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effects of dust aerosols
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Longlei Li 1 , Natalie M. Mahowald 1 , María Gonçalves Ageitos2,3, Vincenzo Obiso4, Ron L. Miller4,
Carlos Pérez García-Pando 2,5, Claudia Di Biagio6, Paola Formenti6, Philip G. Brodrick7, Roger N. Clark8,
Robert O. Green7, Raymond Kokaly9, Gregg Swayze9 & David R. Thompson7

Uncertainty in desert dust composition poses a big challenge to understanding Earth’s climate across
different epochs. Of particular concern is hematite, an iron-oxide mineral dominating the solar
absorption by dust particles, for which current estimates of absorption capacity vary by over two
orders of magnitude. Here, we show that laboratory measurements of dust composition, absorption,
and scattering provide valuable constraints on the absorption potential of hematite, substantially
narrowing its range of plausible values. The success of this constraint is supported by results from an
atmospheric transport model compared with station-based measurements. Additionally, we identify
substantial bias in simulating hematite abundance in dust aerosols with current soil mineralogy
descriptions, underscoring the necessity for improved data sources. Encouragingly, the next-
generation imaging spectroscopy remote sensing data hold promise for capturing the spatial
variability of hematite. These insights have implications for enhancing dust modeling, thus
contributing to efforts in climate change mitigation and adaptation.

Aerosol impacts on climate constitute one of the challenges in estimating
current and future climate changes1. An important error source arises from
absorbing natural aerosols, such as desert dust1–3, because they can both
absorb and scatter radiation at short and long wavelengths, giving rise to a
complicated relationship with the resulting net (shortwave plus longwave)
direct radiative effect (DRE)2,3. The absorption capability relative to the
scattering by dust aerosols dictates whether they foster or suppress pre-
cipitation locally and whether they warm or cool the planet4–7. These cli-
matic impacts are still subject to large uncertainty, primarily due to poorly
known attributes of dust aerosols, such as their optical properties8,9. To limit
computational cost, most global climate models consider dust particles as a
globally homogenous mixture of minerals, despite the strong regional var-
iation of mineralogical composition10–12 and, thus, the optical properties of
dust aerosols9,13. In contrast, recent studies3,11,14–21 have speciated dust into
multiple mineral components, enabling the representation of regional
variations of dust composition and resulting complex refractive
index (CRI)14.

Modeling studies3,16,20 and observations13,22 have identified two types of
iron oxides, specifically hematite and goethite, as key mineral components
to estimate dust DRE because of their strong absorption at ultraviolet and
visible wavelengths13,14,19,23, particularly when they are internallymixed with
other minerals that are less absorbing14. Other light-absorbing oxide types,
includingmanganese-oxides and titanium-oxides24–26, alongwith iron oxide
minerals in addition to hematite and goethite, coexist in dust aerosols.
However, measurements consistently indicate that hematite and goethite
are the most common types of light-absorbing oxides and predominate in
mass over the other types in major dust source regions11,12,27,28. Conse-
quently, despite the potential comparability of some other light-absorbing
oxide types in terms of the imaginary part of the CRI (referred to as ima-
ginary CRI for brevity), a fundamental parameter linked to the aerosol
absorption ability, their overall quantities are typically insufficient to exceed
the importance of hematite and goethite for dust absorption within the
shortwave spectral range. The imaginary hematite CRI, however, shows
over two orders of magnitude difference in the literature (Supplementary
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Fig. 1)19, exhibiting strong29, moderate30, to weak31 absorption at visible
wavelengths (referred to as STRONG, MODERATE, and WEAK index,
respectively). In contrast to this diversity, there is only one set of imaginary
goethite CRI32 available for use, whose accuracy has been questioned33.

Furthermore, the calculation of optical properties for dust aerosols,
which are typically composed of a mixture of minerals, necessitates the
application of a mixing rule to combine the CRI of each individual mineral.
Two commonly employed mixing rules are the volume averaging method
and the Maxwell Garnett approximation. The volume averaging method
calculates the effective CRI of component aerosols by averaging the CRIs of
individual components weighted by their volume fractions. In comparison,
theMaxwell Garnett approximation estimates the effectiveCRI of amixture
by considering the impact of inclusions within the host medium. The
appropriate use of the mixing rule depends generally upon the geometric
arrangement of minerals within aerosols. Scanning and transmission elec-
tron microscopy reveal distinct forms of iron oxides in relation to other
minerals13,34–38, typically categorized as internal and/or external mixing
states. The mixing state, along with the amount and imaginary CRI of iron
oxides, predominantly governs dust absorption and, consequently, DRE in
models, particularlywithin the shortwave spectral range. The uncertainty in
these factors poses a challenge in modeling dust optical properties. Espe-
cially in climate models, it remains unclear which imaginary hematite CRI
andmixing rule providemore accurate descriptions of the optical properties
of dust aerosol particles.

This work aims at constraining the imaginary hematite CRI as a
function of themixing rule used to calculate the CRI of dust aerosols and its
sensitivity to iron oxides (hematite plus goethite)3,14–16,19,39–41. Addressing
these aspects is fundamental for representing the dust DRE in modeling
studies.

To achieve our purpose,weutilize existing laboratorymeasurements of
dust mineralogical composition and its spectrally resolved optical
properties19,22,42, and compare these laboratory optical properties with those
we calculated for dust aerosols. These laboratory datasets include retrieved
CRI and measured single scattering albedo (SSA, the ratio of scattered
radiation to total extinction), mineralogical composition, and size dis-
tribution for dust aerosols with representative sizes akin to medium-range
transported aerosols22,42. These aerosols were generated within a chamber
that mimicked dust emission processes, using nineteen soil samples taken
fromworldwidedust sources (Fig. 1b).Due to the soil-to-aerosol conversion
process, the size distribution and mineralogical composition of the dust
aerosols analyzed heremaydiffer slightly from those of the soil samples. The
imaginary CRI and SSA are two key parameters widely used to characterize
dust absorption and absorption relative to scattering, respectively. Both
parameters vary substantially across dust source regions, contributing to
large uncertainty in the estimate of dust DRE.

Similar to previous studies13,14,37, we focus on how to represent the
absorption of dust aerosols due to iron oxides at the visible wavelengths
where the dust absorption is enhanced43, and incoming radiative fluxes at
the tropopause typically reach their peak (Supplementary Fig. 2).We do not
extend the analysis to include long wavelengths due additionally to (1) the
reduced importance of iron oxides: they show diminished importance
compared toother factors, such asparticle size andabsorptionbyquartz and
clays3,20, particularlywhen contrastedwith the relevance of ironoxides to the
shortwave dust DRE and (2) the lower variation of imaginary hematite CRI
in the longwave spectral range, compared to the visible band, with the
exception of the far infrared19.

The laboratory data explicitly measure the abundance of hematite and
goethite, while excluding the other types of light-absorbing oxides. Conse-
quently, our results, derived through various methods based upon the
laboratory chamber data, can only be attributed to the combination of
hematite and goethite.

