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Abstract
Developing effective ways to model and cycle the background-error covariance
matrix is an active area of research in data assimilation. An important aspect of
this problem when using a filter to model the background-error correlations is
the computation of normalization factors to ensure that the diagonal elements of
the modelled correlation matrix are all equal to one. Updating the parameters of
a flow-dependent correlation model on each assimilation cycle requires updat-
ing the normalization factors, which is costly using traditional methods such as
randomization. In this article, we discuss the normalization problem within the
context of a diffusion filter-based covariance model used for background-error
modelling in a variational data assimilation system for the global ocean. We eval-
uate various methods for estimating normalization factors when the diffusion
tensor of the correlation model is derived from an ensemble of ocean states. Our
results show that estimates produced using inexpensive methods derived from
analytical considerations of the diffusion equation can have significant errors,
especially near boundaries. Estimates obtained using randomization with a
small sample size (∼100) are more accurate in a globally averaged sense but are
noisy and can have unacceptably large errors locally. Next, we focus on the spe-
cific problem of accounting for flow-dependent correlation parameters in the
vertical component of the diffusion operator only, which is especially important
near the surface for the assimilation of sea surface temperature observations.
Remarkably accurate estimates are obtained by approximating the normaliza-
tion matrix as a separable product of two normalization matrices: one computed
using randomization with the horizontal diffusion operator only and the other
computed using randomization with the vertical diffusion operator only. If the
parameters of the horizontal component of the diffusion operator are static, then
only the normalization factors of the flow-dependent vertical component need
to be recomputed on each cycle. This result is of significant practical interest
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since the vertical diffusion operator employs an inexpensive direct solver and
thus can be applied on each cycle with a large random sample to obtain a good
approximation of the normalization matrix.

K E Y W O R D S

background error, correlation operators, covariance operators, diffusion operator, ensemble estima-
tion, ocean data assimilation, normalization factors, variational assimilation

1 INTRODUCTION

An ensemble of model forecasts provides flow-dependent
information on forecast error that can be used to enrich
background-error covariance models in variational data
assimilation (VDA). The benefits of using ensembles to
define flow-dependent background-error covariances in
atmospheric VDA is well documented (Buehner, 2005;
Belo Pereira and Berre, 2006; Bonavita et al., 2012; Clayton
et al., 2013; Berre et al., 2015; Kleist and Ide, 2015; Bonavita
et al., 2016). There is growing evidence of the benefits of
ensembles in ocean VDA as well (Daget et al., 2009; Penny
et al., 2015; Storto et al., 2018).

Ensembles can be used to define a sample estimate
of the background-error covariance matrix or to cali-
brate parametric representations of the background-error
covariances. A covariance matrix can be factored into a
correlation matrix and a standard deviation matrix mul-
tiplying either side of the correlation matrix. In VDA, it
is common to take advantage of this property in order to
estimate the background-error correlations and standard
deviations separately. Estimating correlations is inherently
more challenging than estimating standard deviations
because of the larger number of elements to estimate and
because of the added constraints of ensuring symmetry
and positive semi-definiteness of the resulting correlation
matrix.

In VDA, correlation operators are commonly built from
filters that possess positive-definite smoothing kernels. Fil-
ters can be used to localize sample covariances of back-
ground error or to model the background-error correla-
tions themselves. By construction, a filter maps a space
into itself and thus preserves the physical units of its input
field. Viewed as an integral operator, such as a convolution
for a homogeneous filter, it implies that the amplitude of
the smoothing kernel acting on a three-dimensional (3D)
input field, for example, must have physical dimensions of
inverse volume in order to cancel out the volume elements
associated with spatial integration over the 3D domain.
In other words, the diagonal elements (variances) of the
covariance matrix implied by the spatial filter have phys-
ical dimensions of inverse volume. The filter variances
are clearly not the background-error variances that we

wish to specify in data assimilation (that would be dimen-
sionally inconsistent). In order to impose the appropri-
ate background-error variances, a filter-based covariance
matrix must first be normalized by its diagonal in order
to transform it into a dimensionless correlation matrix,
which has 1s along its diagonal.

The diagonal elements of a filter-based covariance
matrix are not directly accessible, so techniques are
needed to estimate them. When the filter parameters
are flow-dependent, the estimation procedure must be
repeated on each assimilation cycle, which is prohibitively
expensive using a brute-force exact method and hardly
affordable using a randomization method. More practical
methods exploit the properties of the spatial filter and the
structure of the associated filter-based covariance matrix
in order to obtain an adequate estimate of the diagonal
elements at a reasonable cost.

Correlation models can be defined using spectral filters
where a scale-selective damping is performed in spectral
space, or using spatial (grid-point) filters where a smooth-
ing operation is performed directly in physical space. Spec-
tral filters are common in meteorological applications of
VDA for representing horizontal correlations. In its most
basic form, a spectral filter can be interpreted as a spatial
filter with an isotropic smoothing kernel. Normalization
is comparatively straightforward for spectral filters. For
the standard spectral filter, the normalization factors are
constant and well approximated by the inverse of a trun-
cated series of modulated spectral coefficients (Parrish and
Derber, 1992; Courtier et al., 1998; Rabier et al., 1998). Cor-
relation models based on wavelet filters generalize those
based on spectral filters by allowing horizontal correla-
tions to be both scale- and location-dependent (Fisher,
2003; Berre et al., 2015). Chabot et al. (2017) show how
accurate normalization factors for a wavelet-based covari-
ance matrix can be computed by applying a modified
version of the inverse wavelet transform to the vector of
specified wavelet-coefficient variances.

The recursive filter (Lorenc, 1992; Wu et al., 2002;
Purser et al., 2003a; 2003b) and the closely related class
of diffusion filters (Derber and Rosati, 1989; Egbert
et al., 1994; Weaver and Courtier, 2001; Yaremchuk and
Smith, 2011; Weaver and Mirouze, 2013) are examples of
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WEAVER et al. 291

grid-point (spatial) filters. Grid-point filters are especially
popular in ocean VDA because they provide a conve-
nient framework for handling land boundaries in ocean
models. Techniques for approximately normalizing covari-
ance models built from recursive or diffusion filters can
be derived from analytical considerations of diffusion-like
equations, but the techniques become increasingly com-
plex when the smoothing kernels are anisotropic and inho-
mogeneous (Purser et al., 2003b; Purser, 2008a; 2008b;
Yaremchuk and Carrier, 2012). Extensions of the analyt-
ical normalization methods to accommodate boundary
effects have also been proposed (Mirouze and Weaver,
2010; Mirouze and Storto, 2016). In this article, we evaluate
different normalization techniques in a global version of
the NEMOVAR ocean data assimilation system (Mogensen
et al., 2012). Some of the techniques are already docu-
mented in the published literature, while others are rela-
tively new. An objective of this article is to compare them
in a consistent experimental framework.

The organization of the article is as follows. In
Section 2, we outline the mathematical problem of esti-
mating normalization factors within the context of the
diffusion-based background-error covariance matrix used
in NEMOVAR. We review some fundamental theoreti-
cal results from the diffusion equation, which provides
the starting point from which we derive the approximate
expressions of the normalization factors that are evaluated
in this article. In Section 3, we describe how the correlation
length-scales are estimated from a climatological ensem-
ble of perturbations and how they are used to specify the
diffusion tensor in the correlation model. In Section 4,
we describe the different normalization methods that
have been implemented in NEMOVAR. In particular, we
focus on evaluating the accuracy of the normalization
factors estimated using inexpensive approximate methods
relative to the actual normalization factors determined
from a costly randomization computation. In Section 5,
we address the specific problem of updating normaliza-
tion factors when only the correlation parameters of the
vertical component of diffusion are evolved from one
assimilation cycle to the next. A summary and discussion
are given in Section 6.

2 DIFFUSION-BASED
CORRELATION MODELS

2.1 Basic notation and statement of the
problem

The model state variables in the Nucleus for European
Modelling of the Ocean (NEMO; Madec and NEMO team
2008) are temperature, salinity, the two components of

horizontal velocity, and sea surface height (SSH). The
state vector x ∈ RNx contains the discrete values of the
state variables on the model grid. In NEMOVAR, the con-
trol variables that are estimated through data assimilation
are temperature, and the unbalanced parts of salinity,
horizontal velocity and SSH. The control vector w ∈ RNw

contains the discrete values of the control variables on the
model grid where Nw =Nx if all the unbalanced fields are
estimated.

We consider the following standard form of the
background-error covariance matrix (Weaver et al., 2005;
Mogensen et al., 2012; Balmaseda et al., 2013)

B(x) = Kb B(w) KT
b ,

where Kb ∈ RNx×Nw is a lower triangular matrix that con-
tains linearized balance constraints that relate the control
variables to the state variables. Fundamental to the formu-
lation of B(x) ∈ RNx×Nx is the assumption that the control
variables are mutually uncorrelated, so that their associ-
ated background-error covariance matrix B(w) ∈ RNw×Nw

can be modelled as a block-diagonal (univariate) matrix:

B(w) = 𝚺(w) C(w) 𝚺(w),

where C(w) is a correlation matrix, block-diagonal with
respect to the control variables, and 𝚺(w) is a diagonal
matrix containing estimates of the background-error stan-
dard deviations of the control variables.

If the subscript 𝛼 is used to denote a particular control
variable, then each block-diagonal element of B(w) is

B𝛼 = 𝚺𝛼 C𝛼 𝚺𝛼,

where

𝚺(w) =
⎛⎜⎜⎜⎝
⋱

𝚺𝛼

⋱

⎞⎟⎟⎟⎠ and C(w) =
⎛⎜⎜⎜⎝
⋱

C𝛼

⋱

⎞⎟⎟⎟⎠ .
Here, we focus on the three-dimensional variational
assimilation system used for the production of ECMWF’s
Ocean Reanalysis ORAS5 (Zuo et al., 2019). The obser-
vations assimilated in that system contain information
about temperature, salinity and SSH, but not horizontal
velocity. As a consequence, the unbalanced part of hori-
zontal velocity is unaffected by data assimilation and can
be ignored. For this particular case, horizontal velocity is
determined entirely from the velocity balance relationship
(geostrophy) in Kb, which becomes a rectangular matrix
since Nw <Nx.

In order to provide flexibility in the shape of the
correlation functions, C𝛼 can be defined as a linear
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292 WEAVER et al.

combination of univariate correlation matrices C𝛼l ,
l= 1, … , L (Mirouze et al., 2016):

C𝛼 =
L∑

l=1
𝚼𝛼l C𝛼l 𝚼𝛼l , (1)

where 𝚼𝛼l is a diagonal weighting matrix such that

L∑
l=1

𝚼2
𝛼l = I,

in order to preserve the property that a correlation matrix
has 1s on its diagonal. Without loss of generality, we can
focus on a particular component C𝛼l of C. For clarity of
notation, we can then drop the subscript 𝛼l in what follows.

Each correlation matrix is modelled using a diffusion
operator L (Weaver and Courtier, 2001). In its standard
implicit form, the diffusion operator is

L = FM = (A−1)M , (2)

where the elements of the matrix A are associated with the
discrete representation of the elliptic operator A = I − ∇ ⋅
𝜿∇ involving the identity operator I, gradient operator ∇,
divergence operator∇⋅, and diffusion tensor 𝜿. The inverse
matrix F= A−1 is a diffusion operator and the parameter
M is an integer that defines the total number of diffusion
steps, which we assume to be even for convenience. The
diffusion operator acts as a smoothing operator where the
parameters 𝜿 and M control the spatial length-scales and
spectral properties of the underlying smoothing functions.
The numerical algorithms used in NEMOVAR to apply
Equation (2) are outlined in Section 2.2 and described
in more detail in Weaver et al. (2016) and Weaver et al.
(2018b).

