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GEOMETRIC DUAL AND SUM-RANK MINIMAL CODES

MARTINO BORELLO1 AND FERDINANDO ZULLO2

Abstract. The main purpose of this paper is to further study the structure, parameters and con-
structions of the recently introduced minimal codes in the sum-rank metric. These objects form a
bridge between the classical minimal codes in the Hamming metric, the subject of intense research
over the past three decades partly because of their cryptographic properties, and the more recent
rank-metric minimal codes. We prove some bounds on their parameters, existence results, and, via
a tool that we name geometric dual, we manage to construct minimal codes with few weights. A
generalization of the celebrated Ashikhmin-Barg condition is proved and used to ensure minimality
of certain constructions.
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Introduction

Sum-rank metric constitutes a bridge between the more classical Hamming and rank metrics,
which may be considered as its special cases. It has been used implicitely first in [22,31] and
explicitely introduced in the context of network coding in [42]. One of the main reasons why this
metric has been in the spotlight in recent years is the fact that sum-rank metric codes outperform
the more classical ones in terms of the required field size to construct codes achieving the Singleton
bound in the corresponding metric [33]. This is due to the existence of the so-called linearized
Reed–Solomon codes, a family of maximum sum-rank distance (MSRD) codes with polynomial
field sizes. In the survey paper [37], the interested reader may find a very detailed summary on
properties and applications of sum-rank metric codes in distributed storage systems, network coding,
and multi-antenna communication.

The main purpose of this paper is to further study the structure, parameters and constructions
of minimal codes in the sum-rank metric, recently introduced in [47]. Minimal codes are classical
objects in the Hamming metric rich of connections with different areas of mathematics, such as
cryptography [39], finite geometry [1,49], and combinatorics [12]. One of the main concerns about
these objects is to find bounds on their parameters. In particular, one difficult problem is to know
how short they can be and to construct short minimal codes. In [4,12,48] lower bounds on the length
of minimal codes are proved, whereas in [2,12,24] the best known upper bounds on the length of
the shortest minimal codes are presented. These last are implicit existence results. Some short
constructions are illustrated in [4,9] and in the upcoming [6]. More recently, minimal codes in the
rank metric have been introduced [3] together with some bounds and construction. In particular,
their geometry is studied, in connection with linear sets. Such codes reveal to be useful in the
construction of MRD codes [11] or for the covering problem in the rank metric [15]. Still a direct
application to cryptography of these objects is missing from the party, even if rank-metric minimal
codes may be used to construct minimal codes in the Hamming metric. We will show that the same
holds for minimal sum-rank metric codes.

After recalling some main definitions and results in the preliminary Section 1, we introduce the
main object of the paper in Section 2: exploiting the geometry of sum-rank metric codes studied
in [41], we prove first that minimal sum-rank metric codes correspond to collections of linear sets
whose union forms a strong blocking set, that is a set of points in the projective space whose
intersection with every hyperplane spans the hyperplane. This allows to easily get a bound on the
maximum weight of minimal sum-rank metric codes, together with a characterization of minimal
MSRD codes. Standard equations allow us to prove some bounds on the parameters of minimal
sum-rank metric codes (see Theorem 2.8) presented also in their asymptotic version. We then focus
on some existence results of short minimal sum-rank metric codes, obtained by implicit counting
arguments. Section 3 is devoted to a tool that we call geometric dual: we make use of the dual of
Fq-subspaces of Fqm-vector spaces studied in [43] to build the dual of systems associated to sum-
rank metric codes and we call geometric dual the code associated to these dual systems. We prove
first that such object is well-defined and we show a sort of MacWilliams’ relations between the
generalized weight enumerators (see Theorem 3.4). Moreover, we prove that the geometric dual
is involutory. In Section 4, we come back to the core of the paper, which are minimal codes in
the sum-rank metric. By the correspondence between sum-rank metric codes and Hamming-metric
ones, we first highlight a generalization of the celebrated Ashikhmin-Barg condition, which is a
sufficient condition on the weight distribution for a code to be minimal (see Theoreom 4.3). All
one-weight codes result to be minimal, but remarkably there are many more one-weight codes in
the sum-rank metric than in the two more classical ones. After recalling three families of one-
weight sum-rank metric codes introduced in [41], we read the property of being one-weight in the
geometric dual, which exchanges the role of hyperplanes and points. As a consequence, we get that
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partitions in scattered linear sets yield one-weight codes. Doubly extended linearized Reed-Solomon
of dimension 2, which correspond partition of the projective line in scattered linear sets, are short
minimal codes (that meet the bound in Theorem 2.8) whose geometric dual are one-weight which
are short minimal codes for quadratic extensions. We use this partition of the projective line to
construct a partition of higher dimension projective spaces, yielding other examples of one-weight
codes. Another construction may be done with canonical subgeometries. Finally, we show that
every sum-rank metric code can be extended to a one-weight code, showing that there are several
examples of one-weight codes with different geometric structures. In the last part of the section,
we study some two-weight codes: these can be easily obtained by considering proper subsets of
mutually disjoint scattered linear sets and taking the geometric dual of the associated codes (see
Theorem 4.17). Thanks to the Ashikhmin-Barg condition, we have that if the number of blocks is
sufficiently large, then such codes are minimal (see Theorem 4.21). We finally present some examples
of minimal two-weight codes with two blocks and, quite remarkably, in dimension 3 we are able to
prove the minimality by direct geometric arguments for codes not satisfying the Ashikhmin-Barg
condition (see Theorem 4.23). Let us point out that their associated Hamming metric codes have
few weights and in some cases they are two-weights: this make them particularly interesting for
several reasons including quantum codes and strongly regular graphs; see [18,26].

1. Preliminaries

In this section we will briefly recall the main results of the theory of sum-rank metric codes and
linear sets, which we will use in the rest of the paper.

1.1. Basic notions on sum-rank metric codes. Throughout the paper, n = (n1, . . . , nt) ∈ N
t

denotes an ordered tuples with n1 ≥ n2 ≥ . . . ≥ nt and N = n1 + . . . + nt. We use the following
compact notations for the direct sum of vector spaces

F
n

qm =

t⊕

i=1

F
ni
qm.

Let start by recalling that the rank of a vector v = (v1, . . . , vn) ∈ F
n
qm is defined as rk(v) =

dimFq(〈v1, . . . , vn〉Fq ) and the sum-rank weight of an element x = (x1, . . . , xt) ∈ Fn

qm is

w(x) =

t∑

i=1

rk(xi).

Remark 1.1. If t = 1, then the sum-rank weight is simply the rank, whereas if n1 = . . . = nt = 1,
the sum-rank weight coincides with the Hamming weight. The sum-rank metric constitues then a
bridge between the rank and the Hamming metrics.

We also call rank-list of x = (x1, . . . , xt) ∈ F
n

qm the vector

(rk(x1), . . . , rk(xt)).

Hence, the sum-rank weight of a vector corresponds to the sum of the entries of its rank-list.

Definition 1.2. A (linear) sum-rank metric code C is an Fqm-subspace of Fn

qm endowed with
the sum-rank distance defined as

d(x, y) = w(x− y) =

t∑

i=1

rk(xi − yi),
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where x = (x1, . . . , xt), y = (y1, . . . , yt) ∈ F
n

qm . Let C ⊆ F
n

qm be a sum-rank metric code. We will
write that C is an [n, k, d]qm/q code (or [n, k]qm/q code) if k is the Fqm-dimension of C and d is its
minimum distance, that is

d = d(C) = min{d(x, y) : x, y ∈ C, x 6= y}.

Let C ⊆ F
n

qm be a linear sum-rank metric code. Let G = (G1|. . . |Gt) ∈ F
k×N
qm be a generator

matrix of C, that is a matrix whose lines generate C, with G1, . . . , Gt ∈ F
k×ni
qm . We define C to

be nondegenerate if the columns of Gi are Fq-linearly independent for i ∈ {1, . . . , t} (this is
independent of the choice of G; see [41, Definition 2.11, Proposition 2.13]).

We will only consider nondegenerate codes in this paper and this is not a restriction since we
can always embed a sum-rank metric code in a smaller space in which it results to be nondegen-
erate, preserving its metric properties. So, throughout this paper we will omit the term

nondegenerate and all codes considered will be nondegenerate.

For sum-rank metric codes the following Singleton-like bound holds; see also [17].

Theorem 1.3 ([38, Proposition 16]). Let C be an [n, k, d]qm/q code. Then

d ≤ N − k + 1.

Definition 1.4. An [n, k, d]qm/q code is called a Maximum Sum-Rank Distance code (or shortly
MSRD code) if d = N − k + 1.

The next result classifies the Fqm-linear isometries of Fn

qm equipped with the sum-rank distance,
cfr. [5, Theorem 3.7] and [35, Theorem 2]. Before stating it, we need the following notation. Let
ℓ := |{n1, . . . , nt}| and let ni1 , . . . , niℓ be the distinct elements of {n1, . . . , nt}. By λ(n) ∈ Nℓ we
will denote the vector whose entries are

λj := |{k : nk = nij}|, for each j ∈ {1, . . . , ℓ}.

