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1. Introduction

Several research works have recently been published on the longitudinal coupling of hydraulic
solvers from the Open Telemac-Mascaret suite. [7], [8], and [3] can be cited for example. The
integrated Mascaret - Telemac2D longitudinal coupling described in this document is based
on Sébastien Barthélémy’s post-doc at CERFACS, under the direction of S. Ricci, N. Goutal
and É. Le Pape, who implemented a fully working prototype for coupling the 1D and 2D free
surface hydraulics models MASCARET and TELEMAC interfaced at their boundary condi-
tions, denoted in the following as longitudinal coupling [1, 2, 6]. Fig. 1.1 illustrates the 1D
sub-domains (in black) coupled to the 2D domains (in blue) at the interfaces (in red).

Figure 1.1: Schematic view of longitudinal coupling

The original prototype, based on the article by [4], has been implemented by the explicit cou-
pling of two separate F90 codes via the OpenPALM coupler developed at CERFACS [5]. The
exchanged data was accessed and modified via the F90 generic API’s of the version 7 of the
TELEMAC-MASCARET code suite.
The prototype has been tuned and tested on a single real applicative case where the confluence
of the Nive and the Adour rivers in Bayonne is modeled with TELEMAC-2D and the upstream
Nive and Adour and the downstream Adour stretches are modeled with MASCARET. For this
case study, three 1D sub-domains are considered: two 1D sud-domains represent the Nive and
Adour rivers (respectively Adour upstream and Nive upstream) that gather in the 2D domain,
then the Adour river is represented by a downstream 1D model (Adour downstream) as illus-
trated in Fig. 1.2.
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Figure 1.2: Schematic representation of the relative placement of the 1D models compared to
the 2D model and the coupling interfaces for the Adour catchment.

Lately, the code has been rewritten, keeping the same algorithmic approach, but relying entirely
on the python API’s and directly coupling the 1D and 2D components via MPI without any
third parties coupler. An academic test case of hydrodynamics in a 1D rectangular channel was
also added for validation with respect to the analytical solution.
At the current state of development, the coupling tools described in this document allow for
the implementation of longitudinal couplings for configurations similar to the one tested in the
prototype: a single 2D basin with upstream and downstream 1D coupled stretches. This means
that the coupling can handle several 1D sub-domains and a single 2D sub-domain.
Note that in such configuration a coupled 1D stretch can only have a single interface with the
2D region. This limitation could be overcome in order to allow for 2D-1D-2D configurations:
the formalism for the description of the coupling geometry is already well adapted to complex
configurations.

In the following, we’ll quickly recall the algorithmic principles, we’ll provide a quick start
installation guide (with details in appendix) and user guide and we’ll explain thoroughly the
syntax of the python dictionaries (optionaly stored in json files) used to describe the coupling
configuration and the current run definition.



2. The algorithm

The longitudinal coupling is dealt with via the Schwarz algorithm in its multiplicative or addi-
tive variants. It will be illustrated here on the case of a 1D stretch upstream of a 2D region as
shown in Fig. 2.1. The flow in the 1D region is assumed to be sub-critical (for further consider-
ations on the most adapted interface conditions accordingly to the flow regime, the reader can
refer to [Goutal. HDR]).

Figure 2.1: Schematic representation of the relative placement of the 1D models compared to
the 2D model on a simple 1D-2D configuration.

The Schwarz method is an iterative algorithm illustrated in Fig. 2.2: the time range of the
coupling event is split into a sequence of time intervals, as in [t1; t2]. The iterations in a given
interval are represented by the red loop. Over each interval, models (code A and code B) are
integrated in time, with their respective time steps. It should be noted that one code could be
faster then the other, and thus would have to wait before exchanging data. Once both models
have computed their hydraulic states, they exchange (via communications denoted by com)
some hydraulic state variables – here the free surface height and the discharge values – at the
boundary of the 1D and 2D sub-domains, until a convergence criteria is reached. In case of a
sub-critical flow, the upstream 1D model provides the discharge boundary condition value to
the 2D model which, in turns, provides the 1D with the free surface height condition. On the
same time interval, the models are therefore restarted and integrated with the new boundary
conditions. This is referred to as a coupling step. Once the convergence (or the maximum
number of allowed iterates) is reached, the models are integrated on the following time interval,
for the next coupling step. The coupling steps are chained to cover the entire coupling event.
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Figure 2.2: Schema

The Schwarz method is derived in a multiplicative or additive variant depending on how time is
dealt with during the iterative process at the coupling interfaces Γ.
In the multiplicative variant, the models are integrated one at a time in a sequence, starting
in the present study with the 1D model. As a consequence, only the 1D model restarts from
initially prescribed boundary conditions at the coupling interfaces or from conditions inherited
from the previous time interval as in Eq. 2.1. The 2D model always runs after at least a 1D
integration, therefore the boundary conditions at the coupling interfaces are always provided by
the 1D model as in Eq. 2.2.

�
L1(S;Q)k = 0 on Ω1D� [t1; t2]
Sk

1D = A21(h̄k�1
2D ) on Γ� [t1; t2]

(2.1)

�
L2(h;u;v)k = 0 on Ω2D� [t1; t2]
(u;v)k

2D = B12(Qk
1D) on Γ� [t1; t2]

(2.2)

�
L2(h;u;v)k = 0 on Ω2D� [t1; t2]
(u;v)k

2D = B12(Qk�1
1D ) on Γ� [t1; t2]

(2.3)

In the additive variant, the models are integrated simultaneously: both restart from initially
prescribed boundary conditions at the coupling interfaces or from conditions inherited from
the previous time interval as in Eq. 2.1 and Eq. 2.3. The additive variant is available as an
option because it has the advantage that the models can run simultaneously in parallel, but it
has to be noted that in some situations the additive formulation has a slower convergence than
the multiplicative formulation, and, even if the models run in parallel, the overall coupling
time could be higher than with the multiplicative variant. The default choice is therefore the
multiplicative Schwarz method.
The algorithm is also described by the way boundary conditions at the interface are inherited
from the previous to the current coupling step as illustrated in Fig. 2.3. A possible choice is to
reuse the same conditions as in the previous time interval. If the time interval spans more than
one model time-step, the whole time series is translated to the next interval. An alternative is to
make the last value of the time series persist as a constant on the following interval. A further
distinction, especially if the iterates are stopped before satisfactory convergence, is to use the
last value at the boundary as it has been provided by the other model before the last integration
or as it has been updated by the model itself after the last integration. The default choice is the
persistence of the last value provided by the other model.
In order to cope with the oscillation in values during iterates before convergence, the average of
the values (or time series) from the last two iterates is used instead of the last value itself. This
approximation could be avoided if the algorithm is iterated till full convergence.
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Figure 2.3: Schematic representation of the coupling with coupling step sequneces.



3. Software requirements and installa-
tion

The longitudinal coupling has been implemented on top of the version 8.1 of Open TELEMAC-
MASCARET, provided with the recently updated python3 API’s. In addition, some specific
python3 procedures have been added for the coupling.

