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Abstract (229 words)
The evolution of endosymbiont genomes is likely influenced by the ecological interactions with
their hosts. Here, we studied the evolution of Spiroplasma genomes detected within Morpho
butterflies sampled in the wild. Spiroplasma was detected in 4 out of the 11 Morpho species
studied and displayed a 3 times larger genome size as compared to  Spiroplasma genomes
documented in other hosts. This inflation in genome size is caused by massive and recent
expansion of various mobile genetic elements and by the acquisition of new genes stemming
from prophages. In particular, we documented the peculiar evolution of the toxin genes in
plasmids  that  may  enhance  host  resistance  to  parasites.  Phylogenetic  comparisons  with
Spiroplasma extracted from other host point at a unique origin of Spiroplasma in Morpho, and
strong divergence from Spiroplasma found in other Lepidoptera. Resequencing data obtained
for multiple populations of the two sister-species M. helenor and M. achilles living in sympatry
over the majority of their distribution revealed a opposite prevalence (97% in M. achilles and
3% in M. helenor), suggesting contrasted ecological interactions with these two host-species.
Reconciliation analysis of the phylogenetic relationships of  Morpho mitochondrial genomes
and  Spiroplasma genomes was then consistent with a predominant vertical transfer of the
endosymbiont. Altogether, our results suggest a key role of ecological interactions with the
host  in  the  evolution  of  endosymbiont  genomes  and  point  at  a  putative  interaction  of
Spiroplasma with reproductive isolation between sympatric species of butterflies.
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Introduction

Ecological  relationships  between  species  generate  selective  pressures  acting  on  their
genomes. In turn, the evolution of genes in interacting species can modify their ecological
interactions.  Intracellular  bacteria,  or  endosymbionts,  offer  the  opportunity  to  investigate
feedbacks  between  genome  evolution  and  ecological  interactions.  Heritable  microbial
endosymbionts profoundly impact several life history traits of their hosts, affecting both their
survival  and  reproductive  success  (Hurst  2017) as  sex-ratio  distortion  (Harumoto  and
Lemaitre  2018) or  protection  against  pathogens  (Ballinger  and Perlman 2019).  They can
therefore play a crucial role in population dynamics and diversification of the host species,
especially when they induce cytoplasmic incompatibilities (Werren 1998). At the same time,
the endosymbiont lifestyle is often associated with changes in its own genome (Wernegreen
2017):  the  prevalence  of  genetic  drift  in  endosymbiont  populations  and  the  hyper-
specialization to their host induce fast and irreversible genome erosion and progressive loss
of  metabolic  functions.  The  mutation  accumulation  and  genome  decay  through  Muller’s
ratchet is indeed documented as a specific feature of endosymbiotic bacteria (Moran 1996).
Such reduction in the number of functional genes may in turn increase the extinction risk of
endosymbiont  populations  (Bennett  and  Moran  2015),  and  as  a  consequence,  symbiont
replacement  is  commonly  observed(Manzano-Marín  et  al.  2023).  However,  long-term
persistence of some endosymbionts has also been documented, raising the question of how
ecological interactions with the hosts limit genome decay (Naito and Pawlowska 2016). 

Insect  endosymbionts  offer  prominent  examples  of  the  diversity  of  ecological  interactions
(Drew et al. 2019), from positive effects as nutritional providers  (Sudakaran et al. 2017) or
protective agents against pathogens  (Ballinger and Perlman 2019; King 2019) to negative
ones acting as sex-ratio distorters or male-killing agents  (Stevens et al.  2001).  While the
effects of endosymbionts on host survival and reproduction have been largely explored in
insect  model  species  like  Drosophila,  their  prevalence  and  ecological  impacts  in  wild
communities are still largely unknown in most insects. Recent publications of large genomic
datasets in insects now allow to better characterize the prevalence of these endosymbionts
throughout arthropods  (Medina et al. 2023) but, also, to investigate the evolution of these
endosymbionts and the diversity of their ecological relationships with different hosts in the
wild.

In  Lepidoptera,  the  diversity  and  the  impact  of  cytoplasmic  endosymbionts  on  host
phenotypes have been scarcely studied. Spiroplasma and Wolbachia are the most frequently
reported endosymbionts,  with various effects on host fitness  (Duplouy and Hornett  2018).
Both produce male killing and sex ratio distortion in population of different Lepidoptera such
as  Acraea encedon,  Hypolimnas bolina  or  Danaus chrysippus (Nymphalidae)  (Duplouy and
Hornett 2018; Jiggins et al. 2000). However, the transmission of these endosymbionts across
species is largely unknown, as well as the diversity of their impact on host phenotypes.

Spiroplasma are associated with a large variety of hosts, and their genomes appear highly
eroded with  reduced metabolic  capacities,  high  proportion of  pseudogenes,  and elevated
evolutionary  rates(Gerth  et  al.  2021;  Liu  et  al.  2022).  In  Drosophila,  the  prevalence  of
Spiroplasma among natural population is generally low (Watts et al. 2009; Haselkorn 2010),
but in some cases, the fitness advantages brought to their hosts, such as protection against
parasitic nematodes, can make it more common (Jaenike et al. 2010). Experimental infections
show that Spiroplasma has high horizontal transmission efficiency (Nakayama et al. 2015) but
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this ability is constrained by the phylogenetic distance between different hosts  (Tinsley and
Majerus  2007).  However,  tempo and  patterns  of  Spiroplasma transmission  in  natural
populations  remain  to  be  investigated.  Therefore,  studying  the  evolution  of  Spiroplasma
genomes in natural  populations of insects can now shed light  on the feedbacks between
bacterial genome evolution and ecological interactions with their hosts.

