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Abstract: In past decades, the deployment of renewable-energy-based power generators, namely
solar photovoltaic (PV) power generators, has been projected to cause a number of new difficulties
in planning, monitoring, and control of power distribution grids. In this paper, a control scheme
for flexible asset management is proposed with the aim of closing the gap between power supply
and demand in a suburban low-voltage power distribution grid with significant penetration of solar
PV power generation while respecting the different systems’ operational constraints, in addition to
the voltage constraints prescribed by the French distribution grid operator (ENEDIS). The premise
of the proposed strategy is the use of a model-based predictive control (MPC) scheme. The flexible
assets used in the case study are a biogas plant and a water tower. The mixed-integer nonlinear
programming (MINLP) setting due to the water tower ON/OFF controller greatly increases the
computational complexity of the optimisation problem. Thus, one of the contributions of the paper
is a new formulation that solves the MINLP problem as a smooth continuous one without having
recourse to relaxation. To determine the most adequate size for the proposed scheme’s sliding
window, a sensitivity analysis is carried out. Then, results given by the scheme using the previously
determined window size are analysed and compared to two reference strategies based on a relaxed
problem formulation: a single optimisation yielding a weekly operation planning and a MPC scheme.
The proposed problem formulation proves effective in terms of performance and maintenance of
acceptable computational complexity. For the chosen sliding window, the control scheme drives the
power supply/demand gap down from the initial one up to 38%.

Keywords: low-voltage power distribution grids; smart grid paradigm; distributed generation;
model-based predictive control; flexible asset management; mixed-integer nonlinear programming;
relaxation; computational complexity

1. Introduction

In recent years, the growing penetration of distributed generation (DG) into power
distribution grids has been having a deep impact on these grids [1]. The deployment of
distributed generators results in bidirectional power flow [2] and is projected to worsen
voltage fluctuations and increase the risk of power backflow from low-voltage power
distribution grids to medium-voltage ones. This is mainly due to wind and solar, which
are intermittent energy sources depending on geographical locations and weather condi-
tions [3].
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Power distribution grid operators are contractually required to provide safe and
reliable service to their customers and, as a result, are complying with several regulations,
mainly on voltage constraints, voltage drop gradients, and current levels [4]. However,
deployment of distributed generators is expected to make compliance with such constraints
increasingly difficult. In addition, it triggers plenty of safety and quality issues, including
short-circuits, power outages, and equipment damage [5,6]. The penetration of distributed
generation into power distribution grids is also behind planning, legal, and regulatory
issues [7].

The smart grid paradigm was conceived to tackle monitoring and control problems in
power distribution grids [2]. Its building blocks include boosting grid observability through
forecasting of grid load [8] and distributed generation [9], deployment of an advanced
metering infrastructure (for instance, through the smart meter Linky in France), and smart
management schemes which aim to balance out power supply and demand. Optimal
power flow [10–15], demand-side management [16–21], and multi-agent systems [22–26]
are some of the most abundant techniques in the scientific literature. Depending on the
application, which can range from dimensioning and planning of power grid infrastructure
to real-time monitoring and control, and the technical and computational constraints, one
technique may be more appropriate than another. For instance, the voltage levels in the
power distribution grid at hand determine which of these techniques is the best suited
when it comes to developing a control scheme. A survey of smart management tools for
power distribution grids with prolific distributed generation is provided by the present
paper’s authors in [27].

Modern power distribution grids group several distributed generators and storage
devices. Therefore, it stands to reason to use these generators and storage devices to
balance power supply and demand. The problem to solve can then be formulated as a
minimisation one, where the aim is to minimise the cumulated difference between power
supply and demand over a time horizon. The proposed strategy combines flexible asset
management approach [28–30] and implicit model-based predictive control (MPC) [31–34].
Because power distribution grids are subject to intermittent renewable-energy-based power
generation as well as stochastic electricity demand, the suitability of MPC to the monitoring
and control of these power grids is plain. Such disturbances can provoke more or less
serious failures and low-voltage power distribution grids, because of their weakly meshed
(often radial) structure, are especially prone to cascading failures. Economic convenience
edged out the extra layer of safety at the planning stage of these power grids, but, in the
context of growing distributed generation, this choice has not aged well. As a consequence,
anticipation of future issues that may affect the considered system is paramount [27].

In this paper, a MPC-based strategy taking advantage of distributed generators and
non-electrical power storage systems owned by third parties (a biogas plant and a water
tower) has been developed by PROMES-CNRS (“Processes, Materials and Solar Energy”) in
order to balance power supply and demand and limit instances of voltage overflow in a low-
voltage power distribution grid in southern France, while upholding the assets’ operational
constraints [35,36]. The case study is a simulated one. This work falls under the ADEME
(the French agency for ecological transition) “Smart Occitania” project which responds to
a concrete need expressed by ENEDIS for smart management tools and computationally-
tractable algorithms for rural and suburban low-voltage power distribution grids with
prolific distributed generation. One of the objectives of the project is to evaluate the
potential of MPC for upper-level power flow management and curtailment of voltage
fluctuations in low-voltage power distribution grids. In addition, ENEDIS and PROMES-
CNRS investigate in the considered case study the use of a biogas plant and a water
tower owned by third parties as flexible assets in the control scheme. The biogas plant is
controlled by a continuous signal. However, the operation of the water tower is subject to
an ON/OFF controller and the discrete nature of the water tower’s control signal makes
the problem to solve a mixed-integer nonlinear programming (MINLP) one.
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MINLP problems have received a great deal of attention in the past few years with
a wide range of contributions from researchers in applied mathematics on theoretical,
algorithmic, and computational aspects. MINLP is a challenging research field and existing
solvers able to tackle it have significant limitations [37], further worsened in the case of non-
convex constraints [38]. When the problem is convex, quite effective algorithms, including
heuristic algorithms, are available in the literature. However, non-convex MINLP problems,
which are much more difficult to solve, arise in several areas of engineering, in particular
energy resource management [39–42]. For further information on the available algorithms
and software one can use to solve MINLP problems, the reader is referred to [43–46].
A survey of non-convex MINLP (optimisation tools, algorithms, etc.) is provided in [38,47].
The main difficulty in modelling the problem addressed by PROMES-CNRS as a MINLP
one comes from the fact that it is both nonlinear and non-convex. This is due to the
nonlinear non-convex hard constraints representing Kirchhoff’s laws, which are polynomial
equality constraints (see Equation (22)). While several techniques from the literature could
be implemented and tested, a relaxation of the problem, whether at the modelling stage or
the resolution stage, is the usual route to bypass the difficulties related to MINLP [38,47,48].
Instead, we propose a problem formulation that allows us to bypass the MINLP framework
of the optimisation problem without relaxing the ON/OFF constraint of the water tower
controller. This formulation, dubbed switch control, takes the problem out of its MINLP
setting and makes it a continuous nonlinear optimisation one. In fact, by optimising the
instants at which the water tower’s controller switches from one state to the next, the
discrete control signal is modelled as a continuous one.