In order to have a coherent complete python3 environment with all the needed packages, we
suggest creating a dedicated environment either via a python3 venv – as illustrated in appendix
A – or miniconda – as illustrated in appendix B.

The Open TELEMAC-MASCARET code has to be compiled with the “api” target activated.
Since the coupling needs the message passing MPI library, choose a compilation environment
with its own compatible MPI library, even if TELEMAC2D will be used in its sequential dec-
lination. Notice and remember that the python environment will include mpi4py and some
caution has to be paid to be sure that the underlying MPI library is the same as that for the
model. More details are provided in sections A.1 and B.1 of the appendix on the venv and
conda installations.

Once the environment has been created and loaded, you can proceed to the compilation of
the models with the python3 utility scripts/python3/compile_telemac.py. Please
refer to the Open TELEMAC-MASCARET documentation for details.
Note that the configuration for the longitudinal coupling in configs must contain the fol-
lowing informations (examples here refer to gfortran and OpenMPI4, please modify the syntax
accordingly to your compiler)

options: mpi api
f2py_name: f2py
pyd_fcompiler: gfortran
sfx_lib: .so
cmd_obj: mpif90 -c -cpp -fPIC [...]
cmd_lib: mpif90 -fPIC -shared [...]
cmd_exe: mpif90 -fPIC [...]
cmd_obj_c: mpicc -c -fPIC <srcName> -o <objName>
cmd_obj_partel: mpif90 -c -cpp -fPIC [...]
mpi_cmdexec: mpirun [...] -np <ncsize> <exename>

Finally, make sure that the python modules are made accessible for import, by adding the
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$HOMETEL/scripts/python3 directory to the PYTHONPATH environment variable.



4. Naming conventions

In order to be consistent throughout the document, we point out in this chapter some naming
conventions and keywords we’ll use in the following.

4.1 Time reference and cycling

A coupled simulation is a time evolving prognostic model used to simulate a multi-physics
phenomenon. The simulation implies different specialized models that cooperate to represent a
complex system. All models must reference the same physical simulated situation, therefore it
is mandatory to define a common time reference.
Furthermore a complex system on a long event could not be simulated in a single integration,
neither it is safe to perform such integration without restarting capabilities. For this reason the
coupled simulation is implemented by cycling runs as illustrated in Fig. 4.1 and detailed in the
following section.

Figure 4.1: Schematic representation of coupling with sequential runs

All time instances are referenced as elapsed seconds from a common reference date. The
elapsed seconds are the common unit, and as such, are used in files and directories names.
Yet, in the configuration files, human readable dates are used and automatically converted into
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elapsed seconds by the coupling scripts. The reference date is the initial instant of an event and
the simulation cannot start before that date.
A run denotes a coupled simulation over a sub period of the event. It is defined by a start date
(which should be greater or equal than the reference date) and an end date (which should be
strictly greater than the start date). Restarting capabilities allow for chaining a subsequent run
starting from the previous end date. Yet a cold start is possible, provided that initial conditions
for each model are available at the start date. A run is either restarted from a file containing a
previously saved information, or if initialized from provided conditions at the beginning of the
event. Each run can be subdivided into a sequence of chained shorter executions of a prescribed
duration, for the purpose of reducing the resources needed for every single parallel application
and of generating frequent checkpoints to increase fault resiliency.

For illustration purposes, the time line in Fig. 4.1 is detailed here:
A 1-month event is considered, starting at midnight of July the 1st 2019. The reference date is
therefore 1/7/2019 00:00:00.
In order simulate the 6-hour interval from noon to 7 pm of the same day, the run is defined
with start date 1/7/2019 12:00:00 and end date 1/7/2019 18:00:00, provided that
at least the initial conditions for all the models are available at the start date, for instance t1 to
t7 in Fig. 4.1.
The run could also be slit the run into 2 checkpointed executions of 3 hours each with execution
duration of 03:00:00 between t1 and t4 and then between t4 and t7.
In order to pursue the simulation for 3 more hours, a new run is defined with start date 1/7/2019
18:00:00 and end date 1/7/2019 21:00:00 strating the restart produced by the previous
run at t7.

4.2 Coupling definition
The main algorithmic concepts are described in chapter 2. We draw here some correspondences
between the algorithm and naming used in the configuration dictionaries or files, relying on
Fig. 2.2, Fig. 2.3 and Fig. 4.1.
The toplevel choice, referencing to the multiplicative and additive variants of the Schwarz for-
mulation, is the coupling method.

Successively, a coupled simulation is realised as a time sequence of coupling steps. The step
is the coupling time interval mentioned in chapter 2, i.e. the frequency at which the bound-
ary conditions are recomputed and exchanged till convergence. A short coupling step makes
the convergence easier, a longer time step reduces the overall number of repetitions but could
require more iterates per repetition. In order to control the execution time and prevent hang-
ing execution in case of divergence, the iterative process is bounded to a prescribed maximum
number of iterates.

4.3 1D models description
The coupling framework relies on a hydraulic network that features at least one 1D stretch mod-
eled with Mascaret. Each 1D domain is identified with a unique identifier string.

The time step is indicated for each model; it must divide exactly the coupling step. Note that,
in the current version of the coupling scripts, all 1D models share the same time step while the
2D model has its own time step. The need for distinct 1D model time steops will be further
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evaluated.

The paths for Mascaret input and output files should be given, as detailled in section 5.1. The
information is stored in a disctionary (optionally in a json file) for each 1D model.

4.4 2D model description
Whether the representation of non contiguous 2D domains should be treated with separate in-
stances of Telemac or with a single instance with a non contiguous computational domain is
still open for discussion. Most likely, a single instance would be used, nevertheless, in order
to maintain the two options, the 2D model is also identified with a unique identifier string.
Similarly to the 1D model, the 2D model time step must be prescribed and divide exactly the
coupling step.
The output frequency, at which the model writes its results in the output files, and the output
location, for nodes of interest should be specified.
Path for Telemac input and output files should also be given, as detailled in section 5.2, in the
form of a dictionnary (optionnaly in a json file).

4.5 Interfaces description
Interfaces description explains how the models are connected. For the longitudinal coupling,
there is no overlapping between 1D and 2D domains. The coupling interfaces are located at the
extremities of 1D stretches and free boundaries of the 2D domain as shown in Fig. 1.2.
An interface Γ is fully described by the identifier of the 1D model, the identifier of the 1D
stretch free extremity coupled to the 2D model, the identifier of the 2D model, the identifier
of the 2D liquid boundary coupled to the 1D model, and by the relative position of the 1D
model w.r.t. the 2D model (upstream or downstream).

The iterative coupling process described in Sect. 2 is stopped when specific convergence cri-
teria at the interfaces are met. For each interface, the coupled variables and the convergence
threshold should be specified.



5. Inputs for a coupled application

A coupled application is based on a set of MASCARET and TELEMAC2D instances along
with the description of the simulation (Section 4.1) and the coupling configuration.