Here,  we  focus  on  the  Spiroplasma of  nymphalid  butterflies  of  the  genus  Morpho to
characterize their level of ecological specialization, as well as their transmission mode. The
genus Morpho is composed of emblematic species from the Neotropical rainforests,  where up
to ten different species can be observed in sympatry in Amazonian lowlands and the Guiana
shield  (Blandin  and  Purser  2013).  Studying  endosymbiont  genomes  found  in  Morpho
butterflies from the wild allows to test (1) how much endosymbionts are shared across closely
vs.  distantly related host species, (2) how their genomes, and more specifically their toxin
genes,  evolved in  different  hosts,  and (3)  how endosymbionts are transmitted within  and
among sympatric host species. We used whole-genome sequencing data from 11  Morpho
species to study the evolution of endosymbiont genomes in closely-related hosts. We then
investigated the prevalence of endosymbionts in different populations of two sister-species of
Morpho living in sympatry to characterize the transmission of the endosymbionts within and
between species. 

Materials and Methods

Genus dataset

To identify the diversity of endosymbiont genomes present in different  Morpho species, we
analyzed  the  sequencing  data  obtained  using  the  PacBio  HiFi  methodology  applied  to
specimens from 11 Morpho species:   9  Amazonian species (M. marcus,  M. eugenia,  M.
telemachus, M. hecuba, M. rhetenor, M. menelaus, M. deidamia, M. helenor, M. achilles), and
2 sympatric species ranging from western Ecuador to Central America (M. amathonte,  M.
granadensis). Note that within  M. telemachus there are two sympatric morphs (with either
blue or yellow wings), so we analyzed one individual per morph. This dataset including all
sampled species is referred to as the genus dataset.

For each individual included in the  genus dataset, the DNA extraction was carried out from
the thorax muscles of a male individual using the Qiagen Genomic-tip 100/G kit, following
supplier instructions. After DNA extraction, the sequencing library was prepared following the
manufacturer’s  instructions  “Procedure  and  Checklist  Preparing  HiFi  SMRTbell  Libraries
Using SMRTbell Express Template Prep Kit 2.0.” for M. helenor, M. achilles and M. deidamia
and “Procedure and Checklist – Preparing whole genome and metagenome libraries using
SMRTbell® prep kit 3.0” for the other species. Libraries were sequenced on several PacBio
Sequel II SMRT cells with the adaptive loading method or by diffusion loading on a SequelII
instrument (for additional details see  (Bastide et al. 2023). The reads were assembled into
contigs using Hifiasm (Cheng et al. 2021) using the option no purge (-l0) to avoid eventual
over-purging symbiont sequences. The mitochondrial  genome for all  Morpho species was
assembled  directly  from  the  PacBio  Hifi  reads  with  Rebaler
(https://github.com/rrwick/Rebaler).  For  the  assembly  of  mitochondrial  genomes  of  M.
helenor,  M.  achilles and  M.  deidamia the  mitochondrial  genome  of  the  closely  related
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species Pararge aegeria was used as a reference  (Bastide et al. 2023) while for the other
eight species, we used the genome of M. helenor as a reference.  

Endosymbiont metagenomic assembly

To  detect  the  presence  of  endosymbiont  genomes  in  the  genus  dataset,  we  used
Blobtools(Laetsch and Blaxter 2017) with Diamond as search engine  (Buchfink et al. 2015)
against the UniProt database using a local copy of the NCBI TaxID file for the taxonomic
assignation of the best hits. Minimap2 (Li 2018) was used for read mapping with the options -
ax  map-hifi.  Endosymbiont  contigs  were  extracted  using  seqtk  (available  at
https://github.com/lh3/seqtk)  and  processed  through  the  Dfast  workflow  (Tanizawa  et  al.
2018)  to estimate statistics and taxonomic assignation. The completeness of the detected
endosymbiont  genomes  was  estimated  with  CheckM  (Parks  et  al.  2015) with  the
corresponding  gene  sets.  Endosymbiont  genome  annotations  were  carried  out  using
PROKKA (Seemann 2014) with standard parameters, and the corresponding genetic codes.
Whole  genome  alignments  were  created  using  the  nucmer  utility  of  the  Mummer
package (Marçais  et  al.  2018)  with  standard options.  Structural  variations were visualized
using D-GENIES (Cabanettes and Klopp 2018).

Gene content in Spiroplasma genomes

We aimed at distinguishing orthologous genes shared with previously published Spiroplasma
genomes  found  in  other  hosts,  from  genes  specific  to  Spiroplasma in  Morpho.  We
downloaded a set of 62 Spiroplasma genome assemblies with comparable genome metrics
(N50>100kb)  from  the  NCBI  Refseq  Genomes  FTP  server  12/02/2022  version
(ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq).  We  used  using  Ortho‐Finder  2.5.4  (Emms and
Kelly 2015) to infer orthologous genes in the 62  Spiroplasma genomes as well as the  M.
achilles Spiroplasma genome sAch identified in this study. Then, functional annotation of the
orthologous was inferred using the BlastKOALA tool against the KEGG database (Kanehisa
et al. 2016).  

We then studied putative toxin genes either implied in host-protective phenotypes or host
male killing in insects. We used the HMMER software (Mistry et al. 2013) seeded with protein
sequences of each symbiont genome and the Pfam domain sequence alignments (Finn et al.
2014) corresponding  to  the  OTU  (PF02338  and  OTU-like  cysteine  protease)  and  RIP
(PF00161) as databases. Domain architectures of all matching proteins were then computed
using PfamScan (Mistry et al. 2007) and SIGNALP 6.0 (Teufel et al. 2022). Phylogenies of the
toxin proteins were built  by extracting and aligning the corresponding OTU domains. The
phylogenetic trees were inferred using IQ-TREE v2.1.3 (Nguyen et al. 2015) by estimating the
best substitution models using ModelFinder  (Kalyaanamoorthy et al. 2017). Branch support
was then assessed by performing 1000 replicates using UltraFast boostraps  (Hoang et al.
2018). 

