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A B S T R A C T

Here, we present the findings from IMMREP23, the second benchmark competition focused on predicting the 
specificity of TCR-pMHC interactions.

The interaction of T cell receptors (TCR) towards their pMHC target is a cornerstone of the cellular immune 
system. Over the last decade, substantial progress has been made within the field of TCR specificity prediction, 
providing proof of concept for predicting TCR-pMHC interactions in a narrow space of “seen” pMHC targets 
where substantial training data is available. However, a significant challenge persists in extending the predictive 
capability to novel “unseen” pMHC targets. Furthermore, the performance of proposed methods is often chal-
lenged when evaluated outside the initial publication and data sets.

To address these issues, IMMREP23 challenge invited participants to predict, for a given test set of TCR-pMHC 
pairs, the likelihood that a pair would bind. A total of 53 teams participated, providing a total of 398 
submissions.

The benchmark confirms that current methods achieve reasonable performance in the "seen" pMHC setting. 
However, most participating methods had close to random performance on the subset of “unseen” peptides, 
underlining that this prediction challenge remains essentially unsolved.

Finally, another key lesson from the benchmark is the critical issue of data leakage. Specifically, the data set 
construction procedure employed in IMMREP23 led to biases in the negative test data set. These biases were 
identified by several participating teams, and complicated the interpretation of the benchmark results. Based on 
these results, we put forward suggestions on how future competitions could avoid such data leakages and biases.

1. Introduction

The interaction of T cell receptors (TCR) towards their cognate 
pMHC target is a cornerstone of the specificity of cellular adaptive im-
munity. The TCR is a heterodimeric surface protein most often consist-
ing of an α and β chain. The part of the TCR interacting with the pMHC 

complex is defined by six loops denoted as Complementary Determining 
Regions (CDRs).

Over the last decade, substantial progress has been made within the 
field of TCR specificity prediction [1], and current state-of-the-art 
methods have provided proof of concept for accurately predicting 
TCR-pMHC interactions in a narrow space of “seen” pMHC where 
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substantial TCR data is available. These works however also underline 
the current major challenge for the prediction of TCR specificity, namely 
the limited extrapolation capability of current models to novel (“un-
seen”) pMHC targets, imposing a significant constraint on their broader 
applicability [2,3,4].

Predicting TCR pMHC interactions represents a classic machine 
learning problem [5]. In the "seen" pMHC scenario, the TCR sequence 
serves as input, with a set number of pMHCs as target labels. In this 
setting, only pMHCs within the database are potential targets, simpli-
fying the problem to multiclass classification. Data to train such methods 
are most often obtained from public databases such as VDJdb [6], 
McPAS-TCR [7], and IEDB [8]. However, these databases only contain 
data related to positive TCR-pMHC interactions, and machine learning 
models for classification or regression require negative data. A critical 
component of the development of TCR specificity prediction models 
thus lies in the proper definition of these negatives. The two most 
common approaches applied have been i) swapped negatives, where 
negative TCRs for a given pMHC are sampled from TCRs specific to other 
(dissimilar) pMHC, and ii) sampling TCRs from negative control datasets 
[1]. Both approaches have advantages and disadvantages, as extensively 
discussed in the literature. As of today, many approaches are using 
swapped negatives to train and test their model. However, it has been 
reported that swapped negatives can result in performance over-
estimation when used for model evaluation [9,10].

Various solutions, from simple database look-ups to deep learning- 
based models, have emerged to predict TCR specificity and cognate 
pMHC targets. However, systematic examination of these approaches’ 
advantages and drawbacks remains scarce, with evaluations often per-
formed on internal and limited datasets. In 2022, the first IMMREP 
benchmark was conducted seeking to address these issues. Here, specific 
datasets were defined to train and test various prediction models, and 
outputs were compared to classify approaches and identify ideal data-
sets and evaluation strategies for future efforts.