Specifically, we (1) calculate the CRI of dust aerosols, which comprise
multiple mineral components, by applying two mixing rules: the volume
averaging or Maxwell Garnett approximation (results shown in Supple-
mentary Information), along with the three sets of imaginary hematite

CRIs19 (Supplementary Fig. 1), using laboratory dust mineralogical
composition42 (Fig. 1a); (2) perform Mie simulations to compute the dust
SSA with necessary inputs (See Methods; uncertainty provided in Supple-
mentary Table 1); and (3) compare our calculations with the laboratory
data22.

In the absence of quantitative information on the mixing state of
laboratoryminerals, this study adopts an internal mixing assumption when
employing both mixing rules, while disregarding the other forms of iron
oxides in relation to other minerals (see Discussion). Specifically, when
using the volume averaging method, we consider dust particles to be a
uniform blend of different components. When applying the Maxwell
Garnett approximation, we consider iron oxides to be inherently embedded
in the mineral lattice of illite plus smectite, forming a homogeneousmatrix,
and all non-matrix minerals are spherical, as described in Methods and
Supplementary Information.

The internal mixing assumption and the use of the Mie Theory are
necessaryhere tomaintain consistencywith the laboratory study,which also
employed such assumptions when retrieving the CRI of dust aerosols in the
chamber.Noting that the imaginary hematiteCRI can differ fromany of the
three sets considered in this study, we further utilize optimal estimation
techniques to retrieve aCRI that bestmatches the laboratory data. Given the
sensitivity ofdustDREwithin the shortwave spectral range to thequantityof
iron oxides in dust aerosols3,14,20, our constraint also lies in determining the
most suitable mixing rule and set of imaginary hematite CRIs to accurately
represent the relationship between the imaginary dust CRI and the volume
(or mass) fraction of iron oxides in dust aerosols observed in laboratory
settings.

Furthermore, we incorporate theMaxwell Garnett approximation into
a global model to calculate the optical properties of dust aerosols
(see Methods and Supplementary Notes). Currently, the volume averaging
method serves as the default for this calculation in the model.
With the addition of the new mixing rule, we assess which combination
of imaginary hematite CRI and mixing rule most closely aligns with
laboratory measurements of dust CRI, SSA, DRE efficiency (defined as the
ratio of the dust DRE under clear-sky conditions to dust optical depth,
DOD; unit: W m−2 DOD−1) in dust-dominated regions, and absorbing
DOD (calculated as the product of 1-SSA and DOD) in the current climate
(see Methods).

The primary results obtained from the volume averaging method are
presented in the main text, while additional information, such as results
derived from the Maxwell Garnett approximation and sensitivity tests
conducted with different assumptions than those employed here, are
included in Supplementary Information.

Overall, the extensive experiments in this study, complemented by
laboratory measurements of dust quantities including composition,
absorption, and scattering, markedly narrowed the range of plausible
imaginary CRIs for hematite, despite the challenge of independently con-
straining the mixing rule and imaginary CRI. By incorporating a set of
imaginary hematite CRI (MODERATE index) indicative of moderate
radiation absorption in the visible spectrum along with the volume aver-
aging method, the global climate model accurately simulated the optical
properties of dust aerosols and their sensitivity to variations in iron oxide
amounts within the particles. This constrained solar absorption of hematite,
combined with precise descriptions of surface soil mineralogy, will enhance
our understanding of the role desert dust plays in the Earth system based on
its mineralogical composition.

Results
Constraints using laboratory measurements
We first consider the most likely combination of imaginary hematite CRI
and mixing rule to accurately reproduce laboratory measurements of the
imaginary CRI of dust aerosols. Comparison of the results using different
combinations suggests that using the MODERATE index, representing
moderate hematite absorption30 compared to the other two sets of ima-
ginary hematite CRIs, and employing the volume averaging method

https://doi.org/10.1038/s43247-024-01441-4 Article

Communications Earth & Environment |           (2024) 5:295 2



(Fig. 2a) is competent for accurately reproducing the laboratory data at
0.52 μm. This combination yields a statistically significant correlation
(Pearson correlation R = 0.86) at the 95% confidence level and a root mean
square error (RMSE) not significantly different from the laboratory data at
the 95% confidence level (Supplementary Table 2). In contrast, the other
hematite indices either significantly overestimate (STRONG) or under-
estimate (WEAK) the observations at the 99% confidence level (Supple-
mentary Table 2), with the RMSEs ranging between 0.0031–0.010 and
0.0018–0.0021, respectively, which are larger than that obtained using the
OPTIMAL index (0.00034–0.0014). These results generally hold true with
the Maxwell Garnett approximation (Supplementary Fig. 3a), although the
errors could be higher, and the MODERATE and STRONG indices yield

statistically indistinguishable RMSEs at the 95% confidence level for ima-
ginary dust CRI.

Next, we investigate how the different imaginary CRIs (and mixing
rules) reproduce the laboratory SSA of dust aerosols. To achieve this pur-
pose, we calculate the dust SSA using theMie Theory with inputs including
the imaginary dust CRI (Fig. 2a and Supplementary Fig. 3a), as well as
parameters for five log-normal mode number distributions of dust aerosols
observed in the laboratory, which vary from one site to another22. We then
compare the results to observations. We find that employing the MOD-
ERATE index and volume averaging method allows to replicate the
laboratory SSA of dust aerosols with a correlation coefficient of 0.68 (sig-
nificant at the 95% confidence level; Fig. 2b). In comparison, the other

Fig. 1 | Mineralogy of dust aerosols. Existing soil atlases inadequately represent
laboratory dust mineralogy, whereas data from the Earth’s surface Mineral dust
source InvesTigation (EMIT) project enhance spatial accuracy for iron oxides.
a Laboratory data at selected 19 sites. Black dash lines represent volume fractions of
0.25, 0.50, and 1.0, respectively. b Locations of the 19 sites grouped by seven geo-
graphical zones where the laboratory soil samples were taken to generate dust
aerosols42. c Similar to (a) but for simulated mineral fractions at each of the 19 sites
with one of the existing soil atlases (C1999)10 for comparison with the laboratory
data. Mass fractions of the minerals rereported in the literature were converted to
volume fractions (a and c) using their densities: illite-2750 kg m−3, kaolinite-
2600 kg m−3, smectite-2350 kg m−3, hematite-5260 kg m−3, goethite-3860 kg m−3,
quartz-2660 kg m−3, calcite-2710 kg m−3, feldspar-2560 kg m−3, gypsum-
2300 kg m−3, chlorite-2950 kg m−3, and dolomite-2840 kg m−3. Iron oxides consist
of both hematite and goethite (a, c), which is not distinguished in C1999. The