Phylogeny of Spiroplasma 

A  previously  published  set  of  96  single-copy,  non-recombinant  orthologs  from  the
Spiroplasma genomes (Gerth et al. 2021) was used to assess the phylogenetic relationships
of these endosymbionts.  Orthologs were identified using the best reciprocal BLASTP hits of
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each of the 96 protein sequences using the Spiroplasma poulsonii sMel gene sequences as
seeds and lead to a dataset of 72 gene sequences present in all of the Morpho Spiroplasma
genomes.  Alignments  were  computed  using  MAFFT  (Katoh  et  al.  2002) and  manually
corrected  to  exclude  ambiguous  regions  and  taxa  with  sequence  similarity  >99%  were
removed. Phylogenic analyses were carried out using IQ-TREE v2.1.3 (Nguyen et al. 2015),
and  genes  were  partitioned  to  estimate  the  best  substitution  models  using  ModelFinder
(Kalyaanamoorthy  et  al.  2017).  Branches  supports  were  assessed  by  performing  1000
replicates  using  UltraFast  boostraps(Hoang et  al.  2018).  The resulting  trees were  rooted
using the  Spiroplasma sequences belonging to  the  ixodetis clade in accordance with  the
literature.  

Prediction of mobile genetic elements in Spiroplasma genomes

Inserted sequences (ISs) were identified by querying the ISFinder database  (Siguier et al.
2006) with protein sequences of each endosymbiont genome assemblies using BLAST with
e-value ≤10e-10 (Altschul et al. 1990). 
Plasmid sequences were identified using the Plasflow software  (Krawczyk et al. 2018) and
prophage regions were found using  two methods:  (1)  a  sequence-similarity  search using
PHASTER (Arndt et al. 2016), and (2) a de novo prediction using PhiSpy (Akhter et al. 2012).
Predictions gathered from the two methods were then merged in a single file. Comparative
genomics with other prokaryotic genomes were then computed using a set of 25,674 genome
sequences  with  comparable  genome  metrics  (N50>100kb)  downloaded  from  the  NCBI
Refseq Genomes FTP server 12/02/2022 version (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq).
The corresponding proteomes were then downloaded and ISs were identified using the same
procedure  as  described  above  for  Morpho endosymbionts  (using  the  62  Spiroplasma
genomes for  which  plasmids  and  phage  regions  were  identified  with  the  same previous
workflow).   

Sister-species dataset

To  study  vertical  and  horizontal  transmission  of  Spiroplasma,  we  focused  on  multiple
populations of M. achilles and M. helenor, two sister-species living in sympatry across most of
their distribution (Blandin and Purser 2013). We analyzed re-sequencing data obtained from
43  males  of  M.  helenor and  33  individuals  (20  males  and  3  females)  of  M.  achilles
(Supplementary Table 1). This second dataset is referred to as the sister-species dataset.

DNA extractions and genome sequencing of M. helenor and M. achilles 

For the  sister-species dataset,  DNA for each individual was extracted from thorax muscle
using the DNeasy Blood & Tissue Kit following the producer instructions. In most cases, DNA
was extracted from SNAP-frozen individuals or samples preserved in DMSO, but we also
used 13 samples of dried pinned M. achilles from the personal collection of Patrick Blandin
(Supplementary Table 1).

Sequencing was then performed at the GeT-PlaGe core facility of INRAE. DNA-seq libraries
were prepared using the Illumina TruSeq Nano DNA LT Library Prep Kit, following supplier
instructions.  Briefly,  DNA was fragmented by sonication and adaptors were ligated.  Eight
cycles of PCR were then applied to amplify libraries. Library quality was assessed using an
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Advanced Analytical  Fragment  Analyzer  and quantified  by  QPCR using  the Kapa Library
Quantification Kit. Sequencing was performed on an Illumina Novaseq 6000, using a paired-
end read length of 2x150 pb on a S4 Flowcell.

Population genomics of Spiroplasma in the sister-species dataset

Adaptors were removed from the reads with cutadapt  (Martin 2011) and the reads of each
individual  were  mapped against  the  original  Spiroplasma genome found in  the  reference
genome of  M. achilles  (referred to as  sAch  hereafter) using BWA-mem v0.7.17  (Li  2013).
Then we used Samtools v1.10 (Li et al. 2009) to sort the resulting SAM and BAM files and
recover the fasta sequences from Spiroplasma endosymbionts, which were then  assembled
using Megahit  (Li et al. 2015) with default parameters. To assess the presence/absence of
Spiroplasma in  each  individual,  we  blasted  each  contig  against  the  sAch  genome using
BLASTN with e-value cuttoff = 10e-50 and identity percentage >90%. Matching contigs were
extracted  and  the  presence/absence  of  the  endosymbiont  in  a  sample  was  classified  as
follows: (i) ‘presence’ when more than 100kb of aligned matching contigs were obtained, (ii)
‘ambiguous’ when 5-100kb of aligned contigs were obtained, (iii) ‘absence’ when less than
5kb of aligned sequences were obtained. To validate this classification, we identified the 16S
rDNA gene from each sample using BLASTN against the 16S rDNA gene from the reference
genome  sAch,  with  e-value  cutoff  of  10e-50  and  identity  percentage  >90%.  Then,  we
estimated a phylogenetic tree for Spiroplasma using the 16S rDNA sequences retrieved from
the different butterfly samples, following the same procedure stated earlier, and using the
Spiroplasma mellifera KC3 sequence (NCBI accession CP029202) as outgroup.