The LongCplDriver class from telapy.coupling.long_cpl_driver drives a cou-
pled application. It receives its inputs via dictionaries. Arguments for initialisation of the
LongCplDriver class are:

� The directory path caseo_path for toplevel of the coupling filetree, naled CPLROOT
in the following,

� A dictionnary coupling_def for coupling information (Sect. 5.3),

� A dictionnary model_configs for 1D and 2D models information, espacially path for
input files for the 1D and 2D submodels (Sect. 5.1 and Sect. 5.2),

� A bolean keep_exec for saving of execution directory CPLROOT/EXEC. Note that this
path is the reference for input and output relative paths.

Arguments for call of the LongCplDriver class stand in a dictionnary that gathers informa-
tion on the simulation (Sect. 5.4)
There are two ways to run a coupling. The first way consists in invoking the driver from a user
python procedure that provides the previously mentionned dictionaries, initialize and call the
LongCplDriver class. The second way relies on a provided launcher run_cpl.py long
as explained in Chapt. 6. In the latter case, the input information is read from configuration files
gathered as a dictionnary in a single python file coupling_description.py or in a set of
json files with similar dictionnary structure. The syntax for the arguments of initialisation and
call methods of LongCplDriver, as well as how this information is stored in in python or
json as described in the following subsections.
The actual input files for 1D and 2D submodels should be available in a remote directory,
on a file system accessible for linking from inside CPLROOT/EXEC. The output file location
Results should be specified (Chap. 6), possibly not under the temporary CPLROOT/EXEC
directory.
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5.1 MASCARET
5.1.1 Description of MASCARET inputs

A Mascaret 1D instance is described by an xml parameter file with extension .xcas. The
geometry is described in a geometry file with extension .geo. The initial condition for restart
is read from an ascii file with extension .lig. The time varying boundary conditions are de-
scribed in several files (one per condition) with extension .loi or .law. The data describing
MASCARET input files come as the third argument of LongCplDriver class. Three posi-
bilities are handled to provide this information to LongCplDriver class: as a dictionnary, in
a python file or in a json file. The checkpointed boundary conditions at the coupling interfaces
are automatically stored in a json file named bc1D_restart_; indexed by the model identi-
fier and seconds since the reference date (e.g. bc1D_restart_AAM_57600.json). These
files are not provided by the user and are created during the coupling cycles. The data describ-
ing MASCARET input files come as an element of the third argument of LongCplDriver
class given in the model_configs dictionnary. Three posibilities are handled to provide this
information to LongCplDriver class: as a dictionnary, in a python file or in a json file.

5.1.2 Description of MASCARET input data as a dictionary for LongCplDriver
The third positional argument of the initialization of LongCplDriver is a dictionnary named
models_configs that describes the configurations for the 1D and 2D submodel distin-
guished by their identier as "config_identifier". For instance, if the identifier for the “Chan-
nel 1D” model is ch1d, its corresponding key in the dictionnary is config_ch1d

Under each of the 1D submodel key, the paths for MASCARET input files are listed in a dic-
tionnary under the single key files:

xcas string with the path of the xml parameter file

geo string with the path of the geometry file

res string with the name (and only the name as the path is set at run time) of the results file

listing string with the name (and only the name, because the path is determined at run time)
of the listing file

damocle only kept for compatibility. Its value is a string but the content is neglected

lig string with the path of the initial condition file. Note that during the coupling process this
can be overidden in order to reuse restart.

loi list of strings with the path of the time dependent boundary condition files.

As an example, if the dictionary to be passed as third argument to LongCplDriver is stored
in model_configs, the section for the “Channel 1D” model will be as follows:

models_configs = {
"config_ch1d" : {

"files": {

"xcas": "../Input_Data/1d_stretch/ParametresMascaret.xcas",
"geo": "../Input_Data/1d_stretch/Channel1d.geo",
"res": "ResultatsOpthyca_ch1d.opt",
"listing": "ResultatsListing_ch1d.lis",
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"damocle": "listing.damoc",
"lig": "../Input_Data/1d_stretch/WaterLine_ch1d.lig",
"loi": [

"../Input_Data/1d_stretch/1d_up.loi",
"../Input_Data/1d_stretch/1d_down.loi"

]
}

},
[...]

5.1.3 Description of MASCARET input data as an entry in coupling_description.py

If the coupling is started by the standalone launcher run_cpl.py long, the coupling de-
scription can be stored in a python file with compulsory name coupling_description.py.
In this file, for each 1D model instance, a dictionary must be defined and given the mandatory
name
config_identifier
The dictionaries content is the same as in the dictionary argument described in the previous
section. For instance, the dictionary for the “Channel 1D” model is:

config_ch1d = {
"files": {

"xcas": "../Input_Data/1d_stretch/ParametresMascaret.xcas",
"geo": "../Input_Data/1d_stretch/Channel1d.geo",
"res": "ResultatsOpthyca_ch1d.opt",
"listing": "ResultatsListing_ch1d.lis",
"damocle": "listing.damoc",
"lig": "../Input_Data/1d_stretch/WaterLine_ch1d.lig",
"loi": [

"../Input_Data/1d_stretch/1d_up.loi",
"../Input_Data/1d_stretch/1d_down.loi"
]

}
}

5.1.4 Description of MASCARET input data as a json configuration file
Another option, if the coupling is started by the standalone launcher run_cpl.py long, is
to provide a json configuration file for each model instance, named
config_identifier.json.
This json file contains a dictionary with a single key files. For instance, the json configura-
tion file named after the identifier of the “Channel 1D” submodel as config_ch1d.json,
contains:

{
"files": {

"xcas": "../Input_Data/1d_stretch/ParametresMascaret.xcas",
"geo": "../Input_Data/1d_stretch/Channel1d.geo",
"res": "ResultatsOpthyca_ch1d.opt",
"listing": "ResultatsListing_ch1d.lis",
"damocle": "listing.damoc",
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"lig": "../Input_Data/1d_stretch/WaterLine_ch1d.lig",
"loi": [

"../Input_Data/1d_stretch/1d_up.loi",
"../Input_Data/1d_stretch/1d_down.loi"

]
}

}

5.2 TELEMAC2D
5.2.1 Description of TELEMAC2D inputs

A Telemac 2D instance is described by an ascii parameter file in the damocles format, usually
called the cas (french for case) file. Its extension is usually (but not necessarily) .cas. The
geometry and the physical characteristics of the domain are described in a binary file in the
selafin format, with extension .slf. If the model is restarted, the initial condition has to be
stored in another selafin file with extension .slf. The boudary conditions settings are given
for the peripheral grid cells in an ascii file with extension .cli. When needed, the time varying
boundary conditions are stored in a separate ascii file with extension .liq

For restarted coupling, the checkpointed boundary conditions at the coupling interfaces are au-
tomatically stored in a json file named adfter the model identifier and time in seconds since the
reference date as bc2D_restart_ (for instance bc2D_restart_Bayonne_57600.json).
These files are not provided by the user and are created during the executions cycling.

