
HAL Id: hal-04761012
https://cnrs.hal.science/hal-04761012v1

Submitted on 30 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Influence of planetary rotation on metal-silicate mixing
and equilibration in a magma ocean
Quentin Kriaa, Maylis Landeau, Michael Le Bars

To cite this version:
Quentin Kriaa, Maylis Landeau, Michael Le Bars. Influence of planetary rotation on metal-silicate
mixing and equilibration in a magma ocean. Physics of the Earth and Planetary Interiors, 2024, 352,
pp.107168. �10.1016/j.pepi.2024.107168�. �hal-04761012�

https://cnrs.hal.science/hal-04761012v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Influence of planetary rotation on metal-silicate mixing and equilibration in a magma

ocean

Quentin Kriaa∗ and Michael Le Bars†

Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, Marseille, France

Maylis Landeau‡

Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75005 Paris, France

(Dated: October 30, 2024)

At a late stage of its accretion, the Earth experienced high-energy planetary impacts. Following

each collision, the metal core of the impactor sank into molten silicate magma oceans. The efficiency

of chemical equilibration between these silicates and the metal core controlled the composition of

the Earth interior and left a signature on geochemical and isotopic data. These data constrain

the timing, pressure and temperature of Earth formation, but their interpretation strongly depends

on the efficiency of metal-silicate mixing and equilibration. We investigate the role of planetary

rotation on the dynamics of the sinking metal and on its chemical equilibration using laboratory

experiments of particle clouds settling in a rotating fluid. Our clouds initially sink as spherical

turbulent thermals, but after a critical depth, rotation becomes important and they transition to

a vortical columnar flow aligned with the rotation axis. Applied to Earth formation, our results

predict that rotation strongly affects the fall of metal in the magma ocean for impactors smaller than

459 km in radius on a proto-Earth that rotates twice faster than today. On a proto-Earth spinning

5 times faster than today, rotation is important for any impactor smaller than the Earth itself. In

contrast with a thermal that grows in all directions, the vortical column grows vertically but keeps

a constant horizontal extent. The slower dilution in vortical columns reduces chemical equilibration

compared to previous estimates that neglect planetary rotation. We find that rotation significantly

affects the degree of equilibration for highly siderophile elements with partition coefficients larger

than 103. In this case, for a planet spinning twice faster than today, the degree of equilibration

decreases by up to a factor 2 compared to previous estimates that neglect the effect of rotation.

Finally, the ultimate fate of iron drops is to be detrained from the vortical column as an iron rain,

reconciling the traditional iron rain scenario with the model of turbulent thermal.
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I. INTRODUCTION

The present-day terrestrial planets of the solar system were formed 4.5 Gyrs ago (Patterson et al. 1955) by a series

of impacts between planetary bodies. Moon-to-Mars-sized planetary embryos collided to form planets in 10−100 Myrs

(Chambers 2004). This timing is confirmed by Hf-W radiochronometry which suggests that the Earth and the Moon

were formed within the first 100 Myrs (Kleine et al. 2002, Rudge et al. 2010) of the solar system. At this time,

planetary embryos were already differentiated into a liquid metal core and an outer silicate mantle (Kleine et al.

2002). During impacts, some of the metal core of impactors was mixed with silicates of the target planet, enabling

thermal and chemical transfers. This mixing controlled the initial temperature and composition of rocky planets

which determined the initial rheology of the mantle and the emergence of plate tectonics (Bercovici and Ricard 2014),

the time when a solid inner core started to grow (Labrosse 2015), or the driving of an early dynamo in the Earth’s

core by exsolution of light elements (Badro et al. 2018).

Accretion of rocky planets goes through several successive stages involving ever larger impactors. The size of

impactors varies from small kilometre-sized planetesimals to embryos as large as Mars or the Earth (Canup 2012,

Canup and Asphaug 2001, Ćuk and Stewart 2012, Tonks and Melosh 1993). When the target embryo is the size of

Mars or larger, the energy released during the impact is sufficient for shock waves to melt the silicate mantle much

beyond the impact area (Nakajima et al. 2021, Tonks and Melosh 1992). Previous studies (Nakajima et al. 2021,

Tonks and Melosh 1993) showed that a Mars-sized impactor hitting the Earth at a velocity larger than 11 km/s

produces enough melt to uniformly cover the Earth surface down to a depth of 1000 km or more. The smaller the

impactor or the target, the lower the volume of molten silicates produced by the shock in the target planet (Tonks

and Melosh 1992, 1993). Yet a series of small impactors may release sufficient energy to melt silicates at large depths,

especially if the target surface is blanketed by a steam atmosphere (Abe and Matsui 1985) reducing heat losses to

space. Finally, during the first million years of accretion, radioactive elements like 26Al (Dodds et al. 2021) released

enough energy to melt the entire mantle of the target planet. In the following, we consider that any combination of

the former ingredients enables the existence of a deep magma ocean, in which the impactor core sinks after an impact.

∗ Corresponding author: quentin.kriaa@univ-amu.fr
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The fall of the impactor core in the magma ocean is strongly conditioned by the outcome of the impact. Numerical

simulations are valuable tools to investigate the dynamics of impacts with various impactor sizes, impact angles

or impact velocities (e.g., Ćuk and Stewart 2012, Maas et al. 2021, Nakajima et al. 2021). Yet, evaluating chemical

transfers requires to resolve mixing and diffusive processes at the metal-silicate interface. The length scale for chemical

diffusion during the fall of metal in a magma ocean, which typically lasts a few hours, is on the order of 1 cm (Dahl

and Stevenson 2010). Unfortunately, numerical simulations are only able to resolve length scales which are several

orders of magnitude larger than this diffusive length scale (Dahl and Stevenson 2010). Landeau et al. (2021) and

Lherm et al. (2022) recently investigated the phase of mixing by impacts using laboratory experiments with miscible

fluids, approaching dynamical regimes of planetary collisions. These experiments evidenced substantial mixing down

to small scales during the impact stage, increasing the volume of silicates mixed and equilibrated with the impactor

metal. They also suggested that much of the impactor kinetic energy is imparted to the silicates during impact, so

that metal from the impactor starts sinking with negligible velocity (see Fig. 3 and Fig. 7a in Landeau et al. 2021).

One of the key parameters controlling chemical transfers is the surface area of the metal-silicate interface per unit

mass of metal. Past studies have investigated metal-silicate mixing through mainly two modelling approaches. The

first approach considered that, after impact, the impactor core quickly emulsified into millimetre-to-centimetre-sized

spherical drops, which settle downward. This so-called iron rain model (Rubie et al. 2003) has been refined by several

analytical and numerical studies, which incorporated subtle aspects of the drops dynamics and diffusive transfers

(Ichikawa et al. 2010, Maas et al. 2021, Qaddah et al. 2019, Ulvrová et al. 2011).

While emulsification during impact remains to be investigated, fluid mechanics experiments showed that breakup

happens after a descent of a few initial radii of the sinking core (Landeau et al. 2014, Wacheul and Le Bars 2018).

These experiments showed that drops do not settle individually as an iron rain. Instead they favoured a second

modelling approach. As the impactor core falls in the magma ocean, it forms a turbulent cloud that entrains silicates

at a rate proportional to the cloud surface area and downward velocity, with a proportionality constant α = 0.25±0.10

called the coefficient of entrainment (Morton et al. 1956). This entrainment dilutes the metal within the cloud, which

therefore decelerates while its radius r increases linearly in depth z at a rate dr/dz = α. In this model the cloud is

called a turbulent thermal; it accurately accounts for stirring between miscible (Deguen et al. 2014, Landeau et al.

2021, Morton et al. 1956), immiscible (Landeau et al. 2014, Lherm and Deguen 2018, Wacheul and Le Bars 2018)

and particle-laden fluids (Deguen et al. 2011, Kriaa et al. 2022). Thus, this model predicts stirring before and after

the core breaks up into droplets (Deguen et al. 2014, Wacheul and Le Bars 2018). A major consequence for chemical
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transfers is that metal equilibrates only with the finite volume of silicates that is entrained in the cloud. Yet, these

previous studies have ignored the effect of planetary rotation on metal-silicate equilibration (Dahl and Stevenson

2010), despite the strong rotation rate of the proto-Earth that has been suggested by impact simulations (Ćuk and

Stewart 2012).

This neglect likely originates from considering the earliest models for metal-silicate mixing. In the iron-rain scenario

(Ichikawa et al. 2010, Qaddah et al. 2019, Rubie et al. 2003, Ulvrová et al. 2011) metal drops of ∼ 1 cm in radius fall

in the magma ocean at a velocity of ∼ 0.2− 0.5 m/s, meaning that they settle in 10 to 100 days at the bottom of a

1000 km-deep magma ocean. Although this timescale is much longer than the length of day, the size of such drops

is too small for planetary rotation to influence their dynamics. The strength of rotation is quantified by the ratio of

inertial forces over the Coriolis force, the so-called Rossby number, which is on the order of 105 for an individual drop.