Finally, RIP/Spaid toxin genes were also retrieved from each butterfly sample by applying a
TBLASTN using the RIP/Spaid toxin gene identified in the sAch genome as seed, with e-
value cuttoff = 10e-10. 

Tree reconciliation analysis in order to predict host lateral switches

Spiroplasma, as  maternally  transmitted  endosymbionts,  are  inherited  together  with  the
mitochondrial  genome of  the host.  Therefore,  we used ecceTERA  (Jacox et  al.  2016) to
reconcile  the  mtDNA  phylogeny  of  Morpho  with  the Spiroplasma 16S  rDNA  phylogeny
previously  obtained,  and  for  which  identical  sequences  were  removed  to  eliminate  tree
polytomies. SylvX (Chevenet et al. 2016) was used to visualize and interpret the reconciliation
tree.

The  Morpho phylogeny  was  estimated  with  whole  mitochondrial  genomes,  for  which  we
combined those obtained in the genus-dataset and the sister-species datasets. Mitochondrial
genomes for all individuals in the sister-species dataset were extracted directly from Illumina
reads  with  GetOrganelle  v1.7.5.3  (Jin  et  al.  2020) and  the  parameters  -R  10  -k
21,45,65,85,105 -F animal_mt. Alignments were generated using MAFFT (Katoh et al. 2002)
and manually curated to exclude ambiguous regions. The phylogeny was obtained with IQ-
TREE v2.1.3  (Nguyen et al. 2015), estimating the best substitution model with ModelFinder
(Kalyaanamoorthy et al. 2017), and assesing branch support with 1000 UltraFast boostrap
replicates  (Hoang  et  al.  2018).  We  used  the  Heliconius  melpomene sequence  (NCBI
accession HE579083) as outgroup. 
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Results

Morpho butterflies are sporadically associated with Spiroplasma symbionts 

We sequenced and surveyed genomes of 11 species of  Morpho  butterflies (including two
different morphs of  M. telemachus),  for the presence of endosymbiotic bacteria (so-called
genus dataset).  Contigs  were  binned  using  their  GC%,  read  coverage  and  taxonomic
assignation (Figure 1). The resulting blob-plots indicate the presence of a limited number of
symbionts: the genomes of M. achilles, M. amathonte and M. rhetenor had contigs with very
low GC% that match with Spiroplasma, whereas the genomes of M. hecuba and M. helenor
had contigs associated with  Wolbachia  and  Enteroccocus. In contrast, the genomes of the
remaining six species of Morpho (i.e. M. marcus, M. eugenia, M. telemachus, M. menelaus,
M.  deidamia and  M.  granadensis)  do  not  seem  to  harbor  symbiont  sequences
(Supplementary Figure 1). 

We recovered and assembled three Spiroplasma genomes (sAma, sAch and sRhe) from the
genomes of M. amathonte, M. achilles and M. rhetenor, respectively. The sAch assembly was
the most  complete,  containing 98% of  a  set  of  lineage-specific,  single-copy,  Spiroplasma
marker genes (Table 1). The other two (sAma and sRhe) had lower completeness (60% and
78%, respectively, Table 1), indicating that only a fraction of the corresponding genomes was
captured.

Table 1. Assembly statistics of the endosymbiont genomes identified in genomes of Morpho butterflies

 

Inflation of genome size of Spiroplasma found in Morpho butterflies

The assemblies of Spiroplasma retrieved from Morpho genomes display a considerable larger
genome  size  (2,9Mb  to  4,1Mb)  than  the  62  previously-published  genomes  of  this
endosymbiont (1.1 Mb to 1.9 Mb; Supplementary Figure  2). The sAch and sAma assemblies
contained a  large contig  of  2,7  Mb and 2,5  Mb,  respectively,  with  low levels  of  synteny
(Supplementary Figure 3). The sAch and sAma assemblies were also composed of 46 and 15
small  contigs ranging from 17kb to 74kb, while the assembly of sRhe is composed of 44
contigs ranging from 14kb to 320kb (Figure 1). The 46 small contigs of the sAch assembly fall
into  4  clusters  based  on  sequence  alignments,  but  all  of  them  differ  in  size  and/or  in
nucleotide similarity (Supplementary Figure 3). 
To  assess  how  much  new  genes  contributed  to  the  expansion  of  genome  size  in  the
Spiroplasma associated with  Morpho, we searched for orthologous genes in sAch, which is
the  most  complete  assembly.  Similar  to  other  Spiroplasma,  sAch  contains  a  number  of
conserved orthologous group of genes that ranges from 600 to 1000 ortho-groups, but has an
unusually large number of species-specific genes (>350 singletons; Supplementary Figure 4).
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Spiroplasma found in Morpho are divergent from Spiroplasma in other Lepidoptera

To investigate  the  evolutionary  origin  of  the  Spiroplasma  detected in  Morpho,  we built  a
phylogeny of this endosymbiont using a set of 72 concatenated single copy genes present in
all Spiroplasma genomes available in the database, with recognizable homologs in the sAch
complete  genome.  The  assemblies  sAma,  sAch and  sRhe retrieved  from  Morpho  were
monophyletic and are included within the citri clade (Figure 2), which includes diverse plant
pathogens and endosymbionts of insects such as Hemiptera (Spirolasma kunkelli), Diptera
(S. sp. sNigra) and Hymenoptera (S. melliferum). The 16S rDNA phylogeny that includes a
broader taxonomic dataset confirms this observation (Supplementary Figure 6). Intriguingly,
the Spiroplasma recovered  from  Morpho  are  highly  divergent  from those  found  in  other
Lepidoptera  such  as  the  moth  Homona  magnanima (S.  ixodetis sHM)  or  the  nymphalid
butterfly Danaus chrysippus (S. sp. Danaus chrysipus), both in the ixodetis clade (Figure 2) . 