The elliptic operator A is self-adjoint with respect to
the L2(Ω)-inner product in the spatial domain Ω under
consideration. We assume that this property is preserved
after discretization, which it is using the discretization
techniques outlined in Section 2.2. The discrete form
of the L2(Ω)-inner product, which we call the W-inner
product, is defined by a diagonal matrix W of grid- and
geometry-dependent weights. Since A is self-adjoint with
respect to the W-inner product, the following factorization
holds:

L = L1∕2 L1∕2 = L1∕2 W−1 (L1∕2)T W. (3)

The matrix LW−1 is a covariance matrix that is sym-
metric in the usual sense (i.e., with respect to the canonical
inner product).

As pointed out by Ménétrier and Auligné (2015), the
matrix square-root notation that is often used in data

assimilation can be confusing. From Equation (2) the
meaning is clear as L1/2 can be interpreted as applying
the diffusion operator over M/2 steps. However, with
other diffusion formulations (e.g., those described in
Section 2.2.2 and Section 4.5.2), this notation is ambigu-
ous, so we prefer to avoid it and use the matrix V to denote
the “square-root” factor of a diffusion matrix. For the stan-
dard case (Equation (3)), V= L1/2. The general expression
of the factored correlation matrix (symmetric with 1s on
its diagonal) is

C = 𝚪 V W−1 VT 𝚪, (4)

where 𝚪2 is a diagonal matrix of normalization factors 𝛾 2
n :

𝚪2 = diag(𝛾 2
1 , … , 𝛾 2

N ),

N being the total number of grid points for the control
variable under consideration. To ensure that C has 1s on
its diagonal, the nth element of the normalization matrix
should be defined as the inverse of element nn of the
symmetric diffusion matrix:

𝛾−2
n = {V W−1 VT}nn.

When the correlation length-scales are large compared
to the resolution of the grid, it can be computationally
advantageous to apply the diffusion operator on a coarser
grid. This situation arises when there are “large-scale”
terms in a multiple-scale formulation of C (Equation (1))
or when the diffusion operator is used to perform covari-
ance localization which tends to involve very broad scales.
When the diffusion operator is applied on a grid that
is coarser than the native grid, the correlation matrix
becomes

C = 𝚪 T Vc W−1
c VT

c TT 𝚪, (5)

where the subscript “c” denotes the coarse-grid operators,
and T and TT are transfer operators from coarse-to-fine
grid and fine-to-coarse grid, respectively. For the
coarse-grid formulation,

𝛾−2
n = {T Vc W−1

c VT
c TT}nn.

Determining the diagonal elements of the diffu-
sion matrix is not straightforward since, apart from
W−1 and W−1

c which are diagonal matrices, the
matrix components have complicated structure and
are only available in operator form. If the normal-
ization factors are not accurately specified, then the
background-error variances will be effectively modified
from their original values, which can lead to a degraded
analysis.
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WEAVER et al. 293

2.2 Theoretical and numerical
considerations

The spatial domain under consideration is the 3D global
ocean as modelled by NEMO (Madec and NEMO team,
2008). The primitive equations in NEMO are represented
in orthogonal curvilinear coordinates (i, j, k) on the sphere
where longitude 𝜆 and latitude 𝜙 are continuous and dif-
ferentiable functions of the horizontal coordinates (i, j)
and depth z is a continuous and differentiable function
of the vertical coordinate k. Local curvilinear distance in
the (i, j, k) coordinate system is defined by the differential
elements (ds1, ds2, ds3) = (e1di, e2dj, e3dk) where (e1, e2, e3)
are scale factors that represent the local deformation of the
curvilinear coordinates.

NEMOVAR inherits the numerical framework of
NEMO. The discretization techniques are based on cen-
tred, second-order-accurate finite differences where the
state variables are arranged on an Arakawa C-grid. The
ocean mesh is defined by the transformation from (i, j, k)
to geographical coordinates (𝜆, 𝜙, z). The grid points are
located at integer or integer and a half values of (i, j, k), so
that the mesh on which partial derivatives are evaluated
is uniform with unit grid size (Δi = Δj = Δk = 1). Local
curvilinear distance Δsm on the grid is then equal to the
local scalar factor em, m= 1, 2, 3. The scale factors define
elements of distance, area or volume in the weighting
matrix W in Equation (3) depending on whether the dif-
fusion operator is one-dimensional (1D), two-dimensional
(2D) or three-dimensional (3D). For the 1D vertical (z), 2D
horizontal (h), and 3D horizontal-vertical (hz) diffusion
operators, the weighting matrices are, respectively,

Wz = diag({e3}1, … , {e3}Nz ) ∈ RNz×Nz ,

Wh = diag({e1 e2}1, … , {e1 e2}Nh ) ∈ RNh×Nh ,

Whz = diag({e1 e2 e3}1, … , {e1 e2 e3}N) ∈ RN×N ,

⎫⎪⎬⎪⎭ (6)

where Nh and Nz denote the total number of horizontal
grid-points and vertical levels, respectively, and N =NhNz.

In global applications of NEMOVAR, the analysis is
performed directly on the tri-polar global grid (known as
ORCA) used by NEMO, or on a subsampled version of that
grid if the diffusion is performed on a coarse grid as in
Equation (5).

2.2.1 2D implicit diffusion

The 2D implicit diffusion-based correlation matrix is for-
mulated as (cf. Equation (4))

Ch = 𝚪h Vh W−1
h VT

h 𝚪h,

where Vh = FMh∕2
h = (A−1

h )Mh∕2, Mh is the total number
of implicit diffusion steps, and 𝚪h is the normaliza-
tion matrix. The matrix Ah is the discrete representation
of the 2D elliptic operator Ah = I − ∇ ⋅ 𝜿h∇ in the (i, j)
curvilinear coordinate system on the sphere where 𝜿h is
the (horizontal) diffusion tensor. The ocean–land bound-
ary condition is taken to be of Neumann type; that is,
the field derivative in the direction normal to the land
boundary is set to zero. At each grid-point, 𝜿h = (𝜅pq) ∈
R2×2 is a symmetric positive-definite (SPD) matrix. The
off-diagonal elements (𝜅12 = 𝜅21) of the tensor allow for
anisotropic stretching in directions that are not necessarily
aligned with the curvilinear coordinates. In NEMOVAR,
the off-diagonal elements are currently neglected in the
diffusion operator, which has implications for the estima-
tion of the diffusion tensor, as discussed in Section 3.

The standard procedure in NEMOVAR for applying Vh
and VT

h is as follows. First, the self-adjoint matrices Ah
and AT

h are transformed into a common, unit-preserving
symmetric matrix:

Âh ≡ W1∕2
h Ah W−1∕2

h = W−1∕2
h AT

h W1∕2
h = ÂT

h.

Then, Vh and VT
h are reformulated in terms of Âh so that

it can be inverted using an efficient solver for sparse SPD
matrices. In NEMOVAR, we use a linear solver based on
the Chebyshev Iteration to build an approximation of F̂h =
Â−1

h = F̂T
h. Furthermore, we apply the same fixed number

of iterations in Vh and VT
h in order to preserve symme-

try of Ch to machine precision (Weaver et al., 2016). The
square-root operators in terms of F̂h are

Vh = W−1∕2
h F̂Mh∕2

h W1∕2
h ,

VT
h = W1∕2

h F̂Mh∕2
h W−1∕2

h .

}

2.2.2 2D×1D implicit diffusion

In NEMOVAR, the conventional diffusion-based correla-
tion matrix for 3D variables is built from a 2D horizon-
tal diffusion operator that is applied separately in each
model level k, and a 1D vertical diffusion operator that
is applied separately at each horizontal grid-point (i, j).
This separation is justified by the large difference in spa-
tial scales between the horizontal and vertical directions.
We denote the horizontal and vertical diffusion operators
as Lhk ∈ RNh×Nh and Lzij ∈ RNz×Nz , respectively. Note that
we require the index k on the horizontal diffusion opera-
tor since variations in bathymetry result in different land
masks in each model level and since the horizontal diffu-
sion tensor can be different in each model level. Likewise,
we require the index ij on the vertical diffusion operator
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294 WEAVER et al.

because variations in bathymetry result in different ocean
depths at each horizontal grid-point and since the vertical
diffusion coefficient (𝜅z) can be different at each horizontal
grid-point.

For the implicit diffusion operators, Lhk = FMh
hk

where,
as in the previous section, Fhk = A−1

hk
is the inverse of

the matrix representing the discretized 2D elliptic opera-
tor and Mh is the number of 2D implicit diffusion steps.
Similarly, Lzij = FMz

zij
where Fzij = A−1

zij
is the inverse of the

matrix representing the discretized 1D elliptic operator
and Mz is the corresponding number of 1D implicit diffu-
sion steps (which can be different from Mh).

Constructing a self-adjoint 3D diffusion operator
Lh×z ∈ RN×N from the self-adjoint components Lhk and Lzij

requires some care. The formulation used in NEMOVAR
is outlined below. Let 𝜻 = (𝜻T

1 , … , 𝜻T
Nz
)T ∈ RN be a vector

associated with a 3D variable where 𝜻k ∈ RNh contains the
values of the variable in model level k. In order to recon-
cile the different dimensions of the diffusion matrices, we
introduce the following extension matrices to map from
the reduced spaces RNh and RNz to the full space RN :

Ehk =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0Nz

⋮

INz

⋮

0Nz

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

N×Nh and Ezij =

⎛⎜⎜⎜⎜⎜⎝

eij 0 … 0
0 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 0
0 … 0 eij

⎞⎟⎟⎟⎟⎟⎠
∈R

N×Nz ,

where the non-zero matrix INz acts on variables in level
k, and eij = (0, … , 0, 1, 0, … , 0)T ∈ RNh , the non-zero ele-
ment being located at the ijth entry. The transpose of
the extension matrices, ET

hk
∈ RNh×N and ET

zij
∈ RNz×N , are

restriction matrices, which satisfy the properties ET
hk

Ehk =
INh and ET

zij
Ezij = INz .

Now, using the above matrices and their properties, we
can formulate horizontal and vertical diffusion operators
that act on the complete vector 𝜻 :

Lh =
∑

k
Ehk Lhk ET

hk
= FMh

h ∈ R
N×N , (7)

Lz =
∑

i

∑
j

Ezij Lzij E
T
zij
= FMz

z ∈ R
N×N , (8)

where Fh =
∑

k Ehk Fhk ET
hk

and Fz =
∑

i
∑

j Ezij Fzij E
T
zij

.
Let Ŵh =

∑
k Ehk WhET

hk
∈ RN and let Ŵz =∑

i
∑

j Ezij WzET
zij

∈ RN , where Wh and Wz are defined in
Equation (6). Using the property that Fh is self-adjoint
with respect to the Ŵh-inner product and that Fz is
self-adjoint with respect to the Ŵz-inner product, we can
express Equations (7) and (8) in the following square-root

forms:

Lh = L1∕2
h Ŵ

−1
h (L1∕2

h )T Ŵh,

Lz = L1∕2
z Ŵ

−1
z (L1∕2

z )T Ŵz,

where Ŵh Ŵz = Whz (the last relation in Equation (6)).
The product LhLz is not self-adjoint with respect to

the Whz-inner product, so it cannot be used directly to
define a symmetric correlation matrix for 3D variables.
Self-adjointness can be imposed by using the square-root
forms of Lh and Lz, forming their product, and interchang-
ing the terms assuming that they commute (which they do
not). This leads to several possible formulations involving
different expressions for the square-root matrix, which we
denote by V(m)

h×z:

Lh×z = V(m)
h×z W−1

hz (V
(m)
h×z)

TWhz ≈ Lh Lz. (9)

The corresponding correlation matrix is

Ch×z = 𝚪h×z V(m)
h×zW−1

hz (V
(m)
h×z)

T𝚪h×z, (10)

where 𝚪2
h×z is the normalization matrix. We refer to these

formulations as 2D×1D (m) where the value of m will be
added in parentheses when we need to distinguish them.

