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Observation-constrained projections reveal 
longer-than-expected dry spells

Irina Y. Petrova1 ✉, Diego G. Miralles1 ✉, Florent Brient2, Markus G. Donat3,4, Seung-Ki Min5,6, 
Yeon-Hee Kim5 & Margot Bador7

Climate models indicate that dry extremes will be exacerbated in many regions of the 
world1,2. However, confidence in the magnitude and timing of these projected changes 
remains low3,4, leaving societies largely unprepared5,6. Here we show that constraining 
model projections with observations using a newly proposed emergent constraint 
(EC) reduces the uncertainty in predictions of a core drought indicator, the longest 
annual dry spell (LAD), by 10–26% globally. Our EC-corrected projections reveal that 
the increase in LAD will be 42–44% greater, on average, than ‘mid-range’ or ‘high-end’ 
future forcing scenarios currently indicate. These results imply that by the end of this 
century, the global mean land-only LAD could be 10 days longer than currently 
expected. Using two generations of climate models, we further uncover global 
regions for which historical LAD biases affect the magnitude of projected LAD 
increases, and we explore the role of land–atmosphere feedbacks therein. Our 
findings reveal regions with potentially higher- and earlier-than-expected drought 
risks for societies and ecosystems, and they point to possible mechanisms underlying 
the biases in the current generation of climate models.

Drought is one of the most devastating natural disasters of modern 
times7. Recent unprecedented drought events have demonstrated the 
high vulnerability and exposure of different societies and economic 
systems to this natural hazard6. The aggravated nature of present-day 
droughts, and their further expected exacerbation as a result of cli-
mate change, has drawn global attention to the accuracy of future 
projections and brought this topic to the forefront of governmental 
and public interests5,7.

Despite the scientific consensus that the frequency and duration 
of dry extremes increase as a consequence of rising greenhouse gas 
(GHG) emissions in most regions of the world1, uncertainty in future 
projections remains high, especially at regional scales3,4. Moreover, the 
diversity of drought types and metrics complicates comparisons of 
existing studies8. Furthermore, model misrepresentation of the physi-
cal processes underlying rainfall deficits hampers accurate simulation 
of present-day drought characteristics9,10, and leads to substantial 
differences between models in their response to GHG forcing on dry 
extremes4. The discrepancy between models in simulated historical pre-
cipitation intensity and frequency11,12 leads to inter-model differences 
in hydrological budgets13 and in the strength of relevant feedbacks, 
such as those involving soil moisture14 and clouds15. These systematic 
biases are known to contribute to divergence in model projections 
of dry extremes14,16–18, while the role of internal variability or selected 
emissions scenario appears to be less relevant3,4,19. Therefore, correcting 
for systematic precipitation errors is key to reducing the uncertainty in 
future drought projections20, which is critical for the development of 
reliable and targeted adaptation strategies to minimize or even prevent 
future societal and environmental impacts21.

In this study, we revisit global drought projections for the twenty-first 
century and their uncertainty by exploring EC relationships in a metric 
of meteorological drought. The EC method has been established as 
a successful technique for reducing discrepancies in climate-model 
projections by identifying physically plausible relationships between 
past model errors and future prediction uncertainties22. Despite numer-
ous ECs being proposed for a variety of hydro-climatic variables22,23, 
constraints on drought characteristics have yet to be explored. To fill 
this gap, we focus on the simplest metric of meteorological drought, 
the LAD. This choice helps to avoid the uncertainties associated with 
more-complex drought metrics24 and makes it easier to identify 
the physical mechanisms underlying the divergent trends in mete-
orological drought, reducing them to those most related to rainfall 
properties. Using past observational data of LAD and EC, we calibrate 
twenty-first-century LAD projections and reveal regions in which future 
LAD and the subsequent drought-associated risks to societies and 
ecosystems are potentially misrepresented in current climate-model 
projections.

Historical LAD and future projections
LAD is defined as the highest number of consecutive dry days per year 
and is calculated following the standardized definition by the Expert 
Team on Climate Change Detection and Indices (ETCCDI) (Methods). 
An observed historical (1998–2018) LAD climatology, based on seven 
satellite- and gauge-based products (Methods, Extended Data Fig. 1 and 
Supplementary Table 1), is shown in Fig. 1a. The global (50° S–50° N) 
patterns of observed LAD closely follow the main aridity gradients, 
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ranging from only a few days in humid regions to more than 200 days 
in arid climates. At present, more than half of the global land area and 
about half of the world’s population (that is, around 3.2 billion people 
for 2020) experience LAD periods of at least 2 months or longer on 
average (Extended Data Fig. 2).

According to the model ensemble mean (MEM) from the Climate 
Model Intercomparison Project phase 6 (CMIP6), about 50% of the 
global land surface will experience an increase in LAD of at least 5 days 

by the end of the century under the ‘high-end’-emissions Shared 
Socio-economic Pathway (SSP) 5-8.5 scenario (Fig. 1c and Extended 
Data Fig. 3e). Although a global average increase of 5 days is expected, in 
some areas the increase could be up to 45 days. As Fig. 1b and Extended 
Data Fig. 3b show, following the more plausible25 ‘mid-range’ emissions 
pathway not only reduces the increase in LAD to 2.4 days globally, and 
only 28 days at most locally, but it also lowers the percentage of areas 
that will have at least a 5-day increase from 50% to 30%. Both scenarios 
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Fig. 1 | Observed LAD climatology and climate-model projections of future 
LAD change. a, Historical LAD climatology, averaged over seven observational 
datasets for the period 1998–2018. Hatched areas indicate regions with high 
uncertainty for which the observational standard deviation exceeds 30% of the 
observed climatological mean. b,c, Twenty-first-century relative LAD change 
(as a percentage of historical mean) as predicted by CMIP6 MEM under the 
SSP2-4.5 (b) and SSP5-8.5 (c) scenarios. Pixels where at least 70% of models 
agree on the sign of the change are marked with a dot. The rectangular boxes 

highlight seven identified hotspot regions with the highest relative change 
(names are defined in the main text). d, Mean and s.d. of zonally averaged 
land-only historical LAD bias in the CMIP6 (red) and CMIP5 (grey) models 
relative to the observational median (black vertical line). The s.d. of the zonally 
averaged historical LAD among seven observational datasets is indicated 
(dotted area, d). e,f, Inter-model mean and s.d. of the magnitude of future LAD 
change under the SSP2-4.5/RCP4.5 (e) and SSP5-8.5/RCP8.5 (f) scenarios, where 
the vertical black line shows zero change.
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reveal seven global hotspot regions where future LAD change will be the 
greatest relative to its present-day climatology (Fig. 1b,c); this includes 
regions of LAD increase, such as southwestern North America (NA), 
Amazonia (AMZ), Indonesia (IND), southern Africa and Madagascar 
(S-AF) and southern Europe (EUR), as well as regions where LAD is pro-
jected to decrease, such as Central–East Africa (E-AF) and Central–East 
Asia (CE-AS). In agreement with previous studies1,26, we find that these 
hotspot regions remain at most unchanged from the previous (CMIP5) 
to the current (CMIP6) generation of climate models (Extended Data 
Fig. 3), and are also consistent with recent observational trends27. Simi-
larly, the inter-model uncertainty in simulated historical and future 
LAD remains consistently high in both CMIP5 and CMIP6 projections 
(Fig. 1d,e,f). The mean estimates of both model ensembles abidingly 
underestimate historical LAD climatology at subtropical latitudes 
and overestimate it in tropical regions, with the model uncertainty 
exceeding the observational spread by almost 100% in transitional 
zones (Fig. 1d). Future projections in both ensembles show some dis-
crepancy in the sign of future LAD changes (mostly in the Northern 
Hemisphere) irrespective of the climate scenario (Fig. 1e,f) and show 
consistently high inter-model variability with standard deviations in 
projected LAD change reaching 1–2 months under the more-severe 
emissions scenario. The limited improvement from CMIP5 to CMIP6 
in the inter-model uncertainty of meteorological drought projections 
and simulated precipitation characteristics has also been reported in 
recent studies19,28.