laboratory mineralogy data were used with the assumption that regards all clays as
kaolinite for sites where the partitioning between illite and kaolinite is unavailable42.
Sensitivity tests on this and some other assumptions, e.g., all as illite or smectite,
suggest minor impacts on the comparison here and on the conclusion of this study.
d The comparison of iron oxides (mass fractions) for dust aerosols converted from
soil atlases that were created based on high-bound3 iron oxides identified by existing
global soil atlases (C199910 and J201411: royal blue and light sea green, respectively)
and fromEMIT (dark orange) retrievals (vertical bars: standard deviation over pixels
around the sampling sites; see Methods for the data processing) against those from
laboratory (the black solid line is the 1:1 line. Black and gray dash lines represent a
factor of 2 and 4 differences, respectively). Metrics used to measure the model
performance on reproducing the volume or mass fractions of the in-common
minerals include the Pearson correlation coefficient (“*” denotes significance at the
95% confidence level) and root mean square error (RMSE).
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indices working with the volume averaging method statistically either
undershoot (STRONG) or overshoot (WEAK) the laboratory SSA of dust
aerosols at the 95% confidence level (Supplementary Table 2). As a result,
they cannot accurately reproduce the overall dust absorption relative to
scattering (Fig. 2b). When employing the Maxwell Garnett approximation,
the STRONG index, however, works better than the other two indices
(Supplementary Fig. 3b). This combination yields a SSA of dust aerosols
even superior to that achieved by the combination of the MODERATE
index and volume averaging method. The relatively lower correlation
between the laboratory data and calculations in the SSA compared to the

imaginary CRI between the laboratory data and calculations is as expected,
as the errors accumulate from the point where we calculated the imaginary
CRI of dust aerosols.

Furthermore, we assess the sensitivity of imaginary dust CRI and SSA
to the volume fraction of iron oxides. Compared to estimates based on the
laboratory data, theMODERATE indexworkingwith the volume averaging
method more accurately reproduces the sensitivity of the imaginary dust
CRI to the volume fraction of iron oxides than the other indices: the cal-
culated regression slopewith theMODERATE index is approximately 0.12,
which falls within the laboratory range of 0.11–0.19 (Fig. 3a). This result,
however, contrasts with the performance of the Maxwell Garnett approx-
imation, which shows better performance with the STRONG index com-
pared to the other two indices (Supplementary Fig. 4a). Combining the
STRONG index and the Maxwell Garnett approximation yields a statisti-
cally indistinguishable sensitivity at the 95% confidence level when com-
pared to the combination of the MODERATE index and the volume
averaging method.

Consistently, the MODERATE index tends to better reproduce
the sensitivity of dust SSA to the volume fraction of iron oxides than
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Fig. 3 | Predicted relationship between dust optical properties and iron oxides
compared to laboratory data. The index representing moderate hematite absorp-
tion outperforms other indices in predicting the sensitivity of the complex refractive
index (CRI) and single scattering albedo (SSA) of dust aerosols to variations in iron
oxides, as confirmed by optimal estimation techniques. a Imaginary part of the CRI
of dust aerosols as a function of volume fractions of iron oxides. The imaginary CRIs
were obtained using the volume averaging method, utilizing laboratory mineral
fractions (Fig. 1a) and various imaginary hematite CRIs (STRONG: violet, MOD-
ERATE: red, WEAK: forest green, and OPTIMAL: deep sky blue) at the wavelength
of 0.52 μm. Additionally, the results include calculations based on laboratory data
(OBSERVATION: gray). b Similar to (a) but for SSA, calculated based on the Mie
Theory (see Methods). Note that results obtained using the MODERATE and
OPTIMAL imaginary hematite CRIs greatly overlap. Metrics used to measure the
relationship between the imaginary CRI and SSA of dust aerosols and the volume
fractions of iron oxides include the Pearson correlation coefficient (R; “*” denotes
significance at the 95% confidence level) and slope from the linear least squares
regression. The slope of calculated imaginary dust CRI or SSA to the volume fraction
of iron oxides, obtained using a bootstrap procedure (see Methods), ranges between
[0.20, 1.0], [0.058, 0.26], [0.00084, 0.039], and [0.11, 0.12] for imaginary CRI, con-
trasted with [0.11, 0.19] in the observations, and ranges between [−14,−3.9], [−6.5,
−1.6], [−1.1,−0.056], and [−3.3,−2.9] for SSA, contrasted with [−5.0,−1.3] in the
observations, for the STRONG, MODERATE, WEAK, and OPTIMAL index cases,
respectively.

Fig. 2 | Predicted dust optical properties against laboratory data. The index
representing moderate hematite absorption is superior to other indices for pre-
dicting the complex refractive index (CRI) and single scattering albedo (SSA) of dust
aerosols, as confirmed by optimal estimation techniques. a Comparison of the cal-
culated imaginary part (y-axis) of the CRIs to laboratory data (x-axis) at the
wavelength of 0.52 μm for the 19 sites (Fig. 1b). The black solid line is the 1:1 line.
Black and gray dash lines represent a factor of 2 and 4 differences, respectively. The
calculated dust imaginary CRIs were obtained using the volume averaging method,
utilizing laboratory mineral fractions (Fig. 1a), distinguishing between hematite and
goethite (CRI taken from a previous publication3), and considering various hematite
CRIs (STRONG: violet, MODERATE: red, andWEAK: forest green). Also included
are constant dust CRIs (CONSTANT: gray) with no spatial and temporal variation79,
and dust CRIs calculated based on the optimal hematite index (OPTIMAL: deep sky
blue; derived using the optimal estimation techniques). For the calculated imaginary
CRI of dust aerosols, the vertical standard-error bars denote uncertainty due to
various error sources (see Methods). b Similar to (a) but for SSA (black dash lines
represent a factor of 1.1 differences). The SSA was calculated based on the Mie
Theory with the inputs of the calculated/constant dust CRI, as shown in (a), and the
other inputs taken from the laboratory data42. The vertical standard-error bars
represent uncertainty arising from error sources in the input to theMie simulations,
including those propagated from calculations for the imaginary CRI of dust aerosols
(seeMethods). The horizontal standard-error bars in both (a,b) indicate uncertainty
in the laboratory data22. Metrics used to measure the distance between the calcula-
tions and measurements include the Pearson correlation coefficient (R; “*” denotes
significance at the 95% confidence level) and root mean square error (RMSE). The
RMSE obtained using a bootstrap procedure (see Methods) for imaginary dust CRI
ranges between [0.0031, 0.010], [0.00034, 0.0014], [0.0018, 0.0021], and [0.00066,
0.00074] for the STRONG, MODERATE, WEAK, and OPTIMAL index cases,
respectively. For dust SSA, it ranges between [0.069, 0.15], [0.022, 0.050], [0.064,
0.072], and [0.032, 0.034]. No RMSE range was estimated for the CONSTANT index
case, since the resulting imaginary dust CRI and SSA show poor spatial variability.
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the other indices when used with the volume averaging method (Fig. 3b).
In comparison, the STRONG index shows improved performance
when used with the Maxwell Garnett approximation (Supplemen-
tary Fig. 4b).