The paper is organised as follows. In Section 2, the case study is presented, an overview
of the proposed control strategy is given. and models of the considered low-voltage power
distribution grid and the two flexible assets used in the case study are formulated. Section 3
provides an explanation of the proposed model-based predictive control strategy. Then, the
MINLP problem formulation is presented and the new formulation proposed in this paper
is introduced. In Section 4, a sensitivity analysis is performed in order to highlight the most
adequate sliding window size. Afterwards, results given by the proposed control strategy
are compared with those of two reference strategies. The first reference strategy is a weekly
operation planning which provides a heuristic lower bound for the objective function
final value (i.e., cumulated difference between power supply and demand). The second
reference strategy is a MPC scheme based on a relaxed problem formulation. The paper
ends with a conclusion and an outlook to future works (Section 5). The post-treatment
algorithms are detailed in Appendix A.

2. Materials and Methods

In this section, the case study, the principles of the proposed control strategy, and the
models of the low-voltage power distribution grid and flexible assets used in this case
study are presented.

2.1. Case Study

The simulated case study presented herein is carried out on a low-voltage power
distribution grid composed of a suburban residential neighbourhood of approximately
120 households located in the Occitania region (south of France), 50 household PV installa-
tions of 4 kW each (approximately 20 m2), amounting to a total power capacity of 200 kW,
a biogas plant (power capacity is 100 kW), and a water tower (power capacity is 100 kW).
The considered solar PV power generation capacity is in reality a fourfold increase from the
current installed capacity in the considered power distribution grid. The current capacity
not being high enough to disrupt the smooth functioning of the power distribution grid,
this increase in capacity was decided on to demonstrate the predictive control strategy’s
ability to close a significant gap between power supply and demand, while maintaining
the voltage levels within prescribed margins (in France, 10% for power distribution grids).
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Grid load is measured at the medium-voltage/low-voltage (MV/LV) transformer level
of the residential neighbourhood. Data are provided by CAHORS group, which is involved
in the Smart Occitania project, and ENEDIS. Because grid load data show that the portion of
reactive power remains under 5% of the apparent power, both the inductive and capacitive
aspects of the power grid components are neglected. Solar PV power generation is inferred
from global horizontal irradiance (GHI) measurements taken by a pyranometer installed at
PROMES-CNRS, located just a few kilometres from the residential neighbourhood. Grid
load and solar PV power generation data used in the case study are presented in Figure 1.
Both the biogas plant and the water tower used herein match the characteristics of two real
installations located in the Occitania region.
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Figure 1. The grid load (transformer-level measurements of power consumption in a suburban neigh-
bourhood composed of approximately 120 households) and solar PV power generation (50 household
PV panels) over four “season-typical” weeks: a spring week (a); a summer week (b); an autumn
week (c); and a winter week (d).
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2.2. Overview of the Proposed Control Strategy

In this section, the MPC-based strategy, dubbed switch control strategy, proposed for
the smart management of low-voltage power distribution grids is introduced. The principle
upon which MPC is based is quite simple: a dynamic model of the system’s inner-workings,
coupled with forecasts of stochastic quantities, is used to solve a constrained optimisation
problem, herein the one described in Section 3.2, over a sliding window. During each
timeslot, only the setpoints corresponding to the next time step are implemented. This
process is reiterated at each time step. The strength of model-based predictive control is
in its ability to incorporate in real time forecasts of disturbances impacting grid’s stability,
namely solar PV power generation and grid load, for anticipating emerging constraints as
best as possible.

In contrast to a classic operation planning where a single optimisation problem is
solved and its solution implemented over a fixed horizon (e.g., a week), the rolling horizon
of a MPC controller, which allows a perpetual adaptation to the enhancement of forecasts,
is suitable for real-time control as the optimisation problem to be solved over a pre-
defined sliding window is much less expensive. In addition, power distribution grids
contain several stochastic quantities whose forecasts degrade quickly as the forecast horizon
expands.

Figure 2 summarises the proposed MPC-based strategy. At each time step, the low-
voltage power distribution grid model assimilates data coming from both the forecast
module and the metering infrastructure concerning the biogas production at the biogas
plant, water consumption affecting the stored water level in the water tower, solar PV
power generation and the grid load. Then, the model evaluates the voltage constraints
created in the grid and sends this information to the optimisation algorithm which attempts
to find a solution for the flexible assets’ setpoints. Once the optimisation problem is solved,
the first setpoint (for the following time step) is implemented. The entire process reiterates
at every time step.

Consumers Solar PV systems Water tower Biogas plant

LV grid model

Optimisation
flexible

assets’ setpoints

Forecast
module

Pcons(t) GHI(t)

Qw,out(t)
Vw(t) Vb(t)

ĜHI

P̂cons, Q̂w,out

Ps
b , Ps

w

V s
b , V s

w

Voltage
contraints

P∗w(k+1)

P∗b (k+1)

Model-based predictive controller

Low-voltage (LV) grid

Figure 2. Synoptic scheme of the proposed MPC-based strategy for smart management of a low-voltage power distribution
grid using flexible assets. Let Qw,out , GHI, Pcons, Vw, and Vb be measurements of water demand, global horizontal
irradiance, grid load, water volume, and biogas volume, respectively. Let P∗w, P∗b be optimal setpoints of water tower
power consumption and biogas plant power generation, respectively. Let ĜHI, P̂cons, and Q̂w,out be forecasts of global
horizontal irradiance, grid load, and power demand, respectively. Let Ps

b and Ps
w be candidate setpoints of biogas plant

power generation and water tower power consumption, respectively, and V s
b and V s

w be biogas volume and water volume
corresponding to those candidate setpoints, respectively.



Energies 2021, 14, 1773 6 of 28

The proposed MPC-based control strategy, dubbed switch control strategy, is detailed
in Section 3. The MINLP problem is presented and the novel formulation that solves this
problem as a smooth continuous one without having recourse to relaxation is introduced.

2.3. Models

In accordance with the model-based predictive control scheme proposed in this paper
for the smart management of a low-voltage power distribution grid, the models of the
flexible assets (a biogas plant and a water tower) are formulated over a prediction horizon
H. In the following, and for all time-dependant quantities, t ∈ {1, . . . , Hp}, where Hp is
the integer number of time slots within the prediction horizon.

2.4. Biogas Plant

Biogas plants, which are connected to low-voltage power distribution grids, are
composed of bioreactors (where methane-rich biogas is produced in order to be used as
fuel), storage units, and power generators.

The biogas volume in the storage unit (in m3) is described as:

Vb(t + 1) = Vb(t) +
T
60

(
Qb,in(t)−Qb,out(t)

)
(1)

where T is the time step (T = 10 min) and Qb,in (in m3 h−1) and Qb,out (in m3 h−1) are the
flow rates of biogas production entering the storage unit and biogas consumption by the
power generator, respectively.

Qb,out is formulated as follows:

Qb,out(t) =
Pb(t)
ηLHV

(2)

where Pb (in W) is the plant’s active power output, η is the generator’s efficiency, and LHV
(in kWh m−3) is the lower heating value of the stored biogas.

Pb is subject to the following constraint:

Pb,min 6 Pb(t) 6 Pb,max (3)

where Pb,min and Pb,max are the minimal and maximal power generation of the biogas plant,
respectively.