This high value suggests that rotation is negligible at the scale of a drop. To estimate the effect of rotation at larger

length scales, one can assume that an entire impactor core of 100 to 1000 km in radius falls as a whole under the

buoyancy force. The resulting sinking velocity is on the order of 1 km/s, meaning that the impactor core reaches the

bottom of the ocean in about one hour (Dahl and Stevenson 2010). This fall time is now too short compared to the

length of day for rotation to be important. The corresponding Rossby number is indeed larger than 10. However, this

latter estimate entirely neglects the formation of a turbulent cloud of metal and silicates. Previous fluid mechanics

experiments have found that the large-scale flow in a thermal or a particle-laden cloud is easily affected by rotation

(Ayotte and Fernando 1994, Bush 2003, Helfrich 1994, Kriaa et al. 2022, Lai et al. 2016, Rahimipour and Wilkinson

1992). In the present study, we show that planetary rotation affects the fall of metal-silicate clouds in magma oceans

because the clouds grow with depth by turbulent entrainment and they also decelerate, which enhances the magnitude

of the Coriolis force relative to inertial forces.

The influence of planetary rotation on the fate of the impactor core has recently been investigated with numerical

simulations by Maas et al. (2021) for a few scenarios of impacts on Earth in a global magma ocean. These simulations

showed that planetary rotation, and the latitude of the impact point, affect the dispersion and settling of iron drops in

the magma ocean. However, because of the high numerical cost, the smallest drop size is 100 m in these simulations.

In addition, the authors do not quantify the effect of rotation on the turbulent mixing in a metal-silicate cloud.

In the present study we focus on the scenario of an impact at the pole, with gravity and rotation aligned, and we

model the post-impact flow using our recent laboratory experiments of rotating particle clouds (Kriaa et al. 2022).

We quantify the role of planetary rotation varying the angular velocity and gravity of the target planet, the drop size
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and the impactor size.

Section II introduces the experimental framework that models the post-impact flow using particle-laden clouds

settling in a water tank in solid body rotation. In particular, section IIC summarises the key features of the dynamical

regimes of these clouds on the basis of the results presented in Kriaa et al. (2022). We show that clouds initially

behave as turbulent thermals, but transform into vortical columns aligned with the axis of rotation when the thermal’s

Rossby number becomes lower than unity. This columnar flow is modelled in section III. Its consequences on the

dilution of metal, and its implications on the efficiency of chemical transfers between metal and silicates are presented

in section IV. We discuss the limitations of our work and we suggest ideas for future investigations in section V.

II. EXPERIMENTAL MODELLING

A. Experimental setup

We briefly introduce the experimental setup, which is presented with more details in Kriaa et al. (2022). The

apparatus is illustrated in figure 1. The experiments are performed in a Plexiglas tank of height 90 cm and cross-

section area 42 × 42 cm2 containing 160 L of fresh water (ρf = 998 kg.m−3, ν = 10−6 m2.s−1). The tank is fixed

in the middle of a rotating table whose angular velocity Ω varies from 0 (no rotation) to 20 rotations per minute

(rpm). A lid is placed on top of the tank with a hole at the centre. Placed in this hole, a cylinder of inner diameter

Dcyl = 3.2 cm contains the buoyant material. The cylinder’s bottom nozzle is sealed by a latex membrane, which is

stretched and taped onto the cylinder. We then pour the buoyant material into the cylinder.

The released fluid is either made of salt water, which stands as a particle-free reference, or it is composed of a

mixture of 26.1 mL of fresh water and a fixed mass m0 = 1.0 g of spherical glass beads of density ρp = 2500 kg.m−3.

The mean radius rp of the beads ranges from 2.6 µm to 524.5 µm (see table I). In all the experiments the total mass

excess introduced into the system is the same. In this setup, the ambient water in the tank is an analogue for the

silicate magma ocean and the released particles are analogues for the drops of liquid metal, as previously proposed

by Deguen et al. (2011).

The ambient water and the tank are either both motionless or in solid-body rotation. At t = 0 the experiment starts

by rupturing the latex membrane with a needle, releasing the content of the cylinder. Once the membrane retracts,

the particles fall out of the cylinder because of their weight. For most particle sizes, the downward acceleration of

the particles quickly transmits to the fluid, the buoyant material rolls up and the cloud becomes turbulent after a
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(1) (2)

FIG. 1: Schematic representation of the experimental apparatus, and examples of images of (1) the glass beads
using a green filter and (2) the released water volume using an orange filter.

distance of about 1Dcyl.

The typical cloud velocity at a depth ∼ Dcyl reads

Uref =

√
g

(
1− ρf

ρ0

)
Dcyl, (1)

with g = 9.81 m.s−2 and ρ0 the initial cloud density once it has rolled up as a sphere of typical radius Dcyl, hence

ρ0 = ρf +

(
1− ρf

ρp

)
3m0

4πD3
cyl

. (2)

Note that the values of ρ0 and Uref are respectively fixed to 1002.4 kg/m3 and 3.7 cm/s for all experiments.

Visualisations are performed in a vertical laser sheet (532 nm). Since particles and water have different motions,

two identical black-and-white cameras are synchronised and record at 50 fps the same experiment with two different

filters. The first camera has a green filter to record the motion of glass beads, which reflect and refract the laser

beam, while the second camera has an orange filter. By colouring the fluid inside the cylinder with a fluorescent dye

called rhodamine, the second camera records the motion of the released water volume which appears in orange in the

laser sheet. Both of them record the same field of view of size 45 cm× 28 cm.
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B. Governing dimensionless numbers

Assuming the tank is large enough to neglect its influence on the clouds’ dynamics, the motion of particles depends on

gravity g, the ambient fluid density ρf and kinematic viscosity νf , the particles’ density ρp, the total mass of particles

in a cloud m0, the diameter of the cylinder Dcyl, the average radius of particles rp (we neglect the polydispersity of

clouds and refer the reader to Kriaa et al. (2022) for more details), and finally the tank angular velocity Ω.

The motion of particles is characterised by their settling velocity ws. To compute ws we use in this study the model

proposed by Samuel (2012)

ws =
20νf
rp

[√
1 +

(ρp − ρf )gr3p
45ρfν2f

− 1

]
. (3)

According to the Vaschy-Buckingham theorem, five independent dimensionless numbers can be computed from the

eight dimensional quantities (g, ρf , ρp, νf , m0, Dcyl, rp and Ω) that govern the particles’ motion. Three numbers

that we kept constant in experiments are the density ratio ρp/ρf , the initial volume fraction of particles, which reads

ϕ0 = 3m0/4πρpD
3
cyl for a cloud of typical radius Dcyl, and the initial cloud Reynolds number

Recloud =
2DcylUref

νf
(4)

which quantifies the predominance of inertial forces over viscous forces at early times. We varied the Rouse number

R =
ws

Uref
(5)

that characterises the motion of particles. Usually used for sediment transport (de Leeuw et al. 2020) and previously

used to study metal-silicates mixing in experiments (Deguen et al. 2011), the Rouse number compares the settling

speed of a particle ws and that of the cloud Uref. Since the reference fluid velocity Uref is the same for all experiments

(equation (1)), the Rouse number only varies with the particles’ radius: the larger the particle, the larger the Rouse

number. As particles get smaller and smaller, their Rouse number goes to 0 so their gravitational drift due to settling

vanishes, hence they behave more and more as salt water, which corresponds to the asymptote R = 0. Conversely

when their Rouse number is larger than unity, the settling speed of particles is so large that the motions of water and

particles are decoupled. Our experiments explore the transition between these end members.
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Finally, the initial cloud Rossby number

Rocloud =
Uref

2ΩDcyl
(6)

quantifies the balance between inertia and the Coriolis force at early times: the larger this number, the more inertial

the cloud is initially.

Reference values of the five governing numbers can be found in table I for both the experiments and for clouds

of liquid iron drops falling in molten silicates. We also give values of the particle Reynolds number Rep that is

commonly used to determine the dynamical regime of the flow going past the settling particles. From table I, we note

that the density ratio, the Rouse numbers and the particle Reynolds numbers that we investigate match with the

values expected in planetary flows. Particles are in the dilute regime in both cases (ϕ ≪ 1) and the particle clouds

are in the turbulent regime (Recloud ≫ 1). Finally, our values of cloud Rossby number also match with the values

expected for planetary flows.

The appropriate number that quantifies the influence of background rotation throughout the cloud fall is the

depth-dependent Rossby number

Ro(z) =
żf (z)

2Ωr(z)
, (7)

where żf (z) is the vertical velocity of the front of a spherical particle cloud with radius r(z) at depth z. The front

velocity żf is used rather than the velocity of the centre of mass, because the front is easy to track from videos and

more meaningful due to the large detrainment of particles happening at large times – see the next sections and Kriaa

et al. (2022) for details. The Rossby number is the ratio of the cloud inertia over the Coriolis force. In experiments

Ro(z ≤ Dcyl) > 1, so that particle clouds are initially weakly influenced by rotation. However, the Rossby number

decreases as the cloud falls, and rotation starts affecting the dynamics when the Rossby number equals unity.