Two obvious formulations for the square-root matrix
are

V(1)
h×z = Vh Vz and V(2)

h×z = Vz Vh, (11)

where
Vh = FMh∕2

h and Vz = FMz∕2
z ,

which involve applying the horizontal and vertical diffu-
sion operators separately in the square-root matrix, but in
a different order.

Two others formulations are

V(3)
h×z = (Fh Fz)Mhz∕2 and V(4)

h×z = (Fz Fh)Mhz∕2,

which can be derived from V(1)
h×z and V(2)

h×z by taking
Mh =Mz =Mhz and moving the step counter outside of the
product of FMhz∕2

h and FMhz∕2
z . V(3)

h×z and V(4)
h×z are prefer-

able to V(1)
h×z and V(2)

h×z since they allow more coupling
between the horizontal and vertical diffusion operators,
which results in better smoothness properties, especially
near complex bathymetry. This feature is more impor-
tant than maintaining flexibility in the choice of Mh and
Mz, which is allowed with V(1)

h×z and V(2)
h×z. We say that

V(3)
h×z and V(4)

h×z are 2D×1D formulations with interleaving.
Weaver et al. (2016) illustrate the importance of interleav-
ing to avoid numerical artifacts near irregular coastlines
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WEAVER et al. 295

and islands when using a 2D horizontal diffusion model
formulated as a product of 1D diffusion operators (their
figure 1). Interleaving is important in the 3D formulation
for similar reasons, as will be illustrated in Section 5.4.
The computational costs of the four formulations above
are similar when using the same values of Mh and Mz.
We will come back to the formulations in Equation (11) in
Section 5 when discussing methods for estimating normal-
ization factors.

The horizontal diffusion operators in V(m)
h×z are applied

using the Chebyshev Iteration as outlined in Section 2.2.1.
The vertical diffusion operators in V(m)

h×z involve invert-
ing small self-adjoint positive-definite matrices Azij of size
NK ×NK , which can be done efficiently using a direct
solver. Neumann boundary conditions are imposed at
the top and bottom boundaries. We can transform Azij

into symmetric form Âzij = Wz Azij = ÂT
zij , precompute

the Cholesky decomposition of Âzij , and then use stan-
dard forward-elimination and backward-substitution pro-
cedures to apply Â−1

zij (Golub and Van Loan, 1996). In terms
of the augmented symmetric matrices, the square-root
factors are

V(1)
h×z = (Ŵ

−1∕2
h F̂Mh∕2

h Ŵ
1∕2
h )(F̂z Ŵz)Mz∕2,

(V(1)
h×z)

T = (Ŵz F̂z)Mz∕2(Ŵ
1∕2
h F̂Mh∕2

h Ŵ
−1∕2
h ),

⎫⎪⎬⎪⎭
and

V(3)
h×z = (Ŵ

−1∕2
h F̂h Ŵ

1∕2
h F̂z Ŵz)Mhz∕2,

(V(3)
h×z)

T = (Ŵz F̂z Ŵ
1∕2
h F̂h Ŵ

−1∕2
h )Mhz∕2,

⎫⎪⎬⎪⎭
where F̂z = A−1

z Ŵ
−1
z = F̂T

z . Similar expressions follow for
V(2)

h×z and V(4)
h×z.

2.2.3 3D implicit diffusion

Instead of separating the 3D correlation matrix into hor-
izontal and vertical diffusion operator components, we
can model it directly, as in Weaver et al. (2018b), as a 3D
implicit diffusion operator:

Chz = 𝚪hz Vhz W−1
hz VT

hz 𝚪hz

where Vhz = FMhz∕2
hz = (A−1

hz )
Mhz∕2, Mhz is the total number

of 3D implicit diffusion steps, and 𝚪hz is the normaliza-
tion matrix. The matrix Ahz is the discrete representa-
tion of the 3D elliptic operator Ahz = I − ∇ ⋅ 𝜿hz∇ in the
(i, j, k) coordinate system, and 𝜿hz = (𝜅pq) ∈ R3×3 is the

horizontal-vertical diffusion tensor where 𝜅pq = 𝜅qp. The
horizontal component of the tensor, 𝜿h, contains the ele-
ments (𝜅pq), p, q= 1, 2. In the following, we neglect the
anisotropic coupling between the horizontal and vertical
directions (𝜅13 = 𝜅23 = 0). The element 𝜅33 then corre-
sponds to the vertical diffusion coefficient 𝜅z introduced
earlier with the 2D×1D formulation.

The procedure for applying Vhz and VT
hz mirrors that

used for the 2D implicit diffusion operator, which involves
first transforming Ahz into a symmetric matrix Âhz and
then approximating F̂hz = Â−1

hz using the Chebyshev Itera-
tion. In terms of F̂hz, the square-root operators are

Vhz = W−1∕2
hz F̂Mhz∕2

hz W1∕2
hz

VT
hz = W1∕2

hz F̂Mhz∕2
hz W−1∕2

hz

⎫⎪⎬⎪⎭ .

The 3D formulation is simpler but more costly than
the 2D×1D (m) formulations. A major factor influenc-
ing the computational cost of the 3D formulation when
using ensemble-estimated correlation parameters is the
large condition number of Ahz caused by large vertical
length-scales in the mixed-layer region where the verti-
cal resolution is fine. The large condition number affects
the convergence rate of the Chebyshev Iteration. In the
2D×1D formulations, the Chebyshev iteration is only used
for the horizontal component and the efficiency of the
direct solver used for the vertical component is not affected
by the condition number of Âz.

2.3 Analytical expressions for the
normalization factors

Weaver and Courtier (2001) and Weaver and Mirouze
(2013) discuss analytical solutions of the diffusion
equation on the sphere S2 and derive expressions for the
associated positive-definite smoothing kernels that can
be interpreted as isotropic covariance functions. Like all
isotropic covariance functions on S2, those associated
with implicit diffusion are defined as a series expansion
of Legendre polynomials (Gaspari and Cohn, 1999). Of
particular interest here is the expression for the intrinsic
variance of the covariance function as the inverse of this
variance is the normalization factor needed to transform
the covariance function into a correlation function. For
the covariance functions on S2, the normalization fac-
tor is the inverse of an infinite series involving the total
wave number of the spherical harmonics. A more conve-
nient, closed-form expression of the normalization factor
can be derived by considering the analytical solution of
the diffusion equation in the Euclidean space R2, which
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296 WEAVER et al.

approximates well the solution on S2 on spatial scales that
are small compared to the radius of the Earth and thus
relevant in ocean data assimilation. Expressions for the
normalization factor associated with diffusion in R1 and
R3 can also be derived. They are given below since they
provide the basis for the approximate expressions of the
normalization factors described in Section 4.5.

The analytical solution of the elliptic equation of
implicit diffusion in R2 is well known (Whittle, 1963;
Guttorp and Gneiting, 2006). If 𝜿h is constant, then the
solution of the elliptic equation can be expressed as an
integral equation over R2 where its kernel is an isotropic
and homogeneous covariance function from the Matérn
family. The total number of implicit diffusion steps Mh
is related to the standard smoothness parameter of the
Matérn covariance function. The inverse of the variance
of the Matérn function is the normalization factor and is
given by

𝛾 2
h = 𝜔h 𝓁 2

h ,

where
𝜔h = 4𝜋 (Mh − 1)

and
𝓁 2

h =
√

det(𝜿h)

is the square of the characteristic length-scale of the
Matérn function.

For the 1D implicit diffusion operator used in the
2D×1D formulations, we can estimate the normalization
factor by examining the solution of the implicit diffu-
sion equation on R1 with constant diffusion coefficient
(Mirouze and Weaver, 2010). The Matérn kernel of the
integral solution is an Auto-Regressive (AR) function of
order Mz, with characteristic length-scale

𝓁z =
√
𝜅z.

The normalization factor for the vertical component is
the inverse of the intrinsic variance of the AR covariance
function:

𝛾 2
z = 𝜔z 𝓁z,

where
𝜔z =

22Mz−1[(Mz − 1)!]2

(2Mz − 2)!
,

which can be evaluated numerically using the recursive
formula

𝜌2 = 4 𝓁z,

𝜌m =
(

2m−2
2m−3

)
𝜌m−1 for m = 3, … ,Mz,

𝛾 2
z = 𝜌Mz .

⎫⎪⎬⎪⎭

As in R1, the covariance functions represented by the
implicit diffusion operator in R3 are AR functions whose
order is equal to the number of 3D implicit diffusion steps
Mhz and whose characteristic length-scale 𝓁hz is

𝓁 3
hz =

√
det(𝜿hz) =

√
𝜅z

√
det(𝜿h).

The inverse of the intrinsic variance of the Mhzth-order AR
covariance function provides an estimate of the normaliza-
tion factor for the 3D implicit diffusion operator:

𝛾 2
hz = 𝜔hz 𝓁 3

hz,

where

𝜔hz =
22M−1𝜋[(Mhz − 2)!]2(Mhz − 1)

(2Mhz − 4)!
,

which can be evaluated numerically using the recursive
formula

𝜌3 = 32𝜋 𝓁 3
hz,

𝜌m =
(

2m−2
2m−5

)
𝜌m−1 for m = 4, … ,Mhz,

𝛾 2
hz = 𝜌Mhz .

⎫⎪⎬⎪⎭
Results can be generalized to Rd where the expres-

sion for the normalization factor after M steps of implicit
diffusion with a constant diffusion tensor 𝜿 is

𝛾2 = 2d 𝜋d∕2 Γ(M)
Γ(M − d∕2)

𝓁d, (12)

where Γ( ) is the Gamma function and 𝓁d =
√

det(𝜿).

2.4 Daley length-scale and tensor

The Daley length-scale D is a standard scale parameter
used in data assimilation for characterizing isotropic cor-
relation functions c(r) that are at least twice differentiable
(Daley, 1991). It is defined in terms of the local curvature
of the correlation function at its peak:

D =

√
− d
∇2c|r=0

, (13)

where ∇2 = tr(∇∇T) is the d-dimensional Laplacian oper-
ator. For Matérn functions in Rd represented by M steps
of an implicit diffusion operator with constant diffusion
tensor, it can be shown that

D =
√

2M − d − 2 𝓁,
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WEAVER et al. 297

which is valid for M > (d+ 2)/2. In the limit as M →∞with
D held fixed, the Matérn function converges to the Gaus-
sian function and the normalization factor Equation (14)
converges to the more familiar expression

𝛾 2 = (4M𝜋) d∕2𝓁 d = (2𝜋) d∕2D d
g ,

where Dg =
√

2 M 𝓁 is the Daley length-scale of the Gaus-
sian function.

For anisotropic correlation functions, the component
Daley length-scales are defined through a tensor (a d×d
matrix), D = H−1 where (Weaver and Mirouze, 2013)

H = −∇∇Tc|r=0 (14)

is the Local Correlation (Hessian) Tensor (LCT). In the
isotropic case, D = D2 Id where D is a scalar given by
Equation (13). For the Matérn functions represented by the
d-dimensional implicit diffusion operator with anisotropic
diffusion tensor, it is straightforward to show that

𝜿 =
( 1

2M − d − 2

)
D. (15)

The Daley tensor is of interest since it can be esti-
mated directly from derivatives of ensemble perturbations.
Equation (15) then allows us to relate it to the tensor that
needs to be specified in the diffusion operator. This tech-
nique has been used for defining the diffusion tensor in
the experiments reported here, as described in the next
section.

3 SPECIFICATION OF THE
DIFFUSION-MODEL PARAMETERS

In order to evaluate the different methods for estimating
normalization factors, we consider a diffusion tensor that
is estimated from the five-member (four perturbed + one
unperturbed) ORAS5 (Ocean ReAnalysiS 5) ensemble of
ocean reanalyses for the low-resolution (LR) global con-
figuration ORCA1-Z42 (approximately 1 degree horizontal
resolution and 42 vertical levels). The LR version of ORAS5
is denoted ORAS5-LR. A four perturbed-member ensem-
ble is far too small to determine a statistically robust esti-
mate of the diffusion tensor. In order to reduce sampling
error, we estimate the tensor from a climatological ensem-
ble for the 5-year period 2010–2014, focusing on seasonal
statistics from December-January-February (DJF). Since
the assimilation cycle width in ORAS5-LR was 10 days, the
total effective ensemble size used to compute the seasonal
climatology is 180 (4 perturbed members × 9 cycles per
season × 5 years).

