a∗
(Y ), x ∈ E|Y0 = b) (3.9)

where T̃a∗ is the first hitting time of a∗ by Y .
Moreover for every r > 0, one has under IP [ . |Y0 = a∗]:

(
1

2
η2x + Lxτ̃r(Y ), x ∈ E)

(law)
= (

1

2
(ηx +

√
2r)2, x ∈ E) (3.10)

where τ̃r = inf{t ≥ 0 : La
∗
t (Y ) > r} and (ηx, x ∈ E) is a centered Gaussian process

with covariance g independent of Y .

To establish (3.10) it has been shown (Remark 2.7 and Lemma 2.8 in [15]) that for any
x,y in E ∪ {a∗}:

IE[Lyτ̃e(Y )|Y0 = x] = g(x, y) + 1. (3.11)

where τ̃e = inf{t ≥ 0 : La∗t (Y ) > e}.

Besides one has extended in [10] the definition of random interlacements to such pro-
cesses X under the additional assumption that X admits a weak dual with respect to
m. We have showed that (Lr(x), x ∈ E) the field of occupation times at level r of the
random interlacements of X satisfies:

(Lr(x), x ∈ E)
(law)
= (Lxτ̃r(Y ), x ∈ E) under IP [ . |Y0 = a∗]
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which gives the following extension of Sznitman’s identity (2.8):

(
1

2
η2x + Lr(x), x ∈ E)

(law)
= (

1

2
(ηx +

√
2r)2, x ∈ E). (3.12)

We would like to show now that (3.10) (and hence (3.12)) can be obtained by splitting
some loop soup. The part of the point a in section 3.2 should be played by a∗ the
additional point. One extends the measure m̃ to E ∪ {a∗} by setting: m∗(dx) =
m̃(dx) + δa∗(dx). In view of (3.9), one can set: g(x, a∗) = g(a∗, x) = 0,∀x ∈ E ∪ {a∗}.
We consider the process (Yt, t ≥ 0) killed at τ̃e where τ̃e = inf{t ≥ 0 : La

∗
t (Y ) > e},

with e an exponential variable with mean 1 independent of Y . In general Y killed at
τ̃e does not satisfy the assumptions required by Theorem 3.1 in [18] nor the ones of
Theorem 1.5 in [9]. We will make use instead of the results established in [9] for a
general nonnegative infinitely divisible process (Theorems 1.1 and 1.2 in [9]).

Let µ̃ be the measure on the set of measurable E ∪ {a∗}-valued paths γ with finite
length t(γ) such that γ(0) = γ(t(γ)) defined by:

µ̃(F ) =

∫
E∪{a∗}

(g(y, y) + 1) IE[
F (Ys, 0 ≤ s ≤ λ(y))∫
E∪{a∗} L

x
λ(y)(Y )m∗(dx)

| Y0 = y] m∗(dy) (3.13)

where λ(y) = sup{t ∈ [0, τ̃e] : Yt = y}.
A loop γ in the support of µ̃ admits a field (`(γ)(x), x ∈ E∪{a∗}) of occupation times.
One writes: µ̃(dγ) = µ̃(dγ)1{a∗ /∈γ} + µ̃(dγ)1{a∗∈γ}. One has:

PPP(µ̃(dγ))
a.s.
= PPP(µ̃(dγ)1{a∗ /∈γ}) ∪ PPP(µ̃(dγ)1{a∗∈γ}),

the two components on the right hand being independent since they do not intersect.

Let L(a∗) be the occupation time of a∗ by PPP(µ̃(dγ)): L(a∗) =
∑

γ∈PPP(µ̃) `(γ)(a∗).

Note that L(a∗) is also equal to the occupation time of a∗ by PPP(µ̃(dγ)1{a∗∈γ}), and
is hence independent of PPP(µ̃(dγ)1{a∗ /∈γ}). This implies for almost every r ≥ 0:

(PPP(µ̃) |L(a∗) = r)
a.s.
= PPP(µ̃(dγ)1{a∗ /∈γ}) ∪ (PPP(µ̃(dγ)1{a∗∈γ})|L(a∗) = r) (3.14)

with the two random sets on the right hand side independent.
We then take the occupation time field on E on both sides of (3.14) to obtain:

O.T of (PPP(µ̃)|L(a∗) = r)
a.s.
= O.T of PPP(µ̃(dγ)1{a∗ /∈γ}) (3.15)

+ O.T of (PPP(µ̃(dγ)1{a∗∈γ})|L(a∗) = r).

Proposition 3.4 Assume that either E is discrete or the Green function g is contin-
uous. Then the translation in terms of law of (3.15) is

(
1

2
Ψ|1

2
Ψ(a∗) = r)

(law)
= (

1

2
Ψg(x) + Lxτ̃r(Y ), x ∈ E) under IP [ |Y0 = a∗] (3.16)

where Ψ and Ψg are permanental processes with index 1 and respective kernels g + 1
and g, and Ψg is independent of Lτ̃r(Y ).

11



By Corollary 2.5 in [13], one knows that: (Ψg(x), x ∈ E)
(law)
= (Ψ(x), x ∈ E|Ψ(a∗) = 0).

One shows then exactly as in section 3.2 that (3.16) has the same content as (3.10)
and (3.12).