For a vector v = (v1, . . . , vℓ) ∈ N
ℓ, we define

Sv = Sv1 × · · · × Svℓ ,

where Si is the symmetric group of order i and naturally acts on the blocks of length i. Similarly,
we denote by GL(v,Fq) the direct product of the general linear groups of degree vi over Fq, i.e.

GL(v,Fq) = GL(v1,Fq)× . . .×GL(vt,Fq).

Theorem 1.5. The group of Fqm-linear isometries of the space (Fn

qm , d) is

((F∗
qm)

t ×GL(n,Fq))⋊ Sλ(n),

which (right)-acts as

(x1, . . . , xt) · (a, A1, . . . , At, π) 7−→ (a1xπ(1)A1 | . . . | atxπ(t)At).

We use the Fqm-linear isometries of the whole ambient space to define the equivalence of sum-rank
metric codes.

Definition 1.6. Two [n, k]qm/q sum-rank metric codes C1, C2 are equivalent if there is an Fqm-
linear isometry φ, such that φ(C1) = C2. The set of equivalence classes of [n, k, d]qm/q sum-rank
metric codes is denoted by C[n, k, d]qm/q.
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1.2. The geometry of sum-rank metric codes. We will recall now some results from [41], on
the connections between sum-rank metric codes and some sets of subspaces.

The following definition extends the notion of projective systems and q-systems; cfr. [45,50].

Definition 1.7. An [n, k, d]qm/q-system (or simply an [n, k]qm/q-system) U is an ordered set

(U1, · · · , Ut), where, for any i ∈ {1, . . . , t}, Ui is an Fq-subspace of Fk
qm of dimension ni, such that

〈U1, . . . , Ut〉Fqm
= F

k
qm and

d = N −max

{
t∑

i=1

dimFq(Ui ∩H) | H is an Fqm-hyperplane of Fk
qm

}

.

Moreover, two [n, k, d]qm/q-systems (U1, . . . , Ut) and (V1, . . . , Vt) are equivalent if there exists ϕ ∈
GL(k,Fqm) and σ ∈ St, such that

ϕ(Ui) = aiVσ(i),

for every i ∈ {1, . . . , t}.

We denote the set of equivalence classes of [n, k, d]qm/q-systems by U[n, k, d]qm/q.
The following result allows us to establish a connection between systems and codes.

Theorem 1.8 ([41, Theorem 3.1]). Let C be an [n, k, d]qm/q. Let G = (G1|. . . |Gt) be a generator

matrix of C. Let Ui ⊆ F
k
qm be the Fq-span of the columns of Gi, for i ∈ {1, . . . , t}. The sum-rank

weight of an element xG ∈ C, with x = (x1, . . . , xk) ∈ F
k
qm is

(1) w(xG) = N −

t∑

i=1

dimFq(Ui ∩ x⊥),

where x⊥ = {y = (y1, . . . , yk) ∈ F
k
qm :

∑k
i=1 xiyi = 0}. In particular, the minimum distance of C

reads as follows

(2) d = N −max

{
t∑

i=1

dimFq(Ui ∩H) : H is an Fqm-hyperplane of Fk
qm

}

.

So (U1, . . . , Ut) in an [n, k, d]qm/q-system.

Remark 1.9. Note that, as a consequence of (1), the rank-list of a codeword xG of C is given by

(n1 − dimFq(U1 ∩ x⊥), . . . , nt − dimFq(Ut ∩ x⊥)).

As in [41], we can then observe that there is a one-to-one correspondence between equivalence
classes of sum-rank nondegenerate [n, k, d]qm/q code and equivalence classes of [n, k, d]qm/q-systems
via two maps

Ψ : C[n, k, d]qm/q → U[n, k, d]qm/q

Φ : U[n, k, d]qm/q → C[n, k, d]qm/q,

that act as follows. For any [C] ∈ C[n, k, d]qm/q, let G = (G1|. . . |Gt) be a generator matrix of C.
Then Ψ([C]) is defined as the equivalence class of [n, k, d]qm/q-systems [U ], where U = (U1, . . . , Ut)

is defined as in Theorem 1.8. In this case U is also called a system associated with C. Viceversa,
given [(U1, . . . , Ut)] ∈ U[n, k, d]qm/q, define Gi as the matrix whose columns are an Fq-basis of Ui

for any i. Then Φ([(U1, . . . , Ut)]) is the equivalence class of the sum-rank metric code C generated
by G = (G1|. . . |Gt). In this case C is also called a code associated with U . See [41] for the proof
that these maps are well-defined.
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1.3. Supports. We start by observing that a sum-rank metric code in F
n

qm can also be seen as an

Fq-subspace in
⊕t

i=1 F
mi×ni
q .

For every r ∈ {1, . . . , t}, let Γr = (γ
(r)
1 , . . . , γ

(r)
m ) be an ordered Fq-basis of Fqm , and let Γ =

(Γ1, . . . ,Γt). Given x = (x1, . . . , xt) ∈ F
n

qm, with xi ∈ F
ni
qm , define the element

Γ(x) = (Γ1(x1), . . . ,Γt(xt)) ∈ Π,

where

xr,i =

m∑

j=1

Γr(xr)ijγ
(r)
j , for all i ∈ {1, . . . , nr}.

In other words, the r-th block of Γ(x) is the matrix expansion of the vector xr with respect to the
Fq-basis Γr of Fqm and this also preserves its rank; cfr. [41, Theorem 2.7].

Definition 1.10. Let x = (x1, . . . , xt) ∈ F
n

qm and Γ = (Γ1, . . . ,Γt) as above. The sum-rank
support of x is defined as the space

supp
n
(x) = (colsp(Γ1(x1)), . . . , colsp(Γt(xt))) ⊆ F

n

q ,

where colsp(A) is the Fq-span of the columns of a matrix A.

As proved in [3, Proposition 2.1] for the rank-metric case, the support does not depend on the
choice of Γ and we can talk about the support of a vector without mentioning Γ. For more details
see [34].

1.4. Generalized weights. Generalized rank weights have been introduced several times with
different definitions, see e.g. [27], whereas the theory of sum-rank generalized weights is more
recent and first introduced in [19].

In this paper we will deal with the definition given in [19, Section VI] and more precisely to the
geometric equivalent, which can be derived as for the rank metric in [3, Theorem 3.14]. For more
details we refer to [46].

Definition 1.11. Let C be an [n, k, d]qm/q sum-rank metric code and let U = (U1, . . . , Ut) be an
associated system. For any r ∈ {1, . . . , k}, the r-th generalized sum-rank weight is

(3) dr(C) = N −max

{
t∑

i=1

dimFq(Ui ∩H) : H is an Fqm-subspace of Fk
qm of codimension r

}

.

In order to keep track of the metric properties of the code, as done in [27, Definition 4], we can
define the generalized sum-rank weight enumerator of a code, which extend the classical weight
enumerator of a code (up to the addition of XN ).

Definition 1.12. Let C be an [n, k, d]qm/q sum-rank metric code and let U = (U1, . . . , Ut) be an
associated system. For any r ∈ {1, . . . , k}, the r-th generalized sum-rank weight enumerator
is

W r
C (X,Y ) =

N∑

w=0

Ar
wX

N−wY w,

where Ar
w is the number of Fqm-subspace of Fk

qm of codimension r such that

w = N −

t∑

i=1

dimFq(Ui ∩H).

Clearly, the first generalized sum-rank weight enumerator corresponds with the classical weight
enumerator.
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1.5. The associated Hamming-metric codes. Every sum-rank metric code can also be regarded
as an Hamming-metric code as shown in [41, Section 5.1] (see also [3, Section 4] for the rank-metric
codes).

For a collection of multisets (M1,m1), . . . , (Mt,mt) of PG(k−1, qm). We can define their disjoint
union as

t⊎

i=1

(Mi,mi) = (M,m),

where M = M1 ∪ . . . ∪Mt, and m(P ) = m1(P ) + . . . + mt(P ) for every P ∈ PG(k − 1, qm). For
every n-dimensional Fq-subspace U of Fk

qm, it is possible to associate the multiset (LU ,mU ), where
LU is the Fq-linear set defined by U (see next subsection), that is

LU = {〈u〉Fqm
| u ∈ U \ {0}} ⊆ PG(k − 1, qm),

and

mU(〈v〉Fqm
) =

q
wLU

(〈v〉Fqm )
− 1

q − 1
.

This means that the multiset (LU ,mU ) of PG(k − 1, qm) has size (counted with multiplicity) qn−1
q−1 .

We can now apply this procedure to the elements of an [n, k]qm/q system (U1, . . . , Ut). In this way
we can define the multiset

Ext(U1, . . . , Ut) =

t⊎

i=1

(LUi
,mUi

).

Then Ext(U1, . . . , Ut) is a multiset of points of size qn1+...+qnt−t
q−1 in PG(k − 1, qm).

Hence, we can give the following definition.