In addition to evaluating existing reported CRIs, we prescribe a
mixing rule to obtain an optimal CRI (imaginary part referred to as the
OPTIMAL index; Supplementary Fig. 1: dodger blue or dark orange)
through an inverse calculation that matches the laboratory data
(see Methods). This new index indeed helps statistically reproduce
the laboratory measurements at a 99% confidence level (Supplementary
Table 2), as expected (Fig. 2 and Supplementary Fig. 3). It also aids in
reproducing the relationships between iron oxides and dust
CRI (imaginary part: Fig. 3a and Supplementary Fig. 4a) and SSA
(Fig. 3b and Supplementary Fig. 4b). The OPTIMAL index gets close to
the MODERATE index, regardless of the mixing rule used for the
inverse calculation. However, there is a considerable difference between
the two OPTIMAL indices inversed using different mixing rules, par-
ticularly at shorter wavelengths (e.g., 0.37 μm) compared to that at
0.52 μm (Supplementary Fig. 1a), suggesting that the imaginary
hematite CRI and mixing rule cannot be constrained separately.

Evidence from global climate model simulations
To corroborate the laboratory-based findings, we compare climate model
results at the visible band centered at approximately 0.53 μmusing different
imaginary hematite CRIs and mixing rules to dust-filtered SSA and
absorbing DOD retrievals at the wavelength of 0.55 μm from sun photo-
meters at 21 dust-dominated stations of the AErosol RObotic NETwork
(AERONET) (see Methods). To simplify the representations of minerals in
the model, we consider all iron oxides as hematite when using the volume
averaging method, while maintaining the total volume fractions of iron
oxides and other minerals unchanged. This treatment on the partitioning
between hematite and goethite does not substantially alter the relative
comparison between the imaginary CRIs of dust aerosols calculated using
different imaginary hematite CRIs (Fig. 2a versus Supplementary Fig. 5a).
For example, the superiority of the MODERATE index over the STRONG
index with the volume averaging method remains consistent.

Wefind that, when employing the volume averagingmethod, reducing
the amplitude of imaginary hematite CRI by switching from the
previously3,16 used STRONG index to the MODERATE/OPTIMAL index,
as constrained/derived here, substantially reduces the model error in
reproducing the AERONET SSA of dust aerosols (Fig. 4b). These results are
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blue) and AERONET-based retrievals. R and RMSE denote the Pearson correlation

coefficient (R; “*” denotes significance at the 95% confidence level) and root mean
squared error, respectively, calculated based on annual dust SSA “The black solid
line is the 1:1 line”. Black dash lines represent a factor of 1.05 differences. Horizontal
error bars indicate uncertainty in theAERONETdata (seeMethods). c Similar to (a)
but for dust optical depth (DOD). dDifference between simulated SWDRE of dust
using the MODERATE and STRONG hematite indices, along with the volume
averaging method for the period of 2007–2011. No simulation was performed using
the WEAK hematite index, as previous results (Fig. 2a) suggest it substantially
underestimates the laboratory imaginary part of the complex refractive index of dust
aerosols compared to the other two indices.
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statistically significant at the 95% confidence level, indicating a robust
finding.

The comparison between the modeled (visible band centered at
approximately 0.53 μm) and AERONET-based (wavelength: 0.55 μm)
absorbing DOD (Supplementary Fig. 6) somewhat confirms the above
finding. Using the MODERATE or OPTIMAL index improved the most
likely estimates (e.g., spatial correlation R = 0.65 and RMSE = 0.02 for
MODERATE), compared to using the STRONG index (R = 0.53 and
RMSE = 0.04), thoughboth still tend tooverestimate the retrieved absorbing
DOD. This overestimation and the evaluation itself, however, could be
imprecise, given that (1) the AERONET retrievals can have a bias toward
cases with high aerosol optical depth and thus high absorbingDODbecause
high-quality retrievals of the absorbing optical depth are for aerosol optical
depth exceeding a threshold value (approximately 0.4)44 and (2) our model
may overestimate the retrieved DOD (Fig. 4c), i.e., the accuracy of the
modeled absorbing DOD depends on both themodeledDOD (Fig. 4c) and
SSA (Fig. 4a).

There are satellite-based estimates of DRE efficiency under clear-sky
conditions at the top of the atmosphere (Supplementary Fig. 7: gray hor-
izontal lines or short gray bars), which can be used to evaluate if the
simulated values are consistent with observations45,46. Such comparison
(Supplementary Fig. 7), though limited by several aspects, as previously
summarized47, suggests that, in general, the combination of the MODER-
ATE index and the volume averaging method and the other combinations
do not reproduce the regional-mean retrievals (Supplementary Fig. 7; for
regional definitions, see x-labels). This discrepancy is likely partially attri-
butable to a bias in the modeled abundance of iron oxides within dust
aerosols (Fig. 1 and Supplementary Fig. 8).

Unfortunately, all simulations based on existing global soil atlases10,11

cannot accurately reproduce laboratory mineralogy (Fig. 1 and Supple-
mentary Fig. 8) and, thus, imaginary CRI of the aerosolized soil samples
(Supplementary Fig. 9), despite the use of the most recent atlas11 that
represents iron oxides more consistently with recent findings, such as the
dominanceof goethite overhematite fordust fromWestAfrica27. Themodel
tends to underestimate the volume fractions of iron oxides at some sites
while overestimating them at others, regardless of whether freshly emitted
or transportedmineral aerosols are used for analysis (Supplementary Fig. 8).
These inaccurate simulations partially indicate a large uncertainty in soil
mineralogy described by the existing atlases3, although the representativity
of such comparison itself could be questionedby the limited number of soils
analyzed in the laboratory. We anticipate large uncertainty in soil miner-
alogy due to the limited number of directmeasurements used to create those
atlases. These measurements were subsequently extrapolated globally by
assuming that mineral fractions measured within a specific soil type or unit
are applicable toother regionswheremeasurements are absent, but the same
soil type or unit is found10,11.

Figure 1d (dark orange) presents the first results from the new space-
borne instrument of Earth surface Mineral dust source InvesTigation
(EMIT), whichwill produce an independent global atlas of soilmineralogy48

(access the first initial global maps of surface soil hematite, goethite, and
kaolinite from EMIT at https://www.jpl.nasa.gov/news/nasa-sensor-
produces-first-global-maps-of-surface-minerals-in-arid-regions; last
accessed on 3May 2024). Dust aerosol mineralogy, converted from the soil
data using these first results (see Methods), shows a statistically (95% con-
fidence level) better spatial distribution than previously existing atlases10,11,
compared to the laboratory data (Fig. 1d). This improvement suggests that
results from the EMIT project will potentially enhance themodel’s ability to
simulate dust mineralogy and, thus, spatial variability in the dust CRI, SSA,
and DRE49.

Discussion
Limitations of the methodology
There are several limitations in our methodology and interpretation of the
results, which we summarize as follows. First, the laboratory data does not
provide size-resolved mineralogy. Therefore, we assumed that iron oxides

are uniformly mixed with the other minerals across the entire size range.
This assumption influences how to interpret the laboratory scattering and
absorption used to derive the CRI of dust particles, creating structural
uncertainty that the laboratory study42 omits. Additionally, the assumption
of size-invariant composition is common to the AERONET retrieval
algorithm50 and analyses of in situ and airborne measurements27,41.