An important remark about restart file names
In order to allow for the time cycling described in section 4.1, the names of the initial condition
files for the 2D model must respect the mandatory naming convention
WaterLineInit_seconds.slf
where the seconds are computed w.r.t. the common reference date. The coupling driver will
link the currently selected initial condition file to the constant name
WaterLineInit_in.slf
before transferring it to the execution directory as T2DPRE. It is therefore recommended to
describe the restart file in the .cas description by
FICHIER DU CALCUL PRECEDENT = WaterLineInit_in.slf
or
PREVIOUS COMPUTATION FILE = WaterLineInit_in.slf

5.2.2 Description of TELEMAC2D inputs as a dictionary for LongCplDriver
The third positional argument of the initialization of LongCplDriver is a dictionnary named
models_configs that describes the configurations for the 1D and 2D submodel distin-
guished by their identier as "config_identifier". For instance, if the identifier for the “Chan-
nel 2D” model is ch2d, its corresponding key in the dictionnary is config_ch2d.

Under this key is a dictionnary that gathers the following keys and information:

cas string with the path of the case parameter file,

config_file Optional: string with the path of the systel compilation configuration file. Its
default is the content of the SYSTELCFG environment variable. The same environment
variable can be referenced in the dictionary (especially in the json files) by the conven-
tional string "${SYSTELCFG}",
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config_option Optional: string with the identifier of the compilation configuration of the
Telemac system. Its default is the content of the USETELCFG environment variable. The
same environment variable can be referenced in the dictionary (especially in the json
files) by the conventional string "${USETELCFG}"

As an example, if the dictionary to be passed as third argument to LongCplDriver is stored
in model_configs, the section for the “Channel 2D” model is:

models_configs = {
[...]
"config_ch2d" : {

"files": {
"cas": "../Input_Data/2d_rect/T2DCAS",
"config_file": "${SYSTELCFG}",
"config_option": "${USETELCFG}"

}
}

}

5.2.3 Description of TELEMAC2D inputs as an entry in coupling_description.py

If the coupling is started by the standalone launcher run_cpl.py long, the coupling de-
scription can be stored in a python file with compulsory name coupling_description.py.
In this file, for the 2D model, a dictionary must be defined and given the mandatory name
config_identifier.
The dictionaries content is the same as in the dictionary argument described in the previous
section. For instance, the dictionary for the “Channel 2D” model is:

config_ch2d = {
"files": {

"cas": "../Input_Data/2d_rect/T2DCAS",
"config_file": "${SYSTELCFG}",
"config_option": "${USETELCFG}"

}
}

5.2.4 Description of TELEMAC2D inputs as a json configuration file
Another option, if the coupling is started by the standalone launcher run_cpl.py long, is
to provide a json configuration file for the 2D model, named
config_identifier.json.
This json file contains a dictionary with a single key files. For instance, the json configura-
tion file named after the identifier of the “Channel 2D” submodel as config_ch2d.json,
contains:

{
"files": {

"cas" : "../Input_Data/2d_rect/T2DCAS",
"config_file": "${SYSTELCFG}",
"config_option": "${USETELCFG}"
}

}
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5.3 The Coupling Definition

The second argument for initialization of the coupling driver LongCplDriver class is the
coupling_def dictionary that describes the coupling information.
If the coupling is started by the standalone launcher run_cpl.py long, the coupling de-
scription is stored in a python file with the compulsory name of coupling_description.py
stored in CPLROOT and the coupling definition is stored in a dictionary with the mandatory
name coupling_def.
As an alternative it can be stored in a json in CPLROOT with the mandatory name
CouplingDef.json

In detail, the definition is organised in 4 sections, described in the following, and corresponding
to 4 toplelvel keys in the the dictionary or separate json blocks in the json file:

� "Coupling"

� "1D"

� "2D"

� "Interfaces"

Each block contains in turn a dictionary. A full example is provided in Appendix C or D or E.1

5.3.1 The Coupling entry
The Coupling entry contains the following keys (cf. 4.2):

TimeStep the value is a real number with the coupling step in seconds

Method the value is a string. The choice is limited to MultiplicativeSchwarz or
AdditiveSchwarz

MaxIter the value is an integer with the maximum number of iterates allowed per coupling
step

CplStepRestart1D (optional, defaulting to Persist2D) the value is a string indicating
how to reinitialize the 1D boundary conditions at coupling interfaces at each new coupling
step

CplStepRestart2D (optional, defaulting to Persist1D and relevant only for the additive
variant of the Schwarz method) the value is a string indicating how to reinitialize the 2D
boundary conditions at coupling interfaces at each new coupling step

5.3.2 The 1D entry
The 1D entry contains as many dictionaries as instances of the 1D model. Each dictionary uses
as key the identifier of the 1D model (cf. 4.3) and contains two keys:

TimeStep the value is a real number with the timestep for the model integration in seconds.
Remember that, in the current version, the time step has to be the same for all the 1D
models

OutputFreq the value is a real number with the results output frequency in seconds
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5.3.3 The 2D entry
The 2D entry contains as many dictionaries as instances of the 2D model (only one possible as
of today) and contains three keys:

TimeStep the value is a real number with the timestep for the model integration in seconds.

OutputFreq the value is a real number with the results output frequency in seconds

OutputSites the value is a list of integers with the node number at which the resulsts are
output. Note that also for a single point the list syntax [32939] has to be respected

5.3.4 The Interfaces entry
The Interfaces entry is a list of dictionaries. Each dictionary describes a single coupling
interface (cf. 4.5) and contains the following keys:

Id1D the value is a string with the identifier of the 1D model

IdExtr1D the value is a string with the identifier of the 1D model coupling free extremity as
it is listed in the xml .xcas file

Condition1D the value is a string with the kind of boundary condition at the coupling inter-
face for the 1D model. The choice is limited to Discharge or WaterLevel

Id2D the value is a string with the identifier of the 2D model

LiqBdry2D the value is an integer with the number of the 2D model coupling liquid boundary
as it is listed in the damocles cas file

1DPosition the value is a string with the relative position of the 1D model w.r.t the 2D
model. The choice is limited to UpStream or DownStream

ConvCriteria the value is a dictionary with as many keys as variables to be checked. For
each key the value is a real number indicating the convergence threshold for that variable.
Currently possible keys are Height or Velocity

5.4 The Current Run Configuration
In order to describe the simulation for the current run, the user must provide every run call of
an instance of the coupling driver LongCplDriver with the information listed in Sect. 4.1.
The first and only for a run call to an instance of LongCplDriver, the information has to be
organised in a python dictionary, named config_run.