Definition 1.13. Let C be a linear sum-rank [n, k]qm/q code. Let (U1, . . . , Ut) be a system associated

with C. Any code CH ∈ Ψ(Ext(U1, . . . , Ut)) is called an associated Hamming-metric code to C.

The weight distribution of the Hamming-metric code associated with a sum-rank-metric codes
can be determined as follows. For x ∈ F

n
qm denote by wH(x) the Hamming weight of x, that is

the number of its non-zero components.

Proposition 1.14 ([41, Proposition 5.6]). Let G = (G1 | . . . |Gt) ∈ F
k×N
qm be a generator matrix of

an [n, k]qm/q code, and let v ∈ F
k
qm \ {0}. Denote by GExt ∈ F

k×M
qm to be any generator matrix of a

Hamming-metric code CH in Ψ(Ext(U1, . . . , Ut)), where M = qn1+...+qnt−t
q−1 . Then

wH(vGExt) =

t∑

i=1

qni − qni−rk(vGi)

q − 1
.

In particular, the minimum distance of CH is given by

d(CH) = min
r∈S(C)

{
t∑

i=1

qni − qni−ri

q − 1

}

,

where S(C) is the set of rank-lists of C.
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1.6. Linear sets. Let V be a k-dimensional vector space over Fqm and consider Λ = PG(V,Fqm) =
PG(k − 1, qm). Let U be an Fq-subspace of V of dimension n. Then the point-set

LU = {〈u〉Fqm
: u ∈ U \ {0}} ⊆ Λ

is called an Fq-linear set of rank n. Another important notion is the weight of a point. Let
P = 〈v〉Fqm

be a point in Λ. The weight of P in LU is defined as

wLU
(P ) = dimFq(U ∩ 〈v〉Fqm

).

An upper bound on the number of points that a linear set contains is

(4) |LU | ≤
qn − 1

q − 1
.

Furthermore, LU is called scattered (and U as well) if it has the maximum number qn−1
q−1 of points,

or equivalently, if all points of LU have weight one. Blokhuis and Lavrauw provided the following
bound on the rank of a scattered liner set.

Theorem 1.15 ([13]). The rank of a scattered Fq-linear set in PG(k − 1, qm) is at most
mk

2
.

A scattered Fq-linear set of rank
km
2 in PG(k− 1, qm) is said to be maximum scattered and U

is said to be a maximum scattered Fq-subspace as well.
In the next result we summarize what is known on the existence of maximum scattered linear

sets/subspaces.

Theorem 1.16 (see [8,10,13,20]). If mk is even, then there exist maximum scattered subspaces in
F
k
qm.

We refer to [28,29,43,44,51] for further details on linear sets and their connections.

2. Minimal sum-rank metric codes and cutting systems

In this section we introduce the notion of sum-rank metric minimal codes and we investigate their
parameters. The geometry of minimal codes have been important in order to construct and give
bounds in both Hamming and rank metric (see [2–4,12,24,49]), via the so called strong blocking

sets. These, introduced first in [21] in relation to saturating sets, are sets of points in the projective
space such that the intersection with every hyperplane spans the hyperplane. In [23] strong blocking
sets are referred to as generator sets and they are constructed as union of disjoint lines. They have
gained very recently a renovated interest in coding theory, since [14], in which they are named
cutting blocking sets and they are used to construct minimal codes. Quite surprisingly, they
have been shown to be the geometric counterparts of minimal codes in [1,49].

2.1. Definition and first properties. In this subsection we introduce minimal codes in the sum-
rank metric and their geometry, together with some structure results.

Definition 2.1. Let C be an [n, k]qm/q sum-rank metric code. A codeword c ∈ C is said minimal

if for every c′ ∈ C such that supp
n
(c′) ⊆ supp

n
(c) then c′ = λc for some λ ∈ Fqm . We say that C is

minimal if all of its codewords are minimal.

Definition 2.2. An [n, k]qm/q system (U1, . . . , Ut) is called cutting if for any hyperplane H of Fk
qm

〈U1 ∩H, . . . , Ut ∩H〉Fqm
= H,

that is, if LU1 ∪ . . . ∪ LUt is a strong blocking set in PG(k − 1, qm).

The following is a generalization of the geometric characterization of minimal codes in the Ham-
ming and in the rank metric [1,3].
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Theorem 2.3 ([47, Corollary 10.25]). A sum-rank metric code is minimal if and only if an asso-
ciated system is cutting.

Thanks to this correspondence, we can easily prove, as in [3, Corollary 5.9], a bound on the
maximum weight of a minimal sum-rank metric code.

Theorem 2.4. Let C be an [n, k]qm/q minimal sum-rank metric code and denote by w(C) the max-
imum weight of the codewords in C. Then

w(C) ≤ N − k + 1.

Proof. Let (U1, . . . , Ut) be a system associated with C. Since C is minimal, by Theorem 2.3, for any
hyperplane H of Fk

qm we have
〈U1 ∩H, . . . , Ut ∩H〉Fqm

= H,

which implies

(5)

t∑

i=1

dimFq(Ui ∩H) ≥ k − 1.

By Theorem 1.8 the maximum weight of C is

w(C) = N −min

{
t∑

i=1

dimFq(Ui ∩H) : H is an Fqm-hyperplane of Fk
qm

}

,

and by (5) the assertion follows. �

We can provide a characterization of MSRD codes which are minimal.

Corollary 2.5. An MSRD code with parameters [n, k]qm/q is minimal if and only if it is a one-
weight code with minimum distance N − k + 1.

Proof. Let C be an MSRD, that is its minimum distance is d = N − k+1. By Theorem 2.4, we also
know that w(C) ≤ N − k + 1, therefore d = w(C) = N − k + 1. The converse trivially holds. �

We consider now the Standard Equations, extending [3, Lemma 3.6]. Let us recall here that
(
N

K

)

qm
=

K−1∏

i=0

qN − qi

qK − qi

denotes the number of K-dimensional subspaces of F
N
qm and it is called the Gauss binomial

coefficient.

Lemma 2.6 (Standard Equations). Let U = (U1, . . . , Ut) an [n, k]qm/q-system and let

Λr =
{

W : W is an r-dimensional Fqm-subspace of Fk
qm

}

.

Then
∑

W∈Λr,i∈{1,...,t}

|W ∩ Ui \ {0}| = (qn1 + . . .+ qnt − t)

(
k − 1

r − 1

)

qm
.

Proof. The assertion follows from the fact that for any i ∈ {1, . . . , t}, [3, Lemma 3.6] implies

∑

W∈Λr

|W ∩ Ui \ {0}| = (qni − 1)

(
k − 1

r − 1

)

qm
,

and
∑

W∈Λr,i∈{1,...,t}

|W ∩ Ui \ {0}| =
∑

i∈{1,...,t}

(
∑

W∈Λr

|W ∩ Ui \ {0}|

)

.

�
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2.2. Bounds on the parameters of minimal sum-rank metric codes. By extending a minimal
sum-rank metric code by adding new columns and/or blocks we get a minimal code as well.

Proposition 2.7. Let C be a minimal sum-rank metric code with parameters [n, k]qm/q. Let C′ be
the code generated by G′, where G′ is obtained by adding any columns or blocks to any generator
matrix G of C. Then C′ is minimal.

Proof. This is an immediate consequence of Theorem 2.3. �

In view of Proposition 2.7, it is natural to look for short minimal sum-rank metric codes, when
the number of blocks is given.

The Standard Equations allow to prove the following bound on the parameters of minimal sum-
rank metric codes.

Theorem 2.8. Let C be an [n, k]qm/q minimal sum-rank metric code.
If t ≥ k, then

(6) (qn1 + . . .+ qnt − t)(qm(k−1) − 1) ≥ (q − 1)(k − 1)(qkm − 1)

If t ≤ k − 1 then

(7) (qn1 + . . .+ qnt − t)(qm(k−1) − 1) ≥ t(q⌊
k−1
t ⌋ − 1)(qkm − 1).

Proof. By Theorem 1.8, for any hyperplane

(8)
∑

i∈{1,...,t}

dimFq(H ∩ Ui) ≥ N −w(C) ≥ k − 1,

therefore
∑

i∈{1,...,t}

|H ∩ Ui \ {0}| ≥ (q − 1)(k − 1).

It follows that
∑

H∈Λk−1,i∈{1,...,t}

|H ∩ Ui \ {0}| ≥ (q − 1)(k − 1)

(
k

1

)

qm
,

so that, by Lemma 2.6,

(qn1 + . . .+ qnt − t)

(
k − 1

1

)

qm
≥ (q − 1)(k − 1)

(
k

1

)

qm
,

which is (6).
If t ≤ k − 1, then (8) implies that

dimFq(Ui ∩H) ≥

⌊
k − 1

t

⌋

,

for any i ∈ {1, . . . , t} and for any hyperplane H. Arguing as before we obtain (7). �

Corollary 2.9. Let C be an [n, k]qm/q minimal sum-rank metric code.
If t ≥ k, then, for large q,

(9) N ≥ t+m+ ⌈logq(k)⌉,

If t ≤ k − 1 then, for large q,

(10) N ≥

⌊
k − 1

t

⌋

+m+ ⌈logq(t)⌉+ t− 1.