Second, the combinations of the MODERATE (STRONG) index and
the volume averaging method (Maxwell Garnett approximation) do not
reproduce the imaginary dust CRI at the otherwavelengths (Supplementary
Figs. 10, 11) as well as they do at the critical wavelength (0.52 μm)where the
incoming radiative fluxes at the tropopause typically peak (Supplementary
Fig. 2). In addition to the crucial wavelength for shortwave DRE, we have
also assessed the performance of the indices at four out of the seven
wavelengths, although with less detail, as depicted in Supplementary
Information. Supplementary Fig. 1, along with Supplementary Figs. 10–13,
serves as a likely reliable indicator of the overall performance across all the
seven wavelengths. When comparing the MODERATE and the other two
indices with the OPTIMAL index, given the mixing rule, we find that the
preferred MODERATE index excels at most wavelengths, including the
wavelength emphasized in this study (Supplementary Fig. 1a). While the
combinations of the MODERATE (STRONG) index and the volume
averaging method (Maxwell Garnett approximation) may not perform as
strongly as at the target wavelength, they still replicate observations no less
effectively than other combinations at different wavelengths.However, even
at the wavelength of 0.52 μm, the utilization of the volume averaging
method and MODERATE index to model the optical properties of dust
aerosols canonly serve as a compromise solution.This is because the volume
averaging method (1) might not be applicable to dust minerals that are
nearly metallic (insoluble) from a physical perspective39 and (2) its use
requires the dust particle to be a uniform blend of different components,
whereas most dust particles consist of aggregates of varying mineralogical
composition51 and/or distinct minerals52.

Third, our calculationsof imaginaryCRI andSSAdisregard the various
complex forms in which iron oxides can exist in dust aerosols. Specifically,
contrary to thepresumption that ironoxidesare inherently embedded in the
mineral lattice of illite plus smectite for theMaxwellGarnett approximation,
scanning and transmission electronmicroscopy findings reveal two distinct
forms of iron oxides, differentiated by their sizes34,35. Specifically, minute
grains manifest as flakes on the surface of aluminosilicates or adhere within
the interstices of clay-aggregate particles due to Brownian motion and
electrostatic forces. Conversely, larger iron oxide grains exist within dust
aerosols as aggregates that adhere to the surface of other dust minerals. In
reality, the coexistence of the three distinct forms of iron oxides is also
possible, a facet not explored in this study. The existence of these cases and
their coexistence mean that dust aerosols can show complex morphologies
that specific approximations cannot describe accurately. As such, there is a
lack of rigorous justification14 of existingmathematical approximations that
can represent the wide variety of particle morphologies53. In theory, even in
scenarioswhere theMaxwellGarnett approximation is deemedappropriate,
the retrieval of the refractive index of multi-mineral particles should be
conducted through optical experiments using standard mineral samples.
From this perspective, our results serve as a compromise solution for
modeling dust optical properties on a global scale, considering particleswith
mineral components of varying proportions where index retrievals are not
available for each individual particle.

Fourth, our calculations rely on limited laboratory data on aerosolized
soil samples (Fig. 1a) and wavelengths (e.g., Supplementary Fig. 13). We
thus encourage more extensive measurements to fully constrain the ima-
ginary hematite CRI as a function of the mixing rule.

Furthermore, with the same required data (e.g., the mass or volume
fraction and CRI of each mineral) to calculate the CRI of dust aerosols, the
volume averaging method produces significantly more absorption at the
95% confidence level (Supplementary Table 3) compared to the Maxwell
Garnett approximation (Fig. 2a versus Supplementary Fig. 3a). The latter is
more consistent with Maxwell’s Equations, while the former approximates

https://doi.org/10.1038/s43247-024-01441-4 Article

Communications Earth & Environment |           (2024) 5:295 6

https://www.jpl.nasa.gov/news/nasa-sensor-produces-first-global-maps-of-surface-minerals-in-arid-regions
https://www.jpl.nasa.gov/news/nasa-sensor-produces-first-global-maps-of-surface-minerals-in-arid-regions


the Lorentz–Lorenz mixing rule for quasi-homogeneous mixtures (similar
constituents in terms of CRI)54. However, our primary results suggest that
the preferred imaginary hematite CRI at the mid-visible wavelength (i.e.,
0.52 μm) changes with respect to the mixing rule. For example, when
employing the volume averaging method, the MODERATE index outper-
forms the other previously reported imaginary CRIs for hematite in
reproducing the imaginary CRI and SSA of the aerosolized dust samples in
the laboratory (e.g., Fig. 2) and their sensitivity to iron oxides (e.g., Fig. 3). In
contrast, when employing the Maxwell Garnett approximation, the
STRONG index is preferred (Supplementary Figs. 3, 4). Therefore, the
mixing rule and hematite CRI cannot be chosen independently due to the
constraints of laboratory measurements.

Nevertheless, sensitivity studies show that the primary results pre-
sented here are not sensitive tomany of the assumptionsmade in this study,
such as the CRI for the matrix, chlorite, and dolomite (Supplementary
Table 4), mixing states of dust minerals (Supplementary Fig. 14), and the
distinction between hematite and goethite (Fig. 2 versus Supplementary
Fig. 5). This is especially notable in the preferences of the MODERATE
index against the other indices previously reported in the literature when
used with the volume averaging method to reproduce the imaginary
laboratory dust CRI.

Implications for constraining dust impacts on the Earth system
The observationally constrained optical propertieswill improve estimates of
the direct perturbation of dust aerosols on the Earth’s energy budget via
interaction with radiation (e.g., dust DRE), because of the importance of the
amount and imaginary CRI of hematite3,13,22. We find that the choice of
hematite indices alone can cause substantially different estimates of dust
DRE (Fig. 4d andSupplementary Figs. 15b, 16), indicatingpotential impacts
on the global energy budget. For example, changing from the STRONG to
MODERATE index using the volume averaging method results in a
stronger annual mean cooling by approximately 0.24Wm−2 (net DRE:
shortwave plus longwave) on the global average under all-sky conditions at
the top of the atmosphere in our model (Supplementary Fig. 15b). This
amplitude change, primarily arising from the change in the shortwave DRE
(Fig. 4d versus Supplementary Fig. 15b), is even larger than that resulting
from (1) uncertainty in the soil abundance of hematite in either clay- or silt-
sized categories, which contribute 0.2 and 0.1Wm−2, respectively3, to the
shortwave DRE; (2) exclusion of very coarse dust aerosol particles (geo-
metric diameter >10 μm)55, estimated at ~0.01–0.06Wm−2; and (3)
underrepresentation of coarse dust aerosols between 5 and 10 μm in geo-
metric diameter55, estimated at approximately 0.15Wm−2. For longwave
DRE, iron oxides become less important that the other factors, such as the
particle size and absorption by quartz and clays3,20.