If the coupling is started by the standalone launcher run_cpl.py long, the coupling de-
scription is stored in a python file with the compulsory name of coupling_description.py
stored in CPLROOT and the coupling definition is stored in a dictionary with the mandatory
name config_run.
As an alternative it can be stored in a json in CPLROOT with the mandatory name
ConfigRun.json. The configuration is organised in 2 sections, corresponding to two toplelvel
keys in the dictionary or two separate json blocks in the json file:

� "Run"

� "2D"

Each of them contains in turn a dictionary. A full example is provided in Appendix C or D or
E.2
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5.4.1 The Run entry
The Run entry contains the following keys (cf. 4.1):

RefDate the value is a string in the format [d]d/[m]m/yyyy hh:mm:ss with the event
reference date used as origin for the time counters in seconds

StartDate the value is a string in the format [d]d/[m]m/yyyy hh:mm:ss with the
start date for the current run

EndDate the value is a string in the format [d]d/[m]m/yyyy hh:mm:ss with the end
date for the current run

SingleExecDuration the value is a string in the format [dd day[s]] hh:mm:ss or
[ddd][hhh][mmm][sss] with the duration of every single execution splitting the
current run. Valid equivalent examples are "36:00:00" or "1 day 12:00:00"
or "36h" or "1d12h". Notice that this field is optional: if missing, the whole run is
performed with just one execution.

RestartFromFile the value is the string yes or no to indicate if the run restarts from
previously stored conditions (if available) or if it is a cold start

SaveCheckPoints the value is the yes or no string indicating if the restart information
have to be stored between every single execution (yes) or only at the end of the run (no)

5.4.2 The 2D entry
The 2D entry contains as many dictionaries as instances of the 2D model (only one possible as
of today) and contains two keys:

Parallel the value is the yes or no string indicating if we run the parallel (yes) or the
sequential (no) telemac2d executable,

NbProc the value is an integer, relevant only if the run is parallel, with the number of proces-
sors for the 2D model.



6. Running a coupling

Once the input filetree has been prepared and the configuration dictionaries fully filled, running
a coupled application is quite straightforward.

The coupling can be driven from a user application if the
LongCplDriver class is imported from telapy.coupling.long_cpl_driver
In such case the coupling definition and model description information described in the previous
sections is passed by arguments to the initialization of an instance of the LongCplDriver
class:

[...]
from telapy.coupling.long_cpl_driver import LongCplDriver
[...]
the_coupling = LongCplDriver(case_path = ".",

coupling_def = user_coupling,
models_configs = models_configs)

A fourth optional boolean argument to the initialization, named keep_exec allows to con-
serve the EXEC directory after deletion of the driver instance or at the end of the procedure, for
debugging purposes. The default is keep_exec=False and the EXEC directory is removed.

The coupling is actually launched by a direct call of the LongCplDriver instance which
receives the current run configuration by argument, as in the following example:

[...]
the_coupling(config_run = driven_run)

More than one run can be chained in the same application, provided that the config_run
dates are correctly updated as illustrated in the example in Sect. 8.1.3 and appendix D.

The coupling can also be started as a standalone application with the python procedure
run_cpl.py long
provided in the scripts/python3/coupling directory of the distributed sources.

If the procedure is started from the CPLROOT directory, where the coupling_description.py
– or the CouplingDef.json and the CurrentRun.json – files are, it can be started with-
out any argument.
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If it is started from a generic directory, the CPLROOT has to be passed as an argument of the
��src option.

As an example, for the bayonne test case from the distribution, let’s say that
CPLROOT is $HOMETEL/examples/python3/telapy_coupling/bayonne
while run_cpl.py long is in $HOMETEL/scripts/python3/coupling
The run can be started from within CPLROOT by

python $HOMETEL/scripts/python3/run_cpl.py long

or from whatever directory by

python $HOMETEL/scripts/python3/coupling/run_cpl.py long \
--src $HOMETEL/examples/python3/telapy_coupling/bayonne

A summary of the loaded configuration is output

+--------------------------------------------------------+
|------- LONGITUDINAL MASCARET TELEMAC2D COUPLING -------|
+--------------------------------------------------------+
|
| Coupling Method: MultiplicativeSchwarz
| Max It. nr.: 5
| Coupling TStep: 8.0
|
| Initial time: 1/7/2019 12:00:00
| End time: 1/7/2019 16:00:00
| Split Run every: 02:00:00 (2 exec[s])
| Restarted run: yes
|
| 1D models: [’AAM’, ’AAV’, ’NA’]
| 2D models: [’Bayonne’]
|
| Interfaces:
| AAM:limite2 (Discharge ) UpStream of Bayonne:2
| AAV:limite1 (WaterLevel) DownStream of Bayonne:3
| NA:limite2 (Discharge ) UpStream of Bayonne:1
+--------------------------------------------------------+

The executions start and a progress counter is displayed

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~ RUN THE COUPLED MODEL ~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Running the coupled model between init time 43200 and end time 50400
[====================] 100%

Running the coupled model between init time 50400 and end time 57600
[=============== ] 75%

When the run ends the overall elapsed time is shown

My work is done. Coupled job lasted : 81.89077615737915 s



7. The Results directory

After every single execution completes, a subdirectory is created in $CPLROOT/Results
(Note that the Results directory is created if not already present). The subdirectory is indexed
by the initial time of the single execution: COUPLING_FROM_XXXX, where XXXX stands for
the number of seconds from the event reference date to the execution initial time.

Each subdirectory contains:

� the standard output of the simulation redirected into a file named after the cas configura-
tion file for Telemac2D with an additional suffix .stdout

� the single models results files in the format of Opthyca files for MASCARET and Selafin
files for TELEMAC2D at the output frequencies entered in the respective sections of the
coupling_def dictionary or CouplingDef.json file. (Note that only the results
after the iterative process has converged or reached the maximum number of iterates are
output in these files)

� the convergence criteria files (cf. sect. 7.1) in human readable ascii or in comma separated
value (.csv) format to be imported in a spreadsheet

Some other output files are stored directly in the input directories because they are used for
restarting the computation. The 1D waterlines, the 2D state, the boundary conditions for the 1D
and the 2D models are stored at the end of every execution if the checkpointing is activated and,
in any case, at the end of the run.

7.1 The Convergence_criteria files
At every coupling step, when the iterative process converges or reaches the maximum number
of iterations, six convergence criteria are computed.
In the Convergence_criteria.out file (and in its comma separated value counterpart)
at the end of every coupling step, the effective number of iterates is printed together with the
six quantities evaluated on the 1D and on the 2D (spatial average) side of each interface.
The quantities are:

Velocity symbolized by V computed as Q=(S1+S2)

Wetted Area symbolized by SM computed as S1+ S2 where S1 is the main channel wetted
area and S2 is the floodplain wetted area
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Discharge symbolized by Q

Height symbolized by H computed as Z�ZREF i.e. the water level minus the reference level

First invariant symbolized by I computed as Q=(S1+S2)+2
p

g(Z�ZREF)

Second invariant symbolized by J computed as Q=(S1+S2)�2
p

g(Z�ZREF)



8. Examples and validation test cases

Four test cases are provided in order to illustrate the differents ways of describing and running
a coupling. Moreover these test cases are run as part of the telemac validation procedure under
the tag coupling:
python validate_telemac.py ��tags coupling

Three tests are implemented a rectangular channel, partly modelled in 1D, partly in 2D as shown
in Fig. 2.1. The last case represents the Adour catchment displayed in Fig. 1.2.