Proof. Noting that qN−t+1 + (t− 1)q ≥ qn1 + . . . + qnt the asymptotic bounds follow. �
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Remark 2.10. For t = N (Hamming-metric case), the bound (6) becomes

N ≥

⌈
(qm)k − 1

(qm)k−1 − 1
· (k − 1)

⌉

.

This last is in general slightly weaker than the known lower bound on the length of minimal codes
(see [4, Theorem 2.14]), recently improved in [12, Theorem 1.4.] and [48, Theorem A] for large k.
Note that for k = 2, the above bound is sharp.

For t = 1 (rank-metric case), the bound (10) reduces to

N ≥ m+ k − 1,

which is exactly the bound proved for rank-metric codes [3, Corollary 5.10], which is shown to be
sharp for k = 2 and for k = 3, the last with some additional conditions on m (see [3, Theorem 6.7]
for the precise statement).

Bound (6) is tight for every q, m, t = q+1 and k = 2 as we will show in Remark 4.7. Moreover,
for k = 3 and q > 2, consider a code C associated with the [n, 3]qm/q-system

U = (U1, . . . , Ut),

where U1 is a scattered Fq-subspace of dimension m + 2 (which exists under some conditions, see
again [3, Theorem 6.7]) and U2, . . . , Ut any Fq-subspaces of dimension one spanned by random

nonzero vectors in F
k
qm. By [3, Theorem 6.7] and Theorem 2.3, C is a minimal sum-rank metric

code with N = m+2+ t− 1 = m+ t+1 which gives the equality in bounds (9) (for t ≥ 3) and (10)
(for t = 2).

2.3. Existence of minimal codes. A first result immediately follows from [3, Corollary 6.11] on
the existence of minimal codes in the rank metric.

Proposition 2.11. For any m,k ≥ 2, t and n2, . . . , nt, there exists a minimal code of parameters
[(2k +m− 2, n2, . . . , nt), k]qm/q.

Proof. [3, Corollary 6.11] ensures the existence of a minimal Fqm-linear rank-metric code of length
2k +m − 2 of dimension k. Then we can extend such a code to a minimal sum-rank metric code
via Proposition 2.7. �

However, the codes described in Proposition 2.11 are quite unbalanced, since we look only to the
first block and we do not care of the rest. The following result will give a more general existence
condition. We follow the proof of [3, Lemma 6.10] to give a condition on the parameters which
ensures the existence of a minimal sum-rank metric code. The main difference with the proof of
[3, Lemma 6.10] consists in computing the size of the analog of the set denoted by P in [3].

Theorem 2.12. If ni ≥ m for any i ∈ {1, . . . , t} and

(11)
(qmN − 1)(qm(N−1) − 1)

(qmk − 1)(qm(k−1) − 1)
−

1

2

m∑

i1,...,it=2

1

qm − 1

t∏

r=1

(
m

ir

)

q

ir−1∏

jr=0

(qnr − qjr)

(
qmir − 1

qm − 1
− 1

)

is positive, then there exists a linear sum-rank metric code with parameters [n, k]qm/q which is
minimal.

Proof. Denote by Q a set of nonzero representatives of the one-dimensional Fqm-subspaces of F
k
qm . A

non-minimal linear code in F
n

qm is any sum-rank metric code containing an element of the following
set

P = {(x, y) ∈ Q2 : x 6= y, suppsrk(x) ⊆ suppsrk(y) or suppsrk(y) ⊆ suppsrk(x)}.
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Therefore, the number of minimal sum-rank metric codes in F
n

qm is at least
(
N

k

)

qm
− |P|

(
N − 2

k − 2

)

qm
=

(
N − 2

k − 2

)

qm

(

(qmN − 1)(qm(N−1) − 1)

(qmk − 1)(qm(k−1) − 1)
− |P|

)

,

and hence if we prove that (qmN−1)(qm(N−1)−1)

(qmk−1)(qm(k−1)−1)
− |P| > 0, then we ensure the existence of a minimal

sum-rank metric code. Finally we compute the size of P as follows:

2|P| =
tm∑

i=1

|{(x, y) ∈ Q2 : x 6= y,w(y) = i, suppsrk(x) ⊆ suppsrk(y)}|

=
m∑

i1,...,it=1

∑

y∈Q, w(y)=i1+...+it

|{x ∈ Q : x 6= y, suppsrk(x) ⊆ suppsrk(y)}|

=

m∑

i1,...,it=1

∑

y∈Q, w(y)=i1+...+it

|{x ∈ Q : x 6= y, supprk(xℓ) ⊆ supprk(yℓ) ∀ℓ ∈ {1, . . . , t}}|

=
m∑

i1,...,it=2

1

qm − 1

t∏

r=1

(
m

ir

)

q

ir−1∏

jr=0

(qnr − qjr)

(
qmir − 1

qm − 1
− 1

)

.

�

Corollary 2.13. If ni ≥ m for any i ∈ {1, . . . , t} and for sufficiently large q, if

N ≥ 2k + tm− (t+ 1),

then there exists a linear sum-rank metric code with parameters [n, k]qm/q which is minimal.

Proof. As in the proof of [3, Corollary 6.11] we have the (11) is greater than

q2m(N−k) −
1

2(qm − 1)t+1

m∑

i1,...,it=2

t∏

r=1

(
m

ir

)

q

qir(m+nr),

which is greater than (with the same arguments as in the proof of [3, Corollary 6.11])

q2m(N−k) −
f(q)t

2(qm − 1)t+1
·

m∑

i1,...,it=2

q
∑t

r=1 2mir−i2r+nrir ,

where

f(q) :=
∞∏

i=1

qi

qi − 1
.

Now, by simple analytic arguments, the largest exponent in the sum on the right is tm2 +mN , so
that, for q large enough, we get

q2m(N−k) −
f(q)t

2
· qtm

2+mN−mt−m.

The thesis again follows by analytic arguments. �

3. The geometric dual of sum-rank metric codes

In this section we define a new operation which take an element in C[n, k, d]qm/q and it associates
to it an element in C[n′, k, d]qm/q, where n = (n1, . . . , nt) and n′ = (mk − n1, . . . ,mk − nt). It
involves systems and we call it geometric dual. We will show some of its properties and, in the
next section, we will show how this object helps in constructing minimal sum-rank metric codes.



GEOMETRIC DUAL AND SUM-RANK MINIMAL CODES 13

3.1. Dual of Fq-subspaces of Fqm-vector spaces. Let V be an Fqm-vector space of dimension k
and let σ : V × V → Fqm be any nondegenerate reflexive sesquilinear form of V and consider

σ′ : V × V −→ Fq

(x, y) 7−→ Trqm/q(σ(x, y)),

where V is seen as an Fq-vector space of dimension mk. So, σ′ is a nondegenerate reflexive sesquilin-
ear form on V seen as an Fq-vector space of dimension km. Then we may consider ⊥ and ⊥′ as
the orthogonal complement maps defined by σ and σ′, respectively. For an Fq-subspace U of V

of dimension n, the Fq-subspace U⊥′

is the dual (with respect to σ′) of U , which has dimension
km− n; see [32,43].

An important property that σ′ satisfies is that the dual of an Fqm-subspace W of V is an Fqm-

subspace as well and W⊥′

= W⊥. Moreover, the following result will be widely used in the paper.

Proposition 3.1 ([43, Property 2.6]). Let U be an Fq-subspace of V and W be an Fqm-subspace of
V . Then

dimFq(U
⊥′

∩W⊥) = dimFq(U ∩W ) + dimFq(V )− dimFq(U)− dimFq(W ).

In [43, Proposition 2.5], it has been proved that if we replace σ by another form with the same
properties, with this procedure we obtain an Fq-subspace of V which turns out to be ΓL(k, qm)-

equivalent to U⊥′

. For this reason, from now on we will assume that σ is fixed and we will just
write U⊥′

, without mentioning the form σ used.

3.2. Geometric dual. We are now ready to give the definition of geometric dual of an Fqm-linear
sum-rank metric code, taking into account the dual described in Section 3.1.

Definition 3.2. Let C be an [n, k, d]qm/q and let U = (U1, . . . , Ut) be an associated system to C with
the property that U1 ∩ . . . ∩ Ut does not contain a 1-dimensional Fqm-subspace. Then a geometric

dual C⊥G of C (with respect to ⊥′) is defined as C′, where C ′ is any code associated with the system
(U⊥

1 , . . . , U⊥
t ).

Remark 3.3. In the above definition we need that U1 ∩ . . . ∩ Ut does not contain a 1-dimensional
Fqm-subspace, otherwise (U⊥

1 , . . . , U⊥
t ) would not be a system. Indeed, suppose that (U⊥

1 , . . . , U⊥
t )

is not a system, then

〈U⊥′

1 , . . . , U⊥′

t 〉Fqm
⊆ H,

where H is an Fqm-hyperplane of Fk
qm. This implies that

U⊥′

1 + . . .+ U⊥′

t ⊆ H,

and by duality

U1 ∩ . . . ∩ Ut ⊇ H⊥,

a contradiction since dimFqm
(H⊥) = 1.