On each assimilation cycle, the LCT (Equation (14)) is
first estimated at each grid point from the tensor product
of the local gradient of the ensemble perturbations:

H = (Hpq) ≈ ∇(𝜖′∕𝜎) {∇(𝜖′∕𝜎) }T, p, q = 1, 2, 3, (16)

where 𝜖′ denotes an ensemble perturbation for a control
variable, centred about the ensemble mean, and 𝜎 is the
ensemble standard deviation (Michel et al., 2016). The
overbar denotes the ensemble average. The ensemble per-
turbation for a control variable is computed by removing
the balanced component from the ensemble perturbation
of the associated state variable. This is done by applying
the inverse of the balance operator (K−1

b ) to the state per-
turbations where the linearization state for Kb is provided
by the unperturbed member. The unperturbed member
is not used to compute the ensemble mean and standard
deviation.

The derivatives in Equation (16) are estimated using
centred finite differences. The procedure is outlined below.
The reader is referred to appendix A of Weaver et al.
(2018a) for details on the numerics. For the control vari-
ables under consideration, we choose to estimate H at
T-points on the Arakawa C-grid. These points correspond
to the centre of the grid cells. First, we use a centred differ-
ence of the normalized perturbations at adjacent T-points
to estimate the first derivatives of the perturbations with
respect to i and j. This produces derivative estimates at
the ensemble of U- and V-points on the C-grid, which are
points located in the middle of the edges of the grid cells.
At coastline points, the derivative in the direction normal
to the coastline is set to zero. The sample variance of the
product of the i-component derivative with itself is then
computed directly at the U-point to estimate the diagonal
element H11. Likewise, the sample variance of the prod-
uct of the j-component derivative with itself is computed
directly at the V-point to estimate H22.

The off-diagonal elements H12 and H21 are estimated
from the sample variance of the cross-product of the per-
turbation derivatives with respect to i and j. This requires
interpolating one of the component derivatives to the point
where the other component derivative is defined. Here,
we do this by simply averaging the derivatives at the four
nearest surrounding points. We estimate H12 (defined at
V-points) and H21 (defined at U-points) separately.

For 3D variables, the sample variance of the product
of the k-component derivative of the normalized pertur-
bations with itself is used to provide an estimate of H33
at W-points. These points are located at the interface
between model layers. Currently, we do not estimate the
off-diagonal elements H13, H31, H23 and H32. The ten-
sor elements at U- and V-points of a given cell are then
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298 WEAVER et al.

averaged to the T-point of that cell. Finally, in order to
ensure that the resulting tensors are SPD, and hence invert-
ible, the off-diagonal elements H12 and H21 are averaged,
and are set to zero at grid-points where the determinant is
not positive.

The estimated LCT elements are filtered in each model
level using a 2D diffusion operator with a constant hori-
zontal filtering scale. The filtering procedure proposed by
Michel et al. (2016) is used to preserve positive definite-
ness of the LCT. The filtering scale is determined using the
optimally based method of Ménétrier et al. (2015), where
its implementation in NEMOVAR is described in Weaver
et al. (2018a). The filtered LCT is then averaged over the
months DJF from 2010–2014 to produce a climatological
LCT and inverted to produce a climatological Daley ten-
sor D. The climatological estimate of D is converted into
an effective diffusion tensor 𝜿 by dividing by the factor
(2M − d− 2) in Equation (15). Ten implicit diffusion steps
(M = 10) are used with all diffusion models (1D, 2D and
3D). The covariance function associated with this value of
M is approximately Gaussian. Finally, the elements of the
estimated diffusion tensor are averaged to the appropriate
cell interface points where their values are required for the
finite difference formulation of the diffusion operator.

As stated earlier, the current diffusion model in
NEMOVAR does not account for the off-diagonal elements
of the diffusion tensor. This raises the question of how best
to define the diagonal elements, given estimates of both the
diagonal and off-diagonal elements. A sensible approach is
to rescale the diagonal elements such that the determinant
of the adjusted diagonal tensor equals the determinant of
the estimated non-diagonal tensor:

𝜅11 = �̂�11

√
1 − �̂�2

12∕�̂�11�̂�22,

𝜅22 = �̂�22

√
1 − �̂�2

12∕�̂�11�̂�22,

⎫⎪⎬⎪⎭ (17)

where the elements �̂�pq on the right-hand side are those
estimated from the ensemble. This method has been
applied here.

Various checks are then applied on the estimated
diffusion tensor. In the upper 600 m, which roughly
corresponds to the maximum mixed-layer depth, the
maximum-allowed value of the vertical length-scale 𝓁z =√
𝜅z is bounded by the maximum mixed-layer depth

itself (600 m). This check avoids excessively large ver-
tical length-scales in the mixed-layer region caused by
small vertical derivatives in the tensor estimation method.
Another check is used to prevent the vertical length-scales
from exceeding the local ocean depth, which can occur in
shallow-sea regions. The estimated horizontal tensor ele-
ments can be artificially large in semi-closed seas and close
to boundaries. To prevent this, those elements are scaled

such that, at each grid point, the horizontal length-scale
𝓁h = {det(𝜿h)} 1∕4 does not exceed the Euclidean distance
to the nearest coastline point. A final check is made in
order to eliminate length-scales that are smaller than the
local grid resolution. In particular, if the estimated effec-
tive local length-scale is smaller than the geometric mean
of the local scale factors, then the tensor elements are set
to the scale factors themselves. A similar check is done on
the vertical diffusion coefficient.

The estimated horizontal tensor elements for tempera-
ture in the surface level are shown in Figure 1. The tensor
elements are proportional to the square of the correlation
length-scales. While it is not the objective of this article to
provide a detailed analysis of the estimates, various basic
features can be identified. In the Tropics, 𝜅22 is smaller
than 𝜅11, reflecting well-known anisotropy related to equa-
torial dynamics. Smaller scales are also evident in western
boundary current regions (Gulf Stream and Kuroshio Cur-
rent, especially for temperature) where eddies and ocean
fronts are prominent.

It is interesting to compare these estimates qual-
itatively with the parametrized horizontal tensor ele-
ments used for the actual production of ORAS5-LR. For
ORAS5-LR, the same values were used for all variables
and at all levels. The parametrized horizontal tensor ele-
ments correspond to values of the Daley length-scale equal
to D≈ 222km everywhere except within 15◦ of the Equator
where the zonal (meridional) components were stretched
(reduced) following a cosine dependence (Mogensen
et al., 2012). Directly at the Equator, Dzonal ≈ 444 km and
Dmerid ≈ 111 km. Compared with the ensemble estimates
in Figure 1, the parametrized tensor elements (not shown)
are generally larger everywhere, with the exception of
the equatorial region where the parametrized and esti-
mated 𝜅22 have some similarities. The horizontal Daley
length-scales used in ECMWF’s high-resolution ocean
reanalysis ORAS5, produced with the global configuration
ORCA025-Z75 (1/4 degree horizontal resolution and 75
vertical levels), was based on a different parametrization
that depends on the Rossby radius. That parametrization
produces horizontal tensor elements that decrease with
increasing latitude, similar to what is observed in the
ensemble-estimated values with ORAS5-LR.

The estimated vertical diffusion coefficient is shown in
Figures 2 and 3. In the top level (Figure 2), the vertical
length-scales are much larger in the Northern Hemisphere
than in the Southern Hemisphere. The large scales are
associated with strongly correlated errors in the mixed
layer, which is deep in the Northern Hemisphere win-
ter. The vertical length-scales are also large in the lowest
levels of the model where the resolution is coarse, but
much smaller in the highly stratified thermocline region
(Figure 3).
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WEAVER et al. 299

F I G U R E 1 The diagonal elements (a)
𝜅11 and (b) 𝜅22 (m2) of the horizontal
diffusion tensor for temperature at 5 m depth
(the surface level), estimated from ensemble
perturbations from months DJF in the period
2010–2014 of the ORAS5-LR reanalysis. The
colour palette uses a log10 scale

For comparison, the parametrized vertical diffusion
coefficients used in ORAS5-LR were specified by set-
ting the vertical Daley length-scales to be proportional
to the vertical scale factors (e3) where the proportional-
ity constant was taken to be equal to one. This simple
resolution-dependent parameterization broadly captures
some features observed in the ensemble estimates, except
for the mixed-layer region where the parametrized vertical
scales are too small. The parametrized vertical scales in the
deep ocean are also somewhat underestimated compared
to those from the ensemble.

4 NORMALIZATION FACTOR
ESTIMATION METHODS

The constant normalization factors derived from the ana-
lytical solutions of the diffusion equation are only crude
approximations of the actual normalization factors for
diffusion-based correlation models used in practice. There

are three basic reasons for this. First, the actual normaliza-
tion factors will depend on the numerical approximations
used to discretize and solve the diffusion equation. Sec-
ond, realistic diffusion tensors, such as those estimated
from an ensemble, are not constant, but rather have con-
siderable 3D spatial structure. Third, normalization factors
are strongly affected by solid-wall boundary conditions,
especially in a global ocean model where the boundary
geometry is complex.

In the following subsections, we describe the different
methods that have been implemented in NEMOVAR for
estimating normalization factors, and we compare them in
terms of their accuracy and computational cost.

4.1 Brute-force (exact) method

Let en = ( 0, … , 1, … , 0 )T where the value of 1 is located
at the nth grid-point. The nth diagonal element of any
square matrix can be computed exactly by applying that
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300 WEAVER et al.

F I G U R E 2 The vertical
diffusion coefficient 𝜅z (m2) for
temperature at 5 m depth (the surface
level) for months DJF. The colour
palette uses a log10 scale

matrix to en and extracting the nth element from the result-
ing vector. Specifically, the inverse of the normalization
factor at the nth grid-point of the symmetric diffusion
matrix is given by (cf. Equation (4))

𝛾−2
n = {V W−1 VTen}n, (18)

where {⋅}n means the nth element of the vector in curly
brackets. For the coarse-grid formulation (Equation (5)),
the expression would also involve the transfer operator and
its transpose. To compute all normalization factors using
Equation (18) requires as many applications of the diffu-
sion operator as there are grid points, which is clearly pro-
hibitive for a high-resolution global configuration where
the number of ocean points for each 3D variable is on
the order of 107. The cost of applying the diffusion opera-
tor can be halved by noting that 𝛾−2

n is equal to the scalar
product

𝛾−2
n = eT

n V W−1 VTen

= (W−1∕2 VTen)T(W−1∕2VTen). (19)

Equation (19) can be evaluated by applying the adjoint
of the diffusion operator over half the number of diffu-
sion steps and then computing the scalar product of the
result with itself. In this case, half of the diffusion opera-
tions per grid point are replaced by a scalar product (global
sum) per grid point. This is generally cheaper than using
Equation (18) directly, but still prohibitively expensive to
be applied at all grid points. In practice, this method can
only be used to compute exact normalization factors at a
selected number of points, which can be useful for diag-
nostic purposes.

4.2 Randomization method

The randomization method was proposed by Andersson
et al. (2000) for diagnosing the variances of any covari-
ance matrix that can be represented in square-root oper-
ator form. Weaver and Courtier (2001) discussed how the
method could be used specifically for estimating normal-
ization factors, which we summarize below.

Consider a random vector 𝝐 of normally-distributed
noise with mean equal to zero and standard deviation
equal to one; that is, 𝝐 ∼ N[0, I] where E[𝝐] = 0 and
E[𝝐𝝐T] = I, E[⋅] being the mathematical expectation oper-
ator. We can relate 𝝐 to a symmetric positive semi-definite
(covariance) matrix AAT using the identity

AAT = A I AT = A E[𝝐𝝐T] AT = E[A𝝐 (A𝝐)T].