C. Dynamical regimes in particle-cloud experiments

Our experiments (Kriaa et al. 2022) showed that, as the particle cloud sinks, it transitions from a regime of turbulent

thermal, in which rotation is negligible, to a regime of vortical column that is strongly influenced by rotation. This

section recalls the essential features of the regimes relevant for the planetary application, namely the turbulent thermal
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Quantity Experiments Planetary flows

rp 2.6− 525 µm 1000 µm

Cloud size Dcyl = 0.032 m R = 1 km−R⊕/3

ρp/ρf 2.5 2.23

R 7.6× 10−2 − 4.13 1.4× 10−4 − 1.2× 10−1

Rep 1.2× 10−4 − 160 20.8

ϕ0 2.9× 10−3 3.1× 10−5 − 2.1× 10−1

Recloud 2.4× 103 ≫ 1 3.1× 109 − 3.0× 1014

Rocloud 0.28− 1.1 0.25− 1.9

TABLE I: Comparison of the governing dynamical numbers for experiments and clouds of liquid iron drops falling in
molten silicates. We assume an impactor hitting the Earth with g = 9.81 m.s−2 and the Earth rotation rate being
twice larger than today, which is the most common scenario we consider in this study. Note that experimental
values are based on the results published in Kriaa et al. (2022) where the settling velocity is calculated from the

classic Schiller-Naumann equation. In the present study we use equation (3) due to its wider range of applicability.
The cloud Reynolds number is computed with the kinematic viscosity of the ambient fluid (water in experiments

and silicates in magma oceans, see table II); both Recloud and Rocloud are based on the reference velocity of equation
(1), and their reference length scale is respectively Dcyl in experiments, and the post-impact cloud radius r0 for

planetary flows (see section IV and equation 15 in Landeau et al. (2021)).

and vortical column regimes. In experiments, we also observe a third regime, called swarm. For completeness, it is

briefly described in appendix A but not detailed in the main text as this regime is unlikely after planetary impacts

(see e.g. Deguen et al. 2011).

1. Regime of turbulent thermal

In our experiments, particle clouds start their motion in the same way as salt water clouds: they form a so-called

thermal, which is a finite volume of buoyant fluid whose motion is entirely governed by its total buoyancy. Our thermals

quickly become turbulent during a short phase of acceleration at depths ≲ Dcyl. Subsequently, turbulence entrains

ambient fluid into the clouds and hence leads to their growth with depth. Because of this progressive entrainment

and dilution, the clouds eventually decelerate. Entrainment can be modelled by assuming that the inflow velocity ve

of ambient fluid entrained into the thermal is proportional to the vertical velocity ż of the turbulent thermal (Morton

et al. 1956). In a uniform ambient fluid, this model predicts that the cloud radius r is proportional to the cloud depth

z so that r = r0 + αz, with r0 the initial cloud radius and α = 0.25 ± 0.1 the entrainment coefficient (Deguen et al.

2011, Landeau et al. 2014).

2. Transition to vortical columns
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FIG. 2: Transition from the regime of turbulent thermal to the regime of vortical column. (a) Snapshots of a
buoyant cloud of salt-water (rp = 0) in the thermal regime (Ω = 0, the time lapse between snapshots is 1s). (b)
Snapshots of a buoyant cloud of small particles (rp = 29.9 µm) in the vortical regime (Ω = 5 rpm, the time lapse

between snapshots is 1.7s). The red circles indicate the location of the frontal sphere; the dotted red lines show the
growth of the thermal in (a) and the constant width of the vortical column in (b); the top cylinder has a diameter
Dcyl = 3.2 cm in (a) and (b). (c) Overlay of two integral images (pixel-by-pixel standard deviation of light intensity
during the cloud fall) for particle clouds with rp = 64.4 µm respectively at 0rpm (grey shades in the background)
and 5rpm (orange shades). The arrow indicates the typical depth of transition to the vortical regime. The image

height is 37.8 cm.

a. Onset of the columnar flow Our experiments showed that rotation interrupts the growth of the thermal

at some depth zcol, marking a transition from the regime of turbulent thermal to a vortical column of constant radial

extension for z ≥ zcol. This transition is visible when comparing the linear growth of a thermal in the absence of

rotation (figure 2a) with the constant width of the cloud when Ω = 5 rpm (figure 2b). Integrated photographs in

figure 2c further evidence the constant width of the cloud below some depth when Ω = 5 rpm in orange. Initially

the cloud inertia is large compared to rotation (Ro(z) > 1) and the cloud behaves as a non-rotating thermal (Morton

et al. 1956): it grows linearly with depth (regime above the orange arrow in figure 2c or for zf < 22 cm in figure 3a).

Equation (7) predicts that, as the cloud radius r increases and its velocity decreases with depth, the local Rossby

number decreases. When Ro(z) = 1, the Coriolis force becomes comparable to the cloud inertia and hence, the

flow transitions towards a regime influenced by rotation. This defines the depth zcol. This criterion of transition is

illustrated with an example in figure 3a at depths zf > 22 cm and we verify it for different particle radii rp and

rotation rates Ω in figure 3b. These results are consistent with past measurements in the literature for salt-water

thermals falling in a rotating ambient (Ayotte and Fernando 1994, Fernando 1998, Helfrich 1994). All these studies
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FIG. 3: (a) Rossby number Ro(z) and experimental measure of the cloud radius σx(z) (see Kriaa et al. (2022) for
details) as a function of the position of the cloud front. In this experiment Ω = 5 rpm and rp = 29.9 µm. The

transition to the vortical regime occurs at the depth shown by the vertical dotted line where Ro(zcol) = 1 and the
cloud radius becomes constant (see Kriaa et al. (2022) for details on measurements). (b) Average Rossby number
after transition to the vortical regime for all rotation rates and particle sizes; adapted from figure 14 in Kriaa et al.

(2022). The arrows point towards R = 0 for salt water clouds, and the colour code is: ( ) Ω = 5rpm, ( )
Ω = 10rpm, ( ) Ω = 20rpm.

consistently show that the constant width of the column is the diameter of the turbulent thermal at depth zcol (as

visible in figures 2c and 3a; see also figures 13 and 16 in Kriaa et al. (2022)).

We also observe that vortical columns penetrate through the solid body rotation with a constant front velocity.

This explains why Ro(z) remains close to 1 when z > zcol in figure 3a (see figures 18a, 18b and 19 in Kriaa et al.

(2022) for more details). In addition, the vortical column is made of two different regions: (1) a frontal region (see

the red circles in figure 2b), that we will assume spherical for simplicity, which corresponds to the former turbulent

thermal and which no longer grows due to entrainment; (2) a columnar wake of particles detrained from the frontal

sphere, which settle much slower than the frontal sphere (see figure 19 in Kriaa et al. (2022)).

b. Comparison with previous studies on columnar rotating flows When a rotating flow is dominated

by the Coriolis force and the pressure gradient, these forces impose a geostrophic balance. Under these conditions,

the flow is invariant along the rotation axis and forms columnar structures, the so-called Taylor columns (Maxworthy

1970, Taylor 1922).

The vortical columns we observe in our experiments when Ro(z) < 1 are reminiscent of Taylor columns. Our

experiments are consistent with past studies on the formation (Davidson et al. 2006) and dynamics of such columns.

The constant speed at the column front agrees with a drag force proportional to the falling speed and balancing

the buoyancy force. Similar dynamics were predicted for an object falling along the axis of rotation in a bounded
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or unbounded domain (Maxworthy 1970, Moore et al. 1969, Vedensky and Ungarish 1994). In the latter case the

constant cloud velocity reads ż∞ ∝ (ρ/ρf − 1)g/Ω (see Bush et al. 1995, Moore et al. 1969, Stewartson 1952). As

the object moves along the vertical axis, it stretches vortex tubes downstream and generates a converging flow and a

cyclonic swirl in a Taylor column behind the object. In this column, the amplitude of the swirling flow vswirl ∼ ż∞

(Bush et al. 1995).

Note that these results hold for Ro ≪ 1. When the cloud Rossby number is on the order of unity, the vertical

extent of the Taylor column decreases (Maxworthy 1970, Minkov et al. 2002). Minkov et al. (2002) showed that the

column behaves as if it were in an unbounded domain as long as inertial waves do not have enough time to propagate

away from the moving cloud and reflect back to it, consistently with the interpretation of Greenspan (1968). Since

our particle clouds verify Ro(z ≥ zcol) = 1, the waves having the largest group velocity propagate as fast as the cloud

falls. Consequently, these waves cannot propagate the information before the cloud reaches the bottom of the domain.

This suggests that these clouds behave as if they were in an unbounded domain, falling with a velocity that scales

like ż∞ ∝ (ρ/ρf − 1)g/Ω.

In the light of these elements, we model a vortical column using the following assumptions. We consider that

particle clouds penetrate through the ambient as a leading frontal sphere of constant radius rcol and with constant

velocity żf . We also neglect the effect of the walls. We assume that particles are gradually detrained behind the

frontal sphere, nourishing a cylindrical vortical column. The typical swirl velocity in the column is equal to the

velocity of the frontal sphere żf , so that vertical motions stir the particles in the columnar flow. For simplicity we

will assume that these motions are vigorous enough to homogenise the particle concentration in the vortical column.

The next section presents a model of column growth that is consistent with these key points.

III. MODEL OF COLUMN GROWTH THROUGH DETRAINMENT

Based on the above experimental observations, we now derive a minimalist model for the evolution of a particle

cloud in the presence of rotation. Figure 4 provides an illustration of this model. The cloud initially grows as a

turbulent thermal (A). At depth zcol, Ro = 1 and the thermal transitions to a frontal sphere of constant radius and

speed (B). Particles are detrained behind the falling sphere and into a swirling column (B). After some distance, the

sphere has detrained all its particles in the swirling column (C). Eventually, particles will fall down to the bottom of

the tank, possibly before the kinetic enegy of the column dissipates viscously (D). Particles can drag the fluid with

them along their fall, or decouple from it, as we have seen in experiments. Which of these two configurations occurs



13

depends on subtle hydrodynamical interactions between particles that enable the interstitial fluid between them to be

dragged downward. These aspects require further investigation, as discussed in section V. In this study, we speculate

that particles drag a negligible amount of fluid when they decouple from the swirling column. Consequently, they

rain out in quiescent liquid.