We will now prove that the geometric dual of a linear sum-rank metric code is well-defined and
we will give a relation on the weight distributions among the two codes.

Theorem 3.4. Let C be an [n, k, d]qm/q sum-rank metric code, with n = (n1, . . . , nt), and let
U = (U1, . . . , Ut) be an associated system to C. Assume that U1 ∩ . . . ∩ Ut does not contain any
1-dimensional Fqm-subspace of F

k
qm. Then, up to equivalence, a geometric dual C⊥G of C does

not depend on the choice of the associated system and on the choice of code in [C], hence ⊥G is
well-defined. The parameters of C⊥G are [(km − n1, . . . , km − nt), k]qm/q. The generalized weight

enumerators of C and C⊥G are related as follows

wk−r
C (X,Y ) = Xtmk−trm−NY trm−Nwr

C⊥G
(X,Y ).
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[C] ∈ C[n, k]qm/q [(U1, . . . , Ut)] ∈ U[n, k]qm/q

[(U⊥′

1 , . . . , U⊥′

t )] ∈ U[n′, k]qm/q[C⊥G ] ∈ C[n′, k]qm/q

//
Ψ

��

⊥′

oo Φ

Figure 1. The geometric dual with n = (n1, . . . , nt) and n′ = (mk − n1, . . . ,mk − nt).

In particular,

d1(C) = dk−1(C
⊥G ) +N − t(k − 1)m.

Proof. We now prove that ⊥G is well-defined on the equivalence classes of linear sum-rank metric
codes, that is, the geometric dual of equivalent codes are equivalent (note that this also implies that
the geometric dual does not depend on the choice of the system). Let C′ be a code equivalent to
C and let U ′ = (U ′

1, . . . , U
′
t) be an associated system to C ′. Then U and U ′ are equivalent systems

and hence there exist ρ ∈ St, a1, . . . , at ∈ F
∗
qm such that for every i ∈ {1, . . . , t}

U ′
i = aiUρ(i).

Note that this also implies that U ′
1 ∩ . . . ∩ U ′

t does not contain any 1-dimensional Fqm-subspace of

F
k
qm , since the Ui’s satisfy this condition. Then for every i ∈ {1, . . . , t}

(U ′
i)

⊥′

= {v ∈ F
k
qm : σ′(v, aiu) = 0 ∀u ∈ Uρ(i)} = a−1

i U⊥′

ρ(i),

since σ′(v, aiu) = Trqm/q(aiσ(v, u)) = σ′(aiv, u).

This implies that the systems (U⊥′

1 , . . . , U⊥′

t ) and (U ′⊥′

1 , . . . , U ′⊥′

t ) are equivalent and hence C⊥G and

C′⊥G are equivalent as well. So, we proved that ⊥G is well-defined.
Now, observe that the code C⊥G has dimension k since ⊥′ does not change the dimension of

the ambient space of the Ui’s. Since dimFq(U
⊥′

i ) = mk − dimFq(Ui) for any i, it follows that C⊥G

has parameters [(km − n1, . . . , km − nt), k]. To determine the r-th generalized sum-rank weight
enumerator of C we need to compute

N −
t∑

i=1

dimFq(Ui ∩W ),

for any Fqm-subspace W of Fk
qm of dimension r, where N = n1 + . . . + nt. By Proposition 3.1, we

obtain that

N −
t∑

i=1

dimFq(Ui ∩W ) = N −
t∑

i=1

dimFq(U
⊥′

i ∩W⊥) + tmk −N − trm =

tmk −N −

t∑

i=1

dimFq(U
⊥′

i ∩W⊥) +N − trm,

which correspond to a weight appearing in the (k − r)-th generalized sum-rank weight enumerator
of C⊥G plus N − trm. Therefore, if

W k−r
C (X,Y ) =

N∑

w=0

AwX
N−wY w and W r

C⊥G
(X,Y ) =

N∑

w=0

BwX
tmk−N−wY w,

we have that

Aw = Bw−N+trm,
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for any w. Therefore,

W r
C⊥G

(X,Y ) =

N∑

w′=0

Bw′Xtmk−N−w′

Y w′

=
N∑

w=0

Bw−N+trmXtmk−w−trmY w−N+trm

=

N∑

w=0

AwX
tmk−trm−wY w−N+trm,

that is the assertion. �

Remark 3.5. With the notation of Theorem 3.4 and by denoting G a generator matrix of C, by
Remark 1.9 we have that the rank list of the codeword xG is

(n1 − dimFq(U1 ∩ x⊥), . . . , n1 − dimFq(Ut ∩ x⊥)),

which, by Proposition 3.1, is equal to

(m− dimFq(U
⊥′

1 ∩ 〈x〉Fqm
), . . . ,m− dimFq(U

⊥′

t ∩ 〈x〉Fqm
)).

Proposition 3.6. The geometric dual is involutory.

Proof. This immediately follows by the definition of geometric dual and from the fact that ⊥′ is
involutory. �

Remark 3.7. The geometric dual operation can be applied to both Hamming and rank metric. In
the first case, the geometric dual of a Hamming-metric code of length n and dimension k will give
a sum-rank metric code with parameters [(mk − 1, . . . ,mk − 1), k]qm/q, which is far from being an
Hamming-metric code. For rank-metric codes with parameters [n, k]qm/q, the geometric dual gives
a rank-metric code as well, with parameters [mk − n, k]qm/q.

4. Minimal codes with few weights

In this section we will mainly deal with explicit construction of minimal codes in the sum-rank
metric. We will make extensive use of the geometric dual introduced above.

As in the Hamming and in the rank metrics (see e.g. [3]), all the one-weight sum-rank metric
codes are minimal.

Proposition 4.1 ([47, Proposition 10.26]). Let C be an [n, k]qm/q sum-rank metric. If all the
codewords of C have the same sum-rank metric weight then C is a minimal sum-rank metric code.

The main difference is that in Hamming and rank metrics, simplex codes are essentially the only
one-weight codes; see [16,45]. In the sum-rank metric, we have more examples as we will see later
on and as it has been proved in [41].

Another way to get examples, is to obtain information on minimal codes in sum-rank metric by
looking at the associated Hamming-metric codes, cfr. Section 1.5.

Proposition 4.2 ([47, Corollary 10.28]). Let C be an [n, k]qm/q sum-rank metric code. Then C is

minimal if and only if any associated Hamming-metric code CH is minimal.

Thanks to the above proposition, we can use some conditions proved in the Hamming-metric to
ensure that a Hamming-metric code is minimal. More precisely, we will now describe a generalization
of the celebrated Ashikhmin-Barg condition (see [7, Lemma 2.1]).
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Theorem 4.3 (Ashikhmin-Barg condition for sum-rank metric codes). Let C be an [n, k]qm/q sum-
rank metric code. Denote by

δmax = max
r∈S(C)

{
qni − qni−ri

q − 1

}

and

δmin = min
r∈S(C)

{
qni − qni−ri

q − 1

}

,

where S(C) is the set of rank-lists of C. If

δmax

δmin
<

qm

qm − 1
,

then the code C is minimal.

Proof. Let CH be an associated Hamming-metric code to C. The minimum distance of CH is δmin

and its maximum weight is δmax. By [7, Lemma 2.1] and because of the assumptions on δmin and
δmax, the code CH is minimal. Since the sum-rank metric code C is minimal if and only if CH is a
minimal code in the Hamming-metric, the assertion is proved. �

If a sum-rank metric code satisfies the assumption of Theorem 4.3, we say that it satisfies the
AB-condition.

In the following subsections, we will first see old and new constructions of one-weight sum-rank
metric codes (proving that this is a very large family) and then we will show examples of minimal
codes with few weights, where some of them satisfy the AB-condition and some of them do not.

4.1. Sum-rank one-weight codes. Some constructions of one-weight codes have been given in
[41], which can be divided in three families:

• orbital construction (extending the simplex code);
• doubly extended linearized Reed-Solomon;
• linear sets construction.

In particular, the last two constructions give 2-dimensional one-weight codes in the sum-rank
metric, whereas the first one give constructions of any dimension. In [41], the authors also showed
that the last two families cannot be obtained from the orbital construction. It is natural to ask
whether or not there are examples of one-weight codes which cannot be obtained from the orbital
constructions also for larger dimensions.

We start by recalling the orbital construction.
Let G be a subgroup of GL(k, qm) and consider the action φG of G on F

k
qm \ {0}, that is

φG : G × (Fk
qm \ {0}) −→ F

k
qm \ {0}

(A, v) 7−→ vA.