8.1 Rectangular channel test case
8.1.1 Description of the test case and experiment settings

The rectangular channel test case describes a 100 m wide channel modelled over 10 km with a
bathymetry from 5 m upstream to 0 downstream and thus a uniform slope I = 5:10�4.
From the Manning equation, in a permanent regime and with a homogeneous friction coef-
ficient, the free surface at the equilibrium is parallel to the bathymetry. Imposing a friction
coefficient of 30.6, an upstream inflow Q = 1000m3=s, and a downstream boundary condition
(BC) Z = 5m, the analytical solution is h = 5m everywhere, with a resulting free surface Z
ranging from 10 m upstream to 5 m downstream.
The hydrodynamics of the channel is modelled with a 5km long 1D model upstream of a 2D
model for the 5 downstream kilometers. There is thus a unique coupling 1D-2D interface be-
tween the 1D downstream BC and the 2D upstream liquid boundary.
In permanent regime, the 1D-2D coupled solution can be validated against the analytical solu-
tion.
We design three different experiment settings modifying the initial conditions (IC) or the up-
stream inflow boundary condition:

� R1: Constant Upstream and downstream BC, 1D and 2D IC already set to Manning
equilibrium. The solution should remain identical to the IC, proving that the coupling
does not degrade the permanent solution.

� R2: Constant Upstream and downstream BC, 1D IC to Manning equilibrium, 2D IC set
to a horizontal free surface Z = 8:5m at rest. The solution should converge towards the
Manning equilibrium after a sufficiently long integration, proving that the coupling is able
to reconstruct the global solution even with non coherent initial conditions and a misfit of
1 m on Z and 2 m/s on V at the coupling interface. Note that, since the downstream BC
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condition limits Z at the exit, this situation takes longer to reach the equilibrium than if
the 2D initial condition were lower than the analytical value of 7.5 m.

� R3: Varying Upstream BC, 1D and 2D IC to Manning equilibrium. In this last case,
the model starts from the Manning equilibrium, then the prescribed upstream inflow is
perturbed for 15 minutes, doubling the equilibrium value, then dicreases to the original
value. The Manning equilibrium is temporary lost, but eventually recovered, proving that
perturbations are correctly propagated throughout the coupled models without spurious
effects.

8.1.2 Test case directory
The test case files are in

� examples/python3/telapy_coupling/channel_manning for the equilib-
rium experimental setting (R1),

� examples/python3/telapy_coupling/channel_ic for the equilibrium ex-
perimental setting with perturbed initial condition (R2),

� examples/python3/telapy_coupling/channel_bc for non permanent ex-
perimental setting with perturbed upstream boundary condition (R3),

The 1D and 2D model input files are organized as follows :

� /Input_Data/1d_stretch for the 1D model MASCARET, containing the .geo,
.xcas, .loi and .lig files for geometry, parameters, BC and IC respectively.

� /Input_Data/2d_rect for the 2D model TELEMAC, containing the T2DCAS, T2DCLI,
T2DDICO, GEO and WaterLineInit_0.slf files for parameters, BC, parameters
options, geometry and IC respectively. Note that for R1 and R3, the IC is prescribed as
a field, read from a pre-calculated restart file that is provided here where the Manning
equilibrium is installed in the 2D model. For R2, the IC is prescribed in T2DCAS as a
uniform value.

8.1.3 Running the examples
channel_manning

The test case corresponding to configuration R1 can be run as a user driven application or as a
standalone run with input provided in a single pyton file.

The user application driving the coupling is in the driven_coupling.py file. The launch-
ing procedure is:

cd $HOMETEL/examples/python3/telapy_coupling/channel_manning
python driven_coupling.py

Note that two consecutive runs are executed with two successive calls to the instance of LongCplDriver
after updating the current run configuration dictionary.

As an alternative, the standalone run can be invoked from wathever directory as:

python $HOMETEL/scripts/python3/telapy/coupling/run_cpl.py long \
--src $HOMETEL/examples/python3/telapy_coupling/channel_manning
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or from inside the $HOMETEL/examples/python3/telapy_coupling/channel_manning
simply as

python $HOMETEL/scripts/python3/telapy/coupling/run_cpl.py long

As such it is also part of the validation suite.

channel_ic

The test case corresponding to configuration R2 is run as a standalone run with input provided
in a single pyton file.

The standalone run can be invoked from wathever directory as:

python $HOMETEL/scripts/python3/telapy/coupling/run_cpl.py long \
--src $HOMETEL/examples/python3/telapy_coupling/channel_ic

or from inside the $HOMETEL/examples/python3/telapy_coupling/channel_ic
simply as

python $HOMETEL/scripts/python3/telapy/coupling/run_cpl.py long \

As such it is also part of the validation suite.

channel_bc

The test case corresponding to configuration R3 is run as a standalone run with input provided
in a single pyton file.

The standalone run can be invoked from wathever directory as:

python $HOMETEL/scripts/python3/telapy/coupling/run_cpl.py long \
--src $HOMETEL/examples/python3/telapy_coupling/channel_bc

or from inside the $HOMETEL/examples/python3/telapy_coupling/channel_bc
simply as

python $HOMETEL/scripts/python3/telapy/coupling/run_cpl.py long

As such it is also part of the validation suite.

8.1.4 Checking the results
Note that in the coupling_def dictionary or in the CouplingDef.json file, you can
specify a list of 2D element numbers under the "OutputSites" key where the hydraulic vari-
able at the center of the channel are output into a text file (time, curvilinear abscissa, water level,
velocity for 2D outputs) at the temporal frequency specified as well in the coupling_def
dictionary or in the CouplingDef.json file. Same outputs are generated for each 1D node
(in .xcas file, key stockage, option 1, otherwise specify sites) for time, curvilinear abscissa,
water level, discharge and velocity at spatial frequency specified in .xcas file and temporal fre-
quency specified in the coupling_def dictionary or in the CouplingDef.json file.

Use the animate.gp, debanimate.gp and velanimate.gp scripts provided in
$HOMETEL/examples/python3/telapy_coupling/plotting for visualisation and
animation. For that purpose, copy the .gp scripts in the results directory containing the .plt files
and run the command gnuplot animate.gp or similar for the other scripts.
Some output examples are in Figs. 8.1, 8.2, 8.3.
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(a) coupled solution for R1 at t=0s (b) coupled solution for R1 at t=180s

Figure 8.1: 1D-2D coupled solution for R1

(a) coupled solution for R2 at t=0s (b) coupled solution for R2 at t=7180s

Figure 8.2: 1D-2D coupled solution for R2
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(a) coupled solution for R3 at t=0s (b) coupled solution for R3 at t=500s

(c) coupled solution for R3 at t=1400s (d) coupled solution for R3 at t=7180s

Figure 8.3: 1D-2D coupled solution for R3
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8.2 Adour catchment test case
8.2.1 Description of the test case and experiment settings

The modelled domain is the confluence of the Nive and the Adour rivers in Bayonne: the con-
fluence is modeled with TELEMAC-2D and the upstream Nive and Adour and the downstream
Adour stretches are modeled with MASCARET. For this case study, three 1D sub-domains are
considered: two 1D sud-domains represent the Nive and Adour rivers (respectively Adour up-
stream and Nive upstream) that gather in the 2D domain, then the Adour river is represented by
a downstream 1D model (Adour downstream) as illustrated in Fig. 1.2.