Proposed emergent constraint
As clear evidence of the persistent inter-model discrepancy, Fig. 2 
and Extended Data Fig. 4a,b show the model ensemble spread in 
future predicted global mean LAD (Extended Data Fig. 4a,b) and in 
the magnitude of its projected twenty-first-century change (Fig. 2) 
among 26 CMIP6 and 29 CMIP5 models (Methods and Supplemen-
tary Tables 2 and 3). As Extended Data Fig. 4a,b indicates, the variance 
in LAD projections does not notably decrease in the CMIP6 model 
ensemble compared with CMIP5. Moreover, under both emissions 
scenarios, future climatological LAD estimates are proportional to 
the historical LAD; models for which LAD values are higher than the 
historical MEM also predict a higher LAD by 2080–2100 (Extended Data 
Fig. 4a,b). The strong positive correlations between past and future 
LAD scatter (more than 0.98 for CMIP6 and more than 0.97 for CMIP5) 
indicate that historical model biases in LAD propagate linearly into 

the future, which is consistent with previous assessments of future 
drought uncertainty3,4. Furthermore, as Fig. 2 shows, the magnitude 
of the projected LAD increase also tends to be proportionally larger 
for models that overestimate LAD relative to the historical MEM. This 
emergent positive relationship across the model ensemble between 
the magnitude of the twenty-first-century LAD change and the his-
torical LAD is supported by the significant (P < 0.01) inter-model cor-
relations of 0.56 and 0.54 under the mid-range emissions scenario 
for the CMIP6 and CMIP5 ensembles, respectively (Fig. 2a). Under 
the more-severe emissions pathway, the correlations rise to 0.72 and 
0.57 (P < 0.01) for the CMIP6 and CMIP5 ensembles, respectively, as 
the increase in LAD becomes higher for models that simulate longer 
historical LAD relative to its MEM (Fig. 2b). This finding indicates that 
the historical LAD biases in models may help to explain the magnitude 
of their LAD response to increases in GHG forcing. It also implies that 
there is a global ‘dry-model-gets-drier’ relationship in climate model  
projections.

As Fig. 2 demonstrates, the identified linear relationships are robust 
across the two climate-model ensembles, GHG emissions scenarios 
and time periods (Extended Data Fig. 5), with steeper slopes found 
for the more-severe scenario, as expected. Therefore, the relationship 
in Fig. 2 can serve as an EC and be used to correct future LAD projec-
tions (Methods). This assumption also requires the presence of a valid 
physical mechanism that can explain the obtained correlations23. In 
our case, the physical processes underlying the emergent relation-
ships are consistent with our understanding of differences in moist 
convection mechanisms and land–atmosphere feedbacks in models 
with ‘drier’ and ‘wetter’ climates and their response to global warming 
(see below). Including observational LAD estimates in the EC relation 
shows, first and foremost, that most climate models underestimate 
historical LAD (Fig. 2), which is consistent with previous findings29,30, 
as well as with the general tendency by climate models to ‘rain too fre-
quently and too light’31. Moreover, because it follows from the EC rela-
tionship, the same models that underestimate historical LAD are likely 
to project a smaller future LAD increase by the end of the twenty-first 
century. By calibrating each model projection against the observed 
LAD climatological value using the identified global EC, we find that the 
expected twenty-first-century LAD increase could be 42–44% greater 
on average than the CMIP6 MEM currently predicts for either GHG 
emissions scenario (Fig. 2, filled bars). This deviation, together with the 
pre-existing historical MEM bias, implies that the future global mean 
LAD could be on average 10 days longer than expected by 2080–2100.  
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Fig. 2 | Emergent constraint on future LAD change. a,b, Inter-model 
relationship between historical LAD climatological mean and projected 
twenty-first-century LAD change from CMIP6 (red) and CMIP5 (grey) models 
under SSP2-4.5/RCP4.5 (a) and SSP5-8.5/RCP8.5 (b) scenarios. Every cross 
(CMIP5) and dot (CMIP6) represents the global (50° S–50° N) land average  
of a model. The corresponding MEMs are shown as vertical dashed lines.  

The observational mean (blue line) and standard deviation (blue shading) are 
shown. The bars on the right of each graph show the mean, 66% and 90% value 
range of the future LAD change before (empty bars) and after (filled bars) EC 
correction for the CMIP5 and CMIP6 model ensembles. The specific models  
in each graph are defined in Extended Data Fig. 4c,d and Supplementary 
Tables 2 and 3.
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The EC calibration also narrows down the ensemble uncertainty of 
future projections by about 10% for SSP2-4.5 and by about 26% for 
SSP5–8.5, shifting its uncertainty range upwards, towards the higher 
values for LAD increases. Corrected CMIP5-based projections show 
a similar result to those based on CMIP6 (Fig. 2, grey bars). Taken 
together, the above findings indicate a potentially higher drought 
hazard to societies and ecosystems in coming decades than is predicted 
by current-generation climate models.

EC-corrected future LAD projections
Focusing on the recent CMIP6 model ensemble, we further demonstrate 
that the proposed EC on future LAD change remains valid (R > 0.4 and 
P < 0.05) at local scales for almost 30% of the global land surface for 
high-range, and 20% for mid-range, emissions scenarios (Extended 
Data Fig. 6). By calibrating each model projection against the observed 
LAD climatological value at the local scale (Methods), we obtain spatial 
insight into the regional biases in model-predicted LAD changes. As 
Fig. 3a,b shows, the local MEM bias in the magnitude of the future LAD 
change features a notable underestimation of the projected change in 
a number of hotspot regions.