FIG. 4: Sketch of the cloud evolution. (A) The cloud initially grows as a turbulent thermal until Ro(z) = 1; (B) then
the frontal sphere falls with constant speed while detraining particles in the swirling column; (C) all particles are

detrained in the column of depth 2rcol/3β and swirl with the fluid; (D) ultimately, because of gravitational drift (i.e.
settling) and viscous dissipation, particles rain out of the column until reaching the bottom where they accumulate.

By analogy with models of entrainment (Morton et al. 1956), the detrainment (de Rooy et al. 2013, Taylor and Baker

1991) of particles into the columnar wake is modelled through a single coefficient of detrainment β which is analogous

to the coefficient of entrainment α (Baines 2001, de Rooy and Siebesma 2008). The coefficient of detrainment β is

the ratio of the outward velocity transporting particles out of the spherical frontal blob, over the downward velocity

of the cloud. The mass conservation of particles then reads

d

dt

[
4

3
πr3colϕρp

]
=

4

3
πr3colρp

dϕ

dt
= −2πr2colβżfϕρp, (8)

where the only unknown ϕ(t) is the particle volume fraction within the frontal sphere of downward velocity żf and

radius rcol. The term (βżf ) is the detrainment velocity taking particles out of the cloud. The factor 2πr2col on the

right-hand side indicates that detrainment is considered to happen only on the upper half of the frontal sphere. Taking

t = 0 when the cloud is at depth zcol, the solution of this Ordinary Differential Equation (ODE) reads
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ϕ(t) = ϕ(t = 0) exp

[
− t

τβ

]
⇐⇒ ϕ(z) = ϕ(zcol) exp

[
−3β(z − zcol)

2rcol

]
, (9)

where

τβ =
2rcol
3βżf

(10)

is the characteristic duration of detrainment. Hence the column completes detrainment in a time of order τβ . Since the

column front moves with constant velocity żf , the column height after complete detrainment is of order żfτβ = 2rcol/3β

and the depth of complete detrainment

zβ = zcol +
2rcol
3β

. (11)

Particles are always detrained in the column behind the frontal sphere, hence β > 0. The maximum value for β is

determined with a geometrical argument. During a time dt, the frontal sphere detrains buoyant material in a volume

2πr2colβżfdt; in the meantime the column grows by a volume πr2colżfdt; equating them yields β = 1/2 as an upper

bound. With this value, a frontal sphere of volume 4πr3col/3 typically detrains its particles in an identical volume

πr2col(4rcol/3) = 4πr3col/3 (see equation (11) for β = 1/2), meaning the sphere only adapts its shape to become a

cylinder of radius rcol and depth 4rcol/3.

The range 0 < β < 1/2 corresponds to the sketch in figure 4. Particles are detrained in a column of large depth-

to-radius ratio. In this case, the volume of material detrained by the frontal sphere is lower than the volume gained

by the vortical column. This implies that the volume of the column is complemented by ambient fluid through

entrainment, likely in the near wake of the frontal sphere where the flow converges towards the column (see section

IIC 2 b). Additionally, since the frontal sphere keeps a constant volume while detraining both fluid and particles, the

sphere also entrains new ambient fluid that compensates the detrained volume.

In our experiments, we observe that detrainment of the frontal sphere ends at depths in the range [45 − 90] cm.

Our columns had a width rcol given by σx(zcol), which varied with Ω but was typically of order rcol ∼ 2Dcyl, hence

equation (11) yields β ∈ [0.05 − 0.12], a range that is consistent with typical values quantifying entrainment for
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turbulent jets and plumes (e.g. Carlotti and Hunt 2017, Turner 1986, van Reeuwijk and Craske 2015, Wang and Law

2002). A larger β value translates into a weaker effect of rotation (see Appendix B). B.

According to equation (9), the column is nourished by the frontal sphere with a mass flux of detrained particles

that decays exponentially in depth. Yet, our visualisations in a vertical laser sheet evidence no stratification in the

vortical column. This observation suggests that the buoyant material is substantially stirred by turbulent motions in

the column. To keep our model as simple as possible, we assume that stirring is sufficient behind the frontal sphere

to neglect heterogeneities within the vortical column, so that its concentration is uniform.

IV. IMPLICATIONS FOR MIXING AND EQUILIBRATION AFTER A PLANETARY IMPACT

In this section, we apply our experimental results to the fall of liquid metal into a magma ocean following a

planetary impact. We use the following notations (see a list in table II): the densities of metal ρm and silicates ρs,

their respective kinematic viscosities (νm and νs) and mass diffusivities (κm and κs), the angular velocity Ω of the

target planet, the radius Rt of the target planet, the radius R of the impactor, and fm the volume fraction of metal

within the impactor; we use the value fm = 0.16 that corresponds to the same core fraction as in the present-day

Earth. The acceleration of gravity g is assumed uniform in the magma ocean (see Fig. 5b in Olson 2015).

Quantity Notation Value Reference

Density of metal ρm 7800 kg.m−3 Lherm and Deguen (2018)

Density of silicates ρs 3500 kg.m−3 Qaddah et al. (2019)

Kinematic viscosity of metal νm 1.28× 10−6 m2.s−1 Lherm and Deguen (2018)

Kinematic viscosity of silicates νs 1.43× 10−5 m2.s−1 Karki and Stixrude (2010)

Mass diffusivity of metal κm 10−8 m2.s−1 Deguen et al. (2014), Lherm and Deguen (2018)

Mass diffusivity of silicates κs 10−8 m2.s−1 Deguen et al. (2014), Lherm and Deguen (2018)

Metal volume fraction in the impactor fm 0.16 Landeau et al. (2021)

Radius of the target planet Rt 6371 km Kono (2010)

Angular velocity of the target planet Ω 2Ω⊕ − 5Ω⊕ -

Radius of the impactor R ≤ Rt/3 -

Acceleration of gravity g 0.25g⊕ − 2g⊕ -

TABLE II: Governing quantities in the context of metal-silicate mixing following a planetary impact. The last three
lines give ranges for the parameters that are varied, with Ω⊕ = 7.3× 10−5 rad.s−1 and g⊕ = 9.81 m.s−2.

Both Ω and g are varied in the next sections; the subscript ⊕ denotes the values on Earth today. The constant

entrainment coefficient is fixed to α = 0.25 (Deguen et al. 2014, Landeau et al. 2021). In this study, we aim at

demonstrating that rotation can affect metal-silicate equilibration after an impact. To be conservative, we therefore

use the end-member value β = 0.12 in what follows. Results for the lower end-member β = 0.05 are given in Appendix
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B.

Finally, during an impact the metal of the impactor mixes with silicates from the target planet so that the metal

dilutes in a larger volume, with an effective radius r0 (Landeau et al. 2021). In all that follows, we assume that

impactors approach the target planet at the escape velocity and we account for mixing during an impact using the

scaling law from Landeau et al. (2021) that relates the radius of the impactor R with the radius of the thermal as

it starts sinking r0. Past studies have shown that the impactor core behaves as a turbulent thermal of radius r0

immediately after an impact (Deguen et al. 2014, Landeau et al. 2021, Wacheul and Le Bars 2018).

For simplicity we consider that the cloud contains spherical drops from the very start of its fall. The experiments

of Landeau et al. (2021) suggest that, after an impact, the impactor core fragments after less than 7.5 times its initial

radius (see figure 14 in Landeau et al. 2021). For such breakup lengths, Deguen et al. (2014) predict that the drop

size is less than 4 mm (see their figure 7 and the discussion in section 8). Therefore, we focus in the next sections on

the representative case rp = 10−3 m. With these assumptions, we use the model introduced in section III to compute

the mixing and the efficiency of equilibration as a function of the impactor size and the magma ocean depth. We

show depths down to the position of the present-day CMB i.e. z/Rt ≃ 0.45 except when analysing the equilibration

efficiency: indeed, to analyse data in a more general way, and since the position of the CMB is unknown during

accretion, the depth z extends down to the centre of the target planet in figures 8, 9, 12 and 13.

A. Regimes in a magma ocean for a cloud of millimetric drops

Figure 5a shows the different regimes experienced by a falling cloud of millimetre-sized drops for various impactor-

to-target radius ratios R/Rt up to a depth corresponding to the present-day core-mantle boundary in Earth. The

solid blue line marks the depth zcol where clouds transition to a vortical column for g = g⊕ and Ω = 2Ω⊕. Such

rotation rates in the early Earth are suggested by estimates of the tidal dissipation of the Earth-Moon system (Daher

et al. 2021, Touma and Wisdom 1994). The dashed dark line in figure 5a marks the transition to the regime of iron

rain.

We observe that the larger the impactor-to-target radius ratio R/Rt, the larger the initial buoyancy of the cloud

of droplets, the larger the cloud inertia, hence the deeper the transition from the thermal to the vortical column. On

Earth, the fall of an impactor smaller than about R/Rt ≃ 7.2 × 10−2, i.e. smaller than R = 459 km, is influenced

by rotation before reaching the present-day CMB at z = 0.45Rt (see the blue line in figure 5a). In this case, if the

magma ocean is deep, rotation may affect the flow and therefore the efficiency of chemical equilibration. Conversely,
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impactors in the range R/Rt ≥ 7.2× 10−2 reach the core-mantle boundary before ever transitioning to the regime of

vortical column. Such clouds always behave as turbulent thermals.