It is worth noting that speciating dust bymineralogical composition in
the model yields a shortwave dust DRE remarkably different from that
calculated by using a globally uniformCRI of dust aerosols, in terms of both
spatial distributions and globalmean (Supplementary Fig. 17). This contrast
highlights the importance of properly representing the contribution of
regionally contrasted iron oxides (Fig. 1) to the spatial variations of dust
optical properties (e.g., Fig. 2 and Supplementary Fig. 3). Additionally,
employing a single climate model that uses the STRONG or WEAK
hematite index combined with the volume averaging method could lead to
an overemphasis or underemphasis of regional contrast and the importance
of iron oxide contents to the dust DRE estimate. This is because the com-
bination of the STRONG or WEAK hematite index with the volume
averaging method tends to overestimate or underestimate the sensitivity of
calculated dust optical properties to variations in iron oxide abundance in
dust aerosols (Fig. 3).

Moreover, our results have important implications for other climate
impacts due to desert dust,which are sensitive to the sign anddistribution of
the dust-radiation interaction.These include cloudburning effect, causedby
the absorption of radiation by dust within or above clouds56,57, and the
melting effect by dust on snow and glacier cover58–61 due to the dark color of
dust particles relative to snow and ice grains (the surface-albedo feedback).

Especially, the melting effect can be regionally important and highly
uncertain in climate modeling62, which can then induce a series of con-
sequences for multiple components in the Earth system, such as water
resources63, ecosystems64, and climate changes (e.g., Northern Hemisphere
warming65). The imaginaryCRI of dust aerosols forwavelengths <~1.4 μm66

is one of the fundamental parameters determining how quickly the dust
particles can melt the snow cover or glacier surface through surface
darkening67. Estimates of these darkening and melting effects by dust in
global climate models, such as the model employed here (not exactly the
version we used but its officially released version), still utilize a globally
uniformCRI for dust68, potentially introducing bias into the estimation.Our
constraint on the imaginary hematite CRI and the mixing rule provides a
basis for future advancements aimed at reducing bias by further considering
dust speciation that includes hematite. Therefore, our results here have the
potential to improve understanding of the regional to global warming by
dust aerosols via the surface-albedo feedback69.

Our improved estimates of the dust optical properties also enable a
better representation of the impact of dust on atmospheric circulations4,70

and the role mineral dust plays in weather prediction71 in coupled climate
and weather-forecasting models. The feedback of dust aerosols differs
depending on the sign of the perturbations to the energy budget at the
surface and in the dust-lofting layer4,20, potentially altering the atmospheric
stability72. These perturbations to the energy budget can also alter the hor-
izontal temperature gradient, thereby affecting monsoon strengths and
tropical cyclones73.We anticipate important implications of ourfindings for
simulating how dust aerosols affect atmospheric circulation, particularly in
regionsnear the “dust belt” (fromNorthAfrica through theMiddle East and
Central Asia to East Asia), where substantial changes to the dust DRE are
observed (e.g., within the shortwave spectral range: Fig. 4d), particularly
during monsoon seasons when dust outbreaks often occur74. As changes in
meteorological fields can feed back into the simulation of the dust cycle72,
improved modeling of dust optical properties based on speciated dust tra-
cers and our constraints on the imaginary hematite CRI here can help better
simulate the dust cycle while utilizing a prescribed soil mineralogy atlas and
predicted atmospheric dynamics in the model.

Methods
Global aerosol modeling
The Community Atmosphere Model of version 6 (CAM6) is used
to simulate the dust minerals (e.g., Fig. 1c and Supplementary Fig. 8, and
those used in Supplementary Figs. 9, 10b, d–12b, d), optical properties
(Fig. 4a–c and Supplementary Fig. 6), dust direct radiative effect (DRE)
(Fig. 4d), andDRE efficiency (Supplementary Fig. 7). Themodel represents
dust as mineral components (illite, kaolinite, smectite, quartz, feldspar,
hematite, calcite, and gypsum) using a Modal Aerosol Module version 4
(MAM4) with four log-normal size modes (accumulation, Aitken, and
coarse dust modes, and a primary carbonaceous mode). The dust model,
which incorporates a physically-based scheme75,76 andwas tuned toward the
currently best estimate of the global mean dust optical depth (DOD:
approximately 0.03) for the present climate, has undergone thorough eva-
luation against observed dust cycles47. The emission procedure of each
mineral tracer within the three dust-containingmodes was initialized using
previously developed global soil atlases11,77 with additional modifications3,16.
This procedure follows the brittle fragmentation theory78, which converts
soil mineralogy to aerosol mineralogy. All global simulations using this
model were conducted for the period of 2006–2011 with monthly model
output frequency. The first-year simulation is excluded from the analysis as
the model spin-up. The meteorological fields, including air temperature,
relative humidity, and horizontal wind field, were nudged toward the
Modern-Era Retrospective analysis for Research and Applications
dynamics version2 (MERRA2) at a spatial resolution of 1.25° × 0.9° × 56
(longitude × latitude × vertical layers). These fields were updated on a 6-h
relaxation time scale for eachof the vertical layers.Anthropogenic emissions
were taken from the Climate Model Intercomparison Program (CMIP6)
inventory for the 2000s climate.
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The rapid radiative transfermodel (RRTMG)was used to calculate the
radiative flux at each of the 56 vertical model layers per model hour at 16
longwave and14 shortwavebands.The instantaneousdustDREat the topof
the atmosphere under all-sky/clear-sky conditions was diagnosed as the
difference in net instantaneous fluxes per model hour with and without the
presence of dust aerosol species for both shortwave and longwave bands79.

We adopted the assumption that all model iron oxides are hematite,
while keeping the total volume fractions of iron oxides and other minerals
unchanged. Although this approach does not substantially alter the relative
comparison of the complex refractive index (CRI) of dust aerosols when
calculated using various combinations of the imaginary hematite CRIs, it
leads to a more pronounced difference in single scattering albedo (SSA)
across the AErosol RObotic NETwork (AERONET) sites compared to
imaginary CRI. This implies that SSA shows greater sensitivity to the
amount of hematite compared to goethite than imaginary CRI does, with
stronger hematite absorption enhancing this sensitivity. Consequently,
solely representing both types of iron oxides with hematite, while keeping
other parameters unchanged, results in a big difference in shortwave dust
DREof+0.10Wm−² under all-sky conditions at the topof the atmosphere3.
Distinguishing between hematite and goethite and utilizing their respective
imaginary CRI enhances dust cooling, given goethite’s lower absorption in
the shortwave spectrum compared to hematite. This increased cooling is
somewhat consistent with the comparison between Fig. 2 and Supple-
mentary Fig. 5. Note that the 0.10Wm−2 differencewas estimated based on
Journet et al.’s soil representation of goethite and hematite mass fractions11,
and the DRE contrast is based upon a single and contestedmeasurement of
the goethite CRI33. This study does not estimate how the different imaginary
CRIs between hematite and goethite may affect the dust DRE here as it
deviates from the primary objective and the importance of this difference
has been emphasized in a previous study3.