Among the regions of projected LAD increase, the strongest underes-
timation, according to the EC, occurs in NA and S-AF drylands (Fig. 3a,b 
and Extended Data Fig. 8a,b). In these regions, the increase in LAD can 
be approximately twice as large as predicted by the uncorrected MEM 
irrespective of the emissions scenario, implying a higher drought risk in 

these already water-scarce regions. This finding is strongly supported 
by the reported systematic overestimation of specific and relative 
humidity trends in models compared with observations, particularly in 
arid and semi-arid regions, resulting in a markedly slower drying trend 
for both land and atmosphere in models compared with observations32. 
The reconstructed time series of EC-corrected LAD change in these 
two regions shows that the originally projected end-of-century mean 
LAD increase under the SSP2-4.5 scenario of +5 days in NA may occur 
already by 2040, whereas in S-AF a drastic end-of-century increase of 
+12 days could be reached in the 2050s (Fig. 3c,d). Ultimately, Fig. 3c,d 
reveals that the EC-corrected LAD increase under the intermediate GHG 
SSP2-4.5 scenario closely resembles the uncorrected SSP5-8.5 forc-
ing pathway in these regions. Taken together, these findings indicate 
an earlier-than-expected exposure to increased drought hazard and 
calls for a reassessment of the risks of (near-)future trends in these 
two regions.

Meanwhile, the tropical AMZ and E-AF reveal a potential overesti-
mation of the model-projected LAD increase and decrease, respec-
tively (Fig. 3a,b and Extended Data Fig. 8a,b). According to the EC, the 
future LAD increase in AMZ should be 4 days less than models project 
under SSP2-4.5, indicating even so a substantial increase of +7 days on 
average in the region after correction (Extended Data Fig. 8d). This 
finding aligns with the demonstrated tendency of climate models 
to overestimate future warming and drying in the Amazon33. Con-
versely, an insignificant LAD decrease overestimation is found for 
E-AF (Extended Data Fig. 8g). Both regions, however, are well known 
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for being complex and notoriously difficult to simulate in terms of 
land–atmosphere interactions and future rainfall34–37. Extended Data 
Fig. 8 confirms the very large LAD ensemble uncertainty in AMZ and 
E-AF; the lack of consensus in the sign of precipitation projections 
over E-AF in CMIP6 models is also seen in Extended Data Fig. 11. An 
overestimation of the future LAD increase found for parts of EUR (the 
Mediterranean and the Black Sea; Fig. 3a,b) is in agreement with earlier 
findings of overestimated future predicted drying for Europe14,18,38. No 
significant difference is found in the IND hotspot region after the EC  
correction.

By contrast, a strong underestimation of the future LAD decrease is 
found for CE-AS (Fig. 3a,b and Extended Data Fig. 8a,b). According to the 
EC, the future LAD decrease there could be almost three times stronger 
than predicted by the MEM by 2100, and more than twice as strong by 
2050, irrespective of the climate emissions scenario (Extended Data 
Fig. 8f). This could imply a 15-day reduction in LAD already by 2050 
under the mid-range scenario. Whether the latter could lead to risks 
associated with more frequent rainfall and, as a result, a potentially 
higher- and earlier-than-expected risk of flooding in the highland 
arid regions of Asia39,40 merits further investigation. Although the 
region reveals the highest EC correlation across the globe (reaching 
0.9 in places), it also has the largest observational uncertainty of the 
regions (Extended Data Fig. 1c) and is still one of the most complex 
regions for future precipitation and drought projections40–43. All in all, 
the CE-AS domain stands out as the prominent global region for the 
‘dry-model-gets-wetter’ relationship, and it seems to be decoupled from 
the rest of the global EC relationship (see Discussion). Validation tests 
on the sensitivity of future locally corrected LAD change to the choice 
of observational dataset showed overall robust future EC-corrected pat-
terns, with some variations in the magnitude around topographically 
complex regions. These are the regions with the highest observational 
uncertainty (Extended Data Fig. 7).

Physical mechanisms underlying the EC
To explore possible physical mechanisms underlying this past–future 
LAD dependency, we focus on the SSP5-8.5-based results, because 
of their higher statistical significance in the EC relationship and LAD 
change, noting that similar (but milder) patterns are expected for the 
SSP2-4.5 scenario. Significant negative inter-model correlations of 
historical LAD climatology with the total number of wet days per year 
(−0.74) and the total annual rainfall (−0.51; Fig. 4a and Extended Data 
Fig. 9a,b) corroborate the link to a systematic error in climate models 
that is frequently referred to as ‘the drizzle problem’9,11,31. The former 
correlation implies that models with shorter LAD tend to have more 
frequent and lighter rain, resulting in a greater number of wet days per 
year. The latter correlation indicates in turn that models with shorter 
LAD are also generally ‘wetter’, whereas models with longer LAD are 
‘drier’. Contrary to this, the potential role of varying model resolution 
cannot be confirmed (Fig. 4a). This explicit separation of CMIP6 LAD 
ensemble into ‘drier’ and ‘wetter’ models is also likely to be reflected 
in the future climate response of models to GHG forcing14,16–18. Consist-
ent with earlier findings for Europe14,16 and the United States17, models 
that are identified as ‘dry’ in our study (Methods) project stronger 
responses to warming, and hence greater regional increases in LAD 
by 2080–2100, whereas ‘wet’ models project weaker responses and 
smaller regional increases (Fig. 4b). According to the Anderson–Darling 
test, the end-of-century LAD change distributions in the two model 
groups are found to be significantly different (P < 0.05) in all regions 
except IND and E-AF.

To gain a deeper understanding of the factors contributing to the 
divergent LAD response to increasing GHG forcing in regions with 
significant differences in Anderson–Darling test results, we exam-
ine variations in future changes of more hydro-climatic variables 
from the CMIP6 dataset. This analysis focuses specifically on locally 
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periods (days with more than 1 mm of rain, r1mm), total annual rainfall (Ptot) 
and horizontal resolution of the model (modRes). Horizontal resolution at the 
Equator is estimated on the basis of longitude resolution of a corresponding 
atmospheric model. Violin plots show the probability density shape of 
correlations; box plots show the interquartile range (IQR, box) and 1.5 × IQR 
(whiskers). b, Distribution of predicted future LAD changes in ‘dry’ (brown) and 
‘wet’ (green) models in global hotspot regions and significance of the difference 

between them (grey bars) according to the P-value of an Anderson–Darling 
(AD) test. Box plots show IQR and 1.5 × IQR of LAD change in ‘dry’ or ‘wet’ 
models. c, Significant difference (P-value < 0.01) in projected future change  
in hydro-climatic variable between ‘dry’ and ‘wet’ models according to an 
Anderson–Darling test. Circle size indicates the magnitude of the difference 
(D-statistics) between two distributions in the Anderson–Darling test. The 
colour shows the sign of future variable change in ‘dry’ and ‘wet’ MEM. Variables 
are defined in Supplementary Table 4. Future changes for all variables were 
assessed for local dry periods (see Methods for details).
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identified dry periods (see Methods), comparing the outcomes of ‘dry’ 
and ‘wet’ models (Methods and Supplementary Table 4). As Extended 
Data Fig. 11a shows, ‘dry’ models generally tend to simulate a stronger 
decrease, and ‘wet’ models a weaker decrease, in convective precipita-
tion (prc) in regions where future LAD increase is projected. Accord-
ing to the Anderson–Darling test, the decrease in prc is found to be 
significantly different (P < 0.01) between ‘dry’ and ‘wet’ models for NA, 
S-AF and EUR, and is less significant (P = 0.123) for AMZ (Fig. 4c and 
Supplementary Table 5). Moreover, for EUR, inter-model historical LAD 
scatter correlates significantly with the projected change magnitude 
of prc, latent and sensible heat fluxes, relative humidity, cloud cover 
and temperature (Extended Data Fig. 10). Given the consistency of 
these dependencies, and the almost linear error propagation across 
the model ensemble, it can be assumed that the detected biases are 
not independent of one another, and that there are feedbacks between 
the predicted stronger reduction in prc and the larger decrease in rela-
tive humidity, cloudiness and latent heat flux, and the corresponding 
smaller increase in precipitable water and higher increase in sensible 
heat flux and temperature in ‘drier’ models for EUR (Extended Data 
Fig. 11a). This conclusion is consistent with the demonstrated role of 
land–atmosphere feedbacks in the divergence of future dryness and 
temperature projections in the CMIP5 ensemble for Europe14,38,44.