Here, we describe IMMREP23, the second benchmark of TCR-pMHC 
specificity prediction. The competition ran from November 1, 2023 to 
December 11, 2023. The challenge invited participants to model TCR- 
pMHC recognition as a binary classification task. For a given test set 
of TCR-pMHC pairs, participants were asked to use their models to 
predict the likelihood that a pair would bind.

In contrast to IMMREP22, this competition was conducted on a 
dataset compiled of novel unpublished paired TCR data with annotated 
specificity to 20 pHLA (covering 6 distinct HLA molecules). No specific 
training data was defined for the competition, and participating 
methods could thus be (and were) trained on any data available. The 
challenge was hosted on the Kaggle competition platform at https://k 
aggle.com/competitions/tcr-specificity-prediction-challenge.

Here, we describe the main insights gained from this benchmarking 
study and recommend strategies for future benchmarking efforts in the 
TCR-pMHC domain.

It is critical to underline that we have not in any way assessed the 
accuracy of the test data used for the performance assessment. A known 
major problem in TCR sequencing of epitope specific cells is the 
contamination by non-specific TCRs (11). We have opted not to go into a 
further investigation of this, and as a result false positives/negatives 
annotations are almost for sure present in the data. We however not 
believe such mis-annotations will influence the result of the benchmark, 
since the effect will be identical for all methods.

2. Materials and methods

2.1. Data generation

Data for IMMREP23 were generated by 4 different groups. Below is 
included a brief description of the 4 experimental setups (for further 
details refer to supplementary material).

2.1.1. Data set 1: dextramer and plate-based scRNAseq (Eugster and goel, 
tu dresden)

PBMCs were isolated from healthy adults and stained with dex-
tramers (see supplementary table S1) and standard CD8 T cell identifi-
cation markers. Single CD8+ cells were isolated and sorted into 96-well 
plates, and single-cell sequenced using the Smart-seq2 protocol . A total 
of 40 unique TCRs were identified across three peptides (see supple-
mentary table S2).

2.1.2. Data set 2: 10x (Sine R hadrup, DTU denmark)
PBMCs were stained using barcoded pMHC multimers and standard 

CD8 T cell identification markers. pMHC multimer positive T cells were 
sorted and mixed across samples and loaded onto a Chromium 
Controller. We utilize the 10x Genomics 5′ v2 chemistry that allows the 
cell barcode to be appended at the 5′-end of transcripts, which is for 
capturing all V(D)J-, pMHC-, and hashing- associated barcodes as 
described previously [12]. The downstream processing was conducted 
according to the manufacturer’s instruction (10x Genomics), and the 
different products (GEXs, TCRs, and barcodes) were sequenced on a 
NovaSeq running a 150 paired-end program. A total of 48 pMHC mul-
timers were included in the study, 17 of which were included in the final 
IMMREP test data set (see below).

Gene expression, hashing-associated reads, and pMHC-associated 
reads were processed as described in supplementary materials. A total 
of 245 unique TCRs were identified across the 17 peptides.

2.1.3. Data set 3: immudex
A human PBMC cell sample was stained with a panel of dCODE 

Dextramer® (RiO) reagents and then with the Immune Discovery Panel 
(IDP) containing 30 BD® AbSeq antibodies. dCODE Dextramer®-posi-
tive cells (PE+) were sorted and subjected to the BD Rhapsody™ Single- 
Cell Analysis System for full-length TCR/BCR VDJ sequencing, on an 
Illumina NextSeq 500.

The sequencing data was processed through Seven Bridges, BD 
Rhapsody™ Sequence Analysis Pipeline, and subsequently analyzed 
using the BD SeqGeq™ software package. 9 pMHC multimers were 
included in the study, 6 of which were included in the final IMMREP. A 
total of 89 TCRs were identified across the 6 peptides.

2.1.4. Data set 4: immunoscape
This data set was generated by Florian Schmidt et al. [13]. 15 pMHC 

multimers were included in the study, 10 of which were included in the 
final IMMREP test data set. A total of 265 TCRs were identified across 
the 10 peptides.