When R/Rt ≤ 5.0 × 10−3 (left of the red solid line), impactors have so little initial buoyancy that their Rossby

number is never larger than unity. Consequently they experience the influence of background rotation from the very

start of their fall. This scenario is consistent with the numerical simulation of a polar impact by Maas et al. (2021).

(a)

Iron rain

Column

Column

Thermal

(b)

Vortical column

Thermal

(c)

Vortical column

Thermal

FIG. 5: (a) Dynamical regimes of a cloud of millimetre-sized drops for various impactor-to-target radius ratios for
Ω = 2Ω⊕. Transitions correspond to the depth zcol ( ) and the depth of complete detrainment zβ for β = 0.12
( ). Clouds in the range R/Rt ≤ 5.0× 10−3 verify zcol = 0 because their Rossby number remains below unity at
all depths; they are separated from other clouds by the vertical solid red line ( ). (b) Influence of gravity on the
transition from a thermal to a vortical column at z = zcol; the angular velocity is Ω = 2Ω⊕. (c) Influence of the

angular velocity on the same transition; the gravity is g = g⊕.

If the magma ocean is sufficiently deep for detrainment to complete, the clouds transition from the vortical regime

to the regime of iron rain. How does this transition happen? After detrainment, iron drops swirl with the fluid inside

the wake at most until viscosity has fully dissipated the swirl. Let us show that in practice, iron drops rain out

of the vortical column before the swirl is dissipated. While iron drops are spiralling azimuthally, they keep settling

downwards because of gravity with velocity ws, as can be derived from the momentum equation of an individual

drop. The time required for the topmost drops to settle down to the bottom of the vortical column is the ratio of the

column height over the settling velocity ws. This timescale is compared to the timescale of viscous dissipation r2col/νs

of the vortical column, and to the shorter timescale Ω−1Ek−1/2 that should be taken into account if Ekman pumping

develops in the magma ocean (Greenspan 1968), with Ek = νs/Ωz
2
ocean the Ekman number based on the depth zocean

of the magma ocean. For millimiter-sized drops, and for all possible sizes of R < Rt hitting a planet of gravity g = g⊕

and angular velocity Ω = 2Ω⊕, the settling timescale is 4-5 orders of magnitude lower than Ω−1Ek−1/2 which is itself
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2-3 orders of magnitude lower than r2col/νs. Therefore iron drops are expected to rain out of the wake before the swirl

is dissipated. This conclusion also held in our experiments (Kriaa et al. 2022): our slowest particles (R = 7.57×10−2)

settled over the column height in about 2.5 min which was an order of magnitude lower than Ω−1Ek−1/2, hence we

observed that particles rained out of the vortical column before the dissipation of the swirl. In this situation, we call

‘iron rain’ the regime below the dashed dark line in figure 5a, when drops settle after detrainment from a vortical

column.

The transition to iron rain is delayed for larger impactors because the larger they are, the wider the vortical columns

(rcol) and the deeper the depth zcol, hence the deeper the depth of complete detrainment zcol + 2rcol/3β = zβ . This

depth turns out to be deeper than the present-day core-mantle boundary for R/Rt ≥ 1.4× 10−2 (see the dashed line

in figure 5a) .

Gravity g and the angular velocity Ω of the target planet are important parameters affecting the transition from the

thermal to the swirling column stage. Their respective influence is illustrated in figure 5b and figure 5c. For a given

impactor-to-target radius ratio, the larger gravity the deeper the depth of transition zcol. As g increases, the cloud

velocity increases during its phase of acceleration. It therefore takes a larger cloud radius rcol = r0 + αzcol for the

Coriolis force to overcome the cloud inertia and verify the condition Ro = 1. Thus, the transition to a vortical column

is delayed deeper in the magma ocean. Figure 5c shows that the faster the background rotation Ω, the shallower the

depth zcol. This is straightforward from the definition of the Rossby number Ro ∝ Ω−1: for a given impactor on

a target planet of given gravity, the larger the angular velocity Ω the earlier the Coriolis force overcomes the cloud

inertia to verify Ro = 1, hence zcol decreases. Consistently, when g decreases and Ω increases, larger and larger

impactors are subject to the influence of rotation from the very start of their fall at depth z = 0 (figures 5b and 5c).

On a fast-spinning Earth with Ω > 5Ω⊕ as proposed by Ćuk and Stewart (2012), the transition to a vortical column

cannot be shown since the rotation affects all the impactors we consider from the very surface of the Earth.

B. Equilibration in a magma ocean

1. Definitions of mixing and equilibration efficiency

As a cloud of metal drops falls in the magma ocean, the metal phase is stirred with silicates. This favours chemical

transfers between the two phases. The present section models this equilibration between metal and silicates on the

basis of previous studies (Deguen et al. 2014, Landeau et al. 2021), but including the effect of rotation and the regime
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of swirling columns.

We quantify mass transfers using the equilibration efficiency (Deguen et al. 2014, Landeau et al. 2021). This quantity

compares the very initial state when no mass transfer has happened yet, to a state of thermodynamic equilibrium

between the metal phase of the impactor and a given mass of silicates. For a chemical element i (e.g. tungsten), the

equilibration efficiency is the ratio of the mass Mi of i transferred between these two states, over the maximum mass

Mi,max that could be transferred if (1) the metal was diluted in an infinite volume of silicates and (2) all the metal

of the impactor fully equilibrated. Consequently the equilibration efficiency reads (Deguen et al. 2014)

Ei(z) =
Mi(z)

Mi,max
=

mm(z)|ceqm(z)− c0m|
Mi,max

, (12)

with mm(z) the mass of metal that equilibrates, c0m the initial mass concentration of element i in the metal, and

ceqm(z) the concentration of i in the metal when thermodynamic equilibrium is reached. In the following the quantity

Ei(z) will simply be referred to as the ‘efficiency’.

From its definition, the efficiency is a ‘state function’ in the sense that it only depends on both the initial and final

states of metal and silicates, not on the thermodynamic path that connects these states. Thus, the efficiency (12)

quantifies chemical transfers provided that a thermodynamic equilibrium is reached by metal and silicates during the

cloud fall, and that the cloud is uniform in composition. These conditions are assumed in our next calculations and

discussed in Appendix C.

a. Efficiency of turbulent thermals In the case of turbulent thermals, previous studies (Deguen et al. 2014)

have already established that the equilibration efficiency reads

Eth
i (z) =

k

1 + Di

∆th(z)

, (13)

where the quantity ∆th(z) is the metal dilution, defined as the ratio of the mass of silicates over the mass of metal

contained in the thermal (Deguen et al. 2014). The dilution increases with depth as (Landeau et al. 2021)

∆th(z) =
ρs
ρm

[(
r0 + αz

R

)3
1

fm
− 1

]
, (14)
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with ρs the density of silicates, ρm the density of metal, r0 the initial thermal radius, α the coefficient of entrainment,

z the cloud depth, R the radius of the impactor, and fm the volume fraction of metal in the impactor.

In equation (13), the superscript ‘th’ distinguishes between the general notation Ei(z) and the efficiency Eth
i (z)

of turbulent thermals specifically, since this latter efficiency serves as a reference for mass transfers. In equation

(13), k is the mass fraction of impactor core that equilibrates chemically. Its value can be lower than unity, for

example if the liquid metal is not vigorously stretched by the turbulence, which would allow some fraction of the

impactor core to keep its initial composition. Based on the conclusions of Deguen et al. (2014), we will consider

that the entire impactor core equilibrates with silicates, hence we set k = 1 in our estimates of the efficiency. In

equation (13), Di is the partition coefficient of element i, that is to say the ratio between the concentration (in

weight %) of i in the metal to the concentration of i in the silicates, both considered at thermodynamic equilibrium.

Because the pressure, temperature and partial pressure of oxygen vary as planets grow, the partition coefficient of

a single element can vary by several orders of magnitude. Yet, it is useful to give the typical range of Di for some

elements: the partition coefficient of gallium is on the order of unity (Righter 2011), that of nickel and cobalt varies

from ∼ 10 to several hundreds during Earth’s accretion (Fischer et al. 2015, Siebert et al. 2012), that of tungsten is

typically in the range 10-103 (Jennings et al. 2021, Righter 2011), that of palladium is on the order of 104 (Righter

et al. 2018), and that of gold is larger than 103 (Righter et al. 2018). Here we explore values ofDi ranging from 1 to 104.

b. Efficiency of vortical columns Equation (13) also applies to the columnar regime after substituting the

general notation Ei(z) for Ecol
i (z), and replacing the metal dilution of a thermal ∆th(z) by its equivalent expression

∆col(z) in the regime of vortical column:

Ecol
i (z) =

k

1 + Di

∆col(z)

, (15)

where we assume k = 1 as before. The mass of metal involved in chemical transfers is unchanged in this regime,

however the mass of silicates now includes those present in the frontal sphere and those present in the wake, so that

the metal dilution reads

∆col(z) =
ρs
ρm

[(
r0 + αzcol

R

)3
1

fm
− 1

]
︸ ︷︷ ︸

∆th(zcol)

+
3ρs
4ρm

(z − zcol)r
2
col

fmR3
, (16)
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which is applicable for zcol ≤ z ≤ zβ . In equation (16) the terms on the right-hand side respectively correspond to

the metal dilution ∆th(zcol) of a turbulent thermal at the depth zcol, and to the metal dilution within the vortical

column.