Despite the visible discrepancies in identified key and correlated vari-
ables for the regions shown in Fig. 4c and Extended Data Fig. 10, feed-
backs between changes in LAD, prc, atmospheric humidity, turbulent 
heat fluxes, shortwave radiation, temperature and cloud cover seem 
to be a plausible driver for the divergent future LAD change response 
in NA and AMZ, in agreement with the results for EUR. In NA, AMZ and 
EUR, ‘dry’ models consistently tend to simulate significantly larger 
increases in sensible heat flux, which is likely to be linked to larger 
increases in incoming short-wave radiation (Extended Data Fig. 11a). 
Both variables show significant differences in future changes between 
‘dry’ and ‘wet’ models, according to the Anderson–Darling test (Sup-
plementary Data Table 5). Larger increases in incoming shortwave 
radiation may be related to either a greater reduction in cloud cover and 
precipitable water (most notable in EUR and NA) or to a larger increase 
in temperature and hence a greater decrease in relative humidity and 
the condensed water path parameter (clearly differentiable in AMZ). 
These findings do not exclude a role for distinct key mechanisms in 
changes in future LAD trends for different regions, but overall they are 
in agreement with the differences in feedbacks and moist-convection 
scheme sensitivities inherent to ‘dry’ and ‘wet’ models that have been 
pointed out in previous studies14,38,45. Likewise, the ‘drizzle problem’ 
in models has been shown to affect the radiation balance, because 
‘wet’ models create more low-level clouds, which reduce incoming 
shortwave radiation45. Moreover, ‘wet’ and ‘dry’ models have been 
shown to exhibit differences in the sensitivity of their moist-convection 
scheme to the dryness of the atmosphere, implying that ‘wet’ mod-
els simulate rain more easily because rain will start in a much drier 
atmosphere than it does for ‘dry’ models10. Amplified by global warm-
ing, the overall drier climate in ‘dry’ models will make it ever harder 
to reach this sensitivity threshold, and it will be reached less often10. 
All these mechanisms are consistent with our findings and with the 
identified ‘dry-model-gets-drier’ relationship in regions of future LAD  
increase.

Substantial discrepancies in the sign of the projected changes of 
some key hydro-climatic variables in the remaining domains (S-AF, 
E-AF and CE-AS) make it hard to link the identified dependencies to 
the relevant mechanisms in these regions (Fig. 4c). In S-AF, key vari-
ables such as soil moisture, sensible heat flux and incoming shortwave 
radiation show an opposite sign of change for ‘dry’ and ‘wet’ models 
(Fig. 4c and Extended Data Fig. 11a). In E-AF, prc, cloud cover, relative 
humidity, incoming shortwave radiation and leaf area index indicate 
a substantial spread in sign of future changes (Extended Data Fig. 11b). 
Similarly, large divergences in sign are found in the CE-AS domain for 

relative humidity, soil moisture and sensible heat flux (Extended Data 
Fig. 11b). Although these apparent inconsistencies do not clarify the 
mechanisms underlying the LAD biases in these regions, they could 
guide further research aimed at addressing region-specific biases in 
climate and regional models.

Discussion
Our results show that climate model biases in the historical estimates of 
LAD are not only likely to persist into the future, but may be amplified 
by land–atmosphere feedbacks, significantly affecting the magnitude 
of the projected LAD change in at least 20–30% of global land areas. 
We find a consistent and significant ‘dry-model-gets-drier’ relation-
ship across CMIP5 and CMIP6 model ensembles in five out of seven 
global hotspot regions, confirming that the same limitations of the 
underlying physical processes and uncertainties in relation to drought 
projection are likely to remain in the new generation of models. The 
analysis shows that errors in the parametrization of moist-convection 
processes leading to the ‘drizzle problem’31 is one of the plausible mech-
anisms that could explain the inter-model spread in historical and 
future LAD, and the identified ‘dry-model-gets-drier’ relation between 
them10. The question of whether convective-scheme limitations are a 
major driver of, or just one of the inter-dependent factors contributing 
to, systematic spread in models’ dryness projections remains open. 
Consistent with several regional studies14,16,38,46, our results show that 
models with drier climates at present (models that simulate rain less 
frequently) tend to reinforce the drying and lack of rainfall initiation 
as the result of land–atmosphere feedbacks, namely more-vigorous 
increases in sensible heat flux and incoming shortwave radiation, and 
greater land and atmosphere warming. The role of land–atmosphere 
feedbacks in reinforcing drier climates in dry-biased models under 
increasing GHG forcing is not new38, but our results clearly show that 
the same systematic errors remain in the latest generation of climate 
models, and thus emphasize the need to better represent these feed-
backs and underlying physical processes to improve future drought 
projections. The results of inter-model correlation analyses to the 
hydro-climatic variables presented in this study point to problematic 
realms and dependencies in modelled processes on a regional scale, 
and thus may provide further guidance to the key mechanisms that 
must be addressed in models locally.

The mechanisms underlying the distinct ‘dry-model-gets-wetter’ 
dependency identified in the CE-AS and E-AF domains are hard to pin-
point. In the E-AF domain, there is no agreement across models on 
the sign of future changes in precipitation, probably because of the 
existing difficulty in simulating ‘long rain’ dynamics36,47, whereas the 
CE-AS domain seems to be totally decoupled from the EC relationships 
identified for the rest of the world. Despite the strongest EC correla-
tion (R ≈ 0.9) in the domain, the ‘dry’–‘wet’ model ranking differs from 
that in other regions (Extended Data Fig. 9c–f). The latter might be 
linked to the much stronger role of dynamic than thermodynamic 
processes in regulating rainfall over CE-AS40,41 and the difficulty by 
models to capture these large-scale circulation shifts correctly42,43. 
The stronger dependence of future LAD negative trends in the CE-AS 
region on the slower CO2-adjustment mechanisms, such as uniform sea 
surface temperature warming, could also contribute to the difference 
in the EC relationship48.