For any n and r such that r divides m, this action naturally induces an action also on the n-
dimensional Fqr -subspaces of Fk

qm with kernel G ∩ Dqr , where Dqr = {αIk : α ∈ F
∗
qr}. In order to

get a shorter code, we can consider the action of the group G = G/(G ∩ Dqr) on the n-dimensional

Fqr -subspaces of Fk
qm , that we denote by φr,n

G . Finally, we say that G ≤ GL(k, qm) is transitive if

the action φm,1
G is transitive; see [41, Section 6.1] for a more detailed discussion.

Construction 4.4 (Orbital construction [41]). Let U be an Fq-subspace of Fk
qm of dimension n over

Fq. Let G ≤ GL(k, qm) be a transitive subgroup and let O = (φ1,n
G (A,U))A∈G be the orbit (counting

possible repetition) of the action of φ1,n
G . When G is the Singer subgroup of GL(k, qm) we call the

orbit O an n-simplex. A sum-rank metric code associated with the system O = (U1, . . . , Ut) is an
[(n, . . . , n), k]qm/q one-weight sum-rank metric code.
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Remark 4.5. Let O and O′ two distinct orbits as in the above construction, the system obtained
by plugging together O and O′ gives rise to a one-weight code and the considered system is union
of orbits. So, in order to provide a construction of a sum-rank metric code C which is one-weight
but does not arise from the orbital construction, we need to show that a system associated with C
cannot be obtained as union of orbits.

We now read the property of being one-weight in the geometric dual of the code.

Proposition 4.6. Let C be an [n, k]qm/q sum-rank metric code and let (U1, . . . , Ut) be an associated

system. Assume that U1 ∩ . . . ∩ Ut does not contain any 1-dimensional Fqm-subspace of Fk
qm. Then

C is a one-weight code if and only if C⊥G is a one-weight code with respect to the generalized weights
of order k − 1, that is

(12) dk−1(C
⊥G ) = N −

t∑

i=1

dimFq (U
⊥′

i ∩ 〈w〉Fqm
),

for any w ∈ F
k
qm \ {0}. In particular, if d1(C) 6= tm then

t⋃

i=1

L
U⊥′

i
= PG(k − 1, qm).

Proof. The code C is one-weight if and only if w1
C(X,Y ) only presents one monomial, that is

w1
C(X,Y ) = (| C | − 1)XN−d1(C)Y d1(C).

By Theorem 3.4, this happens if and only if wk−1

C⊥G
(X,Y ) presents only one monomial, and hence

the first part of the assertion. For the last part, observe that if C is one-weight, by the first part of
the assertion we have

(13)

t∑

i=1

dimFq(U
⊥′

i ∩ 〈w〉Fqm
) =

t∑

i=1

wL
U⊥′

i

(〈w〉Fqm
) = tmk −N − dk−1(C

⊥G ),

for any w ∈ F
k
qm \ {0}. Suppose that

⋃t
i=1 LU⊥′

i
6= PG(k − 1, qm). Then, because of (13), we can

only have that tmk −N = dk−1(C
⊥G ). Theorem 3.4 implies also that

d1(C) = dk−1(C
⊥G ) +N − t(k − 1)m,

and hence d1(C) = tm, a contradiction. �

Remark 4.7. By Proposition 4.6, and more precisely from (12), a partition in scattered linear set
gives a one-weight code. Indeed, the construction of doubly extended linearized Reed-Solomon code
with parameters [(m, . . . ,m, 1, 1), 2]qm/q can be read via an associated system (U1, . . . , Uq+1) with
the following properties:

• dimFq(Ui) = m for every i ∈ {1, . . . , q − 1};
• dimFq(Uq) = dimFq (Uq+1) = 1;

• Ui’s are scattered Fq-subspaces of F2
qm .

Since in F
2
qm the hyperplanes coincide with the 1-dimensional Fqm-subspaces of F2

qm and since the
code is MSRD, we have

q+1
∑

i=1

dimFq(Ui ∩ 〈w〉Fqm
) = 1,

for any w ∈ F
2
qm \ {0}. Therefore, these codes are one-weight codes and by Proposition 4.1 they are

also minimal codes. Moreover, they meet the lower bound (6). By Proposition 4.6, the geometric
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dual of a doubly extended linearized Reed-Solomon code is a one-weight code with parameters

[(m, . . . ,m
︸ ︷︷ ︸

q−1 times

, 2m− 1, 2m− 1), 2]qm/q.

Note that for m = 2, such code meets the lower bound (6). We give its generator matrix in the next
remark.

In particular, a partition in scattered subspaces/linear sets gives via Proposition 4.6 a one-weight
code with nonzero weight equals to N − t(k − 1)m+ 1.

Remark 4.8. We can determine a generator matrix for the geometric dual of a 2-dimensional
doubly extended linearized Reed-Solomon code. Let α1, . . . , αq−1 ∈ Fqm having pairwise distinct
norm over Fq and define

Ui = {(x, aix
q) : x ∈ Fqm},

for any i ∈ {1, . . . , q − 1}. Consider the following sesquilinear form

σ′ : ((x, y), (z, t)) ∈ F
2
qm 7→ Trqm/q(xt− yz) ∈ Fq.

Then

U⊥′

i = {(yq, aq
n−1

i y) : y ∈ Fqm} = {(y, aq
n−1

i yq
n−1

) : y ∈ Fqm},

for any i, since

σ′((x, aix
q), (yq, aq

n−1

i y)) = Trqm/q(a
qn−1

i xy − aix
qyq) = 0,

for every x, y ∈ Fqm. By definition of σ′ we also have that

〈(1, 0)〉⊥
′

Fq
= {(α, β) : α, β ∈ Fqm and Trqm/q(β) = 0}

and

〈(0, 1)〉⊥
′

Fq
= {(α, β) : α, β ∈ Fqm and Trqm/q(α) = 0}.

Therefore, if B = {b1, . . . , bm} is an Fq-basis of Fqm and C = {c1, . . . , cm−1} is an Fq-basis of
ker(Trqm/q), then a generator matrix for the geometric dual of a 2-dimensional linearized Reed-
Solomon code is as follows:

• the i-th blocks has as j-th column (bqj , aibj), for i ∈ {1, . . . , q − 1} and j ∈ {1, . . . ,m};

• the q-th block has as j-th column (bj , 0) if j ∈ {1, . . . ,m} and (0, cj−m) if j ∈ {m+1, . . . , 2m−
1};

• the last block has as j-th column (0, bj) if j ∈ {1, . . . ,m} and (cj−m, 0) if j ∈ {m+1, . . . , 2m−
1}.

In the Remark 4.7, we have seen that we can find q − 1 maximum scattered Fq-linear set in
PG(1, qm) which are pairwise disjoint and cover PG(1, qm) except for two points (which can be
arbitrarily chosen).

We can use this fact to construct partition in scattered Fq-linear sets for higher dimensions.

Construction 4.9 (partition in scattered linear sets). We start with the plane: consider P = 〈v〉Fqm

a point in PG(2, qm) and a line ℓ = PG(W,Fqm) not passing through P . Denote by

ℓ1 = PG(W1,Fqm), . . . , ℓqm+1 = PG(Wqm+1,Fqm)

the lines through P and denote by Qi = ℓ ∩ ℓi = 〈vi〉Fqm
for any i ∈ {1, . . . , qm + 1}. For any

i ∈ {1, . . . , qm + 1} consider

Ui,1, . . . , Ui,q−1

maximum scattered Fq-subspaces of Wi for which the associated linear sets form a partition of
ℓi \ {P,Qi}, which exists because of Remark 4.7. Consider

Uqm+2,1, . . . , Uqm+2,q−1
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maximum scattered Fq-subspaces of W for which the associated linear sets form a partition of ℓ \
{Q1, Q2}. The Fq-linear sets associated with Ui,j’s together with 〈v〉Fq , 〈v1〉Fq and 〈v2〉Fq give a
partition in scattered Fq-linear sets of PG(2, qm). This gives a code of parameters

[( m, . . . ,m
︸ ︷︷ ︸

(q−1)(qm+2) times

, 1, 1, 1), 3]qm/q

whose geometric dual has parameters

[( 2m, . . . , 2m
︸ ︷︷ ︸

(q−1)(qm+2) times

, 3m− 1, 3m− 1, 3m− 1), 3]qm/q.

For larger dimension: suppose that we have U1, . . . , Ur scattered Fq-subspaces with the property
that the associated linear sets cover a projective space of dimension k − 1. Consider a point P =
〈v〉Fqm

∈ PG(k − 1, qm) and a hyperplane H not passing through P , then we can proceed to cover
with scattered linear sets all of the lines through P , except for the point P and the intersection of
the line with H. As we have done for the plane, adding the Ui’s and 〈v〉Fq to these subspaces, we
obtain a family of scattered subspace covering the entire space.

The above construction contains a large number of blocks. It is possible, under certain restrictions,
to consider a smaller number of subspaces with the use of canonical subgeometries.

A canonical subgeometry of PG(k− 1, qm) is any PG(k− 1, q) which is embedded in PG(k−
1, qm). The following result gives condition on k and m which allows us to construct a partition of
PG(k − 1, qm) in canonical subgeometries.