Figure 1: Detection of symbionts within genomic sequences of  Morpho:  M. achilles (A),  M. amathonte
(B), M. rhetenor (C), M. hecuba (D) and M. helenor (E). Contigs represented as circles were binned based on
their GC%, read coverage, and taxonomic assignation. Dark green contigs matched arthropod sequences, red
contigs matched Mollicutes (Spiroplasma), orange contigs matched Proteobacteria (Wolbachia), and light green
contigs matched Firmicutes (Enterococcus). The size of the circle is proportional to the size of the contigs.    
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Figure 2: Phylogenetic reconstruction of Spiroplasma from different hosts based on the conserved set
of 72 single copy orthologous genes. Recognized Spiroplasma clades are indicated in colors (right), and the
Spiroplasma detected in M. amathonte,  M. achilles and M. rhetenor (sAma, SAch and sRhe, respectively) are
highlighted in red. Phylogeny was constructed using 1000 bootstrap replicates. The phylogeny made with an
extended gene dataset of 96 orthologs including only sAch produces the same topology (Supplementary Figure
5). Note that the Spiroplasma documented in other Lepidoptera (the butterfly Danaus chrysippus and the moth
Homona magnanima) fall in the distantly-related ixodetis clade (pink).

Proliferation of mobile genetic elements in Spiroplasma found in Morpho 

We found multiple mobile genetic elements (i.e., prokaryotic transposons, ISs, plasmids and
prophages) integrated in the large genomes of the Spiroplasma retrieved from Morpho. We
observed  that  ISs  are  unusually  abundant  in  these  endosymbiont  genomes,  reaching  a
record-level  in  prokaryotes,  that  ranges  from  398  to  885  copies  (Figure  3A).  The  sAch
assembly  suggests  this  proliferation  is  associated  with  a  surprisingly  low  number  of  IS
families (Figure 3B). Indeed, only four IS families have expanded: an IS3-like family with 68
complete copies, an IS30 family with 96 complete copies, and a IS481 family with 72 intact
copies.  The fourth  group is  a  22kb composite  transposon that  we named Tn_sAch.  This
transposon has two IS3 copies at the tips and 24 conserved ORFs in the middle. In the
assembly  sAch,  we  observed  Tn_sAch  elements  being  especially  common  in  the  small
contigs (constituting ~54% of their length) and much less frequent in the large 2,7Mb contig
(accounting for only 9% of its lenght). The strong structural conservation of the backbone of
the 8 intact copies of Tn_sAch suggests en bloc successive transpositions in the genome.  
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Sequence similarities of the different transposon copies analyzed as a proxy of the age of the
different transposition events, indicates that most of them are identical or nearly identical,
suggesting very recent transpositions (Figure 3C), but the copies of Tn_sAch have higher
sequence divergence suggesting the presence of older copies.   
The IS30 and IS481 transposons have generated non-autonomous Miniature Inverted repeat
Transposable  Elements  (MITEs)  by  internal  deletion  leading  to  smaller  transposons  that
represent 25% and 32% of the size of the parental elements (Figure 3D). In contrast, most of
the complete autonomous IS copies are 100% full-length and presumably intact, showing few
truncated copies. Such high level of complete and identical IS copies strongly suggests that
these families have recently expanded in the genomes of the Spiroplasma found in Morpho.   

Figure 3: Insertion Sequences (ISs) found in the genomes of Spiroplasma found in Morpho. A: Number of
transposase  encoding  genes  found  in  a  set  of  25,675  prokaryotic  genomes  that  include  62  Spiroplasma
genomes (red dots) and three Morpho Spiroplasma (red dots with arrows) plotted against their genome sizes. B:
Structure of the IS families found in the complete sAch genome and their main properties. Each colors represent
a distinct IS families, arrows correspond to transposase genes and their internally deletted derivatives (MITEs),
black rectangles indicate passenger genes of the compostite transposon.   C: Analysis of the age of the IS
copies in the sAch genome using the Kimura 2-parameter distance between the consensus sequence of a given
family and all the individual copies that compose the family. The results are ordered based on the total amount of
nucleotides. D: Analysis of the completeness of the different IS copies found in the sAch genome estimated as
the percentage of the total length of the corresponding consensus sequences.  

Our analyses of phage sequence invasion reveal the 28 to 32 integrated prophages in the
genomes of Spiroplasma in Morpho, accounting for 418 kb in sAma, 482 kb in sRhe, and 538

IS3 (1215nt, 68 complete copies) 

IS30 (1589nt, 96 complete copies + MITEs) 

IS481 (1156nt, 72 complete copies + MITEs) 
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kb in sAch (Supplementary Figure 7). The density of phage-derived elements (7.8/Mb) is thus
larger  than  that  in  the  most  prophage-rich  bacterial  genome  known  to  date (6.9/Mb),
(Touchon et al. 2016; Frost et al. 2020).  Interestingly, more than 80% of the sAch species-
specific genes (singletons) are located in phage regions (Supplementary Figure 4). Functional
analysis of these genes indicated that they are enriched by two KEGG functional categories:
“genetic  information  processing”  and  “signaling  and  cellular  processes”  (Supplementary
Figure 4). Therefore, the genome size expansion in Spiroplasma of M. achilles is associated
with the accumulation of new genes acquired through interactions with phages.