The validity of the EC-corrected LAD projections we propose in this 
study can be further scrutinized by revealing ECs for other types or 
stages of droughts and then finding an effective way to combine all 
predictors for a more-comprehensive assessment of future drought 
projections. Although the primary objective of this work was to identify 
valid EC relationships in the global dryness metric and refine its model 
projections around the multi-dataset observational mean, integrating 
the uncertainty of observational data into EC projections could offer 
in the future a more holistic insight into the total uncertainty of EC 
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estimates in regions. In such studies, the availability of a long obser-
vational time series would be crucial, as illustrated by our supplemen-
tary analysis (Extended Data Fig. 12e). Finally, reducing the still-large 
uncertainty of observational data should certainly be considered as 
a priority in regions such as CE-AS and E-AF (Extended Data Figs. 1  
and 7) to adequately benchmark climate models49.

In conclusion, our findings reveal extensive regions where climate 
change may cause stronger and earlier aggravation of drought- 
associated risks than previously expected under both the mid-range 
and high-end scenarios, and they emphasize the importance of reduc-
ing systematic climate-model errors, which are still largely caused by 
rainfall biases. Correcting these biases should be a priority and will 
increase the confidence of future projections of dry extremes, which is 
a prerequisite for effective reduction of drought risk in the near future, 
with direct benefits for human and natural systems.
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Methods

LAD measure definition
The LAD is calculated as the maximum annual number of consecu-
tive dry days (CDD), following the definition of the Expert Team on 
Climate Change Detection and Indices (ETCCDI)50. The LAD metric 
(CDD in ETCCDI tables) belongs to the core climate-extreme indices 
proposed by the ETCCDI51 and is routinely used in IPCC reports and by 
national drought monitors to assess concurrent and future changes 
in dryness, and to estimate the early risks associated with reduced 
water resources and heat extremes52,53. A dry day is defined as a day with 
total rainfall below 1 mm; the 1 mm threshold is a commonly accepted 
limit to classify days as dry or wet, and it is routinely used in the global 
climate-extremes data sets, such as HadEX52,54,55. The LAD calculation 
accounts for the possibility that dry spells can span across calendar 
years and assigns the value corresponding to the total LAD to the year 
in which the dry spell ends. Here, the historical LAD is not allowed to 
exceed 300 days to exclude hyper-arid regions. The historical LAD 
conditions are assessed for 1998–2018, which was selected as the com-
mon period of availability of seven observational datasets (see the next 
section). Future LAD climatology is evaluated from climate-model 
simulations over 2080–2100. The future change in LAD is assessed 
under different emissions scenarios as either an absolute or relative 
(normalized by historical mean) difference in LAD climatological means 
between the 2080–2100 and 1998–2018 periods.

Observational LAD data
Observational estimates of LAD values and their uncertainties 
across the globe are obtained from seven quasi-global (50° S–50° N) 
daily-precipitation datasets (Supplementary Table 1). Six datasets 
are composed of three gauge-only and three gauge-corrected satel-
lite products obtained from one of the largest consistent databases 
of daily-precipitation datasets, the Frequent Rainfall Observations 
on Grids (FROGS)56. To calculate the LAD, FROGS precipitation data 
were post-processed using CLIMPACT software57 developed at the Uni-
versity of New South Wales49. One more independent LAD dataset is 
derived from a merged TRMM–CMORPH precipitation product using 
Python packages58. The merging was done with the aim of filling gaps 
in TRMMv7 data by cumulative distribution function (CDF)-matching 
TRMMv7 (ref. 59) and CMORPHv0.1 (ref. 60) 3-hourly precipitation 
satellite products (Supplementary Table 1). All observation-based LAD 
fields were resampled to the common 1° × 1° spatial resolution of FROGS.

The selection of the six LAD datasets from the extensive FROGS data-
base for our analysis was based on their global and temporal coverage 
and further cross-validation analysis. Originally, we selected 11 FROGS 
products covering the entire spatio-temporal domain. However, 4 of 
the 11 products were not retained for further study because of incon-
sistent global coverage over time (SM2RAIN-CCI.1.DD), worse perfor-
mance metrics in one of the twin datasets owing to a smaller number 
of gauges used (REGEN-LongTermStns) or worse performance metrics 
in a twin (with or without gauge correction) satellite-based dataset 
that had no gauge correction (GSMAP62-NRT-v6.0.1DD). Performance 
metrics here are referred to an averaged global mean inter-product 
Pearson correlation and global mean inter-product absolute difference 
(Extended Data Fig. 1a,b). Of the 11 FROGS-based products, CHIRP and 
CHIRPS showed the lowest inter-product correlations of LAD variability 
regardless of gauge correction (Extended Data Fig. 1a,b). Finally, it is 
crucial to emphasize that the application of an ensemble approach to 
observational data, as undertaken in the present study, is a necessary 
and valid solution to mitigate the inherent limitations associated with 
various observational products61.

LAD from CMIP6 and CMIP5 models
A total of 26 models from the 6th Coupled Model Intercomparison Pro-
ject (CMIP6)62 were used to assess historical and future LAD estimates, 

their uncertainties and the relationship between them (Supplemen-
tary Table 3). To do that, precipitation fields from the historical, 
moderate-end (SSP2-4.5) and high-end (SSP5-8.5) scenarios simula-
tions were used to calculate LAD series using CLIMPACT software29. To 
ensure the robustness of the investigated past–future model relation-
ships, all analyses were repeated for 29 CMIP5 models63 (Supplemen-
tary Table 2). For that, LAD estimates of CMIP5 data for the historical, 
RCP4.5 and RCP8.5 scenarios were obtained directly from the CLIMDEX 
database64. To explore EC relationships in LAD model ensemble statis-
tics, only the first realization from each model (r1) was used. Historical 
LAD conditions from CMIP6 models were considered for the period 
1998–2014, according to the end year of their historical runs. Because 
historical simulations of CMIP5 models end in 2005, their present-day 
LAD climatology was calculated by combining the end of a historical 
run with the beginning of the RCP8.5 scenario, which has been common 
practice in previous studies65. To account for the potential limitations 
of a shorter time span of historical data, further robustness tests were 
carried out over the full span of the available historical period up to 
2100, that is, 1980–2100 for CMIP6 and 1860–2100 for CMIP5 (Extended 
Data Fig. 5a,b). The sensitivity of the global EC to the inclusion of the 
1998–2018 period, which was characterized by strong La Niña condi-
tions, was also tested and found to be non-significant (Extended Data 
Fig. 5c). All model data were rescaled to a common 1° × 1° resolution 
using conservative first-order remapping interpolation of CDO66.  
To account for the upscaling effect, the dependence of model biases 
on the original model resolution was tested and shown not to be rel-
evant (Fig. 4a and Extended Data Fig. 12d). By comparing the daily 
rainfall-intensity distributions of historical LAD from both models 
and observations, we have also illustrated the robustness of the iden-
tified underestimation in the historical global model ensemble mean 
LAD in relation to the observed LAD around the specified threshold 
of 1 mm per day, that is, from less than 1 mm to at least 5 mm per day 
(Extended Data Fig. 12a–c).