Incorporating the Maxwell Garnett approximation to dust-
speciated CAM6
The main purpose of this incorporation is to quantify the potential differ-
ence in the DRE estimate between different combinations of the mixing
rules and imaginary hematite CRIs (e.g., Supplementary Fig. 16). We
assume that iron oxides and other minerals, as well as other non-dust
aerosol species, are spatially separated with no strong electrostatic interac-
tion. This assumption excludes the case that the inclusion becomes reso-
nant, as the Maxwell Garnett formula holds precisely only at the volume
fraction of the inclusion <10−5. We acknowledge that this value, although
not always the case, could still be much smaller than the volume fraction of
iron oxides in dust-dominant grid boxes, which is well constrained, ranging
between 0 and 10% by measurements19 and modeling3,16.

In corresponding model simulations, we combined illite and smectite
as thematrix. Supplementary Fig. 18 illustrates the comparison between the
selected matrix and other intrusions. See Supplementary Notes for detailed
information on how we utilized this approximation to calculate the
dust CRI.

Post-processing of Earth surface Mineral dust source InvesTi-
gation (EMIT) retrievals, and the twoexisting soil atlases,C199910

and J201411

Since the laboratory mineral fractions are for aerosolized dust, we followed
the steps below to convert soilmineralogy fromEMIT retrievals and the two
global atlases to aerosol mineralogy for the comparison shown in Fig. 1d:
(1) Selecting pixels containing EIMT retrievals (ground-level resolution:

60m), surface soil clay and silt fractions (horizontal resolution: on the
order of approximately100 km), and C1999 and J2014 soil atlases
(horizontal resolution: on the order of approximately100 km) that are
closest to the sample sites (Fig. 1b). For detailed descriptions of the
EMIT imaging spectrometer and on-orbit calibration, please refer to
recent publications48,80.

(2) Partitioning mineral fractions (Mi) from EMIT into the clay- and silt-
sized categories based on the soil clay (Cf; diameter up to 2 μm) and silt

(Sf; diameter ranging between 2–63 μm) fractions taken from the land
model input while retaining the proportion of each mineral i assigned
to each category (MiC orMiS):

MiC ¼ Mi
Cf

CfþSf

MiS ¼ Mi
Sf

CfþSf

:

8<
: ð1Þ

(3) Normalizing mineral fractions from EMIT obtained in step (2) such
that the resulting fractions sum to unity. Since EMIT does not provide
retrievals for feldspar and quartz, laboratory measurements for these
mineralswere used instead in the normalizationprocess. EMIT reports
mineral fractions in terms of the spectral expression of mineral sig-
natures relative to that of a pure library mineral. Here, these mineral
fractions are interpreted asmass fractions, although in practice, the two
may not be perfectly correlated.

(4) Converting iron oxides from different soil sources to those in aerosols,
following the brittle fragmentation theory with themaximumdust size
set as 20 μm in geometric diameter. This step is also applied to the
C1999 and J2014 soil atlases.

Estimating uncertainty in calculating the imaginary CRI of dust
aerosols
We accounted for uncertainty arising from laboratory-derived iron oxide
fractions and the imaginary CRI of eachmineral (Supplementary Table 1: a
44% relative change applied). Real CRI uncertainty, typically <8%, was not
considered, as it is substantially smaller than the 16–75% range observed in
the imaginaryCRI. The total uncertaintywas determined by the root-mean-
squared sum of uncertainties stemming from these factors under inde-
pendent assumptions. Given the unknown nature of the imaginary goethite
CRI uncertainty, we opted not to differentiate between hematite and goe-
thite. Instead, we applied a 44% relative change in the imaginary CRI and
allocated 15% of themass concentration to total iron oxides. This approach
facilitates capturing a broad spectrum of plausible errors. Firstly, it accounts
for the fact that laboratory-derived goethite mass concentrations exhibit an
uncertainty of approximately 10%, which is less than the prescribed 15%.
Secondly, any discrepancy resulting from the distinction between hematite
and goethitewas included alongside other sources of error in the calculation.

Calculating the SSA of dust aerosols using the Mie Theory
We calculated the SSA of dust aerosols at the wavelength of 0.52 μm
(Figs. 2b, 3b and Supplementary Figs. 3b, 4b, 5b, 13c, d, 14) using the Mie
Theory for spherical particles with the parameters for dust size distribution
taken from Supplementary Table 1 of a recent publication22. Another key
input is theCRI of dust aerosols, whichwas calculated by applying either the
volume averaging method or the Maxwell Garnett approximation to the
laboratory dust minerals without considering their potential size depen-
dency. Both the dust size distribution and the minerals used vary spatially
and represent dust aerosols transported over medium distances, reflecting
global variability in the current climate22.

Estimating uncertainty in calculating the SSA of dust aerosols
using the Mie Theory at each site
Uncertainty in direct inputs to theMie Theory, such as the size distribution
of dust aerosols (geometric diameter and standard deviation) and theCRI of
each mineral, would propagate into uncertainty in the calculated dust SSA.
In addition, potential errors in the measured mass fractions of minerals,
based on which we calculated the CRI of dust aerosols, could also introduce
uncertainty in the calculated dust SSA. To quantify the total propagated
uncertainty, we conducted a total of 16 sensitivity tests in which we per-
turbed (increased or decreased) each of those inputs within the observed
uncertainty range22 (Supplementary Table 1). Note that for sensitivity tests
on CRI with the uncertainty range for imaginary CRI shown in Fig. 2a and
Supplementary Fig. 3a, we did not perturb the real part, as it varies little
compared to the imaginary CRI, and the associated uncertainty is typically

https://doi.org/10.1038/s43247-024-01441-4 Article

Communications Earth & Environment |           (2024) 5:295 8



small, less than 5%22. Then, we applied the root-mean-squared sum of the
uncertainties induced by those factors to obtain the total uncertainty3,7,81,
with independent assumptionamongall thedirect and indirect input factors
on each other.

Statistical metrics and significance tests
We utilized statistical metrics, such as slope, root mean square error
(RMSE), and/or spatial correlation, to quantify the “distance” or relation-
ship between calculations and observations (Figs. 1c, d, 2, 3, 4b and Sup-
plementary Figs. 3–5, 6b, 8: right panels, and 9–14). The slope was
determined using least squares regression. RMSE was computed as the
Euclidean distance between the calculations and corresponding laboratory
data at each site and single wavelength. The Pearson correlation coefficient
was employed to assess spatial correlation. The corresponding null
hypothesis test assumes that the samples are uncorrelated and normally
distributed at the 95% confidence level.

A non-parametricWilcoxon signed-rank test was also employed, as in
previous studies82,83, to determine if the paired data is statistically different
from each other (Supplementary Tables 2, 3).

Bootstrapping method
Uncertainty in RMSE between calculated imaginary CRI/SSA and labora-
tory data (Fig. 2 and Supplementary Figs. 3, 5), as well as in the trend of
calculated imaginary CRI and SSA on laboratory volume fractions of iron
oxides (Fig. 3 and Supplementary Fig. 4)were estimated based on the results
of bootstrapping iterations. In each iteration, a slope was obtained using
randomly selected results from the sensitivity tests performed on each of the
parameters that can change the calculated imaginary dust CRI (as explained
in the previous section) at each of the 19 sites, along with the estimated
uncertainty ranges of mineral volume fractions. Calculations were repeated
a largenumber of times (>100,000)until the resulting slope showedminimal
variation (<10%).Theuncertainty inRMSEwas similarly estimated through
this iterative process.