2.2. Test data set

2.2.1. Positives
The positive data was constructed from paired-chain data described 

above. This data consisted of the V-gene, J-gene, and CDR3 of both the 
alpha and beta chains. In cases where the V- or J-gene allele was not 
specified, the allele was set to the most common allele (most often *01).

To construct the full TCR sequences, the CDR3 sequences and V/J 
genes were submitted to the Thimble script in Stitchr [14] with the 
species set to human (e.g. “-s HUMAN”). In cases where multiple V- or 
J-gene alleles were listed for a given entry, all combinations were 
applied, and the set of TCRs recorded. In the case of the current data, all 
such cases resulted in duplicated TCRs, and a single entry was kept 
(randomly selecting the V/J gene from the multiple options).

Only entries where both TCR chains could be processed by Stitchr 
were kept. These entries were then submitted to ANARCI [15] to 
annotate the individual CDRs from the full sequence. Here, CDR1 was 
defined as positions 27–38, CDR2 as positions 56–65, and CDR3 as po-
sitions 105–117 in the alignment. Furthermore, extended CDR3 se-
quences were also defined as positions 104–118 in the alignment, as 
some models relied on the inclusion of the conserved C- and N-terminus 
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of the CDR3 sequences.
After annotating the CDR sequences, duplicates in terms of pepti-

de+CDR1+CDR2+CDR3 sequences were removed. Furthermore, 3 
cross-reactive TCRs from the ImmunoScape dataset, which were reactive 
to both IVTDFSVIK and NLVPMVATV, were discarded to keep the data 
problem binary.

Finally, only peptides with at least 10 TCR pairs were kept for the test 
dataset, resulting in 598 TCR pairs across 2o peptides (see Table 1)

2.2.2. Negatives
Negatives were generated by swapping TCRs from one peptide with 

TCRs binding to other peptides with a Levenshtein distance (between 
the peptides) greater than 3. This value is guided by earlier findings 
suggesting that cross-reactive peptides most often share two or less 
mutations [16]. Here, 3 negatives were generated for each positive 
observation by swapping TCRs with the peptides that had at least 10 
positive TCR pairs after all filtering (e.g. the positive peptides in the test 
data). Furthermore, 2 additional negatives were generated for each 
positive observation, except that the TCRs were sampled from the pep-
tides that had <10 positive TCR pairs (e.g. those left out from the test 
dataset). This resulted in a positive-to-negative ratio of 1:5, except for 
GILGFVFTL (1:4.11), RAKFKQLL (1:4.84), and VSDGGPNLY (1:4.97), 
because there were not sufficient TCR pairs in the left-out data to 
generate 2 negatives per positive.

The final data set contained 3484 entries (598 positive, 2886 nega-
tives) covering 20 pMHCs, and 6 MHCs.

2.2.3. Seen and unseen peptide subsets
The peptides in the test data vary widely in the number of TCRs 

available in the public domain, with some having thousands of unique 
TCRs, while others are completely uncharacterized. Based on these ob-
servations, we labeled 3 peptides (SALPTNADLY, TSDACMMTMY, and 
FTDALGIDEY) absent from the VDJdb and IEDB as unseen.

2.2.4. Definition of public and private test data set
For the competition, the test data was split into public (7.4 %) and 

private (92.6 %) subsets. The split into a public and private data subset is 
a feature of the Kaggle competition setup, and thus has no relation to the 
concept of public and private T cell receptors. During the competition 
the performance on the public data set is reported back to the partici-
pants. In contrast, the target values for private data set are kept secret 
until after the competition deadline and is used as the official leader-
board for determining the final ranking of the participating methods. In 

Table 1 
Peptides sequence, HLA restrictions and number of positive TCRs for the 
IMMREP23 data set.