Future LAD calibration using the EC approach
The EC technique is a well-established method of model validation 
that uses past observations to constrain future projections22,67,68. First, 
it looks for a significant statistical relationship between a property of 
past climate, X, and a future climate, Y, across an ensemble of climate 
models; a credible physical mechanism must underlie the statistical 
relationship to reduce the probability of randomness in the revealed 
relationship and use it as an EC23. In this study, variable Xi depicts the 
historical LAD climatology. Variable Yi represents the magnitude of 
the twenty-first-century LAD change for the selected GHG emissions 
scenario, as estimated for each model (Fig. 2). A valid EC relation-
ship between Xi and Yi can then be described by a linear regression  
model:

Yi f Xi a Xi b= ( ) = × + (1)

The strength and validity of the EC relationship f(Xi) is assessed 
by the magnitude and the significance of the Spearman’s rank cor-
relation coefficient (R) calculated between Xi and Yi series with the 
following criteria: a correlation coefficient of at least 0.4 with P < 0.05 
(Extended Data Fig. 6c). Further, an actual ‘observed’ value of past Xi 
is substituted into equation (1) to derive the calibrated expectation 
and variance of future state Yi (ref. 22). Thus, the future corrected LAD 
change expectation is obtained by projecting the mean observational 
LAD value on the y axis using the ‘emergent’ relationship f(Xi). The 
calibrated variance of future LAD estimate is retrieved by projecting 
the observational mean on the uncertainty (prediction) interval of 
the regression line. The latter is assessed by a bootstrapping proce-
dure. Although this approach does not fully account for the observa-
tional data uncertainty, it ensures consistency among the two model 
uncertainty estimates, that is, the uncertainty of a model sample at 



Article
present and of its calibrated ensemble in the future. Observational 
uncertainty is still taken into account indirectly, because the EC rela-
tionship is assumed to be valid only if the observational uncertainty 
of Xi is small compared with the range of simulated Xi and Yi values. 
In addition to the linear regression approach, the Kullback–Leibler 
(K–L) divergence method22 is tested, which allows the observational 
uncertainty to be taken into account. Applying this method to the 
longest observational REGEN-AllStation dataset showed consistent 
results for the EC-corrected global statistics (Extended Data Fig. 12e). 
Other important requirements of EC validity include: the presence 
and reproducibility of the relationship in other ensembles of models 
and over other time periods; and the proof of a physical mechanism 
that can explain the link between past and future variability across 
the models23,69. Both conditions were tested and shown to hold for 
the ECs identified in this study, supporting their robustness. Credible 
mechanisms are explored and discussed in the manuscript, indicat-
ing that the uncovered EC relationships are not merely statistical. 
The results of a validation test that examines the sensitivity of the 
EC relationships to the time-period selection are shown in Extended  
Data Fig. 5.

In this study, the EC correction is applied to the global mean value 
of the LAD estimates, as well as locally (per grid cell), to explore the 
consistency of the revealed EC relationship over the globe and assess 
the spatial variation and regional dependence of biases in LAD model 
projections. The consistency of the local EC relationship across the 
globe is demonstrated in Extended Data Figs. 6 and 9c–f.

Linking EC to physical mechanisms
To understand which physical processes underlie the revealed EC 
relationship, CMIP6 historical and SSP5-8.5 scenario data for 16 hydro-
climatic variables were downloaded from Google cloud storage70 and 
processed using Pangeo software71. The 16 variables retrieved from 
various model realms at monthly scales are described in Supplemen-
tary Table 4. Historical and future temporal means of the variables 
are calculated for locally dry periods. These are identified using LAD 
data calculated from the TRMM–CMORPH precipitation dataset as 
the three climatological months where LAD periods typically end. 
The identified months of dry periods per region are: April–June for 
NA, June–August for AMZ, March–May for CE-AS, April–June for E-AF, 
July–September for S-AF, May–July for EUR, May–July for IND and the 
extended April–August for the global domain. In a next step, time 
series of each variable are retrieved for every domain separately for 
locally distinguished six ‘dry’ and six ‘wet’ models. Locally distin-
guished ‘dry’ models are those with historical LAD climatological 
values averaged per domain that are below the 25th percentile of the 
ensemble, or above the 75th for ‘wet’ models. Percentiles are assessed 
from the statistics of the climatological means of all models averaged 
over the selected domain. The retrieved data are averaged over his-
torical (1990–2010) and future (2080–2100) periods for every ‘dry’ 
and ‘wet’ model. To increase the sample size for every model group, 
up to ten ensemble members (realizations r1–r10) are used for the 
Anderson–Darling test analysis (Fig. 4b,c) and in KDE plots (Extended 
Data Fig. 11), depending on data availability. Further validity criteria 
applied are: the spatial mask of the EC correlation being greater than 
0.2; the presence of at least four available ‘dry’ and ‘wet’ models for 
the Anderson–Darling test; and at least six available models for the 
correlation analysis.

Data availability
All input data sources used in this study are referenced in the Methods. 
Precipitation satellite products are publicly available from the FROGS 
database (https://frogs.ipsl.fr/). The raw CMIP5 LAD data used in this 
study are available from CLIMDEX database (https://climate-modelling.
canada.ca/climatemodeldata/climdex/). Raw CMIP6 LAD data are 

available by request from the corresponding authors. The output 
data sets produced in this study and required for reproducing the 
main figures of the paper are available at https://doi.org/10.5281/
zenodo.11636527 (ref. 72). The Python software used for data plotting 
and processing is available at https://www.python.org/.

Code availability
The code for the emergent constraint calculation and analysis is avail-
able at https://doi.org/10.5281/zenodo.10886174 (ref. 73). The codes 
required for reproducing the main figures of this study are available 
at https://doi.org/10.5281/zenodo.11637360 (ref. 74).
 

50. Zhang, X. et al. Indices for monitoring changes in extremes based on daily temperature 
and precipitation data. Wiley Interdiscip. Rev. Clim. Change 2, 851–870 (2011).

51. Zhang, X. ETCCDI climate change indices. https://etccdi.pacificclimate.org/ (2020).
52. Donat, M. G. et al. Updated analyses of temperature and precipitation extreme indices 

since the beginning of the twentieth century: the HadEX2 dataset. J. Geophys. Res. 
Atmos. https://doi.org/10.1002/jgrd.50150 (2013).

53. Field, C. B. et al. (eds) Managing the Risks of Extreme Events and Disasters to Advance 
Climate Change Adaptation (Cambridge Univ. Press, 2012).

54. Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature 
and precipitation. J. Geophys. Res. Atmos. 111, https://doi.org/10.1029/2005JD006290 
(2006).

55. Dunn, R. J. H. et al. Development of an updated global land in situ-based data set of 
temperature and precipitation extremes: HadEX3. J. Geophys. Res. Atmos. 125, https://
doi.org/10.1029/2019JD032263 (2020).

56. Roca, R. et al. FROGS: A daily 1° × 1° gridded precipitation database of rain gauge, satellite 
and reanalysis products. Earth Syst. Sci. Data 11, 1017–1035 (2019).