c. Efficiency of an iron rain As soon as metal drops have separated from silicates, one can no longer define

a volume of silicates that would accompany the metal drops and mix with them during their fall. Instead, drops

cross an ever-renewed volume of silicates and deposit (or absorb) some element i in the quiescent magma ocean, thus

modifying the profile of concentration of i with respect to its initially uniform value c0s. Therefore no metal dilution

is defined in this regime. Mass transfers are quantified by the evolution of the concentration in element i within

the metal drops. Since mass transfers are transient during this regime of iron rain, no equilibrium concentration is

reached in the drops, so the equilibration efficiency now reads

Erain
i (z) =

Mi(z)

Mi,max
=

mm(z)|cm(z)− c0m|
Mi,max

, (17)

where the superscript ‘eq’ has been removed from the concentration cm(z) in the metal drops. Modelling of transfers

between a settling spherical drop and the surrounding ambient liquid has been investigated in several studies (Lherm

and Deguen 2018, Qaddah et al. 2019, Samuel 2012, Ulvrová et al. 2011, Wacheul and Le Bars 2018). From mass

conservation and after modelling the diffusive flux at the metal-silicates interface, these studies show that the con-

centration in element i varies exponentially in depth to reach the equilibrium concentration Dic
0
s on a characteristic

length scale leq called the ‘equilibration length scale’. For a spherical drop, Lherm and Deguen (2018) established

that this length scale reads (see their equation 36 and appendix C)

leq ∼ ws

r2pDi

6κs
Pe−1/2

(
1 +

1

Di

√
κs

κm

)
, (18)

with Pe = rpws/κs. With this, one can establish the expression of the efficiency in the iron rain regime, as detailed

in appendix E. The final expression of the efficiency reads

Erain
i (z) = 1 + [Ei(zβ)− 1] exp

(
−z − zβ

leq

)
. (19)
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which is applicable for z > zβ . Consistently, the efficiency is continuous at depth zβ , and it evolves towards a state of

complete mass transfer when z goes to infinity since Ei(z) −→
z→∞

1. Interestingly, in the thermal and vortical column

regimes, the size of drops had no influence on equilibration. However in the present regime of iron rain, the drop

size explicitly determines the efficiency Erain
i (z) through leq, whose value for rp = 10−3 m is 2 m, 20 m and 200 m

respectively when Di is equal to 102, 103 and 104.

To minimise notations, in the following the efficiency is always denoted with the general notation Ei(z) defined as

Ei(z) =



Eth
i (z), if z < zcol

Ecol
i (z), if zcol ≤ z ≤ zβ

Erain
i (z), if z > zβ

. (20)

Similarly the metal dilution is denoted under the general form ∆(z), which corresponds to ∆th(z) in the thermal

regime and to ∆col(z) in the columnar regime.

C. Dilution and mixing

Iron rain

Column

Column

Thermal

FIG. 6: Evolution of the ratio of metal dilution ∆(z)/∆th(z) along depth z in the magma ocean for several impactor
sizes, where ∆ is the mass of equilibrated silicates divided by the mass of impactor metal and ∆th is the value of ∆
for a pure thermal i.e. in the absence of rotation. Transitions correspond to Ro(zcol) = 1 ( ) and to z = zβ ( )

for β = 0.12. The dilution ∆ is not defined in the iron rain regime so it is masked in white. The solid red line
separates the impactors that are influenced by rotation in the aftermath of the impact (on the left-hand side) from

those that are affected by rotation deeper in the mantle (on the right-hand side)

Focusing on mixing in thermals and vortical columns, the metal dilution ∆(z) is computed at any depth for all drop

sizes. Past studies which neglected the influence of planetary rotation showed that particles are expected to remain



23

in a turbulent thermal from the start to the end of their fall in the magma ocean (Deguen et al. 2014, 2011, Landeau

et al. 2021). Consequently the metal dilution ∆(z) is compared to the value ∆th(z) which would be experienced

by the cloud if planetary rotation had no influence on its dynamics. Results are shown in figure 6. By definition,

∆(z)/∆th(z) = 1 where clouds behave as turbulent thermals.

In figure 6, we observe that dilution reduces in the columnar regime. This originates from the slower growth of

vortical columns compared to thermals: along a depth increment dz, the ratio of the volume increment of a turbulent

thermal of radius r over the volume increment of a column of radius rcol is 4α(r/rcol)
2 ≃ (r/rcol)

2. So the deeper the

vortical column, the larger the deviation between ∆(z) and ∆th(z).

D. Efficiency of equilibration
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FIG. 7: Evolution of the efficiency for an impactor of radius R = 50 km hitting the planet Earth (Rt = 6371 km,
Ω = 2Ω⊕, g = g⊕, β = 0.12). (a) Solid curves show the efficiency Ei(z), while thin dotted lines show the evolution of
Eth
i (z) for reference. Vertical lines indicate the depth zcol ( ) and the depth zβ ( ). The next two figures show

the evolution of the ratio Ei(z)/Eth
i (z) (b) in the vortical regime and (c) in the iron rain regime. The size of drops is

fixed to rp = 10−3 m.

The equilibration efficiency Ei(z) computed from equations (13)-(20) is shown in figure 7a for an impactor of radius

R = 50 km falling onto Earth. The value of the equilibration efficiency at the surface of the planet (z/Rt = 0) is

positive because we account for the dilution occurring during the impact (Landeau et al. 2021). It also varies with
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Di consistently with equation (13): the lower the partition coefficient Di, i.e. the less siderophile the element i, the

larger the efficiency Eth
i (z = 0).

As the cloud of drops falls deeper in the magma ocean, it dilutes more and more so the efficiency always increases

with depth. Once the cloud goes beyond the depth zcol (vertical solid blue line), it transitions to the regime of vortical

columns, which is less efficient than turbulent thermals at diluting the metal drops. Hence, at a given depth, the

slope of the curve Ei(z) is smaller than that of thermals (dotted lines) until the cloud reaches the depth of complete

detrainment zβ .

Importantly, the final value of the equilibration efficiency is that recorded at the bottom of the magma ocean. If a

cloud reaches the bottom of the magma ocean while it is in the vortical regime, then accounting for planetary rotation

leads to a decrease in the equilibration efficiency. This is even clearer in figure 7b, which compares the efficiency Ei(z)

of a cloud in the vortical regime with the reference value Eth
i of a turbulent thermal at the same depth. The efficiency

is always reduced in the vortical regime (Ei(z)/Eth
i (z) < 1) and the discrepancy between the actual efficiency Ei(z)

and that of a thermal reaches 50% at depth z = 0.26Rt for highly siderophile elements with Di = 104.

When z > zβ (on the right of the vertical dashed dark line in figure 7a), the regime of iron rain ensures a rapid

equilibration and Ei(z) quickly reaches unity. Figure 7c shows that the ratio Ei(z)/Eth
i (z) becomes larger than unity

for most partition coefficients: despite the reduction of equilibration in the vortical regime, mass transfers are so

efficient in the regime of iron rain that this delay is caught up and Ei becomes larger than Eth
i .

The previous conclusions are generalised in figures 8a-8c which show the evolution of the efficiency Ei(z) along

depth for various impactor-to-target radius ratios R/Rt. For all impactors, the efficiency slowly increases with depth

until z = zβ , where the iron rain regime abruptly leads to Ei = 1. Figures 8d-8f show the ratio Ei(z)/Eth
i (z) as a

function of depth. Expectedly, the ratio is equal to unity at depths z ≤ zcol in the thermal regime. Then, the ratio

lowers in the vortical regime until the depth zβ . Finally, equilibration is so fast in the iron rain regime that the ratio

Ei(z)/Eth
i (z) becomes larger than unity for z > zβ , all the more so as Di is larger. Consequently, modelling clouds as

turbulent thermals at all depths is all the more inaccurate as elements are more siderophile. This is especially true

for the largest impactors that transition to iron rain in figure 8f, where the efficiency Ei(z) largely overshoots Eth
i (z)

for z > zβ . Note that this dependency with respect to the size of the impactor is not due to the iron rain regime

(the equilibration length leq is independent of the impactor size R/Rt) but to the lower efficiency Eth
i (z) of turbulent

thermals produced by larger impactors.
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FIG. 8: Equilibration efficiency Ei (a-c) and ratio Ei/Eth
i (d-f) as a function of impactor size and magma ocean

depth for partition coefficients Di = 102 (a and d), Di = 103 (b and e) and Di = 104 (c and f), on a planet spinning
at Ω = 2Ω⊕. The size of drops is fixed to rp = 10−3 m. The solid blue line with overlaid white dots to improve its
visibility denotes zcol, the black-and-white dashed line denotes the depth zβ , and the solid red line separates the

impactors that are influenced by rotation in the aftermath of the impact (on the left-hand side) from those that are
affected by rotation deeper in the mantle (on the right-hand side).

Results for a target planet spinning faster at Ω = 5Ω⊕ (figure 9) highlight that vortical columns form at lower

depths when rotation is stronger; specifically here with g = g⊕, all the impactors we consider transition to a vortical

column in the aftermath of the impact i.e. zcol = 0. As a result the efficiency Ei(z) is lower than in figure 8 when the

cloud reaches the depth z = zβ , hence the discrepancy between Ei(z) and Eth
i (z) is exacerbated.