8.2.2 Test case directory
The test case files are in examples/python3/telapy_coupling/channel_bayonne.

The coupling is described as a user driven application and the driven_coupling.py pro-
cedure is provided in the test case directory.
Notice that the procedure checks in the telemac configuration file if the 2D model has been
compiled with the mpi option and trigger the "Parallel" option for "Bayonne" in the
"2D" section config_run dictionary accordingly.

The 1D and 2D model input files are organized as follows :

� /Input_Data/RUN_Adour_amont for the 1D model MASCARET on the upstream
Adour strecth, containing, in turn, the DonneesStat directory containing the .geo,
.xcas, and .lig files for geometry, parameters and initial condition respectively and
the DonneesDyn directory containing the .loi files for the boundary conditions.

� /Input_Data/RUN_Adour_aval for the 1D model MASCARET on the downstream
Adour strecth, containing, in turn, the DonneesStat directory containing the .geo,
.xcas, and .lig files for geometry, parameters and initial condition respectively and
the DonneesDyn directory containing the .loi files for the boundary conditions.

� /Input_Data/RUN_Nive_amont for the 1D model MASCARET on the upstream
Nive strecth, containing, in turn, the DonneesStat directory containing the .geo,
.xcas, and .lig files for geometry, parameters and initial condition respectively and
the DonneesDyn directory containing the .loi files for the boundary conditions.

� /Input_Data/Bayonne for the 2D model TELEMAC, containing the TelemacBayonne.cas,
TelemacBayonne_TypeDeConditionsLimites.cli,
TelemacBayonne_ConditionsLimites.liq,
TelemacBayonne_Geometrie_Ks.slf and
WaterLineInit_43200.slf files for parameters, BC, parameters options, geome-
try and IC respectively.

8.2.3 Running the example
The test case can be run as a user driven application.

The user application driving the coupling is in the driven_coupling.py file. The launch-
ing procedure is:

cd $HOMETEL/examples/python3/telapy_coupling/channel_bayonne
python driven_coupling.py

As such it is also part of the validation suite.
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A. Installation of the python venv

You need to create a fresh virtual environment based on python3 and to activate it. You have
to provide a name for the dedicated environment: in the following instructions we arbitrarily
chose cpl_py3. The VENVROOT environment variable has to be defined beforehands and
point to the location on your machine where the site packages will be installed. Make sure
that there is enough room avalaible and, in case of clusters with different computational and
front-end nodes, that the location can be accessed from both kinds of nodes.

xxx>python3 -m venv $VENVROOT/cpl_py3

xxx>source $VENVROOT/cpl_py3/bin/activate

If the virtual evironment has been correctly charged, the prompt will be modified and display
the active venv name. You can check that the default python command now points to version
3.

(cpl_py3) xxx>python --version
Python 3.6.5
(cpl_py3) xxx>

In order to access the most up to date view of the python packages we suggest to upgrade the
pip package manager itself to its latest version

(cpl_py3) xxx>pip install --upgrade pip

Since pip takes care of the dependencies, by installing a few packages we have a complete en-
vironment that can be used for the coupling, the data assimilation via Smurf and the Uncertainty
Quantification studies.

(cpl_py3) xxx>pip install ot-batman
(cpl_py3) xxx>pip install shapely
(cpl_py3) xxx>pip install pyyaml

An optional package which can be useful if the user needs to determine the number of physical
cores (and not hyperthreaded processing units) on his machine is cpu_cores

(cpl_py3) xxx>pip install cpu_cores
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A.1 Installation of mpi4py
The coupling communications being performed by MPI we need the mpi4py package, but the
installation has to be coherent with the MPI flavour used for the compilation of telemac, if its
parallel version has been compiled.
Please, check that the commands mpicc and mpirun found by default in your environment
(as determined by the PATH variable) are the same that you used to compile Open TELEMAC-
MASCARET.
In our case we check that

(cpl_py3) xxx>which mpicc
/softs/local/openmpi400_gcc731/bin/mpicc

(cpl_py3) xxx>mpicc --version
gcc (GCC) 7.3.1 20180130 (Red Hat 7.3.1-2)

and

(cpl_py3) xxx>which mpirun
/softs/local/openmpi400_gcc731/bin/mpirun

(cpl_py3) xxx>mpirun --version
mpirun (Open MPI) 4.0.0

Once the paths are correctly set, you can proceed to the installation

(cpl_py3) xxx>pip install mpi4py



B. Installation of the conda environment

If conda is not yet installed on your machine, please refer to https://www.anaconda.
com/
For a lighter installation, we suggest the use of miniconda3 [https://docs.conda.io/
en/latest/miniconda.html].

You need to create a complete environment under python3 (the default python version for mini-
conda3), but you should avoid to install mpi4py from conda itself (cf. section B.1). You have
to provide a name for the dedicated environment: in the following instructions we arbitrarily
chose cpl_py3.

xxx>source deactivate

xxx>conda update -n base conda

xxx>conda create -n cpl_py3 -c conda-forge \
>python openturns=1.10 matplotlib numpy pandas scipy scikit-learn \
>pathos jsonschema paramiko sphinx sphinx_rtd_theme pytest \
>pytest-runner mock ffmpeg shapely cython

xxx>source activate cpl_py3

B.1 Installation of mpi4py
It is mandatory that the python MPI interface mpi4py is compiled against the same version of
MPI used for the coupled codes. For this reason we should not install the precompiled version
provided by conda, but we have to compile and install it via pip.

Please, check that the commands mpicc and mpirun found by default in your environment
(as determined by the PATH variable) are the same that you used to compile Open TELEMAC-
MASCARET.
In our case we check that

xxx>which mpicc
/softs/local/openmpi400_gcc731/bin/mpicc

https://www.anaconda.com/
https://www.anaconda.com/
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
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xxx>mpicc --version
gcc (GCC) 7.3.1 20180130 (Red Hat 7.3.1-2)

and

xxx>which mpirun
/softs/local/openmpi400_gcc731/bin/mpirun

xxx>mpirun --version
mpirun (Open MPI) 4.0.0

Once the paths are correctly set, you can proceed to the installation of mpi4py. Notice that the
installation is normally driven by

xxx>pip install mpi4py

but that a specific feature of OpenMPI 4 requires a maintenance version, until the official
mpi4py distro isn’t updated

xxx>pip install --user https://bitbucket.org/mpi4py/mpi4py/get/maint.zip



C. A complete example of
coupling_description.py

Taken from

$HOMETEL/examples/python3/telapy_coupling/channel_manning/\
coupling_description.py

coupling_def = {
"Coupling": {

"TimeStep": 10.0,
"Method": "MultiplicativeSchwarz",
"MaxIter": 5,
"CplStepRestart1D": "Persist2D",
"CplStepRestart2D": "Persist1D"