Furthermore, the sAch, sAma and sRhe assemblies encode for six, four and five different
plasmids respectively. They are all characterized by substantial higher level of read coverage
than the genome contigs (Figure 1) suggesting the presence of multiple identical copies per
bacterial cells. 

Toxin genes identified in the Spiroplasma genomes of healthy Morpho males

As insects Spiroplasma are known to induce striking phenotypes in their host, such as male-
killing  promoted  by  the  Spaid  toxin  or  protection  against  parasites  (RIP-like  enzyme)
(Harumoto and Lemaitre 2018; Ballinger and Perlman 2019),  we specifically searched for
these genes. One of the plasmids detected in both the sAch and sAma assemblies encodes
for an ORF that combines both a RIP locus and a complete and structurally conserved Spaid
gene (Figure 4B). This apparent bi-functional gene encodes for two RIP proteins in the 5’ end
and  a  Spaid  protein  in  3’  end.  The  latter  includes  both  ankyrin  repeats  (Ank)  and  a
deubiquitinase domain  (OTU),  which  are  known to  occur  in  the  Spiroplasma strain  sMel
(Figure  4B)  and induce male-killing  in  Drosophila  melanogaster  embryo.  We sporadically
observed  ankyrin  repeats,  the  OTU  domain,  and  RIP  domains  in  other  genomes  of
Spiroplasma (Figure  4A).  In  particular,  four  homologous copies  of  RIP/OTU/Ank domains
were also present in the sRhe assembly, and all of them are located on four different contigs.
Although RIP-encoding genes are present in various Spiroplasma genomes (Figure 4A), the
fusion of the RIP domain with the Spaid domain is an original  feature found in all  of  the
Morpho  Spiroplasma  genomes  (Figure  4B).  These  features  open  the  possibility  that
Spiroplasma endosymbionts may induce some peculiar phenotype in their  Morpho butterfly
hosts.   
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Figure  4:  Distribution  and  organization  of  the  toxin  genes  found  in  genomes of  Spiroplasma.  A:
Distribution of the OTU (blue), Ankyrin (grey) and RIP (fucsia) encoding domains across the Spiroplasma whole-
genome phylogeny.  B.  Phylogeny based on the OTU domain alignment  of  the Spaid-like  proteins.  Domain
prediction based on Pfam similarity with known domains. The position of the Morpho Spiroplasma is highlighted
in red in both trees.  

Horizontal and vertical transfer of Spiroplasma in Morpho 

To estimate the prevalence of Spiroplasma within species of  Morpho and test for horizontal
vs. vertical transfer of this endosymbionts, we searched for the presence of  Spiroplasma in
different  populations  of  M. achilles and  its  sister  and  sympatric  species  M. helenor.  We
detected genomes of Spiroplasma with assembly size >100 kb and highly matching the sAch
assembly  in  26  out  of  33  individuals  of  M.  achilles;  only  6  individuals  had  few  contigs
matching sAch (with assembly size <100kb), and a single one lacked any genomic trace of it
(Figure 5 and Supplementary Table 1). Thus, all populations of M. achilles accross south-
America  had  Spiroplasma,  except  for  one  population  in  Peru  represented  by  a  single
individual in our study (Figure 5). By contrast, among the 43 M. helenor individuals from 27
populations we investigated, only a single individual had Spiroplasma. Therefore, although M.
achilles and  M helenor  are  sympatric  species  throughout  the  Amazonian  basin  and  are
closely-related species (3,6 millions years of divergence  (Chazot et al. 2021), they display
completely opposite patterns of infection by Spiroplasma.  
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Figure  5:  Geographic  distribution  of  Spiroplasma in  populations  of Morpho  achilles.  Each  circle
represents a population of M. achilles and the number of individuals sampled per population is indicated on the
bottom. The presence of Spiroplasma in each population is color coded as red (presence), yellow (ambiguous)
and white (absence). See also Supplementary Figure 8. 

Most of the Spiroplasma identified here had large genome assemblies (>1 Mb) albeit the use
of  short-read  sequencing  technology  that  generally  failed  to  assemble  highly  repeated
regions.  Moreover,  some  assemblies  reached  sizes  comparable  to  the  reference  sAch
assembly (>3 Mb; Supplementary Figure 8). The 16S rDNA gene was present in most of
these Spiroplasma assemblies, and homologous RIP and Spaid toxin genes were also found
almost  universally  (Supplementary  Figure  8).  In  the  16s  rDNA  phylogeny,  the  only
Spiroplasma genome retrieved from M. helenor and the sRhe Spiroplasma from M. rhetenor
both appear well nested into the sAch clades from M. achilles (Figure 6 and Supplementary
Figure  8).  This  suggests  a  putative  horizontal  transmission  of  Spiroplasma  between  M.
helenor,  M. achilles and M. rhetenor living in sympatry. The reconciliation analysis between
the  Spiroplasma tree (16S rDNA) and the  Morpho tree (whole mitochondrial genomes) are
highly congruent suggesting that both the endosymbiont and mtDNA are maternally inherited
(Figure  6),  except  for  sHel  and sRhe.  This  finding strongly  suggests lateral  exchange of
Spiroplasma between  M.  achilles,  M.  rhetenor and  M.  helenor (Figure  6).  The  high
congruence between the  Spiroplasma and the mitochondrial tree within  M. achilles agrees
with a predominant vertical maternal transmission.   
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Figure 6: Reconciliation analysis between the host tree (A) contrasted against the endosymbiont tree (B)
with predicted horizontal host switches of  Morpho Spiroplasma.   Whole mitochondrial  genome tree for
Morpho against the 16S rDNA tree for Spiroplasma. Ultra-fast boostraps values are indicated on each branch.
Color blocs correspond to the main phylogenetic clusters identified in the species phylogeny. Double-arrows
highlight the possible horizontal host switches.