Regarding the biogas volume in the storage unit (Vb), it is subject to the following
constraint:

Vb,min 6 Vb(t) 6 Vb,max (4)

where Vb,min and Vb,max are the minimal and maximal biogas storage capacities of the
biogas plant, respectively.

2.5. Water Tower

Water towers, which are connected to low-voltage power distribution grids, provide
pressurised potable water supply and emergency water storage for fire protection. The
volume in the storage tank (in m3) is described as follows:

Vw(t + 1) = Vw(t) +
T
60

(
Qw,in(t)−Qw,out(t)

)
(5)

where T = 10 min is the time step and Qw,in (in m3 h−1) and Qw,out (in m3 h−1) are the
flow rates of water entering the storage tank and water consumption, respectively.
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Qw,in is formulated as follows:

Qw,in(t) = Pw(t)
3600ηw

ρgh
(6)

where Pw (in W) is the water pump’s active power consumption, ηw is the water pump’s
efficiency, ρ (in kg m−3) is the water density, g (in m s−2) is the gravitational acceleration,
and h (in m) is the water level in the storage tank.

Let Pw,min and Pw,max be the minimum and maximum power consumption values of
the water tower, respectively. Pw can only be set following ON/OFF commands, i.e., it is
subject to the following constraint:

Pw(t) ∈ {Pw,min; Pw,max} (7)

The water volume in the storage tank (Vw) is subject to the following constraint:

Vw,min 6 Vw(t) 6 Vw,max (8)

where Vw,min and Vw,max are the minimal and maximal storage capacities of the water tank,
respectively.

2.6. Low-Voltage Power Distribution Grid Model

The proposed control scheme operates at the MV/LV transformer level of a small-scale
power distribution grid, whose equivalent electrical circuit is shown in Figure 3, in order
to minimise the gap between power supply and demand. Therefore, performance of the
control scheme is independent of the dispatching of distributed generation throughout the
power grid.

For a given branch [qj], the voltage drop between nodes q and j is given by Kirchhoff’s
law:

Uq(t)−Uj(t)− zqj(t)Iqj(t) = 0 (9)

where Uq ∈ RHp , ∀q ∈ {1, . . . , N}, and Uj ∈ RHp , ∀j ∈ {1, . . . , N}, are the voltages at
nodes q and j, respectively; zqj ∈ RHp , ∀q, j ∈ {1, . . . , N}, is the line impedance between
nodes q and j; and Iqj ∈ RHp , ∀q, j ∈ {1, . . . , N}, is the current flowing between nodes q
and j. N is the number of nodes in the considered power distribution grid.

Under the assumption that reactive power is negligible, Uq is proportional to the
active power consumed/produced at that node:

Pq(t) = Uq(t)Iq(t) (10)

where Pq ∈ RHp , ∀q ∈ {1, . . . , N}, is the active power consumed/produced at node q and
Iq ∈ RHp , ∀q ∈ {1, . . . , N}, is the current injected into/absorbed by node q.

In France, in low-voltage power distribution grids, the nominal voltage values for
single-phase and three-phase connections are 230 V and 400 V, respectively [2]. In addi-
tion, measurements—made at the transformer level of the power distribution grid—used
throughout this study correspond to means over each time step (herein T = 10 min).
Because voltage means must at all times remain within prescribed margins, ∀q ∈ {1, . . . , N}:

|Uq(t)−Un| 6 δU (11)

where Un is the nominal single-phase voltage value for all grid nodes and δU is the
prescribed margin of voltage variations with respect to the nominal value (in France, 10%
for power distribution grids). Here, Un = 230V and δU is set to be 10% of Un, that is
δU = 23V.
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Hereinafter, let us define the following bounds:

Umin = Un − δU (12)

and
Umax = Un + δU (13)

For the equivalent electrical circuit of the low-voltage power distribution grid of the
case study (Figure 3), Equations (9) and (10) lead to the following equation set:

U3(t)−U4(t) + z(t)
Pb(t)
U4(t)

= 0 (14)

U1(t)−U2(t)− z(t)
Pw(t)
U2(t)

= 0 (15)

U3(t)−U5(t) + z(t)
PPV (t)
U5(t)

= 0 (16)

U1(t) + U4(t) + U5(t)− 3U3(t)− z(t)
Pcons(t)
U3(t)

= 0 (17)

U3(t)− 3U1(t) + U2(t) + Un = 0 (18)

where PPV and Pcons are the solar PV power generation and the grid load, respectively.

1
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4 5
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z
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I12 I35

z35

I50

z50

z30

I30

I34
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U0 U1

U2

U3

U4 U5

Figure 3. The equivalent electrical circuit of the low-voltage power distribution grid of the case study.
Let z, z20, z30, z34, z35, z40, and z50 be the line impedance (assumed identical for all grid lines), the
impedances of the water tower’s pump (node 2), the consumers (node 3), the biogas plant’s generator
(node 4), and the PV installation (node 5), respectively. U0 is the voltage at the transformer level. U1,
U2, U3, U4 and U5 are voltages and I01, I12, I13, I30, I34, I35, I40 and I50 are currents flowing between
various grid nodes.

3. Control Strategy

In this section, the switch control strategy and the reference strategies—these strategies
are based on a relaxation of the MINLP problem—are presented. Because solar PV power
generation and grid load forecasting errors are assumed null, the difference in performance
between these strategies can only be traced back to differences in problem formulations,
since data are identical. The switch control strategy is taken because the focus of this
paper is to demonstrate the efficiency of the new problem formulation and to evaluate its
performance.

This section starts with formulating the problem as a standard MINLP one. Then,
the new problem formulation allowing to treat the optimisation problem as a smooth
continuous one without having recourse to relaxation is introduced. The section ends
with a presentation of the two reference strategies with which the proposed scheme’s
performance is evaluated.

3.1. MINLP Formulation

In the scope of this work, the flexible assets are operated by third parties. The water
tower is operated using an ON/OFF controller, a hard constraint by which the power
distribution grid control scheme must abide. The integer values of the water tower control
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setpoint makes the problem a MINLP one [43]. In this section, the aforementioned MINLP
problem formulation is presented. In the following, and for all time-dependant quantities,
t ∈ {1, . . . , Hp}. Let H be the prediction horizon such that H = Hp · T, where Hp is the
integer number of time slots within the prediction horizon, Pcons ∈ RHp is the grid load
(in W), and PPV ∈ RHp is the solar PV power generation (in W). The decision variables are
Pb ∈ RHp and Pw ∈ RHp , which represent the active power setpoints for the biogas plant
generation and the water tower consumption. The standard way of integrating acceptable
voltage fluctuation margins into the problem would be to write the Kirchhoff laws dictating
them as nonlinear constraints. However, in this paper, things are done differently. Voltage
variables are introduced so the optimisation model solves the solution for power setpoints
and the voltage values across the low-voltage power distribution grid at the same time.