Peptide HLA # TCR

GILGFVFTL A*02:01 103
RAKFKQLL B*08:01 62
VSDGGPNLY A*01:01 58
EPLPQGQLTAY B*35:01 48
NLVPMVATV A*02:01 43
YVLDHLIVV A*02:01 34
TDLGQNLLY A*01:01 33
VTEHDTLLY A*01:01 25
GLCTLVAML A*02:01 24
VLEETSVML A*02:01 21
RPHERNGFTVL B*07:02 19
SALPTNADLY A*01:01 18
QIKVRVDMV B*08:01 16
IPSINVHHY B*35:01 16
RPPIFIRRL B*07:02 15
IVTDFSVIK A*11:01 14
YLQPRTFLL A*02:01 13
TPRVTGGGAM B*07:02 13
FTDALGIDEY A*01:01 12
TSDACMMTMY A*01:01 11

Table 2 
Participating models. Details on the modeling pipeline and data used for training 
for the subset of participating methods were this information was provided by 
the participants. The last column defines if a method used the structure of the 
test (defined in detail below) to boost performance. This information was pro-
vided by the authors of each method.

Model Name Model Type Training 
Data

Details Uses test 
set 
structure

IMW Detect Custom TCR- 
ML model

IMWdb Version 1 - clean 
prediction

V1: no

   Version 2 - 
iterative retraining

V2: yes

QImmuno Bayesian 
nearest- 
neighbor 
association

IEDB, 
VDJdb, and 
curated 
data

Both methods 
employ TCRdist to 
compare test set 
TCRs to curated 
databases of paired 
chain and single 
chain TCRs with 
annotated pMHC 
specificity. Leaked 
TCRs from the 
Immrep23 dataset 
(annotated to a 
single pMHC) were 
included as 
additional training 
samples. TCRdist 
scores are rescaled 
to probabilities 
using nonlinear 
logistic regression 
to combine 
information from 
single and paired 
chain near matches 
with priors 
(number of 
possible pMHCs) in 
a Bayesian 
manner. 
Version 1 - 
prediction made 
per TCR-pMHC 
pair, uses pMHC 
multiplicity as a 
Bayesian prior, 
uses similarity of 
TCRs to other 
peptides presented 
on the same HLA 
where pMHC data 
is scarce 
Version 2 - 
explicitly performs 
multiclass 
prediction for each 
TCR among 
possible pMHCs. 
Corrects neighbor 
distances by local 
density estimates 
to account for non- 
uniform 
background 
probabilities of 
generation

Yes

NetTCR CNN IEDB and 
VDJdb

Handling of data 
with incomplete 
TCR annotation, 
data imbalance 
(few pMHC with 
large numbers of 
TCR and many 
with few), and 
integration of 

No

(continued on next page)
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IMMREP23, the public subset was sampled only from the two peptides 
GILGFVFTL and RAKFKQLL covered with the largest number of positive 
TCR, sampling 30 % for each maintaining the positive:negative class 
ratio. The remaining data formed the private dataset. The data set with 
annotated target values (these were not available for the competition) is 
available at https://github.com/justin-barton/IMMREP23/. During the 
IMMREP23 competition, performance evaluations on the public data 
were reported, while the performance on the private data was released 
only after the benchmark was completed.

2.3. Evaluation metrics

The primary evaluation metric used during the competition was the 
average per peptide AUC0.1: 

average AUC0.1 =
1
N

∑N

1
AUC0.1(p)

Where N is the number of peptides in the test set and AUC0.1(n) is 

Table 2 (continued )