The efficiency of impactors verifying zcol > 0 (on the right-hand side of the vertical red line in figure 8) reduces

when Ω increases. However, clouds that verify zcol = 0 are unaffected by any further increase of Ω, as illustrated in

figure 10a. As long as Ω is sufficiently low (on the left-hand side of the vertical red line), a faster spinning reduces

both zcol and zβ and thus the efficiency Ei(zβ). Conversely, when Ω is above the critical value Ωc indicated by the

vertical red line, impactors verify zcol = 0 and we observe that the efficiency becomes independent of Ω. Indeed, the
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FIG. 9: Same as figure 8 but on a planet that is now spinning at Ω = 5Ω⊕.

efficiency of vortical columns only depends on the metal dilution (see equation (D5)) which becomes independent of

Ω when zcol = 0 (see equation (16)).

For a given impactor radius R, all angular velocities above the critical threshold Ωc have an identical influence on

the cloud evolution and on metal-silicate mixing. This critical threshold is measured for several values of the gravity

g and shown in figure 10b as a function of the impactor radius up to R/Rt = 1. The increase of Ωc with R when

R < 0.33Rt originates from larger impactors having more buoyancy and hence inertia. Thus, a larger angular velocity

is required to guarantee that this inertia does not overcome the Coriolis force. Yet this intuitive result is not trivial

since both żf (z) and r(z), which enter the definition of the Rossby number (7), increase with R/Rt. In the range

R/Rt ≤ 0.33, the ratio żf (z)/r(z) increases with R/Rt, and hence the critical angular velocity Ωc increases with

R/Rt. Conversely, in the range R/Rt ≥ 0.33, the critical angular velocity Ωc is a decreasing function of R/Rt because

of the decrease of żf (z)/r(z) with increasing R/Rt.
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FIG. 10: (a) Influence of the angular velocity Ω on the transitions between dynamical regimes (from thermal to
vortical column zcol ( ), from vortical column to iron rain zβ ( ), critical angular velocity Ωc at which the

thermal regime disappears and the flow is influenced by rotation in the aftermath of the impact ( )) and on the
evolution of the efficiency Ei(z) with depth. The radius of the impactor is R = 50 km. (b) Evolution of the critical
angular velocity Ωc as a function of impactor size and for various values of g. For both figures, the size of the metal

drops is rp = 10−3 m.

V. DISCUSSION AND CONCLUDING REMARKS

Accounting for planetary rotation reconciles the existing models of a turbulent thermal and an iron rain (see figure

4), which appeared to be in contradiction. Our results suggest that, after each impact, a turbulent thermal of metal

and silicates sinks in the magma ocean, but transitions first to a swirling column strongly influenced by rotation, and

then to a rain of iron drops. The transition from a thermal to a swirling column occurs at a critical depth zcol, at

which the inertia of the cloud equals the Coriolis force, meaning that the Rossby number Ro of equation (7) equals

unity. In this regime, a vortical column grows by detrainment of metal drops from a drop-laden frontal sphere to a

swirling wake. This regime ends when detrainment completes (figure 4). At depths larger than zβ , we predict that

metal drops rain out from the column into an iron rain.

These effects of rotation on the dynamics of the cloud of metal drops have consequences on their chemical equilibra-

tion with silicates. At depths larger than zcol but smaller than zβ , the equilibration happens in a swirling column and

is limited by the mass of silicates entrained in this column. Indeed the entrainment of ambient silicates is reduced in

this regime compared to that in turbulent thermals. Thus, the regime of vortical columns is characterised by a reduced

metal dilution ∆(z) compared to the dilution ∆th(z) of a reference turbulent thermal at the same depth (figure 6).
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We therefore predict an equilibration efficiency that is lower than previous estimates that neglect planetary rotation.

Conversely, at depth larger than zβ , during the regime of iron rain, metal drops interact with a continuously-renewed

volume of silicates. Thanks to this renewal of silicates, chemical transfers are efficient and full equilibration is reached

at a typical depth zβ+ leq with leq the equilibration length scale, equal to 200 m for Di = 104 (see paragraph IVB1 c).

In the first two regimes of turbulent thermal and vortical column, metal equilibrates with a volume of silicates and

hence dilution is the key parameter controlling the efficiency. The efficiency decreases with the impactor size in both

regimes (figures 8a-8c and 9a-9c), and it increases with decreasing angular velocities Ω in the vortical regime (see

figure 10a when Ω < Ωc). In the regime of iron rain involving a continuously-renewed volume of silicates, the decisive

quantity affecting mass transfers is the equilibration length scale leq (equation (18)).

These results show that the depth of the magma ocean, and more specifically its value relative to the three depths

zcol, zβ and zβ + leq, controls the efficiency of chemical equilibration.

The above conclusions are based on strong assumptions. When metal drops rain out of the vortical column, they

may partly entrain some contaminated silicates. This ability of particles to drag the interstitial fluid that separates

them has been investigated in the literature; it depends on the interparticle distance and how it compares with a

critical distance of hydrodynamical interaction (Harada et al. 2012, Yamamoto 2015) that is a function of the dynamics

of the flow past the particles (Daniel et al. 2009, Guazzelli and Hinch 2011, Subramanian and Koch 2008). These

effects lack understanding and have therefore been neglected in the present work. Additional experiments involving

suspensions should control the interparticle distance, as well as the size and settling velocity of particles, examining

various ratios of particle inertia to viscous dissipation, i.e. the particle Reynolds number. Such experiments would

improve our ability to account for a partial drag of silicates by the iron drops. This effect would lead to a smoother

evolution of the efficiency Ei(z) at depths z > zβ . In addition, we have neglected the flow caused by the difference in

composition between the silicates in the vortical column and the surrounding magma ocean. This could lead to the

vertical displacement of the column within the ocean. Finally, we have assumed that the convective motions in the

magma ocean are much weaker than the flows in the thermal and vortical column. However, convective motions will

certainly affect the long-term fate of the vortical column.

The present work focuses on the dynamical regimes and the equilibration of a cloud of metal drops falling parallel

to the rotation axis of the target planet. This corresponds to a scenario of an impact near the poles. Investigation

of the effect of rotation at different latitudes as in Maas et al. (2021) would be beneficial. The misalignment between
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g⃗ and Ω⃗ might affect the turbulent stirring of metal drops, and their dispersion and equilibration in the mantle. To

tackle the misalignment between g⃗ and Ω⃗, experiments could be performed using an off-centered tank on a rotating

table and the centrifugal force to mimic inclined gravity. However, the range of accessible angles could be limited, so

numerical simulations would be well-suited to investigate this. Simulations could also incorporate the heating during

the impact. If the metal cloud is warmer, we expect that an upward buoyancy force of thermal origin will reduce the

cloud inertia and therefore favour a transition to the columnar regime at a lower depth.

Additional experiments at faster rotation rates or starting with releases of lower buoyancy would be beneficial to

model small impactors on a fast-spinning planet whose dynamics is constrained by planetary rotation at the top of

the magma ocean (zcol = 0). They could be complemented by new experiments investigating the role of planetary

rotation during the phase of impact and crater collapse, and how dilution by entrainment of already rotating fluid

plays any part in the cloud dynamics and onset of settling. Together, they could improve the modelling of the critical

condition Ω ≥ Ωc for the onset of vortical columns at the very surface of the planet. As regards the vortical regime,

additional experiments at larger scale with larger initial cloud buoyancy or lower rotation rates would be beneficial

to better constrain the process of detrainment and the subsequent raining out of metal drops, and how it may be

influenced by Ekman pumping if the latter develops before raining out from the swirling motions.
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Appendix A: Separation of released fluid and particles

Figure 11 shows that after some depth, particles rain out of the turbulent cloud, a process referred to as ‘separation’.

This separation has already been observed in the literature (Bush 2003, Deguen et al. 2011, Rahimipour and Wilkinson

1992). When a turbulent thermal develops, it initially accelerates and reaches a maximum velocity ∼ Uref that is

larger than the individual settling velocity ws of particles. Consequently, particles are forced to swirl inside the

fast turbulent eddies. However, as the turbulent thermal grows in size, it decelerates. When its velocity eventually

becomes lower than the settling velocity ws, eddies are not vigorous enough to sustain the particles which rain out

of the cloud. Separation happens when the cloud velocity approaches the individual settling velocity of particles i.e.

ż(zsep) ≃ ws where zsep is the depth of separation. After separation, particles fall as a swarm: the cloud vertical
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velocity is constant and approximately equal to ws, and the swarm keeps an approximately constant horizontal extent.

(a) R = 0.308 (b) R = 1.48

FIG. 11: Snapshots showing the gradual separation between particles (in white) and the released fresh water (in
orange), all the faster as the Rouse number R increases from (a) to (b). Time intervals ∆t between snapshots are

(a) ∆t = 3.0s and (b) ∆t = 1.2s.

To predict separation, we use a local Rouse number R∗(z) that compares the settling velocity ws of a particle with

the local cloud velocity ż(z) at depth z, i.e.

R∗(z) =
ws

ż(z)
. (A1)

When R∗(z) < 1, eddies are vigorous enough to sustain particles so the cloud behaves as a thermal. Conversely, when

R∗(z) > 1, particles fall as a swarm. Our own experimental measurements (Kriaa et al. 2022) as well as past studies

(Deguen et al. 2011, Wang 2014) validated this separation criterion. Even if the velocity ż(z) decreases during the

thermal regime, the threshold R∗(z) = 1 is never reached in the planetary regimes that we explore, hence the swarm

regime is not considered in the main text.