Moreover, voltages are incorporated as optimisation variables and nonlinear con-
straints described by Kirchhoff laws are turned into linear ones. This version of the
problem alleviates its complexity by reducing the number of nonlinear constraints it con-
tains. The voltage variation between nodes q and j of a power distribution grid at time step
t is described as follows, ∀q, j ∈ {1, . . . , N}:

Bqj(t) = Uq(t)−Uj(t)− zqj(t) ·
Pj(t)
Uj(t)

(19)

Kirchhoff laws ensure that, at every time step, the following condition is verified,
∀q, j ∈ {1, . . . , N}:

Bqj(t) = 0 (20)

Current variables are eliminated using Kirchhoff’s laws. As a result, Kt is defined to
represent voltage variations across the power distribution grid at a given time step t as a
function of the powers injected/absorbed at each node in the following manner:

Kt : (R,R,RN)→ RM (21)

(Pb(t), Pw(t), υ(t)) 7→ B(t) (22)

such that
υ(t) =

[
U1(t) U2(t) · · · UN(t)

]T (23)

where M is the number of vertices in the connected loopless graph equivalent to the
electrical circuit in question and B is made up of M non-redundant elements Bqj.

Now, let X be the following matrix:

X =
[
Pb Pw υ

]
(24)

where X ∈ RHp×(N+2).
The problem aims to close the gap between power supply and demand in a power dis-

tribution grid. To do so, third-party-owned biogas plant and water tower must be managed
in such a way that their power generation/consumption balances out the discrepancies in
the grid’s supply/demand equilibrium.

As a result, the objective function is formulated as follows:

fobj(X) =
Hp

∑
t=1
|PPV(t) + Pb(t)− Pcons(t)− Pw(t)|2 (25)

The optimisation problem that takes into account the ON/OFF controller specificity
of the water tower is:

X∗ = arg min
X

fobj(X) (26)
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with biogas plant setpoint boundaries

Pb,min 6 Pb(t) 6 Pb,max (27)

and voltage boundaries, ∀q ∈ {1, . . . , N}

|Uq(t)−Un| 6 δU (28)

subject to the following constraints:

• Water tower setpoint constraint

Pw(t) ∈ {Pw,min, Pw,nom} (29)

• Linear inequality constraints, ∀q ∈ {1, . . . , N}

Vb,min 6 Vb(t) 6 Vb,max (30)

Vw,min 6 Vw(t) 6 Vw,max (31)

|Uq(t)−Un| 6 δU (32)

• Nonlinear equality constraints

Kt(Pb(t), Pw(t), υ(t)) = 0 (33)

3.2. Switch Control

In this section, the new problem formulation proposed by PROMES-CNRS, allowing
the ON/OFF control of the water tower without using MINLP, is introduced. A post-
treatment is then presented (the post-treatment algorithms are detailed in Appendix A) to
make the solution more suitable for real implementation. Lastly, an explanation is provided
of the addition of constraints into the problem in favour of the reduction of the number of
variables. The problem as formulated in Section 3.1 presents a major challenge in the form
of the MINLP setting due to the water tower ON/OFF controller. This setting is complex
and computationally expensive, an especially troublesome trait for real-time applications
such as the one addressed in this paper. The usual route taken in the literature to bypass the
difficulties of MINLP are relaxation techniques [38,47,48]. Instead, the approach presented
in this paper does not relax the problem but proposes a different formulation that allows
the mixed-integer problem to be solved as a smooth nonlinear optimisation by optimising
the timing of the integer variable’s transition from one integer value to another. To the
authors’ knowledge, even though this technique comes from parameterised optimal control
theory, it has not yet been implemented for this type of application. However, a similar
approach was implemented by Salas et al. [49] to determine optimal planning strategies for
concentrated solar power plants via pre-scenarios. The reader can note that the constraints
given by Equation (33) are non-convex. Therefore, only local optimality can be expected,
even if the integer constraints (29) are relaxed. As a result, optimality bounds and analysis
of the results must be considered under this setting as heuristic results.

The MINLP setting due to the water tower ON/OFF controller greatly increases the
computational complexity of the optimisation problem. To circumvent this issue, this work
proposes a new formulation of the optimisation problem in order to solve it as a continuous
one. This is done by exchanging the discrete optimisation variable Pw with a real-valued
one t̄ ∈ RHp that designated the instant between two time steps at which the water tower’s
setpoint switches between its two discrete values (i.e., Pw,min and Pw,max). It follows that, at
the same instant, the biogas plant’s setpoint also switches between two values within the
interval [Pb,min, Pb,max].
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Let us denote X =
[
Pb,ON Pb,OFF t̄ UON,q UOFF,q

]T, where Pb,ON ∈ RHp and Pb,OFF ∈
RHp form the biogas plant setpoint as follows:

Pb(τ) =

{
Pb,ON(τ), τ ∈ [ti, ti + t̄i]

Pb,OFF(τ), τ ∈ [ti + t̄i, ti+1]
(34)

UON,q ∈ R(Hp ·N) and UOFF,q ∈ R(Hp ·N), ∀q ∈ {1, . . . , N}, form the voltages in the
grid:

Uq(τ) =

{
UON,q(τ), τ ∈ [ti, ti + t̄i]

UOFF,q(τ), τ ∈ [ti + t̄i, ti+1]
(35)

At each time step, the problem can be solved assuming that the first state of the water
tower is always ON. In some extreme cases, this assumption may induce some issues of
implementability with volume constraints, which are tackled in a post-treatment phase (see
Appendix A). However, this simplification reduces the complexity of the model without
sacrificing much performance.

Figure 4 gives an example of what the water tower and biogas plant setpoints would
look like with the switch control formulation. Note that the transition between states does
not only occur at the beginning of each time step.
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Figure 4. An example of setpoints for the two flexible assets, with the switch control formulation.
The sampling instants ti and the switching instants t̄i are highlighted.

The objective function is formulated as follows:

fobj(X) =
Hp−1

∑
i=0

[ ti+t̄i∫
ti

SON(τ)dt +

ti+1∫
ti+t̄i

SOFF(τ)dt
]

(36)

with
SON(τ) = |PPV(τ) + Pb(τ)− Pcons(τ)− Pw,max|2 (37)

and
SOFF(τ) = |PPV(τ) + Pb(τ)− Pcons(τ)− Pw,min|2 (38)

The problem is then formulated as follows:

X∗ = arg min
X

fobj(X) (39)

subject to, ∀i ∈ {1, . . . , Hp} and ∀q ∈ {1, . . . , N}:
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• Biogas plant power bounds

Pb,min 6 Pb,ON(τ) 6 Pb,max (40)

and
Pb,min 6 Pb,OFF(τ) 6 Pb,max (41)

• Switch time bounds

0 6 t̄i 6 T (42)

• Biogas volume constraints

Vb,min 6 Vb(t) 6 Vb,max (43)

• Water volume constraints

Vw,min 6 Vw(t) 6 Vw,max (44)

• Voltage constraints

t̄i · Kt(Pb,ON(τ), Pw,max, UON,q(τ)) = 0 (45)

(T − t̄i) · Kt(Pb,OFF(τ), Pw,min, UOFF,q(τ)) = 0 (46)

|UON,q(τ)−Un| 6 δU (47)

|UOFF,q(τ)−Un| 6 δU (48)

Kt, which is formulated as a function of the power injected or absorbed by the power
grid nodes, as defined in Equation (22), deals with voltage variations across the low-voltage
power distribution grid. Two sets of constraints guarantee that Kirchhoff’s laws are upheld
in both sub-intervals of each time step (Equations (45) and (46)). The equation set depicting
voltage variations across the power distribution grid is multiplied by t̄i (Equation (45)) and
by T − t̄i (Equation (46)) using for each interval appropriate values of biogas plant and
water tower setpoints, with the aim of ensuring that only one constraint is activated in case
of extreme values of t̄i. If t̄i = 0, Equation (45) is removed. This reflects the fact that the
water tower is turned off at the beginning of time step i. If t̄i = T, Equation (46) is removed
since the water tower remains on for the whole duration of time step i.