Model Name Model Type Training 
Data

Details Uses test 
set 
structure

TCRbase rescaling. 
The different 
models are (with 
reference to the 
NetTCR-2.2 
architecture) 
M1:NetTCR-2.3 
ensemble trained 
directly on a 
mixed-chain 
dataset. 
M2:NetTCR-2.3 
ensemble trained 
directly on a 
mixed-chain 
dataset with 
potential outliers 
removed. 
M3:NetTCR-2.3 
ensemble trained 
directly on a 
mixed-chain 
dataset with 
potential outliers 
removed and 
scaled by TCRbase 
M4:NetTCR-2.3 
ensemble 
consisting of 
alpha-, beta- and 
paired-chain 
models trained 
separately on each 
type of chain data 
(except mixed) 
with potential 
outliers removed 
and scaled by 
TCRbase 
M5: NetTCR-2.3 
ensemble 
consisting of 
mixed, alpha-, 
beta- and paired- 
chain models 
trained separately 
on each type of 
chain data with 
potential outliers 
removed and 
scaled by TCRbase

MixTCRpred Deep network IEDB, 
VDJdb, 
literature 
curation, in 
house 
generated 
data

MixTCRpred_s1: 
Trained on 
publicly available 
data for 15 seen 
peptides. 
MixTCRpred_s2: 
Trained on data 
from s1 + new data 
generated in house 
during the 
IMMREP 
benchmark for 4 
additional peptides 
(SALPTNADLY, 
TDLGQNLLY, 
TSDACMMTMY, 
VSDGGPNLY) and 
for one peptide 
already present in 
s1 (VTEHDTLLY), 
reaching a total of 
19 epitopes with 
training data. 

V1/V2: 
no 
V3: yes

Table 2 (continued )

Model Name Model Type Training 
Data

Details Uses test 
set 
structure

MixTCRpred_s3: 
Trained on data 
from s2 + inferred 
positives and 
negatives based on 
the structure of the 
test set (e.g., TCRs 
occurring only 
once are by design 
positives; TCRs 
with good scores 
for one epitope 
with reliable 
predictions are 
likely negatives in 
all other 
instances).

ESM shallow A 3-layer 
perceptron 
accepting 
protein 
embeddings 
from ESM2 as 
input.

Only 
training 
data 
provided by 
the 
organizer.

We used ESM2 
with 650 million 
parameters. The 
embeddings of the 
alpha and beta 
chains were 
concatenated or 
tested 
independently.

No

TULIPv2 Unsupervised 
Encoder- 
Decoder based 
transformer

IEDB 
MCPAS 
VDJDB

The model is 
trained to predict 
the next aminoacid 
of the epitope, 
given its 
interacting TCR.  
This defines a 
conditional 
probability 
distribution over 
the epitope space. 
We use the epitope 
probability to rank 
TCRs. Does not use 
negative TCRs for 
training.

yes

Koi   a collection of 
small peptide- 
specific models

yes

NN distance 
baseline

   yes

TCRbase Sequence 
similarity based 
model

IEDB and 
VDJdb

Method described 
in (9)

no
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the AUC0.1 for each peptide p, defined as the partial area under the 
curve (AUC) of the Receiver Operating Characteristic (ROC) curve up to 
a false positive rate (FPR) of 0.1. As proposed in [17], McClish stan-
dardization was also applied.

2.4. Baseline method

The TCRbase method was included as baseline in the benchmark. In 
short, TCRbase assigns a score for an element in a test set, as the highest 
similarity to all entries in a given database of positive TCR. The simi-
larity is calculated per CDR as the kernel-similarity of BLOSUM62- 
encoded k-mers ranging from size 1–30 between the two sets of CDRs 
that are compared. The weighting for the CDRs was set to 1,1,3,1,1,3 for 
CDR1α-, CDR2α-, CDR3α-, CDR1β-, CDR2β-, and CDR3β, respectively, in 
line with earlier recommendations (for further details refer to [9]).

3. Results

3.1. Participants

A total of 53 teams participated in the benchmark, providing a total 
of 398 submissions. A subset of teams provided details on the modeling 
pipeline and data used for training, which can be found in Table 2.

3.2. Overall performance

The overall benchmark performance of each team on the entire 
private data set is shown in Fig. 1. Here, the participating methods are 
split into three sub-groups; G1 methods which are confirmed by the 
authors of the methods to have used the test set structure for predictions 
(see Table 2), G2 methods which are confirmed by the authors of the 
methods not to have used the test set structure in predictions, and the 
rest forming G3.