We can use the above identity to compute a sample esti-
mate of the covariance matrix AAT from a set of indepen-
dently drawn random vectors 𝝐q ∼ N[0, I], q= 1, … , Q.

Here, we are interested in estimating the variances
(diagonal elements) of AAT for the specific case where
A=V W−1/2. Let v= (v1, … , vN)T be the vector contain-
ing the variances. An unbiased sample estimate ṽ =
(ṽ1, … , ṽN)T of v is

ṽ = 1
Q − 1

Q∑
q=1

(
𝜻q −

1
Q

Q∑
q=1

𝜻q

)
◦

(
𝜻q −

1
Q

Q∑
q=1

𝜻q

)
,

where ◦ denotes the element-by-element (Schur) product
of two vectors, and

𝜻q = V W−1∕2𝝐q. (20)
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WEAVER et al. 301

F I G U R E 3 A vertical section of 𝜅z

(m2) at approximately 35◦N. (b) is an
expansion of the top 1,000 m of (a). The
colour palette uses a log10 scale

The randomized estimate of the matrix of normaliza-
tion factors is then

𝚪 2 ≈ diag(ṽ −1
1 , … , ṽ −1

N ).

The sampling error ṽe = ṽ − v is unbiased (E[ṽe] = 0) and
the statistical moments can be expressed in terms of v
(Ménétrier et al., 2015). In particular, for each component
vi, the mean squared error of the estimate is

E[(ṽi − vi)2] =
(

2
Q − 1

)
v 2

i , (21)

which shows that the relative error of the variance
depends on the sample size but not on the true variance,

and hence is independent of the resolution of the model.
For example, the relative error is 0.02% with a sample size
of Q= 104. Note that Equation (21) describes the expected
mean squared error of the variance, not the normaliza-
tion factor (inverse of the variance) for which there is no
simple relationship.

Randomization is also expensive, but not as pro-
hibitively expensive as the exact method. Randomization
is practical for computing accurate estimates of the
normalization factors when using correlation model
parameters that are static or updated infrequently. Fur-
thermore, there is scope for accelerating the convergence
of randomization using carefully constructed input
vectors obtained using Hadamard matrices or probing
techniques (Bekas et al., 2007; Laeuchli, 2016). While
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302 WEAVER et al.

F I G U R E 4 The reference
normalization factors (m2) for
temperature at 5 m depth (the surface
level) with the 2D×1D (3) implicit
diffusion operator where the diffusion
tensor has been estimated from a
climatological ensemble as described in
Section 3 and illustrated in Figure 1. The
normalization factors have been
computed using the randomization
method with a sample size of 104. The
colour palette uses a log10 scale

this is an interesting possibility, we have not explored
it here.

4.3 Reference field and error
diagnostics

In what follows, we will use the normalization factors
computed using randomization with a sample size of
104 as the reference field to which estimates generated
using approximate methods will be compared. The ref-
erence normalization factors for temperature with the
standard 2D×1D (3) formulation (Equation (10) with
m= 3) are shown in Figures 4 and 5. The spatial struc-
ture is similar to that observed in the diffusion tensor
elements (Figures 1–3), which illustrates the close con-
nection between the normalization factors and correlation
length-scales. Indeed, this is expected from the analyti-
cal expression for the normalization factor. Chabot et al.
(2017) make a similar observation with a wavelet-based
covariance model. Also noticeable are the reduced val-
ues of the normalization factors close to land boundaries,
which counteract an overestimated amplitude caused by
the Neumann boundary condition (Mirouze and Weaver,
2010).

The experiments described in the following sections
are summarized in Table 1. To assess the quality of the
approximate normalization factor �̃� 2

n , we will compute the
relative error

n =
�̃� 2

n − 𝛾 2
n

𝛾 2
n

,

where 𝛾 2
n is the reference. Spatial plots of n will be dis-

played only for the temperature normalization factors with
the 2D×1D (3) formulation. To provide a global measure

of the error, we will also calculate the mean of the absolute
value of the relative error (hereafter referred to simply as
the mean error),

 = 1
N

N∑
n=0

|||n
|||, (22)

for all the control variables (unbalanced SSH, temperature,
unbalanced salinity). The values of  for the experiments
in Table 1 are given in Table 2 where they are expressed as
a percentage error.

4.4 Randomization with a small
sample size

A sample size of 100 could be affordable on each assim-
ilation cycle to estimate normalization factors for a fully
flow-dependent background-error correlation matrix.
The mean relative error with 100 samples is 12% (Exper-
iment 1 in Table 2). However, the randomized estimates
are noisy as evident in Figure 6 which displays n for the
temperature normalization factors in the surface level.
In places, the error exceeds 100%. A spatial filter can
be applied to the randomized estimates to suppress the
noise to some extent. We can use the diffusion opera-
tor as a filter and adjust the diffusion tensor to select a
desired smoothing scale. Here, we have applied a hor-
izontal diffusion filter to the randomized estimates of
the variances (inverse normalization factors). At each
grid point n, the diffusion tensor is taken to be propor-
tional to the diagonal tensor of squared horizontal scale
factors:

{𝜿ranfil
h }n =

(
𝛼2

2M − 4

)
diag({e2

1}n, {e2
2}n). (23)
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WEAVER et al. 303

F I G U R E 5 A vertical
section at approximately 35◦N of
the reference normalization factors
(m2) for temperature. (b) is an
expansion of (a) in the top 1,000 m.
The colour palette uses a log10 scale

As in the correlation operator, we set M = 10, which
makes the filter approximately Gaussian. While the filter
reduces the noise, it has a detrimental effect near land
boundaries where the errors are noticeably increased (not
shown). The normalization factors are overestimated at
grid points closest to the boundary, and underestimated at
grid points further from the boundary. The larger errors
near the boundaries are responsible for an increase in the
average error (Experiments 2 and 3 in Table 2). In Experi-
ment 2, the filter scale is taken to be equal to the local scale
factor (𝛼 = 1). Doubling the filter scale (𝛼 = 2) suppresses
the noise further but exacerbates the problem near land

boundaries and leads to a further increase in the error
(Experiment 3).

4.5 Analytical and empirical methods

4.5.1 Zeroth-order analytical
approximation

An approximate expression for the normalization factors
can be derived from the analytical expression for the
normalization factors by replacing the constant diffusion
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304 WEAVER et al.

T A B L E 1 A summary of experiments for testing approximate methods for estimating normalization factors

Expt Method Sample size Rand. filter 𝜶 Diffusion (m) BC Bndy Smooth Bias

1 Ran 100 No – 2D×1D (3) N – – –

2 Ran 100 Yes 1 2D×1D (3) N – – –

3 Ran 100 Yes 2 2D×1D (3) N – – –

4 Ana – – – 2D×1D (3) N No No No

5 Ana – – – 3D N No No No

6 Ana – – – 2D×1D (3) ND – No No

7 Ana – – – 2D×1D (3) NDz – No No

8 Ana – – – 3D ND – No No

9 Ana – – – 2D×1D (3) N Yes No No

10 Ana – – – 3D N Yes No No

11 Ana – – – 2D×1D (3) N Yes Yes No

12 Ana – – – 3D N Yes Yes No

13 Ana – – – 2D×1D (3) N (NDz) Yes Yes No

14 Ana – – – 3D N (ND) Yes Yes No

15 Ana – – – 2D×1D (3) N (NDz) Yes Yes Yes

16 Ran (hxz) 10,000 – – 2D×1D (2) N – – –

17 Ran (hxz) 10,000 – – 2D×1D (3) N – – –

18 Ran (hxz) 10,000 – – 2D×1D (3) NDz – – –

Note: ‘Expt’ is the experiment identifier. ‘Method’ indicates whether the method is randomization (Ran) or analytically-based
(Ana). Randomization estimates that are computed separately for the horizontal and vertical components are identified by
(hxz). Sample size, whether a horizontal diffusion filter has been applied, and the length-scale factor (𝛼) for the diffusion filter
(Equation (23)) are specific to randomization. The sixth column indicates the type of 3D diffusion formulation where the value
of m associated with the family of 2D × 1D formulations (Equation (10)) is indicated in parentheses. BC denotes the boundary
condition applied in the correlation model: Neumann (N); Dirichlet (D); average of Neumann and Dirichlet for full diffusion
(ND) or vertical diffusion only (NDz). The boundary condition used for smoothing the analytical normalization factors is the
same as that used for the correlation model, except when an alternative boundary condition is indicated in parentheses. The last
three columns indicate whether the boundary correction factor, analytical normalization factor smoothing, and bias correction
using linear regression are applied.

tensor with the spatially dependent diffusion tensor. We
refer to this as the zeroth-order approximation. For 2D dif-
fusion and the two basic formulations of 3D diffusion, the
zeroth-order expressions are

⎛⎜⎜⎜⎜⎜⎝

{�̂� 2
h}n = 𝜔h

√
det({𝜿h}n),

{�̂� 2
h×z}n =

(
𝜔h

√
det({𝜿h}n)

)(
𝜔z

√
{𝜅z}n

)
= {�̂� 2

h}n{�̂� 2
z}n,

{�̂� 2
hz}n = 𝜔hz

√
{𝜅z}n

√
det({𝜿h}n).

⎫⎪⎪⎬⎪⎪⎭
(24)

We can expect these expressions to provide a good
approximation of the normalization factors in regions far
from land boundaries and where the spatial variations in
the diffusion tensor are weak. However, these expressions
are unlikely to be adequate in regions close to bound-
aries and where the diffusion tensor varies substantially

between grid points, as occurs with a tensor estimated
from ensembles. This is confirmed by Figures 7 and 8,
which show the relative error in the normalization fac-
tors for temperature when using Equation (26). The spa-
tial structure of the error roughly matches that of the
vertical diffusion coefficient in Figures 2 and 3. The nor-
malization factors are largely overestimated in the upper
ocean levels and near bottom bathymetry (the errors are
positive) where they are strongly influenced by the Neu-
mann boundary condition, the effects of which are not
accounted for in the analytical approximation. The errors
are especially large (over 1,000%) in the upper levels in
the Northern Hemisphere where the vertical diffusion
coefficients are large. The mean errors in Table 2 (Exper-
iments 4 and 5) are significantly larger for temperature
and unbalanced salinity (3D fields) than for unbalanced
SSH (a 2D field).
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WEAVER et al. 305

T A B L E 2 The spatial average of the absolute
value of the errors in the approximate normalization
factor normalized by the reference normalization
factor (Equation (22)) for the experiments listed in
Table 1

Expt Unbalanced SSH Temperature Unbalanced Salinity

1 12 12 12

2 14 15 15

3 14 16 16

4 12 53 72

5 12 53 72

6 12 31 40

7 12 32 40

8 12 32 40

9 9 24 33

10 9 24 33

11 13 26 34

12 13 33 42

13 13 21 23

14 13 27 29

15 7 23 45

16 – 7 8

17 – 4 4

18 – 4 4

Note: The values are displayed as percentage errors.

F I G U R E 6 Experiment 1.
The relative error between the
reference normalization factors for
temperature in the surface level
(Figure 4) with the 2D×1D (3)
implicit diffusion operator and
those produced using the
randomization method with a
sample size of 100

4.5.2 Diffusion formulation
with Neumann and Dirichlet boundary
conditions

Near land boundaries, the Neumann boundary condition
prevents flux exchanges across the boundary, causing the
amplitude of the covariance function to increase there.

The opposite occurs with a Dirichlet boundary condition
where the amplitude is diminished near land boundaries
in order to satisfy the condition that the field is zero at
the boundary. By examining the solution of the continu-
ous, 1D diffusion equation with constant diffusion coef-
ficient, in the presence of an isolated, straight boundary,
Mirouze and Weaver (2010) show analytically that the
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306 WEAVER et al.