Two other sets of constraints account for voltage variations in both states of the power
distribution grid within each time step (Equations (47) and (48)). While depicting the same
physical constraints, this optimisation problem formulation has a bigger feasible set than
the mixed-integer nonlinear programming one (see Section 3.1). As a consequence, the
global optimum of this formulation is guaranteed to be equal or better than the one of the
MINLP formulation.

3.2.1. Post-Treatment

The problem treated in this section splinters the regularly-split time horizon into un-
even intermediate intervals. As a result, the power setpoints provided by the optimisation
algorithm may present very small pulses which perfect the objective function minimisation
aspect but compromise the implementability of the solution. Moreover, small pulses may
also appear when trying to set the switch time to an extreme value. For all intents and
purposes, a water tower setpoint which stipulates that the pump be turned on for 30 s, for
instance, makes little to no practical sense. This issue calls for a post-treatment to eliminate
small pulses, while still upholding all constraints.

At each iteration i of the optimisation process, the determined switching time t̄i is
examined: if the pulse during which the pump is turned on is too short with respect to a
pre-defined threshold, then the pulse is eliminated, provided that the volume constraints
would still hold. Analogously, if said pulse surpasses the post-treatment threshold, the
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algorithm attempts to extend it to the full 10-min interval, if volume constraints permit it.
Moreover, a second post-treatment is applied to join two adjacent pulses when possible.
This enhances the implementability of the solution as the algorithm tries to minimise the
number of transitions of the water tower setpoint from one state to another, when the
volume constraints allow it. The post-treatment algorithms are detailed in Appendix A.

3.2.2. Additional Constraints

In the remainder of this section, all quantities written in a bold font are time-dependent.
However, for clarity’s sake, notations do away with time indices and time dependency
is implicit. To alleviate the computational burden of the problem, it is advantageous to
reduce the number of optimisation variables. In this case study, this is rendered possible
by the reformulation of Equations (14)–(18), which can then be written as follows:

Un −U1 = z
(

Pw

U2
+

Pcons

U3
+

Pb
U4

+
PPV

U5

)
(49)

and

U1 −U3 = z
(

Pcons

U3
+

Pb
U4

+
PPV

U5

)
(50)

such that

U2 =

(
U1 +

√
U2

1 − 4zPw
)

2
(51)

U4 =

(
U3 +

√
U2

3 + 4zPb
)

2
(52)

U5 =

(
U3 +

√
U2

3 + 4zPPV
)

2
(53)

where Equations (51)–(53) are solutions to Equations (14)–(16), respectively.
The discarded solutions to the quadratic equations are the ones that would provide

voltage values that make no physical sense. At this stage, it becomes clear that there
are merely two voltage variables (U1 and U3) in the optimisation problem. However, in
reality, voltages U2, U4, and U5 are still expected to be within the bounds described in
Equation (11). As a result, these bounds infer additional constraints on variables U1 and
U3. In the following, these constraints are determined.

• Constraints inferred by bounds of U2: from Equation (51), it is trivial that U2 6 U1.
As a result, U2 6 Umax is redundant. As for the lower bounds, using Equation (51):

Umin 6 U2 (54)

Umin 6

(
U1 +

√
U2

1 − 4zPw
)

2
(55)

2Umin −U1 6
√

U2
1 − 4zPw (56)

Since 2Umin > Umax, 2Umin −U1 > 0. Then:

(2Umin −U1)
2 6

(√
U2

1 − 4zPw

)2

(57)

U2
min + zPw

Umin
6 U1 [Additional constraint 1] (58)
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• Constraints inferred by bounds of U4: from Equation (52), it is trivial that U4 > U3.
As a result, U4 > Umin is redundant. As for the upper bound, using Equation (52):

Umax > U4 (59)

Umax >

(
U3 +

√
U2

3 + 4zPb
)

2
(60)

2Umax −U3 6
√

U2
3 + 4zPb (61)

(2Umax −U3)
2 6

(√
U2

3 + 4zPb

)2

(62)

U2
max − zPb

Umax
6 U3 Additional constraint 2] (63)

• Constraints inferred by bounds of U5: analogously to the constraints inferred by U4,
and by using Equation (53), it can be easily demonstrated that U5 > Umin is redundant.
As a result:

U2
max − zPPV

Umax
6 U5 [Additional constraint 3] (64)

3.3. Reference Strategies

In this section, the two reference strategies (i.e., an operation planning of the flexible
assets over the considered one-week periods, see Section 3.3.1, and a relaxed MPC scheme,
see Section 3.3.2) are briefly presented. Both strategies are based on a relaxation of the
MINLP problem described in Section 3.1.

By relaxing the problem formulation, the ON/OFF constraint of the water tower
controller is lifted, and it is assumed that water consumption may have any value within
a feasible interval. Therefore, the relaxed problem is formulated in the same way as the
MINLP one except for Equation (29), representing the ON/OFF characteristic of the water
tower setpoint. Equation (29) is replaced by:

Pw,min 6 Pw(t) 6 Pw,max (65)

3.3.1. Weekly Planning

The first reference strategy is an operation planning of the flexible assets over the
one-week periods considered in this paper. Over an entire week, the relaxed optimisation
problem is solved once and then the solution is implemented. Although this type of
planning strategies is not frequently used, it is not uncommon for installations such as
biogas plants. In this paper, solar PV power generation and grid load forecasting errors
are assumed null (the difference in performance between the considered strategies can
therefore only be traced back to differences in problem formulations). The purpose of using
this weekly planning strategy, assuming forecasting errors to be null, is to serve as an upper
bound for the efficiency of the control strategy in closing the power supply/demand gap.

3.3.2. Relaxed MPC Scheme

The second reference strategy is a MPC scheme based on the relaxed problem formu-
lation. In this case, the proposed MPC scheme, based on a new formulation of the problem
described herein, is compared to a relaxed MPC scheme that is given ample freedom to
change the water tower setpoint between its two extreme values (i.e., Pw,min and Pw,max).

4. Results and Analysis

In this section, a performance analysis of the switch control strategy (see Section 3.2) is
carried out. These performances are compared to those of the weekly planning strategy and
the MPC scheme based on the relaxed optimisation problem, both explained in Section 3.3.
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First, the results yielded by the weekly planning using all four datasets are presented.
Then, a sensitivity analysis is conducted in order to assess the impact of the MPC’s sliding
window length on its performance. Lastly, a sliding window is chosen based on the
aforementioned sensitivity analysis and a detailed examination of its results is done. All
results presented in this paper were obtained using MATLAB 2018a (MathWorks, Natick,
MA, USA).