Proof To establish Proposition 3.4 it is sufficient to prove the following identities:

(i) O.T. of (PPP(µ̃(dγ))|L(a∗) = r)
(law)
= (1

2
Ψ(x), x ∈ E|1

2
Ψ(a∗) = r),

where Ψ is a permanental process with index 1 and kernel g + 1.

(ii) O.T. of PPP(µ̃(dγ)1{a∗ /∈γ})
(law)
= (1

2
Ψg(x), x ∈ E),

where Ψg is a permanental process with index 1 and kernel g.

(iii) O.T. of (PPP(µ̃(dγ)1{a∗∈γ})|L(a∗) = r)
(law)
= (Lxτ̃r(Y ), x ∈ E) under IP [ . |Y0 = a∗].

The permanental process (Ψx, x ∈ E∪{a∗}) with index 1 and kernel (g(x, y)+1, (x, y) ∈
(E ∪{a∗})2) is nonnegative and infinitely divisible. In order to use Theorem 1.2 in [9],
Ψ would have to be stochastically continuous which is a priori irrelevant for a process
indexed by E ∪ {a∗}. Looking closer at the proof of Theorem 1.2 [9], we see that we
need that given

∫
E∪{a∗}Ψxm

∗(dx) = 0, Ψ must admit an identically equal to 0 version.

But:
∫
E∪{a∗}Ψxm

∗(dx) =
∫
E

Ψxm(dx) + Ψa∗ , hence given
∫
E∪{a∗}Ψxm

∗(dx) = 0, one

has:
∫
E

Ψxm(dx) = 0 and Ψa∗ = 0. Since g is continuous on E2, one shows as in [9]
that Ψ|E admits an identically equal to 0 version. Consequently one can make use of
Theorem 1.2 [9].
The Lévy measure ν̃ of (1

2
Ψx, x ∈ E ∪ {a∗}) is hence provided by Theorem 1.2 [9]:

ν̃(F ) =

∫
E∪{a∗}

IE[
F (r(b))∫

E∪{a∗} r
(b)(x)m∗(dx)

]IE[
1

2
Ψb]m

∗(db)

where for every b ∈ E ∪ {a∗}, the law of r(b) is characterized by :

1

2
Ψ + r(b)

(law)
=

1

2
Ψ under IE[

Ψb

IE[Ψb]
, . ]. (3.17)

On the other hand for any b in E ∪ {a∗}, one writes (2.2) for Y killed at τ̃e under
IP [ . |Y0 = b]:

(
1

2
Ψx + Lxλ(b)(Y ), x ∈ E ∪ {a∗})(law)

= (
1

2
Ψx, x ∈ E ∪ {a∗}) under IE[

Ψb

IE[Ψb]
, . ] (3.18)

The identity (2.2) is available in this case since Y satisfies the Markov property at
inverse local times and τ̃e, and one has (3.11) (see [15]). Hence one obtains that the
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process r(b) involved in (3.17) has the same law as Lλ(b)(Y ) under IP [ . |Y0 = b]. One
obtains:

ν̃(F ) =

∫
E∪{δ}

(g(y, y) + 1) IE[
F (Lxλ(b)(Y ), x ∈ E ∪ {a∗})∫

E∪{δ} L
x
λ(y)(Y )m∗(dx)

| Y0 = b] m∗(dy).

Consequently: ν̃(F ) = µ̃(F (`(γ))), where for a loop γ in the support of µ̃, (`(γ)(x), x ∈
E ∪ {a∗}) denotes the occupation time of γ.
One obtains:

(
1

2
Ψx, x ∈ E ∪ {a∗})

(law)
= (

∑
w∈PPP(ν̃)

w(x), x ∈ E ∪ {a∗})

(law)
= (

∑
γ∈PPP(µ̃)

`(γ)(x), x ∈ E ∪ {a∗}) (3.19)

According to (3.19):

O.T. of PPP(µ̃(dγ))|L(a∗) = r))
(law)
= (

1

2
Ψx, x ∈ E|

1

2
Ψa∗ = r)

Note that: µ̃(F (γ)1a∗ /∈γ) = µ̃(F (γ)1`(γ)(a∗)=0). Hence thanks to Theorem 1.2 in [9], one
has:

O.T. of PPP(µ̃(dγ))1a∗ /∈γ)
(law)
= (

1

2
Ψx, x ∈ E|

1

2
Ψa∗ = 0)

(i) and (ii) are hence established.
Choosing b = a∗ in (3.18), one has under IP [ . |Y0 = a∗]:

(
1

2
Ψx + Lxτ̃e(Y ), x ∈ E ∪ {a∗})(law)

= (
1

2
Ψx, x ∈ E ∪ {a∗}) under IE[

Ψa∗

IE[Ψa∗ ]
, . ]

Knowing that the Lévy measure of 1
2
Ψ is ν̃, one easily obtains from the above identity

that the Lévy measure of Lτ̃e(Y ) under IP [ . |Y0 = a∗] is ν̃(y)1{y(a∗)>0} (just compute
the finite dimensional Laplace transforms on both sides). Since:

O.T. of PPP(µ̃(dγ)1{a∗∈γ}) = (
∑

w∈PPP(ν̃(dy)1{y(a∗)>0})

w(x), x ∈ E ∪ {a∗})

one obtains:

O.T. of PPP(µ̃(dγ)1{a∗∈γ})
(law)
= (Lxτe(Y ), x ∈ E ∪ {a∗}) under IP [ . |Y0 = a∗]

which leads to (iii). �
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