57. Climpact https://climpact-sci.org/ (2012).
58. Python Language Reference, v.3.7 https://www.python.org (2019).
59. Huffman, G. J. et al. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, 

multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 
38–55 (2007).

60. Xie, P. et al. Reprocessed, bias-corrected CMORPH global high-resolution precipitation 
estimates from 1998. J. Hydrometeorol. 18, 1617–1641 (2017).

61. Bador, M. et al. Impact of higher spatial atmospheric resolution on precipitation extremes 
over land in global climate models. J. Geophys. Res. Atmos. 125, https://doi.org/10.1029/ 
2019JD032184 (2020).

62. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) 
experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

63. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. 
Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

64. Sillmann, J. ETCCDI extremes indices archive. https://climate-modelling.canada.ca/
climatemodeldata/climdex/index.shtml.

65. Donat, M. G., Angélil, O. & Ukkola, A. M. Intensification of precipitation extremes in the 
world’s humid and water-limited regions. Environ. Res. Lett. https://doi.org/10.1088/ 
1748-9326/ab1c8e (2019).

66. Schulzweida, U. CDO User Guide (2.1.0). Zenodo https://doi.org/10.5281/zenodo.7112925 
(2022).

67. Collins, M. et al. Quantifying future climate change. Nat. Clim. Change 2, 403–409  
(2012).

68. Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Chang. 9, 
102–110 (2019).

69. Caldwell, P. M. et al. Statistical significance of climate sensitivity predictors obtained by 
data mining. Geophys. Res. Lett. 41, 1803–1808 (2014).

70. CMIP6 data from WCRP. Google Cloud Catalogue. https://cloud.google.com/datasets.
71. Pangeo Team. PANGEO: A community platform for Big Data geoscience. https://pangeo.io/ 

(2018).
72. Petrova, I. Y. Observation-constrained projections reveal longer-than-expected dry spells. 

Source data. Zenodo https://doi.org/10.5281/zenodo.11636527 (2024).
73. Brient, F. Reducing uncertainties in climate projections with emergent constraints: 

concepts. Source code: emergent constraints. Zenodo https://doi.org/10.5281/zenodo. 
10886174 (2024).

74. Petrova, I. Y. Observation-constrained projections reveal longer-than-expected dry spells. 
Source code. Zenodo https://doi.org/10.5281/zenodo.11637360 (2024).

75. Socioeconomic Data and Applications Center. Gridded Population of the World (GPW), v4. 
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4 (1995).

Acknowledgements I.Y.P. acknowledges support from the BOF research fund of Ghent 
University (BOF20/PDO/057). D.G.M. acknowledges support from the European Research 
Council (HEAT, 101088405). S.-K.M. acknowledges a National Research Foundation of Korea 
grant from the Korean government (NRF2021R1A2C300736). F.B acknowledges funding from 
grant MOBYDYC (ANR-22-CE01-0005). M.G.D. is grateful for funding from the Horizon 2020 
LANDMARC project (grant agreement no. 869367) and the Horizon Europe EXPECT project 
(grant no. 101137656). I.Y.P. thanks the Pangeo project for free access to the data catalogue and 
tools of the Pangeo platform. The computing resources and services used were provided by the 
VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) 
and the Flemish government.

https://frogs.ipsl.fr/
https://climate-modelling.canada.ca/climatemodeldata/climdex/
https://climate-modelling.canada.ca/climatemodeldata/climdex/
https://doi.org/10.5281/zenodo.11636527
https://doi.org/10.5281/zenodo.11636527
https://www.python.org/
https://doi.org/10.5281/zenodo.10886174
https://doi.org/10.5281/zenodo.11637360
https://etccdi.pacificclimate.org/
https://doi.org/10.1002/jgrd.50150
https://doi.org/10.1029/2005JD006290
https://doi.org/10.1029/2019JD032263
https://doi.org/10.1029/2019JD032263
https://climpact-sci.org/
https://www.python.org
https://doi.org/10.1029/2019JD032184
https://doi.org/10.1029/2019JD032184
https://climate-modelling.canada.ca/climatemodeldata/climdex/index.shtml
https://climate-modelling.canada.ca/climatemodeldata/climdex/index.shtml
https://doi.org/10.1088/1748-9326/ab1c8e
https://doi.org/10.1088/1748-9326/ab1c8e
https://doi.org/10.5281/zenodo.7112925
https://cloud.google.com/datasets
https://pangeo.io/
https://doi.org/10.5281/zenodo.11636527
https://doi.org/10.5281/zenodo.10886174
https://doi.org/10.5281/zenodo.10886174
https://doi.org/10.5281/zenodo.11637360
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4


Author contributions I.Y.P. and D.G.M. conceived the study and designed the research; I.Y.P. did 
the research, carried out the calculations, prepared the figures and wrote the paper with input 
from D.G.M; F.B. developed and provided the emergent constraint code; S.-K.M. and Y.-H.K. 
provided CMIP-based LAD (CDD) and rain data; M.B. provided LAD (CDD) data from FROGS; 
and all authors revised the manuscript and provided feedback.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-024-07887-y.
Correspondence and requests for materials should be addressed to Irina Y. Petrova or  
Diego G. Miralles.
Peer review information Nature thanks Richard Allan and the other, anonymous, reviewer(s) 
for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-024-07887-y
http://www.nature.com/reprints


Article

Extended Data Fig. 1 | Uncertainty of observational LAD estimates.  
a,b, Global mean and standard deviation of inter-product mean absolute 
difference (MAD) (a) and Pearson correlation (R) (b) among 12 precipitation 
data sets: 11 pre-selected FROGS data sets56 and an independent merged 
TRMM–CMORPH product (see Methods and Table S1). Prior to constructing 

bar plots, MAD and R obtained per dataset are averaged over the global land 
(50° S–50° N). The 7 products which are finally selected based on MAD, R and 
dataset characteristics (see Methods) for further study are highlighted. c, Local 
standard deviation of LAD of the 7 selected precipitation products.



Extended Data Fig. 2 | Characteristics of global LAD distribution. Global 
land area fraction corresponding to a particular LAD climatological value  
range (blue dots). Cumulative population count over the same LAD range bins, 

calculated from either observational (black) or CMIP6 model mean (red), is 
shown as lines. Colour code of LAD bins corresponds to the colour bar in Fig. 1a. 
Population data are extracted from GPW-v475 for the year 2020.
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Extended Data Fig. 3 | Future LAD change. a,b,d,e 21st century change in LAD 
predicted by CMIP6 (b,e) and CMIP5 (a,d) MEM under SSP5-8.5 (RCP8.5) and 
SSP2-4.5 (RCP4.5) scenarios. Pixels where at least 70% of models agree on the 

sign of the change are marked with a dot. c,f Difference in the future LAD 
change between CMIP6 and CMIP5 ensemble means under the SSP2-4.5 
(RCP4.5) (c) and SSP5-8.5 (RCP8.5) (f) scenarios.