F I G U R E 7 Experiment 4. The
relative error in the normalization
factors for the 2D×1D (3) implicit
diffusion operator for temperature in
the surface level when using the
analytical approximation given by
Equation (24)

F I G U R E 8 Experiment 4. The
relative error in the normalization
factors for the 2D×1D (3) implicit
diffusion operator for temperature at
approximately 35◦N when using the
analytical approximation given by
Equation (24). Note that the scale in the
colour palette is one order of magnitude
smaller than that used in Figure 7

correct amplitude can be obtained by redefining the cor-
relation operator as an average of two diffusion operators,
one that employs the Neumann (N) boundary condition
and the other that employs the Dirichlet (D) boundary
condition. We call it the ND formulation.

The horizontal implicit diffusion operator with the ND
formulation can be written as

LND
h = 1

2
(Lh,N + Lh,D) =

1
2
(FMh

h,N + FMh
h,D),

where the different boundary conditions are denoted by
subscripts N and D. The corresponding ND formulation of
the correlation matrix involves a rectangular “square-root”

factor:
Ch = 𝚪h Vh W

−1
h VT

h 𝚪h,

where

Vh =
( 1√

2
FMh∕2

h,N ,
1√
2

FMh∕2
h,D

)
and Wh = diag( Wh,Wh ).

A similar expression follows for the ND formulation
of the correlation matrix with the 3D implicit diffusion
operator (Section 2.2.3).

For the 2D×1D formulations, we use the approach
outlined in Section 2.2.2 to construct a self-adjoint 3D dif-
fusion operator LND

h×z (cf. Equation (9)) from the product
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WEAVER et al. 307

of LND
h and the ND formulation of the vertical diffusion

operator:

LND
z = 1

2
(Lz,N + Lz,D) =

1
2
(FMz

z,N + FMz
z,D).

This yields a family of 3D correlation matrices
(m= 1, … , 4):

Ch×z = 𝚪h×z V(m)
h×z W

−1
hz (V(m)

h×z)
T𝚪h×z

where

Whz = diag( Whz, Whz, Whz, Whz ).

In particular, for the 2D×1D formulations without
interleaving (m= 1) and with interleaving (m= 3), the
square-root factors are

V(1)
h×z =

(
1
2

FMh∕2
h,N FMz∕2

z,N ,
1
2

FMh∕2
h,N FMz∕2

z,D ,

1
2

FMh∕2
h,D FMz∕2

z,N ,
1
2

FMh∕2
h,D FMz∕2

z,D

)
and

V(3)
h×z =

(
1
2
(Fh,N Fz,N)

Mhz
2 ,

1
2
(Fh,N Fz,D)

Mhz
2 ,

1
2
(Fh,D Fz,N)

Mhz
2 ,

1
2
(Fh,D Fz,D)

Mhz
2

)
,

which involves four 2D×1D diffusion operations com-
pared to two 3D diffusion operators in the corresponding
(non-separable) 3D ND formulation. Similar expressions
hold for m= 2 and m= 4, by switching the order of the
horizontal and vertical diffusion operators.

The ND formulation can be restricted to the vertical
diffusion operator only, which we call the NDz formu-
lation. Assuming Neumann boundary conditions for the
horizontal diffusion operator, this yields for m= 1 and
m= 3

V(1)
h×z =

( 1√
2

FMh∕2
h,N FMz∕2

z,N , 1√
2

FMh∕2
h,N FMz∕2

z,D
)
,

V(3)
h×z =

( 1√
2
(Fh,N Fz,N)Mhz∕2, 1√

2
(Fh,N Fz,D)Mhz∕2)

⎫⎪⎬⎪⎭
(25)

and
Whz = diag( Whz , Whz ),

which involves two diffusion operations as in the 3D ND
formulation.

The mean errors with and without the ND formu-
lation are reduced by 22% for temperature and 32% for
unbalanced salinity, but are similar for unbalanced SSH

(Experiments 6, 7 and 8 in Table 2). For unbalanced SSH,
the errors remain large near land boundaries, probably
due to a combination of the effects of irregular boundary
geometry and large spatial variations in the tensor. For
temperature and unbalanced s, the errors are predomi-
nantly reduced in the upper ocean and near bathymetry
(cf. Figures 7–10). The mean errors for the experiments
with the full ND and NDz formulations (cf. Experiments 6
and 7) are very similar, indicating that the ND formula-
tion works best with the vertical diffusion operator. This
is likely because the assumptions used to derive the ND
formulation are better satisfied by the vertical diffusion
operator, especially in open ocean areas near the surface
where boundary geometry is simple and where the verti-
cal diffusion coefficient is approximately constant. Overall,
however, the errors remain unacceptably large.

4.5.3 Analytical boundary correction

An obvious drawback with the ND formulation is the
additional cost that it entails. Building on the theoreti-
cal analysis of Mirouze and Weaver (2010), Mirouze and
Storto (2016) proposed a simple analytical correction to
the normalization factor near the boundary as an alter-
native to the more costly ND approach. With the Neu-
mann boundary condition, their analysis suggests that the
normalization coefficient should be corrected by a mul-
tiplicative factor 𝜉 = 1∕{1 + c(2 rbndy)} where c(⋅) is the
Matérn correlation function corresponding to the approxi-
mate kernel of the normalized diffusion operator and rbndy

is the Euclidean distance to the boundary. For example,
directly at the boundary (rbndy = 0), 𝜉 equals 1/2 to com-
pensate for the doubling of the amplitude there with the
Neumann boundary condition for the 1D case when the
diffusion coefficient is constant (appendix B in Mirouze
and Weaver (2010)). Far from the boundary (rbndy ≫𝓁), the
correction factor is approximately equal to one. With the
Dirichlet boundary condition, the correction factor is 𝜉 =
1∕{1 − c(2 rbndy)}, which is singular directly at the bound-
ary point and therefore must be regularized in numerical
applications by adding a small number to the denominator.

The correction for the Neumann boundary condition
in the 2D implicit diffusion operator yields approximate
normalization factors

{�̃� 2
h}n =

{�̂� 2
h}n

{1 + c h(2 rbndy
n )}

,

where ch is the correlation function implied by the diffu-
sion operator, and rbndy

n is the Euclidean distance to the
nearest coastline point. For 2D implicit diffusion, the cor-
relation function used to compute the correction factor
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308 WEAVER et al.

F I G U R E 9 Experiment 6. The
relative error in the normalization
factors for temperature in the surface
level when using the analytical
approximation given by Equation (24)
with a ND formulation of the
2D×1D (3) implicit diffusion operator

F I G U R E 10 Experiment 6. The
relative error in the normalization factors
for temperature at approximately 35◦N
when using the analytical approximation
given by Equation (24) with a ND
formulation of the 2D×1D (3) implicit
diffusion operator. Note that the scale in
the colour palette is one order of
magnitude smaller than that used in
Figure 9

should be a Matérn function involving the modified Bessel
function of the second kind (Weaver and Mirouze, 2013).
For simplicity, we approximate this function by a Gaus-
sian function, which is adequate for the value of Mh = 10
considered.

For the 2D×1D diffusion formulations, the correction
gives approximate normalization factors

{�̃� 2
h×z}n =

{�̂� 2
h×z}n

{1 + c h(2 rbndy
n )}{1 + c z(2 zbndy

n )}
, (26)

where c z is an Mzth-order AR function and zbndy
n is the

Euclidean distance to the nearest upper or bottom bound-
ary point. The correlation function c h is the same as the
one used in the correction factor for the 2D diffusion

operator. For the 3D diffusion operator, the corrected nor-
malization factors are given by Equation 26 with {�̂� 2

hz}n in
place of {�̂� 2

h×z}n.
For unbalanced SSH, the boundary correction term

results in a significant reduction in the error near land
boundaries compared to both the zeroth-order and ND
formulations (not shown). This improved error reduction
is also visible in the mean error (Experiments 9 and 10
in Table 2). The reduction of the mean error is more
impressive for temperature and unbalanced salinity where
it is up to 8% better than with the ND and NDz for-
mulations (compared to 3% better for unbalanced SSH).
Figures 11 and 12 illustrate that the boundary correction
term has a similar impact to the ND formulation near
the surface, but produces noticeably smaller errors near
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WEAVER et al. 309

F I G U R E 11 Experiment 9. The
relative error in the normalization
factors for the 2D×1D (3) implicit
diffusion operator for temperature in
the surface level when using the
analytical approximation
(Equation (26)), involving the
boundary correction term to account
for the effect of the Neumann
boundary condition

F I G U R E 12 Experiment 9.
The relative error in the
normalization factors for the
2D×1D (3) implicit diffusion operator
for temperature at approximately
35◦N when using the analytical
approximation (Equation (26)),
involving the boundary correction
term to account for the effect of the
Neumann boundary condition. Note
that the scale in the colour palette is
one order of magnitude smaller than
that used in Figure 11

bottom bathymetry. The errors also change sign over large
areas in the ocean interior, probably due to the large verti-
cal length scales in the mixed layer and bottom boundary
regions that are used in the correction term.

4.5.4 Smoothing the diffusion tensor
in the zeroth-order expression

By considering an asymptotic expansion of the solution
of the diffusion equation for the case of a slowly and
smoothly varying diffusion tensor, Purser et al. (2003b)
showed that a better approximation can be made by
smoothing det(𝜿) in the analytical expression of the

normalization factor. In particular, their analysis suggests
that det(𝜿) should be smoothed with the square root of
the diffusion operator that is used in the correlation oper-
ator. For a Gaussian filter, applying the square root of
the diffusion operator is equivalent to applying the com-
plete diffusion operator, but with the tensor diffusivity
equal to one half of that used in the correlation operator.
Rather than using precisely one half of the tensor diffu-
sivity, Yaremchuk and Carrier (2012) suggest treating this
factor as a free parameter that can be tuned empirically.
Also, they apply the smoothing operator to the inverse of
the analytical normalization factor (the filter variance),
which is equivalent to smoothing the inverse of the square
root of det(𝜿). We found that this approach can produce
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310 WEAVER et al.

numerical artifacts because the smoothed filter variances
could attain excessively small values. Smoothing the ana-
lytical normalization factors directly (not their inverse)
produces better results in our experiments. This is similar
to what was proposed by Purser et al. (2003b), but here we
smooth the square root of det(𝜿) instead of det(𝜿).

Taking into account both smoothing of the normaliza-
tion factors and the Neumann boundary condition correc-
tion term, the approximate normalization factors for the
2D implicit diffusion operator are

{�̃� 2
h }n =

{Ls
hn̂h}n

{1 + ch(2 rbndy
n )}

, (27)

where n̂h = ({�̂� 2
h}1, … , {�̂� 2

h}N) T, Ls
h is the 2D diffusion

operator (without normalization) used in Ch but with the
tensor diffusivity given by

{𝜿s
h}n = 𝛽{𝜿h}n, (28)

where 𝛽 is a tunable parameter with 0 < 𝛽 < 1. Likewise,
for the 3D implicit diffusion operator, the approximate
normalization factors become

{�̃� 2
hz}n =

{Ls
hzn̂hz}n

{1 + ch(2 rbndy
n )}{1 + cz(2 zbndy

n )}
, (29)

where n̂hz = ({�̂� 2
hz}1, … , {�̂� 2

hz}N) T, Ls
hz is the 3D dif-

fusion operator (without normalization) used in Chz,
but with the tensor diffusivity reduced according to
Equation 28.