Theorem 4.10 ([25, Theorem 4.29]). There exists a partition of PG(k − 1, qm) into canonical
subgeometries if and only if gcd(k,m) = 1.

Remark 4.11. Suppose that gcd(k,m) = 1 and let

U1, . . . , Ut

be Fq-subspaces of Fqm of dimension k such that LU1 , . . . , LUt a partition of PG(k − 1, qm) into

canonical subgeometries, with t = (qmk−1)(q−1)
(qm−1)(qk−1)

. A code associated with (U1, . . . , Ut) has parame-

ters [(k, . . . , k), k, (t − 1)k]qm/q and it is one-weight. Its geometric dual has parameters [(k(m −
1), . . . , k(m− 1)), k, t(k − 1)]qm/q, via Theorem 3.4.

4.1.1. Lift construction. In this section we describe a procedure to construct one-weight sum-rank
metric codes starting from any sum-rank metric code, extending the construction described in
[41, Section 7.2].

Let U1, . . . , Ut be Fq-subspaces in F
k
qm and define

M = max

{
t∑

i=1

wLUi
(P ) | P ∈ PG(k − 1, qm)

}

.

Define M(U1, . . . , Ut) the lift of U1, . . . , Ut as a vector of Fq-subspaces whose entries are

• U1, . . . , Ut;
• c copies of 〈v〉Fqm

and a d-dimensional subspace of 〈v〉Fqm
, for any P = 〈v〉Fqm

∈ PG(k −

1, qm), where M −
∑t

i=1wLUi
(P ) = c ·m+ d with c, d ∈ N and d < m.

Clearly, by construction
∑

U∈M(U1,...,Ut)

wLU
(P ) = M,

for every point P ∈ PG(k − 1, qm).
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So, consider C ∈ Φ([M(U1, . . . , Ut)]) then by applying Proposition 4.6 we obtain that C⊥G is a
linear one-weight sum-rank metric code of dimension k. Any code in Φ([M(U1, . . . , Ut)]) will be
called the lifted code of U1, . . . , Ut.

In the next result we show that we can construct a one-weight sum-rank metric code starting
from any sum-rank metric code.

Theorem 4.12. Every sum-rank metric code can be extended to a one-weight code.

Proof. Let (U1, . . . , Ut) an associated system to C and G = (G1| . . . |Gt) a generator matrix of C
such that the column span of Gi is Ui for any i. Consider the lift

M(U⊥′

1 , . . . , U⊥′

t ) = (U⊥′

1 , . . . , U⊥′

t ,Wt+1, . . . ,Ws).

Let D ∈ Φ([M(U⊥′

1 , . . . , U⊥′

t )]), then by duality U⊥′

1 ∩. . .∩U⊥′

t does not contain any one-dimensional
Fqm-subspace and hence by Theorem 3.4 D⊥G is a one-weight code and a system associated with

D⊥G is

(U1, . . . , Ut,W
⊥′

t+1, . . . ,W
⊥′

s ),

and hence it is an extension of C, since a generator matrix of D⊥G has the following shape

(G1| . . . |Gt|Gt+1| . . . |Gs),

where the the column span of Gi is W
⊥′

i for any i ∈ {t+ 1, . . . , s}. �

In the following result we prove that there are linear sum-rank metric codes which cannot be
obtain from the orbital construction for any possible value of the dimension, already proved in [41]
in the two-dimensional case.

Theorem 4.13. For every k, there are one-weight sum-rank metric codes which are not equivalent
to a sum-rank metric code obtained from the orbital construction.

Proof. Consider C a [n, k]qm/q sum-rank metric code (that is, a rank-metric code) with the property
that n > m. Let U be any system associated with C and consider M(U) the lift of U and follow
the proof of Theorem 4.12 to construct a one-weight sum-rank metric code C′. Since U is the only
Fq-subspace in M(U) having dimension larger than m, then in M(U) there cannot the an orbit of
U and hence C′ cannot be obtained as (union) of orbital constructions. �

Remark 4.14. In the proof of the above theorem, we started from a rank-metric code, but then we
can start from any code whose associated systems do not form an orbit under a transitive group of
an Fq-subspace of dimension greater than m.

Remark 4.15. In [36], the author showed that in some cases extending an MSRD code by adding
new blocks does not preserve the property of being MSRD.

4.2. Constructions of two-weight minimal sum-rank metric codes. In this section we will
give examples of minimal sum-rank metric codes with two weights, in some cases by using the
AB-condition and some other by exploiting the geometry behind them. Let us start with the first
construction.

Construction 4.16. Consider t mutually disjoint scattered Fq-linear sets LU1 , . . . , LUt in PG(k −
1, qm) of rank n1, . . . , nt, respectively, with n1 ≥ . . . ≥ nt. Suppose also that LU1 ∪ . . . ∪ LUt 6=

PG(k−1, qm). Denote by C(U⊥′

1 , . . . , U⊥′

t ) the geometric dual of a code associated with (U1, . . . , Ut).

The metric properties of the above construction are described in the following result.
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Theorem 4.17. Let C be as in Construction 4.16. Its parameters are [(mk−n1, . . . ,mk−nt), k]qm/q

and it has two distinct nonzero weights:

tm and tm− 1.

Moreover, its set of rank-lists is

S(C) = {(m, . . . ,m), (m− 1,m, . . . ,m), (m,m − 1, . . . ,m), . . . , (m, . . . ,m,m− 1)}.

Proof. Let start by observing that (U⊥′

1 , . . . , U⊥′

t ) is a system with parameters [(mk−n1, . . . ,mk−

nt), k]qm/q. By Theorem 3.4, the weights of C(U⊥′

1 , . . . , U⊥′

t ) correspond to the possible values that
the following expression can assume

tm−

t∑

i=1

dimFq(U
⊥′

i ∩ 〈w〉Fqm
),

where w ∈ F
k
qm \{0}. Since the LUi

’s are scattered and disjoint, we have that dimFq(U
⊥′

i ∩〈w〉Fqm
) ∈

{0, 1} and can be one at most for one i ∈ {1, . . . , t} for every w, hence the weight distribution is de-

termined. The possible rank-lists of the codewords of C(U⊥′

1 , . . . , U⊥′

t ) (see Remark 3.5) correspond
to determine

(m− dimFq(U1 ∩ 〈w〉Fqm
), . . . ,m− dimFq(Ut ∩ 〈w〉Fqm

)),

because of the assumptions on the LUi
’s, we have that either dimFq(U1 ∩ 〈w〉Fqm

) = 0 for any i or

there exist j ∈ {1, . . . , t} such that dimFq(Uj ∩ 〈w〉Fqm
) = 1 and dimFq(Ui ∩ 〈w〉Fqm

) = 0 for any the
remaining values of i. �

The codes with the parameters as those in Construction 4.16 all arise from Construction 4.16.

Theorem 4.18. If C is a sum-rank metric code with the parameters as in Construction 4.16 then
C can be obtain as in Construction 4.16.

Proof. Assume that C is an [n, k]qm/q sum-rank metric code with n = (mk − n1, . . . ,mk − nt) and
with two distinct weights tm and tm − 1. Denote by N = n1 + . . . + nt and let (U1, . . . , Ut) any
system associated with C. By Theorem 1.8, we have that for any hyperplane of Fk

qm

t∑

i=1

dimFq(Ui ∩H) ∈ {tm(k − 1), tm(k − 1) + 1},

and applying Proposition 3.1 we obtain

t∑

i=1

dimFq(U
⊥′

i ∩ 〈w〉Fqm
) ∈ {0, 1},

for any 1-dimensional Fqm-subspace of Fk
qm . Therefore, for any point P ∈ PG(k − 1, qm) we have

that
t∑

i=1

wL
U⊥′

i

(P ) ∈ {0, 1},

and so LU⊥′

i
’s are pairwise disjoint scattered Fq-linear sets. �

Thanks to Theorem 4.17, we can determine the weight distribution of the Hamming metric codes
associated with those in Construction 4.16.

Proposition 4.19. An associated Hamming metric code to the codes of Construction 4.16 has
length N = tkm− n1 . . . − nt, dimension k and exactly |{n1, . . . , nt}|+ 1 nonzero distinct weights,
which are

δmax =

t∑

i=1

qmk−ni − qmk−ni−m

q − 1
,
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wj =
qmk−nj − qmk−nj−m+1

q − 1
+

∑

i∈{1,...,t}\{j}

qmk−ni − qmk−ni−m

q − 1
, j ∈ {1, . . . , t},

and

δmin =
qmk−nt − qmk−nt−m+1

q − 1
+

t−1∑

i=1

qmk−ni − qmk−ni−m

q − 1
.

Proof. By taking into account the set of rank-lists of a code as in Construction 4.16 determined
in Theorem 4.17, by Proposition 1.14 the possible weights of an associated code is given by the
following formula

qmk−nj − qmk−nj−m+1

q − 1
+

∑

i∈{1,...,t}\{j}

qmk−ni − qmk−ni−m

q − 1
,

for any j ∈ {1, . . . , t} and by
t∑

i=1

qmk−ni − qmk−ni−m

q − 1
.