Extended Data Fig. 4 | Linear past-future LAD relationship. a,b, Correlation 
between historical and future LAD climatology in CMIP5 and CMIP6 ensembles 
for the ‘mid-range’ (a) and vhigh-end’ (b) emission scenarios; bar plots show 
mean, 66% and 90% range of future LAD statistics. c,d, EC relationship between 
historical LAD climatology and its 21st century change under the ‘high-end’ 

emission pathway scenario in CMIP5 (c) and CMIP6 (d) models. Every dot 
(CMIP6) and cross (CMIP5) represent the global land average of a model. 
Corresponding MEMs are shown as vertical dashed lines. Observational mean 
and uncertainty, 1 standard deviation (blue shading), is given. Model names 
corresponding to the numbers are given in Tables S2–S3.
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Extended Data Fig. 5 | EC relationship sensitivity to the time period.  
a,b, Inter-model Spearman rank correlation coefficient (R) and slope of the 
regression line between historical LAD and its future change (+80 years from 
the historical) for CMIP5 (a) and CMIP6 (b) models. The regions are split to 
future LAD increase (red line) and LAD decrease (blue line) regions. The time 
series represent 20-year moving averages. Different starting dates for CMIP5 
and CMIP6 are defined by data availability. c, CMIP5-based EC relationship 

assessed for two different historical periods of 1951–1998 (grey) and 1951–2016 
(red). Here, REGEN dataset is selected as the observational dataset with the 
longest time-period. Every dot/cross represents the global land average of a 
model. Corresponding MEMs are shown as vertical dashed lines. Observational 
mean and uncertainty, 1 standard deviation (blue shading), is given. Bars show a 
mean, 66 and 90% value range of the future LAD prior (empty bar) and post 
(filled bar) EC correction.



Extended Data Fig. 6 | Global EC strength and consistency. a,b, Inter- 
model correlation between historical LAD in CMIP6 model ensemble and its 
corresponding magnitude of the 21st century change for (a) SSP5-8.5 and (b) 
SSP2-4.5 emission scenarios. Correlations higher than 0.4 (p-value < 0.05) have 
brighter colour. Regions with a non-small relative future LAD change (>10% of 

historical value) are hatched. c, Global statistics of correlations between 
historical LAD and future LAD change under SSP5-8.5 separated per p-value 
range are shown as box plots. Box plots show interquartile range (IQR, box) and 
1.5 times IQR (whiskers) of data.
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Extended Data Fig. 7 | Sensitivity of EC-corrected future LAD change bias  
to observational spread. a,b, Future LAD change bias calculated using mean 
value of either three observational data sets with lowest global mean LAD, i.e. 
GPCP, TRMM-CMORPH, PERSIANN (see Methods) (a) or three observational 
data sets with highest global mean LAD, i.e. REGEN, GPCC, GSMAP 
(see Methods) (b) for EC correction. Masked in white are the regions with small 

(<10%) 21st century relative change or regions with invalid LAD data 
(see Methods). Regions with a significant local EC correlation (R > 0.4 and 
p-value < 0.05) are hatched. Boxes show two regions where change in sign 
between two groups is observed. c, Difference in historical LAD climatological 
mean between two observational groups. d, Difference in EC-corrected future 
LAD change bias between both groups.



Extended Data Fig. 8 | Calibrated future LAD projections for CMIP6 
models. a,b End-of-century raw and EC-corrected MEM LAD change averaged 
per hotspot region under (a) SSP2-4.5 and (b) SSP5-8.5 scenarios. Bar plots 
show the 66% of model ensemble values for raw (grey) and EC-corrected (red) 
LAD change projections. c, Spatial shift (before and after EC correction) in 
global areas of 2 to 4 month climatological LAD under the SSP5-8.5 scenario for 
the end of the century. e, EC-corrected future (SSP5-8.5) LAD climatology for 

2080–2100. Hatched areas show regions with a significant local EC correlation 
(R > 0.4 and p-value < 0.05). d,f,g, Time-series of raw (grey) and EC-corrected 
(colour) annual projections of LAD change in three global hot-spot regions for 
two emission scenarios. Time-series are smoothed using 20-year running 
mean. Bars and time-series uncertainty ranges represent the 66% of model 
ensemble values for the end-of-century and annual statistics, respectively.
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Extended Data Fig. 9 | Local correlation of LAD to precipitation and global 
consistency in EC correlation. a,b, Pearson correlation between historical 
LAD and total annual number of (a) wet days (rain <1 mm/day), and (b) total 
annual precipitation. c-f, Inter-model correlation of historical CMIP6 LAD 

climatology in a pixel from (c) Australia, (d) East Africa, (e) South Atlantic 
Convergence Zone (SACZ), and (f) CE-Asia to the historical CMIP6 LAD scatter 
in rest of the world. Note, SACZ and CE-ASIA appear as locally correlated 
features decoupled from the rest of regions with high local EC correlation.



Extended Data Fig. 10 | Inter-model correlation of historical LAD to the 
corresponding future projected change in hydro-climatic variables. The 
value of Pearson correlation assessed for every domain separately is shown in 

colour. Correlations significant at p-value < 0.01 level are marked with a cross. 
Names of variables are decoded in Table S4. Future changes for the variables 
are assessed during local dry periods (see Methods).
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Extended Data Fig. 11 | Differences in future projections of hydro-climatic 
variables between ‘dry’ and ‘wet’ models. a,b, KDE-based distribution 
frequencies of future projected changes in selected hydro-climatic variables  
in CMIP6 models (see Methods) following the SSP5-8.5 scenario for locally 
defined ‘dry’ (red) and ‘wet’ (grey) models in regions of future LAD (a) increase 

and (b) decrease. Each distribution is built on model simulated data, which  
can include up to ten ensemble members, depending on their availability 
(see Methods). Shaded areas show the +/− 1 standard deviation data range; 
dotted line shows the median value.



Extended Data Fig. 12 | Sensitivity of the EC relationship to the minimum 
daily rainfall threshold, model re-gridding procedure and future 
uncertainty estimation approach. a-c, KDE-based frequency distribution 
across global land (50°S–50°N) daily rain rates in CMIP6 models (grey) and 
GPCP observations (red) (see Methods) over 1998–2014. Three panels represent 
sensitivity of results to data being upscaled to different grid resolutions.  
d, Global EC-relationship estimated for CMIP6 models at their original grid 
resolution. e, Globally averaged future LAD change projections before (empty 
bar), and after (filled bars) EC-correction using either PI-based approach as in 
Fig. 2 (gray filled bar) or K-L divergence approach22 (orange filled bar). 66 years 

of REGENAllSat dataset (see Methods) and CMIP5 data of the same period are 
used to estimate the mean and variance of every model and observational data, 
and then to estimate weights to correct the future model projections using  
K-L divergence approach. In d,e, every dot/cross represents the global land 
average of a model. Corresponding MEM is shown as vertical dashed line. Blue 
shading shows the standard deviation of observed LAD climatology across 
observational data sets (d) and 66 years of REGENAllSat (e). Bars show the 
mean, 66 and 90% range of the future LAD prior (empty bar) and post (filled bar) 
EC correction.
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