In equation (A1), the velocity ż(z) is estimated following the model of Escudier and Maxworthy (1973) for a

turbulent thermal in which buoyancy is the sole volume force. Neglecting added mass as suggested by Bush (2003),

Deguen et al. (2011), we obtain

ż(z) =

√
gDcyl

2α

(
ρ0
ρf

− 1

)
×

√
1
2 ((1 + αz)4 − 1) + αz

2 ( ρ0

ρf
− 1)

(1 + αz)3 + ρ0

ρf
− 1

, (A2)

where z = 2z/Dcyl.



31

Appendix B: Results for a detrainment coefficient β = 0.05

Figure 12 shows the evolution of the equilibration efficiency for several impactor sizes when β = 0.05 and Ω = 2Ω⊕,

and figure 13 shows the same results when Ω = 5Ω⊕. Vortical columns dilute less than turbulent thermals (see section

IVC), and the lower β, the deeper the maximum depth of detrainment zβ (equation (11)). As a result, the lower β

the larger the discrepancy between the equilibration efficiency of a vortical column and that of a turbulent thermal,

down to a ratio Ei/Eth
i ≃ 0.1 for Di = 104 and Ω = 5Ω⊕ (see figure 13f).
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FIG. 12: Same as figure 8 for β = 0.05. Equilibration efficiency Ei (a-c) and ratio Ei/Eth
i (d-f) as a function of

impactor size and magma ocean depth for partition coefficients Di = 102 (a and d), Di = 103 (b and e) and
Di = 104 (c and f), on a planet spinning at Ω = 2Ω⊕. See figure 8 for more information.
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FIG. 13: Same as figure 12 but on a planet that is now spinning at Ω = 5Ω⊕.

Appendix C: thermodynamic equilibrium and uniformity in the flow

As stated in section IVB1, the efficiency quantifies mass transfers under the assumptions that a thermodynamic

equilibrium is reached by metal and silicates during the cloud fall, and that the cloud is uniform in concentration.

The first requirement translates as a condition τχ ≪ 2r/ż where τχ is the timescale of chemical transfers and 2r/ż

is the advective timescale i.e. the typical timescale for the variation of the macroscopic cloud properties (such as its

density and radius): this condition means that chemical transfers should complete long before the cloud properties

vary to ensure a thermodynamic equilibrium is reached at any depth of the cloud fall. The timescale τχ is provided

by Deguen et al. (2014) in their equation (22)

τχ ∝ (2r)2

κs
Sc−1/2Re−1/2We−3/5. (C1)
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We = ρm2rż2/σ is the Weber number with σ the iron-silicate interfacial tension, Sc is the Schmidt number that is

the ratio of kinematic viscosity and diffusivity in silicates, and Re = 2rż/νm – see table II for notations and Deguen

et al. (2014) for more information. We verify that the requirement τχ ≪ 2r/ż is met for all scenarios explored in

figure 5a almost immediately (for the impactors that are influenced by rotation immediately in the aftermath of the

impact, we find 2r/żτχ > 1 as soon as z ≥ 0.9 km i.e. z/zβ ≥ 2× 10−3 ; for the other impactors, we find 2r/żτχ > 1

as soon as z/zcol ≥ 5× 10−3).

The second requirement translates as a condition τK ≪ τχ with τK a timescale of dissipation of heterogeneities

within the cloud. This condition means that as chemical transfers proceed forward, heterogeneities are smoothed

out by turbulence much faster, so that the cloud can be considered homogeneous during mass transfers. While the

literature contains evidences of heterogeneities within turbulent thermals (Lherm 2021), past studies in a variety of

contexts have proved the robustness and accuracy of predictions based on the assumption of homogeneity within the

turbulent thermal (Ayotte and Fernando 1994, Deguen et al. 2014, Fernando 1998, Helfrich 1994, Landeau et al. 2021,

Morton et al. 1956, Turner 1986) and in particle clouds (Deguen et al. 2011, Kriaa et al. 2022, Landeau et al. 2014).

This can be verified by computing the timescale of homogenisation based on local velocity gradients. Deguen et al.

(2014) have shown that the turbulence that develops inside turbulent thermals can be modelled as a homogeneous

isotropic turbulence at first order. Hence the timescale of local homogenisation is the Kolmogorov timescale based on

the cloud radius and entrainment velocity

τK =

√
νr

α3ż3
, (C2)

which does verify the condition τK ≪ τχ for all impactors and all depths in the general configuration of figure 5a

(β = 0.12, Ω = 2Ω⊕, g = g⊕, rp = 10−3 m).

As regards the vortical regime, renewal of the metal volume fraction ϕ(z) within the frontal sphere happens on

a timescale τβ . We assume that turbulence is little altered in the frontal sphere whose Reynolds number remains

constant, consequently the timescale of homogenisation τK is unaltered, and so is the timescale of chemical transfers

τχ. Then, we verify that the condition τK ≪ τχ is verified for all impactors at all depths. As for the condition τχ ≪ τβ ,

it is verified by all vortical columns of figure 5a having zcol > 0. For the other clouds in the range R/Rt ≤ 4.99×10−3,

in the worst case we find τβ/τχ > 1 as soon as z/zβ ≥ 1× 10−4.

Finally, consider the regime of iron rain with iron drops raining out of the vortical column. In this regime homo-

geneity is guaranteed: indeed, as a first approximation, metal drops fall individually and cross quiescent unpolluted
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fluid whose concentration all around each drop is still the initial silicate concentration of the magma ocean c0s. How-

ever, a thermodynamic equilibrium can only be reached after the drops have travelled a distance long enough to have

completed mass transfers with the ambient, thus reaching the ideal equilibrium described by Mi,max. We show in

appendix E how to quantify a transient mixing efficiency before this ultimate thermodynamic equilibrium is reached.

Appendix D: Equilibration efficiency of a uniform mixture of metal and silicates

To quantify the mass transfer of an element i between metal and silicates, consider some mass of metal mm(z)

and some mass of silicates ms(z) that are sufficiently uniformly mixed to be at thermodynamic equilibrium at a

given depth z (right-hand side of equation (D1)), and the initial state of both masses when metal is isolated with

a concentration c0m, and when silicates are isolated with a concentration c0s (left-hand side of equation (D1)). Mass

conservation between these two states reads

mm(z)c0m +ms(z)c
0
s = mm(z)ceqm(z) +ms(z)c

eq
s (z). (D1)

In equation (D1), the massesmm(z) andms(z) are those involved in chemical transfers when either a turbulent thermal

or a vortical column (i.e. the combination of a frontal sphere and its wake) is at depth z. The mass concentration

ceqm(z) (respectively ceqs (z)) is the concentration of i in the metal (respectively in silicates) when thermodynamic

equilibrium is reached. The condition of thermodynamic equilibrium imposes that ceqs (z) = ceqm(z)/Di. Using this

constraint of equilibrium in equation (D1) and isolating the equilibrium concentration of metal ceqm(z) yields

ceqm(z) =
mm(z)c0m +ms(z)c

0
s

mm(z) +ms(z)/Di
(D2)

The equilibration efficiency quantifies the net mass transfer of element from the very initial state (at impact) to the

state of equilibrium ceqm(z) so that

Ei(z) =
mm(z)|ceqm(z)− c0m|

Mi,max
, (D3)
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with Mi,max = m0|c0m − Dic
0
s|. By subtracting c0m from both sides in equation (D2), and using equation (D3), we

readily obtain

Ei(z) =
mm(z)ms(z)

m0

1

ms(z) +Dimm(z)
. (D4)

This last equation can be rearranged to take the exact same form as the efficiency of a turbulent thermal expressed

by Deguen et al. (2014),

Ei(z) =
k(z)

1 + Di

∆(z)

, (D5)

with k(z) = mm(z)/m0 and ∆(z) = ms(z)/mm(z) is the metal dilution. Importantly, equation (D5) is valid for

any uniform structure containing a mass mm(z) of metal and a mass ms(z) of silicates. Therefore, it applies for

turbulent thermals with ∆(z) = ∆th(z) and the equation (13) is recovered. It also applies for a vortical column with

∆(z) = ∆col(z) and the equation (15) is recovered.

Appendix E: Equilibration efficiency for a swarm in the regime of iron rain

Mass transfers in the regime of iron rain are characterised by an exponential evolution of the concentration in

element i in depth, on a characteristic length scale leq provided in equation (18) (see Lherm and Deguen 2018). The

mass concentration cm(z) in element i in the metal phase varies to reach the equilibrium concentration Dic
0
s and

verifies

cm(z)−Dic
0
s = [cm(zβ)−Dic

0
s] exp

(
−z − zβ

leq

)
, (E1)
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which applies for z ≥ zβ . Then it follows that

m0[cm(z)− c0m]

Mi,max
=

m0

Mi,max
[Dic

0
s − c0m] +

m0

Mi,max
[cm(z)−Dic

0
s] (E2)

=
m0

Mi,max
[Dic

0
s − c0m] +

m0

Mi,max
[cm(zβ)−Dic

0
s] exp

(
−z − zβ

leq

)
=

m0

Mi,max
[Dic

0
s − c0m]

[
1− exp

(
−z − zβ

leq

)]
+ (E3)

m0

Mi,max
[cm(zβ)− c0m] exp

(
−z − zβ

leq

)

From the definitions of Mi,max and of the equilibration efficiency in equation (17), the latter finally reads

Ei(z) = 1 + [Ei(zβ)− 1] exp

(
−z − zβ

leq

)
. (E4)

Under the present form, equation (E4) applies for clouds that transition from the regime of vortical column to the

iron rain regime, but it can be generalised to other contexts, should the swarm regime be taken into account1.
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