From this plot, one can appreciate that the best performing methods 
for most parts belong to G1, followed by the methods in G2, and the 
poorest performing methods all are from the G3. The G1 is for most parts 
(with the exception of Tulip [18]) formed by novel and/or unpublished 
methods within the TCR specificity prediction space. These methods all 

demonstrate a predictive power much beyond that of the conventional 
state-of-the-art methods such as MixTCRpred [4] and NetTCR [2]. Most 
methods in the G2 group have comparable performance with the 
exception IMW DETECT that shows an substantial predictive advantage. 
Finally, the G3 is formed by methods with a relatively poor predictive 
power, and a performance that is lower than the sequence-based 
TCRbase baseline method.

3.3. Variation of performance across epitopes

Fig. 2 displays the performance of the different methods for the in-
dividual peptides in more detail. This figure demonstrates a very high 
difference in predictive performance not only between the individual 
methods (as also shown in Fig. 1) but also between the different pep-
tides. For instance, the performance for GIL and GLC is high (AUC0.1 >
0.7) across almost all methods. This is a reflection of the high number of 
accurate TCR data available in the public domain mapped towards these 
peptides. Also, the high performance of the G1 methods, as defined in 
Figure, 1 across most of the peptides is apparent. Likewise, only the G1 
methods display predictive power across the complete set of unseen 
peptides (SAL, TSD, and FTD). Further, it is interesting to observe the 
cases where selected teams had very good performance on specific 
peptides, while all others failed. A few such examples include IPS for 
“IMW DETECT”, and VTE for “IMW DETECT” and “NN distance base-
line”. As we do not have access to details regarding these methods, we 
cannot disentangle whether these high-performance values should be 
contributed to training data or specific machine learning methodologies.

3.4. Data leakage and biases

During the IMMREP23 competition, a manuscript containing part of 
the test data was published [13]. Likewise, for a small number of data 
entries, the CDR3b (extended) annotations were found to miss the 
C-terminal residue. To investigate to what degree this early release and 
incomplete CDR3b annotations impacted the predictive performance of 
the different methods, we evaluated the performance on the subset of 
the private data set excluding the data from this source (supplementary 
figure S1), and excluding both the data from this source and the data 

Fig. 1. Predictive power as measured in terms of the AUC0.1 per peptide on the entire private test data set. Each box plot shows the distribution of the 
AUC0.1 values over the 20 test set peptides. The participating methods are split into the three sub-groups defined in the main text; G1 methods (blue) G2 methods 
(green) and G3 (grey).
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with incomplete CDR3b annotations (supplementary figure S1). Both 
figures confirm that these data issues had minor impacts on the pre-
dictive performance and associated ranking of the different methods. At 
the top of the ranking, IMW Detect 2 (the only method admitted to have 
made use of the published Immunoscape test data) lost its advantage in 
accuracy and dropped to second place behind the Qimmuno-2 entry. 
Given this minor impact, we for clarity and transparency used the full 
IMMREP23 test data for model evaluation.

The test data of the IMMREP23 benchmark were collected by the 
organizers with the implicit assumption that models’ predictions for a 
given TCR-epitope pair would be made independently of the other TCR- 
epitope pairs in the dataset. As a consequence, consideration was not 
given to the fact that the method of simulating non-binding examples 
(described in material and methods) introduced target leakage into the 
test data set. This leakage manifests in TCRs binding to peptides with 
few positive TCRs being sampled as negatives multiple times for other 

peptides. This results in the number of times that a TCR appears in the 
test set being inversely correlated with its probability of being a positive. 
By way of example, the 20 most frequent TCRs in the test data were all 
negatives sampled from the subset of pMHC excluded from the bench-
mark, and all the TCRs present only a single time in the test set were all 
positives.