For the 2D×1D formulation, we use a slightly different
procedure in which the smoothing is performed separately
on the horizontal and vertical tensor contributions to the
analytical normalization factor:

{�̃� 2
h×z}n =

{Ls
hn̂h}n{Ls

zn̂z}n

{1 + ch(2 rbndy
n )}{1 + cz(2 zbndy

n )}
, (30)

where n̂z = ({�̂� 2
z}1, … , {�̂� 2

z}N) T, Ls
h and Ls

z are the hor-
izontal and vertical implicit diffusion operators used in
Ch× z but with horizontal tensor diffusivity for Ls

h reduced
according to Equation 28, and

{𝜅s
z}n = 𝛽{𝜅z}n

for the vertical diffusion operator.
In terms of the mean error, the inclusion of the smooth-

ing operator has a slightly negative impact on the accu-
racy of the normalization factors for all variables (Experi-
ments 11 and 12) compared to the experiments with only
the boundary correction (Experiments 9 and 10). For these

experiments, 𝛽 has been set to 0.33 for the horizontal diffu-
sion tensor and 0.5 for the vertical diffusion tensor, which
are values suggested by the theoretical relation given by
Yaremchuk and Carrier (2012) (their equation 12):

𝛽 = 1
6
+ 1

3d
,

where d is the dimension of the space. Values of 𝛽 between
0.2 and 0.5 have also been tested, but result in only modest
changes to the mean error.

Figure 13 shows that, near the upper boundary, the
errors are still large as in Figure 12 (note that the scales of
the vertical axes of these two figures are different). Switch-
ing the boundary condition from Neumann to NDz (ND)
in the 2D×1D (3D) smoothing operator results in sub-
stantially reduced errors in this region as illustrated in
Figure 14. The mean errors of the normalization factors for
temperature and unbalanced salinity are reduced as well
(Experiments 13 and 14 in Table 2) compared to the mean
errors from the experiments without smoothing (Experi-
ments 9 and 10) and with smoothing using the Neumann
boundary condition (Experiments 11 and 12).

4.5.5 Bias correction

The approximate expressions for the normalization fac-
tors presented thus far in Section 4.5 are derived from
purely theoretical considerations of the diffusion equation.
As such, they do not account for effects on the normal-
ization factors resulting from numerical approximations.
One notable numerical approximation is the modest con-
vergence criterion used with the implicit solver. On each
diffusion step, an elliptic equation is solved approximately
using a fixed number of iterations of the Chebyshev Iter-
ation algorithm. The number of iterations is chosen such
that the 2-norm of the residual is reduced by three to
four orders of magnitude compared to the 2-norm of the
right-hand side (Weaver et al., 2016; Weaver et al., 2018b).
We can expect that the modest accuracy threshold of the
solver will bias the normalization factors relative to those
deduced from theory.

We can attempt to estimate the bias in the normaliza-
tion factors using linear regression. Let us assume that the
normalization factor at each grid point can be described by
the linear model

�̃�2
n = a + b �̂�2

n, (31)

where �̂�2
n is our “best” analytical estimate of the normal-

ization factor, and a and b are adjustable constants. Let
us also assume that the exact normalization factors 𝛾2

k are
available at a selected number of p= 1, … , P grid points.
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WEAVER et al. 311

F I G U R E 13 Experiment 11.
The relative error in the
normalization factors for the
2D×1D (3) implicit diffusion operator
for temperature at approximately
35◦N when using the boundary
correction term to account for the
effect of the Neumann boundary
condition and smoothing of the
zeroth-order analytical
normalization. The vertical section
displays the upper 1,000 m

F I G U R E 14 Experiment 13. As
Figure 13, but when the diffusion filter
used for smoothing the zeroth-order
analytical normalization uses the NDz
formulation

We can use the exact method (Equation 18) to compute 𝛾2
p

at the P points. Using the method of least squares, we can
then seek a and b that minimize

e =
P∑

p=1
(�̃�2

p − 𝛾2
p )2.

Carrying out this operation leads to expressions for a and
b which, when substituted back in Equation 31, give the
bias-corrected estimate of the normalization factors:

�̃�2
n = 𝛾 2 + cov(�̂�2, 𝛾 2)

var(�̂�2)
(�̂�2

n − ̄̂2𝛾 ), (32)

where ( ⋅ ), var(⋅) and cov(⋅ , ⋅) denote sample estimates
of the mean, variance and covariance of the quantities in
parentheses, computed over the P points.

In Experiment 15, the analytical normalization factors
based on Equations (27) and (30) are bias-corrected using
Equation (32). The cost of the method is dominated by
the computation of the exact normalization factors at the
regression points, especially for 3D variables. Here, we
choose a sample size of 50 for all variables (2D and 3D),
which provides a better sampling of normalization fac-
tors for unbalanced SSH than temperature and unbalanced
salinity. In order to limit boundary effects, the regression
points are selected from open areas of the main ocean
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312 WEAVER et al.

F I G U R E 15 Experiment 15.
The relative error in the
normalization factors for the
2D×1D (3) implicit diffusion operator
for temperature at approximately
35◦N when using bias-corrected
analytical normalization factors
(Equation (32)). The analytical
normalization factors have been
computed using Equation (30), which
involves both a boundary correction
term to account for the effect of the
Neumann boundary condition and
smoothing of the zeroth-order
analytical normalization factors using
the NDz formulation.

basins (Pacific, Atlantic, and Indian Ocean basins, as well
as the Circumpolar Current region). For temperature and
unbalanced salinity, the points are chosen to sample the
mixed layer (45 m) and main thermocline (165 m).

Bias correcting the analytical normalization factors
leads to further reduction of the mean error for unbal-
anced SSH compared to all other experiments (Table 2).
The improvement is visible in most areas, although in
some boundary areas (close to Antarctica and in north-
ern Canada), the relative error is increased and changes
sign (not shown). In these areas, it is likely that the bias
is dominated by the effects of boundary geometry (not
solver precision), which is difficult to capture with the sim-
ple regression model Equation (31) and is not sampled by
the points used for regression in this experiment. Com-
pared to Experiment 13, results for temperature produce
a slight increase in the mean error, while those for unbal-
anced salinity show a more substantial increase, probably
for the reasons already mentioned. Figure 15 shows mod-
est improvement in the temperature normalization factors
in the ocean interior (cf. Figure 14).

5 NORMALIZATION
TO ACCOUNT
FOR FLOW-DEPENDENT VERTICAL
CORRELATIONS

Correct specification of the vertical correlations of back-
ground error in the upper ocean is important for properly
assimilating surface observations such as Sea Surface
Temperature (SST) and Sea Surface Salinity (SSS). Near
the surface, the vertical correlations are sensitive to

the mixed-layer depth which can exhibit large varia-
tions on time-scales comparable to the width of the
assimilation window. Capturing flow dependence in the
background-error vertical correlations is highly desirable.
Laloyaux et al. (2018) illustrate this point in a coupled data
assimilation framework.

Randomization is too costly to be used with the
complete 2D×1D diffusion matrix to recompute nor-
malization factors on each assimilation cycle. Further-
more, results from the previous section indicate that
the analytical-based normalization methods are not suf-
ficiently accurate. In this section, we investigate variants
of the randomization procedure that would allow us to
update the normalization factors when the vertical corre-
lation parameters change from one cycle to the next but the
horizontal correlation parameters are held fixed to their
climatological values.

5.1 Look-up table: mixed-layer
dependent vertical length-scales

One way to define flow-dependent background-error
correlations, without the need for an ensemble, is to
parametrize them in terms of the (flow-dependent)
background state. This approach ignores uncertainty in
the background state in defining the correlations. The
Met Office applies this technique in NEMOVAR to
define flow-dependent vertical correlation length-scales
in the mixed-layer region. There, the vertical correlation
length-scales are assumed to be equal to the mixed-layer
depth itself (Waters et al., 2015), a parametrization that
is supported by the ensemble-estimated vertical diffusion
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WEAVER et al. 313

coefficients shown in Figure 3. Below the mixed-layer
region, the vertical length-scales are taken to be propor-
tional to the local vertical scale factor, with a smooth
transition between the two parametrizations near the base
of the mixed layer.

Waters et al. (2015) describe an approximate method
to estimate the normalization factors for this specific
parametrization, which relies on a pre-computation of a
look-up table of normalization factors. The look-up table is
constructed by applying randomization with a large sam-
ple size to a set of diffusion models where each model uses
a parametrized vertical diffusion tensor with a different
mixed-layer depth. In constructing the look-up table, the
mixed-layer depth is taken to be the same at all horizontal
grid points. On each assimilation cycle, the normaliza-
tion factors at each grid point are then selected from the
look-up table according to the value of the mixed-layer
depth at that grid point. The method is approximate
since the look-up table is constructed assuming a con-
stant mixed-layer depth whereas the mixed-layer depths
in the background state will vary between horizontal grid
points. In order to reduce the error in this approximation,
the mixed-layer depths are smoothed in each level using
several iterations of a Shapiro filter.

In principle, we could apply a similar technique
when using flow-dependent vertical correlations esti-
mated from an ensemble, where normalization factors at
different levels are computed for a range of typical vertical
length-scales. However, the requirement that the horizon-
tal variations of the vertical length-scales be sufficiently
smooth for this to be an accurate approximation is a sig-
nificant drawback, as is the system overhead of having to
manipulate and access information from many large files
that constitute the look-up table. The alternative methods
described in the next subsection could also be applied to
the parametrization described in this subsection.

5.2 2D×1D diffusion with accurate
normalization using randomization

The computational cost of applying the vertical diffusion
operator in Vz is significantly cheaper than applying the
horizontal diffusion operator in Vh. For the global configu-
ration used here, the difference in wall-clock time is more
than a factor of ten when using a massively parallel domain
decomposition with 12×12 horizontal subdomains (run on
four nodes × 36 processors per node) and Message Pass-
ing Interface (MPI) communications. There are no MPI
communications required when applying Vz as each sub-
domain contains the entire water column. On the other
hand, local MPI communications are required before each

diffusion step in Vh, to update the halos on the lateral
boundaries that connect adjacent subdomains.

We can exploit the difference in cost between Vz
and Vh to reduce the cost of randomization for the spe-
cific formulation corresponding to m= 2 in Equation (11)
(2D×1D (2)). The random vectors are generated using
Equation (20):

𝜻q = V(2)
h×z W−1∕2

hz 𝝐q = Vf
z �̂�q, (33)

where �̂�q = VhW−1∕2
hz 𝝐q and q= 1, … , Q (with Q large).

We have added the subscript f to Vf
z to emphasize that the

vertical diffusion operator, unlike Vh, is flow-dependent.
From the order of the operations in Equation (33), it is clear
that the static vectors �̂�q, associated with the costly hori-
zontal diffusion operator, need only be computed once as
they can be reused as the input for Vf

z when it is updated.
This means that the cost of randomization on each cycle
is determined by Vf

z, which is affordable even with a very
large sample size (Q∼ 104) to obtain accurate normaliza-
tion factors.

Nevertheless, there are two drawbacks with this
approach. First, in order to produce accurate normaliza-
tion factors, a large number of random vectors �̂�q must be
precomputed and stored to file for each 3D control vari-
able, and then retrieved on each assimilation cycle. With
104 random vectors, two 3D control variables (tempera-
ture and unbalanced salinity) and storage in single preci-
sion, this amounts to around 350 gigabytes of file-space
that is required for ORCA1-Z42. With ORCA025-Z75, the
required file-space is about 10 terabytes, which can be
further reduced to about 5 terabytes using NetCDF com-
pression tools. There is clearly a penalty to be paid when
having to manipulate files of this size in an operational
suite, even though it is generally feasible with modern file
systems. Another drawback is that we are forced to sacri-
fice interleaving in order isolate Vf

z in Equation (33). The
impact of interleaving will be assessed in Section 5.4.

5.3 Separate randomization for 1D
and 2D diffusion

Another approach is to assume that the normalization
matrix for any of the 2D×1D and 3D formulations can
be specified as a product of a normalization matrix for
the horizontal diffusion component and a normalization
matrix for the vertical diffusion component where each
matrix is estimated separately using randomization. As
with the previous approach, this would allow us to update
only the normalization factors for the time-evolving ver-
tical component to reduce computational cost. However,
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314 WEAVER et al.