},
"1D": {

"ch1d": {
"TimeStep": 10.0,
"OutputFreq": 10.0

}
},
"2D": {

"ch2d": {
"TimeStep": 1.0,
"OutputFreq": 10.0

}
},
"Interfaces": [

{
"Id1D": "ch1d",
"IdExtr1D": "downstream",
"Condition1D": "Discharge",
"Id2D": "ch2d",
"LiqBdry2D": 2,
"1DPosition": "UpStream",
"ConvCriteria": {

"Height": 0.01,
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"Velocity": 0.015
}

}
]

}

config_run = {
"Run": {

"RefDate": "1/1/2019 00:00:00",
"StartDate": "1/1/2019 00:00:00",
"EndDate": "1/1/2019 00:03:20",
"SingleExecDuration": "00:01:40",
"RestartFromFile": "yes"

},
"2D": {

"ch2d": {
"Parallel": "no",
"NbProc": 4

}
}

}

config_ch1d = {
"files": {

"xcas": "../Input_Data/1d_stretch/ParametresMascaret.xcas",
"geo": "../Input_Data/1d_stretch/Channel1d.geo",
"res": "ResultatsOpthyca_ch1d.opt",
"listing": "ResultatsListing_ch1d.lis",
"damocle": "listing.damoc",
"lig": "../Input_Data/1d_stretch/WaterLine_ch1d.lig",
"loi": [

"../Input_Data/1d_stretch/1d_up.loi",
"../Input_Data/1d_stretch/1d_down.loi"

]
}

}
config_ch2d = {

"files": {
"cas": "../Input_Data/2d_rect/T2DCAS"

}
}



D. A complete example of user defined
procedure

Taken from

$HOMETEL/examples/python3/telapy_coupling/channel_manning/\
driven_coupling.py

Notice that, w.r.t. to the run configuration for the same case described in App. C, in this example
the two single executions are run via two calls to the driver with two different config_run
dictionaries.

import os
from telapy.coupling.long_cpl_driver import LongCplDriver

user_coupling = {
"Coupling": {

"TimeStep": 10.0,
"Method": "MultiplicativeSchwarz",
"MaxIter": 5,
"CplStepRestart1D": "Persist2D",
"CplStepRestart2D": "Persist1D"

},
"1D": {

"ch1d": {
"TimeStep": 10.0,
"OutputFreq": 10.0

}
},
"2D": {

"ch2d": {
"TimeStep": 1.0,
"OutputFreq": 10.0

}
},
"Interfaces": [

{
"Id1D": "ch1d",
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"IdExtr1D": "downstream",
"Condition1D": "Discharge",
"Id2D": "ch2d",
"LiqBdry2D": 2,
"1DPosition": "UpStream",
"ConvCriteria": {

"Height": 0.01,
"Velocity": 0.015

}
}

]
}

models_configs = {
"config_ch1d" : {

"files": {

"xcas": "../Input_Data/1d_stretch/ParametresMascaret.xcas",
"geo": "../Input_Data/1d_stretch/Channel1d.geo",
"res": "ResultatsOpthyca_ch1d.opt",
"listing": "ResultatsListing_ch1d.lis",
"damocle": "listing.damoc",
"lig": "../Input_Data/1d_stretch/WaterLine_ch1d.lig",
"loi": [

"../Input_Data/1d_stretch/1d_up.loi",
"../Input_Data/1d_stretch/1d_down.loi"

]
}

},
"config_ch2d" : {

"files": {
"cas": "../Input_Data/2d_rect/T2DCAS"

}
}

}

driven_run = {
"Run": {

"RefDate": "1/1/2019 00:00:00",
"StartDate": "1/1/2019 00:00:00",
"EndDate": "1/1/2019 00:01:40",
"SingleExecDuration": "00:01:40",
"RestartFromFile": "yes"

},
"2D": {

"ch2d": {
"Parallel": "no",
"NbProc": 4



42 Chapter D. A complete example of user defined procedure

}
}

}

the_coupling = LongCplDriver(".", user_coupling, models_configs)
the_coupling(driven_run)

driven_run["Run"]["StartDate"] = driven_run["Run"]["EndDate"]
driven_run["Run"]["EndDate"] = "1/1/2019 00:03:20"
the_coupling(driven_run)



E. A complete example of json input
files

This example translates into json files the configuration of
$HOMETEL/examples/python3/telapy_coupling/channel_ic

E.1 A complete example of CouplingDef.json

{
"Coupling" : {

"TimeStep" : 10.0,
"Method" : "MultiplicativeSchwarz",
"MaxIter" : 5,
"CplStepRestart1D" : "Persist2D",
"CplStepRestart2D" : "Persist1D"

},
"1D" : {

"ch1d" : {
"TimeStep" : 10.0,
"OutputFreq" : 20.0

}
},
"2D" : {

"ch2d" : {
"TimeStep" : 1.0,
"OutputFreq" : 20.0,
"OutputSites" : [18, 33, 1018, 1024, 1034, 1044, 1054,

1064, 1074, 1084, 1094, 1104,
1114, 1124, 1134, 1144, 1154,
1164, 1174, 1184, 1194, 1204,
1214, 1224, 1234, 1244, 1254,
1264, 1274, 1284, 1294, 1304,
1314, 1324, 1334, 1344, 1354,
1364, 1374, 1384, 1394, 1404,
1414, 1424, 1434, 1444, 1454,
1464, 1474, 1484, 1494, 1504,
30]
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}
},
"Interfaces" : [

{
"Id1D" : "ch1d",
"IdExtr1D" : "downstream",
"Condition1D" : "Discharge",
"Id2D" : "ch2d",
"LiqBdry2D" : 2,
"1DPosition" : "UpStream",
"ConvCriteria" : {

"Height" : 0.01,
"Velocity" : 0.015

}
}

]
}

E.2 A complete example of ConfigRun.json
{

"Run" : {
"RefDate" : "1/1/2019 00:00:00",
"StartDate" : "1/1/2019 00:00:00",
"EndDate" : "1/1/2019 02:00:00",
"SingleExecDuration" : "02:00:00",
"RestartFromFile" : "no"

},
"2D" : {

"ch2d" : {
"Parallel" : "no",
"NbProc" : 4

}
}

}

E.3 A complete example of config_ch1d.json
{
"files": {

"xcas": "../Input_Data/1d_stretch/ParametresMascaret.xcas",
"geo": "../Input_Data/1d_stretch/Channel1d.geo",
"res": "ResultatsOpthyca_ch1d.opt",
"listing": "ResultatsListing_ch1d.lis",
"damocle": "listing.damoc",
"lig": "../Input_Data/1d_stretch/WaterLine_ch1d.lig",
"loi": [

"../Input_Data/1d_stretch/1d_up.loi",
"../Input_Data/1d_stretch/1d_down.loi"

]
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}
}

E.4 A complete example of config_ch2d.json
{
"files": {

"config_file" : "${SYSTELCFG}",
"config_option" : "${USETELCFG}",
"cas" : "../Input_Data/2d_rect/T2DCAS"
}

}
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