The correlation between frequency in the test set and the target label 
could be exploited to improve the predictive power on the test data. 
Indeed, all of the top four models and six of the top 8 models in the 
competition disclosed using prediction approaches that could take 
advantage of the structure of the test dataset (Table 2).

To provide a random guess baseline taking into account the problem 
of data leakage, we compared these methods to a naive approach that 
makes predictions solely based on TCR counts. This method ranked TCRs 
for a given pMHC by the inverse of the number of times a given TCR was 
present in the test data set. This TCR count baseline had an average 

Fig. 2. AUC0.1 scores by method and peptide. The AUC0.1 performance values for each method and peptide were calculated from the entire private test data set. 
Circle size and color reflect the AUC0.1 value. Peptides in red are unseen peptides. G1 models in blue are those that are confirmed by the authors of the given method 
to use the test set structure for predictions. G2 models in green are those that are confirmed not to use the test set structure in predictions.
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AUC0.1 above 0.7. This prediction accuracy is lower than that of the top- 
ranked models demonstrating their additional prediction power, but 
higher than any of the methods in the G2 group (see Fig. 3). The per-
formance gain obtained from exploiting the target leakage in the test set 
is particularly apparent when evaluating the performance of the 
different methods on the unseen peptides (see methods for details on 
these peptides) (see Fig. 4).

The data leakage and bias complicate the comparison of performance 
across models either making use of the dataset structure or not. In an 
initial attempt to provide insights into how different models might fare 
in a head-to-head comparison, we combined one of the top-ranked 
models from the G2 group with a TCRcount prior. Specifically, we 
calculated the unweighted mean of the NetTCR_M5 and TCRcount score, 
and we found that this combination made its AUC0.1 score comparable 
to the tools in the G1 group (see Fig. 3 and Fig. 4. Mean_NetTCRM5 +
TCRcount).

This figure demonstrates a very high overlap between the methods 
with a non-random performance on the unseen peptides and the G1 
methods defined from Table 2. Note also that the third-best performing 
method on these unseen peptides is TCRcount, introduced above. This 
method has no general predictive power when it comes to TCR speci-
ficity but only makes predictions from the TCRcount distribution of the 
test data.

Taken together these results suggest that the high AUC0.1 scores 
achieved by the G1 models might not be representative of their expected 
performance on independent data. Future benchmarking on more 
carefully designed prediction tasks is needed to fairly compare their 

performance against models.

3.5. The IMMREP23 evaluation

Due to the confounding effect of the target leakage in the test data 
set, we can only make concrete statements about the performance of 
methods that have not benefited from this leakage, i.e. the G2 and G3 
methods. We are aware that we in this manner do not give the G1 
methods a fair evaluation, but we cannot evaluate how they would have 
performed had they been trained without including these biases.

Based on this subset of methods, the “IMW DETECT” was the best- 
performing method, followed by MixTCRpred and the different vari-
ants of NetTCR (see Fig. 5).

Further, referring to Fig. 4, and focusing on the G2 methods the re-
sults confirm that specificity prediction for “unseen” pMHCs remains an 
unsolved problem, with maximal predictive performance values capped 
at 0.62 (for ESM2). Even in this case, only one of the three novel peptides 
was predicted substantially better than random. Further, in one case 
(MixTCRpred_s2) a team was able to generate, during the course of the 
competition, experimental data for two of these unseen epitopes (SAL 
and TSDA) and using these data to train models for these epitopes (see 
Table 2). This novel data, likely explain the high performance of 
MixTCRpred_s2 on the SAL “unseen” peptide.

4. Discussion

Here, we have described the results from the IMMREP23 
competition.

Lessons learned in terms of benchmark metric, and data biases
In contrast to the earlier IMMREP22 competition, the main objective 

was to evaluate the current state of the field. Therefore the format of the 
competition was different from that of IMMREP22 in that no restraints 
were imposed in terms of training data. This means that we in this 
competition could not make any straightforward comparisons and draw 
conclusions regarding the impact of model architectures, training stra-
tegies, and training data.