Therefore, the number of distinct weights is given by the number of the different ni’s plus one. �

Remark 4.20. In the case in which n1 = . . . = nt = n, such codes are two-weight Hamming metric
codes, with weights

δmax = t ·
qmk−n − qmk−n−m

q − 1
,

and

δmin =
qmk−n − qmk−n−m+1

q − 1
+ (t− 1) ·

qmk−n − qmk−n−m

q − 1
.

Note also that if the ni’s are not all equal, then from a two-weight code in the sum-rank metric we
obtain an Hamming metric code with more than two weights. This is a remarkable difference with
the rank metric.

Theorem 4.21. Let C be a code as in Construction 4.16 with n1 = . . . = nt = n. If

t > (q − 1) ·
qm

qm − 1
,

then C is minimal and it satisfies the AB-condition.

Proof. We will prove the minimality of C with the aid of the AB-condition. To this aim

δmax

δmin
=

t(qm − 1)

qm − q + (t− 1)(qm − 1)
= 1 +

q − 1

tqm − q − t+ 1
,

since t > (q − 1)qm/(qm − 1) we have

δmax

δmin
<

qm

qm − 1

and hence Theorem 4.3 implies the assertion. �

Remark 4.22. Consider Construction 4.16 by using more than (q − 1) · qm

qm−1 mutually disjoint

subgeometries (which exists for instance when gcd(m,k) = 1, see Theorem 4.10). The above theorem
implies that Construction 4.16 gives minimal codes.

Note that in the above result if we consider t = 2 and q > 2, then the AB-condition is not
satisfied (it is indeed satisfied for q = 2). In the next result, we show that when t = 2, even if the
AB-condition is not satisfied, Construction 4.16 still gives minimal codes and the two rank-metric
codes defined by the two blocks are not minimal.
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Theorem 4.23. Let U1 and U2 be two trivially intersecting scattered Fq-subspaces of dimension
m contained respectively in W1 and W2, where W1 and W2 are two distinct 2-dimensional Fqm-

subspaces of F3
qm. The geometric dual C(U⊥′

1 , U⊥′

2 ) of a code associated with (U1, U2) is a minimal
sum-rank metric code, which satisfies the AB-condition if and only if q = 2. Moreover, the codes
associated with U⊥′

1 and U⊥′

2 , respectively, are not minimal.

Proof. Let start by computing the possible dimension of intersection between the U⊥′

i ’s and the
Fqm-subspaces of F

3
qm with dimension either one or two with the aid of Proposition 3.1:

dimFq(U
⊥′

i ∩W⊥) = dimFq(Ui ∩W ) ∈ {0, 1,m},

for any 2-dimensional Fqm-subspace W and dimFq(U
⊥′

i ∩W⊥) = m if and only if W = Wi, for any
i ∈ {1, 2}, also

dimFq(U
⊥′

i ∩ 〈w〉⊥Fqm
) = dimFq(Ui ∩ 〈w〉Fqm

) +m ∈ {m,m+ 1},

for any 1-dimensional Fqm-subspace 〈w〉Fqm
. In terms of linear sets, this means that

wL
U⊥′

i

(P ) ∈ {0, 1,m} and wL
U⊥′

i

(ℓ) ∈ {m,m+ 1},

for any point P and any line ℓ of PG(2, qm). We now show that (U⊥′

1 , U⊥′

2 ) is a cutting system

(which is equivalent to show that C(U⊥′

1 , U⊥′

2 ) is minimal by Theorem 2.3), which is equivalent to
show that any line ℓ of PG(2, qm) meets L

U⊥′

1
∪ L

U⊥′

2
in at least two points. Note that since L

U⊥′

1

and L
U⊥′

2
have rank 2m, which is greater than m + 1, then every line meet L

U⊥′

1
and L

U⊥′

2
in at

least one point. Denote by P1 and P2 the points defined by W⊥′

1 and W⊥′

2 , respectively. Let ℓ be
any line through P1, since P1 6= P2 and P1 /∈ L

U⊥′

2
, then ℓ meets L

U⊥′

2
in at least another point.

Therefore, |ℓ ∩ (L
U⊥′

1
∪ L

U⊥′

2
)| ≥ 2. Similar arguments can be performed when considering lines

through P2, so assume that ℓ is a line not passing through neither P1 nor to P2. Since all the points
different from P1 and P2 have weight either one or zero and the weight of ℓ is either m or m + 1,
then |ℓ ∩ LU⊥′

1
| ≥ 2 and hence (U⊥′

1 , U⊥′

2 ) is a cutting system. Finally, we show that U⊥′

1 and U⊥′

2

are not cutting. Indeed, by contradiction assume that U⊥′

1 is a cutting system. Any line ℓ through
P1 has weight m+ 1, since wL

U⊥′

1

(P1) = m and LU⊥′

1
∩ ℓ has at least two points. This implies that

all the lines through P1 are contained in L
U⊥′

1
and hence

|L
U⊥′

1
| ≥ (qm + 1)qm + 1,

which is a contradiction to the fact that |L
U⊥′

1
| ≤ q2m−1

q−1 by (4). Now, let

δmax =
2(q(k−1)m − q(k−2)m)

q − 1

and

δmin =
2q(k−1)m − q(k−2)m+1 − q(k−2)m

q − 1
.

Then δmax/δmin < qm/(qm − 1) if and only if

−
−3qm + 2 + qm+1

(−qm + q − qm + 1)(qm − 1)
< 0

and hence if and only if

−3qm + 2 + qm+1 < 0,

and, since it can be rewritten as qm(q − 3) < −2, this happens if and only if q = 2. Therefore, the
assumption of Theorem 4.3 are satisfied if and only if q = 2. �
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Example 4.24. Let

U1 = {(x, xq, 0): x ∈ Fqm} and U2 = {(0, x, xq) : x ∈ Fqm}.

It is easy to see that they satisfy the assumptions of Theorem 4.23. Consider σ′ as the following
sesquilinear form

σ′ : ((x, y, t), (x′, y′, z′)) ∈ F
3
qm 7→ Trqm/q(xx

′ + yy′ + zz′) ∈ Fq.

Then
U⊥′

1 = {(xq
m−1

,−x, y) : x, y ∈ Fqm}

and
U⊥′

2 = {(y, xq
m−1

,−x) : x, y ∈ Fqm}.

Therefore, a generator matrix of C(U⊥′

1 , U⊥′

2 ) is

G =






aq
m−1

1 . . . aq
m−1

m 0 . . . 0 a1 . . . am 0 . . . 0

−a1 . . . −am 0 . . . 0 0 . . . 0 aq
m−1

1 . . . aq
m−1

m

0 . . . 0 a1 . . . am 0 . . . 0 −a1 . . . −am




 ∈ F

3×4m
qm ,

where {a1, . . . , am} is an Fq-basis of Fqm.

Remark 4.25. In the above example, we may replace xq with any scattered polynomial; see [30,40]
and the references therein.

In the next result we show that when t = 2 in Construction 4.16 with n1 and n2 having a distinct
value, then the code obtained satisfies the AB-condition if n1 and n2 are enough close distinct
numbers.

Theorem 4.26. Let U1 and U2 be two trivially intersecting scattered Fq-subspaces of dimension n1

and n2 = n1 − r with 1 ≤ r ≤ m, respectively. The geometric dual C(U⊥′

1 , U⊥′

2 ) of a code associated
with (U1, U2) is a minimal sum-rank metric code which satisfies the AB-condition.

Proof. As in the previous proof, we start by computing the possible dimension of intersection
between the U⊥′

i ’s and the Fqm-subspaces of F
k
qm with dimension k − 1:

dimFq (U
⊥′

i ∩ 〈w〉⊥Fqm
) = dimFq(Ui ∩ 〈w〉Fqm

) + (k − 1)m− ni ∈ {(k − 1)m− ni, (k − 1)m− ni + 1},

for any one-dimensional Fqm-subspace 〈w〉Fqm
in F

k
qm. Therefore, by Remark 1.9 we have that the

rank lists of the code C(U⊥′

1 , U⊥′

2 ) are

(m,m), (m− 1,m) and (m,m− 1).

Considering C(U⊥′

1 , U⊥′

2 )H we have

δmax =
qkm−n1 − q(k−1)m−n1 + qkm−n2 − q(k−1)m−n2

q − 1

and

δmin =
qkm−n1 − q(k−1)m−n1+1 + qkm−n2 − q(k−1)m−n2

q − 1
.

Replacing n1 = n2 + r, δmax/δmin < qm

qm−1 is equivalent to

−
−2qm + 1− qr+m + qr + qm+1

(−qm + q − qr+m + qr)(qm − 1)
< 0

and hence
−2qm + 1− qr+m + qr + qm+1 < 0,

which holds true as m ≥ r and r ≥ 1. Therefore, the assertion follows by applying Theorem 4.3. �
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