    
Discussion

Peculiar evolution of Spiroplasma genomes in Morpho butterflies

We documented the presence of the bacterial endosymbiont  Spiroplasma in four out of 11
species  of  Morpho butterflies  studied  here,  highlighting  that  the  association  with  this
endosymbiont  greatly  varies  across  closely  related  host  species,  even when they  live  in
sympatry. Surprisingly, the genomes of Spiroplasma retrieved from Morpho sharply differ from
those  in  other  Lepidoptera,  suggesting  horizontal  transfer  among  distantly-related  host
species.  The  phylogenetic  discrepancies  between  Spiroplasma genes  and  mitochondrial
genes across Morpho species also suggests that horizontal transfer between species living in
sympatry might occur. The circulation of Spiroplasma in the hemolymph is thought to facilitate
horizontal  transfer  across  sympatric  species,  for  instance  through  the  consumption  of
hemolymph  by  mites  (Jaenike  et  al.  2010).  Because  the  Spiroplasma found  in  Morpho
butterflies  is  closely  related  to  strain  documented  as  a  plant  pathogen,  the  inter-specific
transmission of this symbionts could also be enabled by the shared consumption of host
plants by caterpillars. Remarkably, the three  Morpho species presenting close  Spiroplasma
(M.  achilles,  M.  helenor and  M.  rhetenor)  share  several  hostplants  in  French  Guyana,
supporting this hypothesis  (Anon 2017). The presence of  Spiroplasma in  Morpho butterflies
might  thus  stem from interactions  with  other  insects  or  through  host  plant  consumption.
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However, population genomics of Spiroplasma within the species M. achilles species indicate
widespread  distribution  and  predominance  of  vertical  transmission  at  the  species  level.
Interestingly, we have evidenced the presence of Spiroplasma symbiont in M. amathonte and
M. achilles, two species that have diverged from more than 17 My (Chazot et al. 2021) and
that  currently  occupying  non-overlapping  geographical  ranges:  M.  amathonte is  found  in
central  America  and  in  the  western  slopes  of  the  Andes  while  M.  achilles inhabits  the
Amazonian basin.  The weak genome synteny of  the  Spiroplasma genomes of  these two
species and the congruence of host and symbiont phylogenies support a vertical transmission
from  a  common  ancestor.  Thus,  the  ubiquitous  presence  of  Spiroplasma in  M.  achilles
populations across south-America and the predominant vertical transmission of the symbiont
at  various  evolutionary  time-scale  point  at  a  long-term association  between  Spiroplasma
symbiont and  Morpho butterflies. The absence of  Spiroplasma from some  Morpho species
(e.g. M. menelaus, closely related to M. amathonte) would then suggest a secondary loss.

Massive genome size promoted by large expansion in diverse mobile genetic elements.  

While endosymbionts as  Spiroplasma display streamlined genomes (Gerth et al. 2021), the
genome size of the  Spiroplasma observed in our study is surprisingly large. Our analyses
indicate that recent and massive expansion of diverse mobile genetic elements (MGE) are
responsible for  this  striking inflation in  genome size.  Record-level  of  Insertion Sequences
(accounting for  1550 kb),  integrated prophages (538kb)  and plasmids (278 kb)  represent
nearly 60% of the total genome size of the Spiroplasma found in M. achilles (accounting for
2366 kb on a total genome size of 4075 kb). All  Spiroplasma genomes detected in Morpho
butterflies display such extreme expansion of MGE, in sharp contrast with the paucity of MGE
generally found in  Spiroplasma (Gerth et al. 2021)  or  Wolbachia genomes  (Cerveau et al.
2011).  Moreover,  most  of  the  IS  copies  found  in  Spiroplasma of  Morpho butterflies  are
recently-transposed  elements,  indicating  an  ongoing  and  continuous  accumulation.  Such
MGE proliferation has also been sporadically observed in  Orientia  symbionts,  a widespread
Rickettsia-like,  intra-cellular  bacteria  associated  with  mites  (Batty  et  al.  2018) and  in
Mycoplasma endosymbionts, associated with diverse fungi  (Naito and Pawlowska 2016). In
addition,  integrated  phage  genomes  provide  numerous  new  genes  and  functions  in
Spiroplasma associated with Morpho butterflies. The massive expansion of MGEs leads to an
inflated genome size but also provides a source of new genes and functions expanding the
diversity of the genomic repertoire of Spiroplasma symbionts infecting Morpho butterflies. 
Recombination induced by MGEs and the gene flow provided by phage genome integration
can explain the lack of genome erosion in the Spiroplasma of Morpho, that contrasts with the
important  genome size  reduction  observed  in  most  endosymbionts.  Such  rapid  evolution
might  stem  from  peculiar  adaptation  in  the  symbionts  of  Morpho,  allowing  long-term
association and high prevalence in some Morpho species. For instance, MGE-encoded toxin
genes might have contributed to increase the symbiont persistence in some Morpho butterfly
populations.  