In addition, the presence of target leakage in the test set, introduced 
by the method chosen by the organizers for simulating negative data, 
complicates the otherwise straightforward ranking of methods. While it 
is clear that some methods benefited from information about the target 
variable that would not naturally be present when making predictions 
on clinical data, it is unclear how these methods would perform in the 
absence of this leakage.

Given these observations, for future TCR-epitope benchmarks, we 
would suggest that the benchmark is defined in two formats both con-
ducted on novel TCR data

1. Predict with any model trained on any available data (the 
IMMREP23 format)

2. Provide specific training data and apply the trained model to the test 
set (the IMMREP22 format)

This setup will allow the benchmark to address both central issues of 
evaluating the current state of the field, and optimal training and ma-
chine learning modeling strategies.

In addition, the reported data bias for IMMREP23 can be avoided by 
defining a test data that pairs all available TCRs to all peptides. In this 
setting, one could next evaluate the performance both in the context of 
individual pHLAs (as done here in IMMREP23) and in the context of 
individual TCRs, i.e. solving the multi-class problem of predicting the 
peptide target of a given TCR.

Conclusions about the state of the TCR-epitope prediction field
Despite the shortcomings outlined above for the IMMREP23 

competition, several important conclusions can nonetheless be drawn. 
First and foremost, we can observe that several methods which did not 
take advantage of the test set target leakage displayed clear predictive 

Fig. 3. Imprints on the predictive power of test set data biases. Predictive 
power of the G1 methods, the G2 method NetTCRB_M5, a model driven solely 
on the test data bias (TCRcount, defined from the 1/#TCR, and a combination 
of NetTCRB_M5 and TCRcount (Mean_NetTCRM5+TCRcount) on the entire 
private test data set.
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power on the "seen" pHLA setting, notably "IMW DETECT", MixTCRpred, 
and NetTCR. Secondly, it is apparent that the unseen epitope prediction 
remains unsolved, and all participating methods that made blind pre-
dictions on the test data achieved very close to random performance on 
the subset of unseen peptides.

It is not possible to evaluate to what degree the high performance of 
”IMW DETECT” is due to an improved model architecture and/or an 
availability of proprietary in-house training data. However, descriptions 
of both the modeling architectures and training data are available for the 

MixTCRpred [4] and NetTCR [2] methods. Both models are based on the 
CDR1a, CDR2a, CDR3a, CDR1b, CDR2b, and CDR3b, and their perfor-
mance ranking thus align with the conclusion from IMMREP22 [1] on 
the importance of including both TCR chains when constructing 
methods for TCR specificity predictions.

Of note, some participants employed embeddings from protein lan-
guage models such as ESM2 [19] to predict TCR specificity, achieving 
partial success in predicting binding to unseen epitopes. Fine-tuning 
these models to fully exploit their potential might be a valuable 

Fig. 4. Predictive performance of the different methods on the subset of unseen peptides. Methods include the two additional methods, TCRcount, and 
mean_NetTCRM5+TCRcount) defined in Fig. 3. G1 models in blue are those that are confirmed to use the test set structure for predictions. G2 models in green are 
those that are confirmed not to use the test set structure in predictions. G3 models for which there is no information about test set structure use are in grey.

Fig. 5. Predictive power of the G2 and G3 methods was evaluated in terms of AUC0.1 for each of the 20 peptides in the entire private test data set.
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direction to explore in further work. We also observe that the methods 
participating in IMMREP23 all were sequence-based, and hence did not 
in any way incorporate structural information of TCR or TCR-pHLA 
complex into their prediction model. Given the substantial number of 
recent publications suggesting an important contribution of structural 
models and their associated features in particular for the prediction TCR 
specificity to “unseen” pMHCs (examples include [20–22]), it would be 
highly interesting to see how such models perform in blind benchmarks 
like the IMMREP.
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