4.1. Weekly Planning Performance

The weekly planning of the flexible assets’ operation is conducted in four different
scenarios: each corresponding to a “season-typical” week (see Figure 1). Results displayed
hereinafter showcase the reduced gap between supply and demand obtained through this
planning, as well as flexible asset setpoints and corresponding storage volumes, compared
to the initial case.

It is interesting to note that the dimensioning of flexible asset storage units is an
influential factor in itself. As it stands, the hard volume constraints of storage units are
prioritised by the algorithm over the minimisation of the supply/demand gap. As a result,
when the upper bound of stored biogas volume is reached, the generator kicks in to burn
the extra biogas to avoid discarding it into the atmosphere or increasing the storage unit
pressure. When the lower bound is reached, the setpoint of power generation is reduced in
order to maintain the minimum required volume in storage. Similarly, the water tower’s
pump is automatically triggered when the lower volume bound is reached in order to
maintain the minimum required volume in storage and is automatically shut down when
the maximum water volume is reached. This can sometimes be in conflict with the grid
stability’s best interest, as it may be necessary to turn on the distributed generator when
the grid is already experiencing overvoltage due to excess energy flowing through its
lines. It may also be necessary for the storage system to consume electricity at times when
the grid is at risk of experiencing undervoltage phenomena. Asset dimensioning is not
addressed in this paper, but several works exist in the literature to tackle the question
of optimal dimensioning and allocation of distributed generators in power distribution
grids [28,50,51].

Table 1 recapitulates the values of the power supply/demand gap procured by the
weekly planning with all four sets of data, where fobj,initial and fobj, f inal are the initial and
final objective function values, respectively. When formulating the optimisation problem,
the square of the objective function is used to ensure that the algorithm suppresses sharp
fluctuations of its values and gives as smooth a variation as possible. The results show that,
in all four cases, there is a significant reduction in the supply/demand gap with respect to
the initial case, the biggest of which occurs during winter.

Table 1. Assessment of the reduction of power supply/demand unbalance by the weekly planning,
with respect to the initial case.

Season
√

fobj,initial

√
fobj, f inal Gain

Spring 4.251 MW 3.126 MW 26.5%
Summer 3.875 MW 2.862 MW 26.1%
Autumn 2.280 MW 1.360 MW 41.5%
Winter 2.186 MW 1.149 MW 46.9%

Depending on the season, the initial gap between supply and demand within the
considered low-voltage power distribution grid (modelled by the objective function value)
differs: the gap is higher in warmer seasons (spring and summer) as the solar resource, and
therefore solar PV power generation, is substantial. This is typical for the Mediterranean
climate. Indeed, the results show that the power distribution grid is unable to absorb
the excess of power generation during spring and summer, as the final objective function
is reduced by 26.5% and 26.1%, respectively, whereas it is reduced by 46.9% for winter



Energies 2021, 14, 1773 16 of 28

and 41.5% for autumn. The weekly planning scheme presented in this section, using the
relaxed problem formulation and assuming perfect forecasts, is considered as the “ideal
case” throughout the rest of the paper.

4.2. Sensitivity Analysis

To assess the impact of the sliding window size on the MPC-based strategy’s perfor-
mance, both the relaxed problem and the switch control are implemented with sliding
window size ranging from 1 to 24 h over four season-representative weeks. The results of
these simulations are discussed herein. The interesting question being investigated is: What
is the most appropriate length of this sliding window that would allow efficient control of
the power distribution grid without taking on unnecessary computational burdens? To
determine an answer, a sensitivity analysis of the impact of the sliding window size on the
performance of the MPC algorithm is carried out. The considered metrics are the objective
function’s final value and the computational complexity, measured in the total number of
objective function evaluations needed for the algorithm to reach a solution.

Figure 5 displays the evolution of the power supply/demand gap with respect to
lengths of the sliding window ranging from one to 24 h, for both the relaxed problem and
the switch control. The weekly planning obtained through the relaxed problem assuming
perfect forecasts serves as a reference point to evaluate the MPC scheme’s accuracy. For all
four seasons, it can be seen that the same behaviour is reproduced. As the sliding window
length increases, the final objective function value decreases and moves towards the ideal
value without reaching it. For small window lengths, the switch control provides identical
values to those of the relaxed problem. For larger windows, however, the switch control’s
values still follow the relaxed problem’s quite well but a small gap starts to appear between
the two.

Considerable reductions in the power supply/demand gap are already obtained with
a 1-h sliding window size for the MPC scheme, followed by gradual improvements as the
window size increases. These improvements seem, at first glance, to stabilise relatively
quickly. A closer look is provided by Figure 6, revealing a more pronounced difference
between results of MPC schemes with various sliding window sizes, though the incremental
change remains small when compared to reductions made to the power supply/demand
gap using the 1-h window with respect to the initial values.

The scheme’s goal is real-time monitoring and control of low-voltage power distribu-
tion grids. Thus, it stands to reason that computational cost would be a cardinal criterion.
Therefore, a compromise must be made between the algorithm’s qualitative results and
its computational cost. To do so, an examination of the evolution of the computational
cost required by the optimisation algorithm is carried out with respect to the length of
the sliding window of the MPC-based strategy. Figure 7 shows the computational cost
of the implementation of an iteration of the MPC scheme with varying lengths of the
sliding window in order to assess the computational burden for the relaxed problem
and the switch control. Herein, as opposed to simply registering the time consumed by
the MPC scheme’s implementation, the computational complexity is quantified by the
overall number of objective function evaluations per window. This metric is provided as
an output argument of the optimisation function fmincon of MATLAB, which has been
selected because it provided the best compromise between quality of results, computational
cost, and simplicity of implementation. fmincon is based on interior point algorithm. The
application aims at real-time control of power distribution grid, with a time step of 10 min.
As a result, strict limitations are imposed on the sophistication of the numerical solver.
Of course, fmincon does not guarantee convergence to a global minimum. However, for
this type of applications, a local minimum that allows satisfactory enhancement of the
objective function’s final value is acceptable (herein, this translates into reduction of the
unbalance between power supply and demand within the considered low-voltage power
distribution grid).
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Figure 5. The unbalance between power supply and demand within the power distribution grid per
sliding window size, over four “season-typical” weeks: a spring week (a); a summer week (b); an
autumn week (c); and a winter week (d).
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Figure 6. A closer look at the unbalance between power supply and demand within the power
distribution grid per sliding window size, over four “season-typical” weeks: a spring week (a); a
summer week (b); an autumn week (c); and a winter week (d).
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For a given computer and given operating conditions, the algorithm’s speed mirrors
a combination of two criteria: the number of function evaluations it performs and the
number of optimisation variables, which is proportional to the length of the sliding window.
This allows for a more objective rendering of the algorithm’s computational complexity
that is not clouded by the characteristics of a specific computer. Figure 7 shows that the
switch control’s computational complexity remains underneath that of the relaxed problem
up to a certain window length, then it surpasses it. Which means that, up to a certain,
relatively large, window length, the switch control is not only more realistic but is also less
computationally expensive than the relaxed problem.