Evolution of toxin genes and putative protective effect

By detecting Spiroplasma in adult Morpho males sampled in the wild, our study suggests that
the  presence  of  Spiroplasma does  not  prevent  the  development  of  males  in  Morpho
butterflies, in sharp discrepancy with the male-killing effects reported in the butterfly Danaus
chrysippus (Jiggins  et  al.  2000),  but  similar  to  the  results  obtained  with  Wolbachia in
Neotropical Acraeini (Nymphalidae)  (Silva-Brandão et al. 2021). More specifically, the toxin
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gene  Spaid  found  in  Spiroplasma  poulsonii and  documented  to  trigger  male  killing  in
Drosophila (Harumoto  and  Lemaitre  2018) does  not  have  the  male-killing  (MK)  effect  in
Morpho. It is thus possible that Morpho butterflies have developed resistance to the sex-ratio
distortion effect of the  Spiroplasma Spaid toxins. Such MK-suppression have indeed been
observed  in  plant-hopper  (Yoshida  et  al.  2021) and  in  lacewing  (Hayashi  et  al.  2018).
Alternatively, as Spaid toxins target the gene dosage compensation system that increases the
transcription of genes on the male single X chromosome in Drosophila (Harumoto & Lemaitre
2018), it is also possible that this toxin is ineffective in ZW sex-determination system for which
the female is heterogametic. Supporting this view, MK-inducing  Spiroplasma in Lepidoptera
lack the Spaid toxins genes, but the genetic determinant(s) of the MK phenotype are unknown
(Arai et al. 2022). However, strong conservation of the Spaid genes among Morpho species
and populations favors the idea that it provides a selective advantage. 
Interestingly, our study also reveals the evolution of specific architecture of toxin genes in the
Spiroplasma of Morpho butterflies, including RIP physical linkage with the Spaid gene. While
the functional implication of this evolution cannot be inferred from our current results, the high
conservation  of  this  specific  architecture  in  the  Morpho  genomes  is  consistent  with  an
adaptive role. Moreover, the localization of these genes on plasmids also suggests that they
may spread across bacteria,  and their  persistence might  have been promoted by natural
selection, either because they act as selfish elements or because of positive impact on host
fitness. In  Drosophila,  RIP proteins produced by  Spiroplasma poulsonii have indeed been
documented to induce positive effects on host survival, through their protective effect against
nematods (Stevens et al. 2001), as well as parasitoid wasps (Ballinger and Perlman 2019).
Such defensive effect of Spiroplasma could have a positive impact on the fitness of Morpho
butterflies and might explain their high prevalence in M. achilles. 

Contrasted prevalence of  Spiroplasma in sympatric sister species: do  Spiroplasma impact
reproductive isolation?

The evolution of  the  Spaid gene might  have resulted in  a  change of  function in  Morpho
butterflies, disabling the male-killing mechanism. Alternatively, resistance to male-killing effect
might  have  evolved  in  Morpho butterflies.  The  evolution  of  MK-suppression  has  been
documented in natural populations of the butterfly Hypolimnas bolina (Nymphalidae) infected
by Wolbachia (Hornett et al. 2022). Such evolution of resistance is likely to be under strong
positive selection given the high fitness costs for the hosts induced by male-killing genes
(Hornett et al. 2022). The Spiroplasma is highly prevalent in M. achilles and quite rare in the
sympatric species  M. helenor despite the similarity of the  Spaid gene in both species, this
might suggest that resistance to the deleterious effect of  Spiroplasma could be restricted to
M. achilles.
Alternatively, the presence of the symbiont might trigger cytoplasmic incompatibilities (CI),
explaining the huge difference in its prevalence between these two sister-species living in
sympatry. Spiroplasma-induced cytoplasmic incompatibilities have been recently documented
in  the  wasp  Lariophagus  distinguendus (Pollmann  et  al.  2022).  In  case  of  CI,  crosses
between infected males and uninfected females generally do not produce offspring; CI could
thus limit genetic exchange between the two sympatric species.
Altogether,  our  current  results  on  the  contrasted  Spiroplasma prevalence in  these sister-
species therefore raises the question of the potential impact of this endosymbiont as barrier to
gene flow between these sympatric species. Endosymbionts like Spiroplasma and Wolbachia
have indeed been suggested to generate post-zygotic barriers to gene flow (see  (Duplouy
and Hornett 2018) for a review), but their role in initiating vs. reinforcing speciation remains
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largely  uncovered.  Our  study  therefore  points  at  the  needs  to  investigate  the  effect  of
Spiroplasma on reproductive isolation and its significance for species diversification and co-
existence in sympatry.

Conclusion

Studies on heritable symbionts in natural populations generally support a dynamic model of
gene gain and loss shaped by the ecological interactions with their host. On the other hand,
heritable symbiont lifestyle induces genetic isolation and population bottlenecks that lead to
mutational  decay  and  genome  streamlining.  In  comparison  with  Spiroplasma genomes
retrieved from other insects,  Morpho Spiroplasma genomes display a massive expansion of
diverse  mobile  genetic  elements  as  transposable  elements,  prophages  or  plasmids.  In
addition, we documented a strong conservation of toxin RIP and Spaid-encoding genes in the
Spiroplasma of  Morpho species,  that  might  enhance  protection  of  the  butterflies  against
parasites.  The  study  of  Spiroplasma symbionts  in  natural  population  of  diverse  Morpho
butterfly species support a stable association in  Morpho achilles  populations across south-
America, whereas Spiroplasma appears almost absent in sympatric M. helenor populations.
This contrasted symbiont distribution among sympatric Morpho species is associated with a
global  predominant vertical  transmission of the symbiont supporting a model in which the
symbiont provides fitness advantages to the butterfly. Indeed, Morpho Spiroplasma genomes
display a remarkable resistance to genome erosion by the mean of massive expansions of
diverse  mobile  genetic  elements  as  transposable  elements,  prophages  or  plasmids.  In
addition, the strong conservation of toxin RIP and Spaid-encoding genes might be the key-
drivers of this lasting association either by conferring host protection against parasite and/or
by limiting hybridization with  symbiont-free sympatric  Morpho species.  Our study calls  for
additional investigations of the phenotypic effects of the Spiroplasma on their butterfly hosts
to better  understand how their  ecological  interactions shapes – and is shaped by – their
evolution. 
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