F I G U R E 16 Experiment 17.
The relative error in the
normalization factors for the
2D×1D (3) implicit diffusion operator
for temperature in the surface level
when using normalization factors
approximated as a product of factors
estimated separately for the
horizontal and vertical diffusion
components using randomization
with a sample size of 104. Note that
the error scale is a factor of 10
smaller than the one used in the
corresponding error plots for the
analytical estimates

unlike the previous approach, there is no need to store a
large number of random vectors, which is clearly an advan-
tage. The purpose here is to evaluate the accuracy of this
approximation.

Using the notation from Section 2.2.2, we can formal-
ize the estimation procedure as follows. First, we separate
the randomization algorithm into two steps: one for com-
puting random vectors 𝜻h

q using the horizontal diffusion
operator, and one for computing random vectors 𝜻z

q using
the vertical diffusion operator:

𝜻h
q = Vh W−1∕2

hz 𝝐q,

𝜻z
q = Vf

z W−1∕2
hz 𝝐q.

}
(34)

The estimates of the normalization factors for the hor-
izontal and vertical diffusion components are 𝚪2

h = �̃�2
h Wz

and 𝚪2
z = �̃�2

z Wh where �̃�2
h and �̃�2

z are the sample esti-
mates built from 𝜻h

q and 𝜻z
q, respectively. The term Wz in

𝚪2
h compensates for the vertical scale factors in Whz in

Equation (34), while the term Wh in 𝚪2
z compensates for

the horizontal scale factors in Whz. These terms are neces-
sary to avoid double-counting of the volume elements. The
product

𝚪2
h 𝚪2

z = �̃�2
h �̃�2

z Whz ≈ 𝚪2
h×z

then provides an estimate of the normalization matrix for
Ch× z (Equation (10)).

Figures 16 and 17 show that this procedure leads to
remarkably accurate estimates, except in a few isolated
areas near coastlines and bottom bathymetry. Further-
more, the mean errors for both temperature and unbal-
anced salinity are notably smaller for the 2D×1D for-
mulation with interleaving than without interleaving (4%
compared to 7 to 8%). For the latter, the largest errors are

also confined to coastlines and bottom bathymetry, but are
more widespread than those obtained with interleaving
(not shown). This is a positive result as interleaving is an
important feature that we wish to retain, as illustrated in
the next subsection.

5.4 Correlation structures

Up until now, we have focused on evaluating the accuracy
of the amplitude of the correlation functions for different
formulations of the correlation matrix. In this subsection,
we examine the correlation structures themselves.

All formulations produce similar structures in the
open ocean (not shown). Near bathymetry, however, they
can produce quite different structures as illustrated in
Figure 18. Here, we have applied different formulations of
the correlation operator to a delta function located at the
tip of a sea mount in the Northeast Pacific Ocean (coor-
dinates (i, k)= (99, 25)). It is worth highlighting a number
of features. First, the 2D×1D formulation with interleav-
ing produces very similar results to the non-separable
3D formulation (cf. Figure 18a and b), but is substan-
tially cheaper. The wall-clock time required to apply the
2D×1D diffusion operator is 20% less when using a 12×12
decomposition run on 4 nodes × 36 processors/node. The
3D formulation would have advantages over the 2D×1D
formulation if rotational anisotropy between the horizon-
tal and vertical directions is accounted for in the dif-
fusion tensor, which is currently not the case. Second,
the 2D×1D formulation without interleaving (middle left
panel) produces unphysical correlations on either side of
the sea mount, with the correlations one level up from the
source point (points (98, 24) and (100, 24)) being distinctly
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WEAVER et al. 315

F I G U R E 17 Experiment 17. The
relative error in the normalization
factors for the 2D×1D (3) implicit
diffusion operator for temperature at
approximately 35◦N when using
normalization factors approximated as
a product of factors estimated
separately for the horizontal and
vertical diffusion components using
randomization with a sample size of
104

larger than those directly adjacent to the source point
(points (98, 25) and (100, 25)). Interestingly, this artifact is
corrected using approximate normalization (Figure 18d).
The correlation structures produced with interleaving and
approximate normalization are physically sensible but
somewhat underestimated compared to those with accu-
rate normalization (Figure 18e, f).

Next, we examine the sensitivity of the correlations
produced near the surface to the upper boundary con-
dition. Figure 19 illustrates the response of the 2D×1D
correlation operator to a delta function applied in the
uppermost model level. The large vertical extent of the
correlations throughout the mixed-layer region is clearly
visible. Figure 19a, b compare the correlations produced
with Neumann boundary conditions (a) and the ND for-
mulation using Equation (25) where it is applied with the
vertical diffusion operator only (NDz; (b)). In both cases,
the normalization has been computed accurately. The cor-
relations with Neumann boundary conditions penetrate
deeper than those with the NDz formulation. This is an
undesirable consequence of normalization, which corrects
the amplitude of the correlation function at the expense of
affecting the shape of the correlation function. This effect
was illustrated by Mirouze and Weaver (2010) in a simple
1D framework (their figure 8). The NDz formulation pre-
vents this behaviour but doubles the cost of the correlation
operator. However, this extra cost may be warranted given
the importance of the vertical correlations near the surface
for correctly assimilating surface observations. Finally,
the NDz formulation with approximate normalization
does not change the spatial structure of the correlations
compared to those obtained with accurate normalization,
but does tend to overestimate them at most grid points

(Figure 19c, d). The mean errors for temperature and
unbalanced salinity are slightly larger using approximate
normalization with the NDz formulation than with the
standard formulation that employs Neumman boundary
conditions (cf. Experiments 17 and 18 in Tables 1 and 2).

6 SUMMARY AND DISCUSSION

Accounting for flow-dependent background-error correla-
tions with a diffusion operator requires an efficient method
to estimate the diagonal of the diffusion-based covariance
matrix in order to compute normalization factors. In this
article, we have described several general techniques for
this purpose. We have evaluated them in a global ocean
configuration of the NEMOVAR data assimilation system.
The principal parameters of the diffusion operator are the
elements of the diffusion tensor, which are related to the
spatial length-scales of the underlying covariance func-
tions. These are key parameters that largely influence the
amplitude and spatial structure of the normalization fac-
tors. Here, they have been estimated from a climatological
ensemble of perturbations from ECMWF’s low-resolution
ocean reanalysis ORAS5-LR.

In the first part of the article, we evaluated inexpensive
methods derived from analytical considerations of the dif-
fusion equation or based on randomization with a small
sample size. We can summarize the main results from
those experiments as follows.

• The normalization factors estimated from the
analytically-based methods can have significant errors
and are generally not accurate enough for operational
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316 WEAVER et al.

F I G U R E 18 The response of different diffusion-based formulations of the correlation matrix to a delta function located at the tip of a
sea mount (shaded grey). (a) 2D×1D (3) with accurate normalization, (b) non-separable 3D with accurate normalization, (c) 2D×1D (2) with
accurate normalization, (d) 2D×1D (2) with approximate normalization, (e) 2D×1D (3) with approximate normalization, and (f) 2D×1D (3)
with approximate normalization minus 2D×1D (3) with accurate normalization. The horizontal and vertical axes represent the horizontal
grid-point i and model level k index

applications with global ocean models. Randomization
estimates with a small sample (∼100) are more accurate
in a globally averaged sense but are too noisy and can
attain large errors locally.

• The analytically-based methods are useful for quick
testing of developments to the correlation model where
high accuracy is generally not required. Among the

different approximations that were tested with the
ensemble-derived tensor, overall best results were
obtained using smoothed versions of the analytical
expressions of the normalization factors together with a
correction term near boundaries to compensate for the
amplification effect of the Neumann boundary condi-
tion (Equations (27), (29) and (30)).
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F I G U R E 19 The response of different diffusion-based formulations of the correlation matrix to a delta function located in the
uppermost level of the model. (a) 2D×1D (3) with Neumann boundary conditions and accurate normalization, (b) 2D×1D (3) with ND
formulation and accurate normalization, (c) 2D×1D (3) with ND formulation and approximate normalization and (d) 2D×1D (3) with ND
formulation and approximate normalization minus 2D×1D (3) with ND formulation and accurate normalization. The horizontal and vertical
axes represent the horizontal grid-point i and model level index k where the latter is shifted by one (the uppermost level corresponds to k= 0)

• The main limitation of the analytically-based meth-
ods for global ocean data assimilation is their inabil-
ity to produce sufficiently accurate normalization
factors near land boundaries, especially where the
boundary geometry is complex. The more costly ND
formulation of the correlation model, involving a com-
bination of Neumann and Dirichlet boundary condi-
tions, provided some improvement but not enough
to justify the additional computational cost that the
ND formulation entails. The ND formulation is most
effective near the upper boundary in the open ocean
where the assumptions underlying the method are best
satisfied.

• Coastlines and bathymetry are also problematic when
using the diffusion operator as a filter for either sup-
pressing sampling error from randomization estimates
or for smoothing the diffusion tensor in the analyti-
cal approximation of the normalization factors. Further
research aimed at improving the filter response near
irregular land boundaries is desirable.

• Results using linear regression to bias correct the
analytical normalization factors were positive for
unbalanced SSH but somewhat mixed for temperature
and unbalanced salinity. This is perhaps not surprising
given the simplicity of the regression model that was
used, especially for 3D variables. There is clearly scope
for using more sophisticated regression models, which
could include, for example, predictors based on the ele-
ments of the diffusion tensor and their derivatives. This
approach has been tested in an idealized 2D config-
uration, with positive results. Additional predictors to
handle boundary geometry and possibly other factors
would be needed to apply this method to global ocean
configurations. In general, the problem lends itself to a
machine learning strategy whereby a regression model
is trained using a set of accurate normalization factors
(computed using randomization) for different diffusion
tensors estimated from an ensemble.

• The normalization methods described in this article
are likely to provide better accuracy for diffusion-based
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covariance operators in atmospheric models where
there are no complicating effects from irregular land
boundaries.

Based on the above results, we conclude that, for
global ocean applications, only randomization with a large
sample (on the order of 104) provides a robust method
for accurate normalization, albeit at a substantial cost
especially with 3D diffusion operators. This clearly has
implications on the degree of flow dependence that can
be affordably accounted for by a background-error cor-
relation model in an operational high-resolution global
data assimilation system for which there are tight con-
straints on computer resources and on timeliness for the
delivery of analyses. A reasonable compromise could be
to specify the background-error correlations from a sea-
sonal climatology of ensemble perturbations, which could
be updated occasionally to capture the slow evolution of
background error associated with, for example, changes
in the observing system.

In the second part of the article, we examined meth-
ods for updating normalization factors more frequently
for the special case where only the vertical component
of the diffusion operator is made fully flow-dependent.
Capturing flow dependence in the vertical correlations
of background error is important for correctly assimilat-
ing surface observations such as SST and SSS which are
strongly influenced by surface mixed-layer processes. With
a moderate number of ensemble members, we can use the
sample covariance of the vertical derivative of the ensem-
ble perturbations to produce a relatively robust statistical
estimate of the vertical correlation length-scales on each
cycle.

We showed that normalization factors can be estimated
with good accuracy by approximating them at each grid
point as a product of two normalization factors: one com-
puted using randomization with the horizontal diffusion
operator only and the other computed using randomiza-
tion with the vertical diffusion operator only. With this
approximation, the mean relative error was only 4%, with
the largest errors being concentrated in a few isolated
regions near bottom bathymetry and coastlines. The mag-
nitude of the errors is likely well within the uncertainty
of our best estimates of the true background-error vari-
ances. This result is of significant practical interest as
the vertical diffusion operator is inexpensive and thus
can be applied on each cycle with a large sample of
random vectors to obtain an accurate estimate of the
normalization factors for the vertical component. These
factors can then be combined with the normalization
factors for the static horizontal component to obtain a
good approximation of the complete normalization matrix.
Recent experiments indicate that this approximation

also works well with the higher-resolution configuration
ORCA025-Z75.
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