The selectionof thematrix and the determinationof theCRI used
for both the matrix and minerals with unknown CRIs
The results presented in the main text (control experiments) utilized illite
CRI for the matrix (illite plus smectite) and kaolinite CRI for chlorite and
dolomite when applying the Maxwell Garnett approximation to calculate
the CRI of dust aerosols based on the laboratory mineral fractions, along
with the corresponding SSA of dust aerosols. It is reasonable to test if those
results vary considerably enough to lead to different conclusions when
different assumptions aremade (e.g., using kaolinite CRI for thematrix and
chlorite and dolomite). Therefore, we conductedmultiple sensitivity tests in
which we repeated the calculations and analysis while applying different
CRIs to the matrix, chlorite, and dolomite (left portion of Supplementary
Table 4). In all these sensitivity tests, the CRI for each of the other minerals
remains the same as in the control experiment.

Results from the sensitivity tests (right portion of Supplementary
Table 4) in terms of the RMSE, the Pearson correlation coefficient (sig-
nificance tested at the 95% confidence level), and the spatial regression slope
suggest that the resulting CRI and SSA of dust aerosols, as well as the
relationship between the imaginary dust CRI and iron oxide abundance in
dust aerosols, do not show a strong response to different assumptions.

AERONET-derived dust optical properties
WeprocessAERONETVersion3Level 2.0Almucantar50,84 hourly retrievals
to extract optical properties for mineral dust on a monthly basis at the
wavelength of 0.55 μm.We particularly aim to minimize contamination by
carbonaceous absorbing aerosols, such as black or brown carbon, which
may contribute to the absorption attributed to dust. Since dust is typically a
coarse aerosol, wefirst remove all retrievalswithfine volume fractions above
10%.Although sea salt aerosolsmay also bepredominantly present at coarse
sizes, they show a near flat (close to unity) SSA at visible wavelengths,
whereas dust absorption increases towards short-visible and ultraviolet

wavelengths85. Therefore, we can distinguish dust from sea salt aerosols by
requiring an increasing SSA from 0.440 to 0.675 μm. Finally, the potential
contamination of the selected dust events by absorbing carbonaceous
aerosols is further reduced by filtering out the retrievals whose mean ima-
ginary CRI at red-infrared wavelengths (0.675, 0.870, and 1.02 μm) is
larger than 0.004286. This condition is expected to directly detect a strong
presence of black carbon (and indirectly brown carbon,which is expected to
coexist with black carbon), as it is the only species absorbing at these
wavelengths86,87.

These filtering criteria21,88 were applied to the available hourly data
from 2007 to 2011 to select dust-dominated measurements, although it is
nearly impossible to completely remove all small contaminations by non-
dust aerosols. For non-dust events, the DOD and absorbing DODwere set
to zero before constructing themonthly means. The dust SSAwas obtained
as an extinction-weighted mean over the dusty scenes. The monthly means
were thenobtained formonthswith aminimumof 30hourlymeasurements
over the 5-year period.

Optimal estimation of hematite CRI
At each wavelength, we obtained two new sets of the hematite CRI (Sup-
plementary Fig. 1: dodger blue and dark orange) using optimal estimation
techniques to bestfit the laboratoryCRI of dust aerosols, considering a given
mixing rule. For each site (j) and each wavelength (w), when using the
volume averaging method, we calculated the CRI of dust aerosols (ymodel;
m = 1 and 2 for real and imaginary CRI, respectively) based on the volume
fraction (δ) and CRI (n) of each dust mineral (non-iron-oxides: i; iron
oxides: FeOx), following

ymodel;j;m;w ¼
X7
i¼1

δi;jni;m;w þ δFeOx ;j
nFeOx;m;w ð2Þ

When using the Maxwell Garnett approximation, ymodel was obtained fol-
lowingSupplementaryEqs. 1–3basedonδ and spectrally resolvedn for each
dust mineral.

The final solution to this optimization model, the optimal CRI of iron
oxides, was obtained to minimize the following cost function, a Chi-Square
goodness of fit,

x2 ¼
X2
m¼1

X19
j¼1

ymodel; j;m � yobs;j;m
σ j;m

 !2

þ pm

" #
; ð3Þ

where σ represents the uncertainty in eachobservation (yobs) at each site j for
either real part or imaginaryCRI, denotedbym;P is a penalty added toavoid
negative results, which occurred at wavelengths of 0.59 and 0.66 μm.

TheoptimalCRIof ironoxides (resulting imaginaryCRI/SSAand their
relationship with iron oxide volume fractions shown in Figs. 2, 3 and
Supplementary Figs. 3–5) was determined through a global search over a
range bounded by the hematite CRI in the literature, assuming they bracket
the “real” value we are trying to ascertain. This bounded condition took
effect during the optimization at three wavelengths, 0.47, 0.59, and 0.66 μm.
An additional constraint was imposed, ensuring that the goodness of fit
approximates the total site number, which is 19. This constraint necessitates
an increase in uncertainty in the observations from 20 to 36% except at 0.59
and 0.66 μm. The 95% confidence interval for the optimal value at each
wavelength was determined by identifying the values for which the corre-
sponding Chi-Square equals the minimum value plus four (e.g., black
contour in Supplementary Fig. 19a), although the errors may not strictly
follow a Gaussian distribution. These steps were repeated across each of the
seven wavelengths and two mixing rules to obtain the spectral optimal
hematite CRI, as shown in Supplementary Fig. 1. See Supplementary Fig. 19
for Chi-Square as a function of both parts of the CRI.

When applying this method to retrieve the optimal hematite CRI with
theMaxwell Garnett approximation at wavelengths where there is no index
previously reported for goethite (e.g., the wavelength of 0.37 μm), we
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obtained the index by assuming a logarithmic fit of the wavelength
dependency. Separating the two parts of the CRI, such as using the real part
of the CRI of hematite form that corresponds to theMODERATE index, so
only needing to search the optimal imaginary CRI, yields similar results to
those obtained by combining both parts in the retrieval (Supplementary
Fig. 20b versus Supplementary Fig. 19b).

Data availability
The laboratory data, including size distribution, complex refractive index,
single scattering albedo, dust mineralogy, and the sample site information,
are available via links: https://doi.org/10.5194/acp-17-1901-201742 (last
accessed on 3 May 2024) and https://doi.org/10.5194/acp-19-15503-201922

(last accessed on 3 May 2024). The model results are available in a publicly
accessible repository: https://doi.org/10.5281/zenodo.1096334189 (last
accessed on 3 May 2024).

Code availability
The essential part of the Community Atmosphere Model of version 6 is
available in a publicly accessible repository: https://doi.org/10.5281/zenodo.
698950290 (last accessed on 3 May 2024). All codes used in the analysis are
available upon contacting the first corresponding author, L.L.
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