Despite the presence of some outliers, the growing tendency of computational com-
plexity is clear and expected. Its main cause is the number of optimisation variables, which
is proportional to the length of the sliding window. The main observation is that, for longer
windows, a high percentage of the function evaluations serves to improve upon values
given by the previous windows by only a small fraction of the objective function’s initial
value. In gradient-based descendant methods, particularly interior-point methods, this is
very common due to the trade-off between convergence criteria and accuracy. For further
details about convergence rates and computational complexity of interior-point methods,
the reader is referred to [52] (and the references therein).

As of the 14-h sliding window, the improvement of the final objective function value
with respect to the initial value is practically constant. To avoid undue computational
burden caused by enlarging the sliding window size with little performance gain, the 14-h
sliding window is chosen going forward as the best compromise between the aforemen-
tioned performance criteria.
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Figure 7. Computational complexity, measured as the mean number of function evaluations per
sliding window weighted by its length.

4.3. Switch Control Performance

In this section, the results provided by the switch control scheme are examined. A
14-h sliding window is considered. The initial case represents the classical operation modes
of both flexible assets: through the water tower ON/OFF controller that allows the pump
the system is equipped with to fill the tank whenever it is at a lower threshold and stops
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when reaching the upper threshold, and constant power generation for the biogas plant,
in line with the facility’s steady flow of biogas production. Table 2 details the objective
function’s final values given by the proposed switch control scheme with a 14-h sliding
window, with respect to the objective function’s initial values.

Figure 8 shows the gap between power demand and supply in the considered low-
voltage power distribution grid before and after implementing the switch control scheme
with a 14-h sliding window with respect to the initial case and the planning strategy. The
results are observed for four “season-typical” weeks, with varying behaviours of grid load
and solar PV power generation, as illustrated in Figure 1. For all four considered weeks,
significant smoothing of the supply/demand gap is observed with respect to the initial case.
This is especially visible for the warm seasons (April and July) where the large midday
peaks due to high levels of solar PV power generation are remarkably reduced, although
some previously inexistent dips are created.

Table 2. Assessment of the reduction of power supply/demand unbalance by switch control with a
14-h sliding window, with respect to the initial case.

Season
√

fobj,initial

√
fobj, f inal Gain

Spring 4.251 MW 3.345 MW 21.3%
Summer 3.875 MW 2.976 MW 23.2%
Autumn 2.280 MW 1.517 MW 33.5%
Winter 2.186 MW 1.346 MW 38.4%

It should be noted that the influence of the post-treatment algorithm on performance
is evaluated. In fact, the post-treatment algorithm is called, on average, 96% of the time
during a one-week simulation to eliminate or extend a pulse in the water tower’s setpoint
at the following time step. Although this procedure results in smoother setpoints for the
flexible assets, thus boosting the solution’s implementability, it has little impact on the
power supply/demand gap, which is degraded by about 4%.

The fact that the scheme that uses a post-treatment algorithm provides smoother
setpoints than the one that does not while the supply/demand curve for both schemes
remain virtually identical suggests that the main contribution of this post-treatment is in
fact in flipping the order of the states within a time-step to have a more implementable
overall setpoint. More details about the inner-workings on the post-treatment algorithm
are provided in Appendix A. Another noteworthy observation is that the computational
burden is increased by 12%, on average, by the post treatment.

The deployment of distributed generation and its penetration in low-voltage power
distribution grids is creating new challenges in terms of monitoring and control. That
being said, this type of power generation opens the door to new ways of guaranteeing the
grid stability and quality of service. To this end, advanced metering infrastructures and
forecasting algorithms are particularly valuable tools.

5. Conclusions and Outlook

In this paper, a control strategy, dubbed switch control, is proposed for smart man-
agement of suburban low-voltage power distribution grids with significant penetration of
solar photovoltaic power generation. A simulated case study is carried out on a residential
neighbourhood located in the Occitania region (southern France). Two flexible assets—a
biogas plant and a water tower—are operated. This strategy consists in a model-based pre-
dictive control (MPC) scheme aiming to close the gap between power supply and demand,
in accordance with voltage constraints and the flexible assets’ operational constraints.
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Figure 8. Supply/demand gap before and after implementing the switch control strategy with a 14-h
sliding window, with respect to the weekly planning strategy, over four “season-typical” weeks: a
spring week (a); a summer week (b); an autumn week (c); and a winter week (d).
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The mixed-integer nonlinear programming (MINLP) setting due to the water tower
ON/OFF controller greatly increases the computational complexity of the optimisation
problem. Thus, one of the contributions of this paper is the new formulation allowing
the MINLP problem to be solved as a smooth continuous one without having recourse to
relaxation. In addition, the analysis of the results proves the control strategy’s potential for
closing the power supply/demand gap. In fact, this gap is significantly lower than the one
observed using the flexible assets’ default operating strategies (without any optimisation).
In this sense, the strategy proposed herein is a step towards low-voltage power distribution
grids capable of integrating renewable-energy-based power generation, whose aim is
meeting power demand while maintaining stability and quality of service. In addition,
the results highlight that MPC has potential for upper-level power flow management and
curtailment of voltage fluctuations in low-voltage power distribution grids.

Improvements upon this work include the modification of the objective function
to smooth out the flexible assets’ setpoints without having recourse to a post-treatment
algorithm. In addition, forecasts of disturbances, namely solar PV power generation and
grid load, impacting grid’s stability will be incorporated, in real time, with the aim of
better anticipating emerging constraints. Gaussian process regression models have been
developed. The MPC scheme’s robustness to forecasting errors will be investigated.
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Appendix A. Post-Treatment Algorithm

To ensure the implementability of the flexible asset setpoints, particularly the water
tower that switches between two extreme setpoint values, a post-treatment algorithm is
carried out. Please refer to the nomenclature list for the meaning of the variables used in
equations.

Throughout the Appendix, all quantities written in a bold font are time-dependent, but,
for clarity’s sake, notations do away with time indices. Moreover, the procedure presented
herein is implemented at each time step. Thus, time-dependent variables correspond to
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the current time step, except for Vb and Vw, which correspond to the biogas volume and
the water volume at the end of the precedent time step, i.e., at time step t, Vb and Vw
correspond to Vb(t− 1) and Vw(t− 1). In other words, Vb and Vw are treated as the initial
conditions for the current time step.

At each iteration i of the optimisation process, the determined switching time t̄i is
examined: if the pulse during which the pump is turned on is too short with respect to a
pre-defined threshold, then the pulse is eliminated, provided that the volume constraints
would still hold. Analogously, if said pulse surpasses the post-treatment threshold, the
algorithm attempts to extend it to the full 10-min interval, if volume constraints permit
it. Different quantities are introduced for the biogas plant volume constraints. These
quantities are listed hereinafter.

• Vb,down is the stored biogas volume in the biogas plant’s storage unit at the end of the
current time step if the pulse is eliminated, i.e., if in case the pump is not turned on in
the current time step.

Vb,down = Vb +
Qb,inT

60
− KbPb,OFF (A1)

with:

Kb =
T

60LHVηb
(A2)

• V middle
b,up is the stored biogas volume in the biogas plant’s storage unit at switching

time t̄i of the current time step if the duration of the pulse is extended to equal the
pre-defined threshold, i.e., if t̄i = ε.

V middle
b,up = Vb + ε

(
Qb,inT

60
− KbPb,ON

)
(A3)

• V end
b,up is the stored biogas volume in the biogas plant’s storage unit at the end of the

current time step if the duration of the pulse is extended to equal the pre-defined
threshold, i.e., if t̄i = ε.

V end
b,up = Vb +

Qb,inT
60

− εKbPb,ON − (1− ε)KbPb,OFF (A4)

• Vb,up is the stored biogas volume in the biogas plant’s storage unit at the end of the
current time step if the pulse is extended, i.e., if the pump is turned on during the
entire time step.

Vb,up = Vb +
Qb,inT

60
− KbPb,ON (A5)

• V middle
b,down is the stored biogas volume in the biogas plant’s storage unit at switching

time t̄i of the current time step if the duration of the pulse could not be extended and
is shortened to t̄i = 1− ε.

V middle
b,down = Vb + (1− ε)

(
Qb,inT

60
− Pb,ON Kb

)
(A6)

• V end
b,down is the stored biogas volume in the biogas plant’s storage unit at the end of the

current time step if the duration of the pulse could not be extended and is shortened
to t̄i = 1− ε.

V end
b,down = Vb +

Qb,inT
60

− (1− ε)KbPb,ON − εKbPb,OFF (A7)
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The following quantities are introduced for the water tower volume constraints:

• Vw,down is the stored water volume in the water tower’s tank at the end of the current
time step if the pulse is eliminated, i.e., in the case the pump is not turned on in the
current time step.

Vw,down = Vw −
Qw,outT

60
(A8)

• V middle
w,up is the stored water volume in the water tower’s tank at switching time t̄i of

the current time step if the duration of the pulse is extended to equal the pre-defined
threshold, i.e., if t̄i = ε.

V middle
w,up = Vw − ε

(
Qw,outT

60
+ 100Kw

)
(A9)

with:

Kw =
T

60ηw
(A10)

• V end
w,up is the stored water volume in the water tower’s tank at the end of the current

time step if the duration of the pulse is extended to equal the pre-defined threshold,
i.e., if t̄i = ε.

V end
w,up = Vw −

Qw,outT
60

+ 100εKw (A11)

• Vw,up is the stored water volume in the water tower’s tank at the end of the current
time step if the pulse is extended, i.e., if the pump is turned on during the entire time
step.

Vw,up = Vw −
Qw,outT

60
+ 100Kw (A12)

• V middle
w,down is the stored water volume in the water tower’s tank at switching time t̄i

of the current time step if the duration of the pulse could not be extended and is
shortened to t̄i = 1− ε.

V middle
w,down = Vw − (1− ε)

(
Qw,outT

60
+ 100Kw

)
(A13)

• V end
w,down is the stored water volume in the water tower’s tank at the end of the current

time step if the duration of the pulse could not be extended and is shortened to
t̄i = 1− ε.

V end
w,down = Vw −

Qw,outT
60

+ 100(1− ε)Kw (A14)

At each time step, the first setpoint undergoes a treatment before it is implemented
and later fed to the controller for future time steps. The treatment concerns the switching
time t̄i ∈ [0, 1] and infers modifications of the other setpoint variables: if the switching time
t̄i is smaller than the pre-defined threshold ε, it may be set to three possible values, i.e., zero,
ε, or t̄i, in that order of priority. The steps made in this case are given by Algorithm A1.
If the switching time t̄i is bigger than the pre-defined threshold ε, it may be set to three
possible values: 1, 1− ε, or t̄i, in that order of priority. The steps made in this case are given
by Algorithm A2.
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Algorithm A1: Post-Treatment Algorithm 1, Part 1.

if t̄i 6 ε then
if Vb,min 6 Vb,down 6 Vb,max
and Vw,min 6 Vw,down 6 Vw,max then

t̄i = 0
else

if Vb,min 6 Vmiddle
b,up 6 Vb,max

and Vb,min 6 V end
b,up 6 Vb,max

and Vw,min 6 V middle
w,up 6 Vw,max

and Vw,min 6 V end
w,up 6 Vw,max then

t̄i = ε
end

end
end

Algorithm A2: Post-Treatment Algorithm 1, Part 2.

if t̄i > 1− ε then
if Vb,min 6 Vb,up 6 Vb,max
and Vw,min 6 Vw,up 6 Vw,max then

t̄i = 1
else

if Vb,min 6 Vmiddle
b,down 6 Vb,max

and Vb,min 6 V end
b,down 6 Vb,max

and Vw,min 6 V middle
w,down 6 Vw,max

and Vw,min 6 V end
w,down 6 Vw,max then

t̄i = 1− ε
end

end
end

This choice depends on whether the volume constraints of both flexible assets hold.
These constraints are guaranteed to hold in the last case by the preceding optimisation
algorithm. Then, to further increase implementability of the solution, the possibility of
re-arranging the positions of pulses within their respective time steps is studied. This stems
from the fact that, within a time step, the optimisation variable is the duration of the pulse
and not its position. In other words, within a time step, as long as the water tower is turned
on for the same amount of time as what has been determined thus far, whether it is turned
on in the beginning of the time step or at its end makes no difference to the problem at
hand. Analogously, the same goes for the functioning of the biogas plant.

The pulses are therefore “flipped” (t̄i is replaced by 1− t̄i, and ON/OFF states are
inverted) alternately to form a smoother control signal, provided that the flexible assets’
volume constraints would still hold.

V end
b, f lip = Vb + (1− ε)

(
Qb,inT

60
− KbPb,OFF

)
(A15)

These constraints only need to be verified at the new switching time 1− t̄i for the new
ON/OFF operation, since, at the initial and final times of the time step, they hold thanks to
the preceding optimisation algorithm. In conclusion, the following potential state values
are introduced:

V middle
b, f lip = Vb + (1− t̄i)

(
Qb,inT

60
− KbPb,OFF

)
(A16)
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and

V middle
w, f lip = Vw + (1− t̄i)

Qout,wT
60

(A17)

The extreme cases where t̄i = 0 and t̄i = 1 are handled differently. The former case
means that the water tower’s pump is never turned on during the time step. As a result,
the algorithm will not flip the control setpoint of the next time step, provided the volume
constraints hold, in order to glue the “OFF periods” together. In the latter case, the water
tower’s pump is turned on during the entirety of the time step. Thus, the algorithm will
flip the control setpoint of the next time step, if the volume constraints hold in order to
glue the “ON periods” together.

The steps undertaken by the post-treatment algorithm to smooth the control signal by
flipping switch time value within their corresponding time steps are further illustrated in
Algorithm A3.

Algorithm A3: Post-Treatment Algorithm 2.

if f lip = 1 then
if Vb,min 6 Vb, f lip 6 Vb,max
and Vw,min 6 Vw, f lip 6 Vw,max then

f lipnext = 0
else

f lip = 0
and f lipnext = 1

end
else

f lipnext = 1
end
if t̄i = 0 then

f lipnext = 1
else

if t̄i = 1 then
f lipnext = 0

end
end

When an MPC iteration is started, a state variable f lip is given: if f lip = 1, the
post-treatment will try to flip the current time step before implementing it, and, if f lip = 0,
it will not. Then, it will set a new variable f lipnext which will be given as input to the next
MPC iteration.
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