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Mona Ezzadeen 1,2,3 , Atreya Majumdar4, Olivier Valorge2, Niccolo Castellani2, Valentin Gherman1,
Guillaume Regis2, Bastien Giraud1, Jean-Philippe Noel1, Valentina Meli2, Marc Bocquet3,
Francois Andrieu2, Damien Querlioz 4 & Jean-Michel Portal3

Resistive RandomAccessMemories (ReRAM) arrays provides a promising basement to deploy neural
network accelerators basedon near or inmemory computing. Howevermost popular accelerators rely
on Ohm’s and Kirchhoff’s laws to achieve multiply and accumulate, and thus are prone to ReRAM
variability and voltagedrop in thememory array, and thus need sophisticated readout circuits. Herewe
propose a robust binary neural network, based on fully differential capacitive neurons and ReRAM
synapses, used in a resistive bridge fashion.We fabricated a network layer with up to 23 inputs that we
extrapolated to large numbers of inputs through simulation. Defining proper programming and reading
conditions, we demonstrate the high resilience of this solution with a minimal accuracy drop,
compared to a software baseline, on image classification tasks. Moreover, our solution can achieve a
peak energy efficiency, comparable with the state of the art, when projected to a 22 nanometer
technology.

The energy efficiency of artificial intelligence (AI) is strongly limited by data
movement between processing cores and the various memories of the
hierarchy1. Near and in-memory computing approaches constitute
major leads to support AI algorithms efficiently, as these concepts
drastically minimize data movement. Some of the most efficient reali-
zations of these approaches implement Binarized Neural Networks
(BNN), which use binarized weights and activations that simplify the
computational process and alleviate memory usage while retaining high
accuracy2,3.

In-memory neural network organization fits particularly well with
arrays of resistive memories (ReRAMs), also called memristors4: rows
represent input neurons, ReRAM cells map synaptic weights, and columns
represent output neurons. Using such a topological implementation, the
fundamental operation of neural networks, multiplication and accumula-
tion (MAC), can be realized naturally using Ohm’s and Kirchoff’s laws.

Unfortunately, even if this approach can, in principle, computeMACs with
any number of inputs, it faces several challenges:
• ReRAM device variability has a strong impact on MAC accuracy in

such analog approaches,
• applying Ohm’s and Kirchoff’s laws through multiple ReRAM cells in

parallel results in current density issues with related voltage (IR) drop
phenomenon.

For these reasons, in this work, we propose and demonstrate experi-
mentally an alternative approach that remains analog but is immune to
variability and IR drop effects. Our neuron circuit introduces a novel
approach for XNOR operations, based on 2T2R cells used in a resistive
divider fashion. The 2T2R nature of our cell strongly reduces the impact of
variability. As the two ReRAM cells are connected in series, our approach
always involves a high-resistance device in the resistor divider, limiting the
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read current and leading to a negligible IR drop effect. This in-series con-
nection of the two cells differentiates our work from previous works using
2T2Rbit cells5,6, and also allows us to rely on lightweight periphery circuitry:
simple invertergates areused to readweights,while simultaneously realizing
the multiplication function of the neural network. Instead of using current
Kirchoff’s law, following an approach initially proposed for SRAM7,8,
accumulation and output neuron activation are obtained using capacitive
divider bridges, which are more energy-efficient than equivalent digital
circuits. To our knowledge, our work is the first to combine in-ReRAM
XNOR operations with the use of a capacitive divider at the bottom of the
ReRAM array to perform the popcount operation. We present an experi-
mental validation of our concept on a test chip, manufactured in a hybrid
CMOS/ReRAM 130-nanometer technology, and simulation-based predic-
tions for a more advanced 22-nanometer node.

The advantage of our approach with regards to the SRAM-based
pioneering work7,8 is two-fold. ReRAMcells aremore compact than SRAM,
bringing better scalability and lower cost. More profoundly, as ReRAM is
non-volatile, the power supply can be turned off without losing the pro-
grammed neural network. This feature allows zero standby power and is
particularly appropriate for embedded applications. ReRAM has demon-
strated 10-years retention, even under challenging conditions9.

Our approach naturally offers a near-immunity to the effects of
ReRAM variability and IR drop. Other fabricated in- and near-memory
computing ReRAM circuits address these issues by using sophisticated
readout circuitry and/or limiting the number of inputs of the in-memory
MAC operations. These strategies, which our approach avoids, are pro-
blematic. Complex readout circuitry has a high energy and area cost.
Limiting the number of in-memory MAC inputs means that only very
partial MACs can be realized in-memory, and additional conventional
digital circuitry (registers and adders) is necessary to compute final neuron
activations. We now summarize the main techniques followed in the lit-
erature. Impressive realizations that compute 25610, 19611 and 78412-inputs
MAC have been previously published. Each of these studies employed
different methods to address ReRAM and periphery circuits non-idealities.
For instance, model-driven chip calibration, noise-resilient neural-network
training and analogweight programming, and chip-in-the-loopmodelfine-
tuning can be used10. Complex periphery circuits can also compensates for
the non-idealities, to implement a “max value search of MAC operation”
strategy11, or a local current cancellation technique involving analog-to-
digital and digital-to-analog conversion with numerous clock-cycles for
proper conversion and multi-bits precision weights and activations12.
Another approach consists of mitigating the challenges of in-memory
computing by limiting the number of inputs of in-memory MAC
operations13–19. In particular, a one-bit input, ternary-weighted, and three-
bits output ReRAM-based MAC operations with nine up to 25 inputs has
been demonstrated13. This work uses separate ReRAM arrays to store
positive andnegativeweights, coupledwith a complex analog sensing circuit
to overcome the sense amplifier offsets and the small sensingmargin due to
the ReRAM variability. Another approach14 uses multiple ReRAM cells to
store three-bit signed weights rather than multi-level cells and applies
sequential word line pulses to implement two-bit inputs. A sophisticated
analog sense amplifier then generates a three-bits MAC output value.
Despite the analog circuit design complexity, and due to the ReRAM
variability, this work used amaximalMAC size of nine inputs. It also shows
a tradeoff between the CIFAR-10 accuracy and the achieved energy effi-
ciency. To increase the MAC number of inputs while limiting the ReRAM
read current and preserving inference accuracy, an alternative method16

consists of introducing input-aware multi-bit bit line clamping and source
line biasing with a single activated word line, along with multiple current
sensing optimizations. This approach is still limited to 16 inputs per MAC.
To push the MAC precision up to eight-bit inputs and weights, an asym-
metric group-modulated input scheme along with voltage-mode sense
amplifiers was proposed17. However, the maximal number of inputs per
MAC is only four. By proposing a direct-current-free time-space ReRAM-
based MAC operation, another work18 achieved a high energy efficiency of

416.5 TOPS/W in the binary case. However, the MAC number of inputs is
still low, limited to 16 accumulations. A ReRAM-based in-memory com-
puting approachbasedonavoltagedivisionmechanismonentire columns19

has also been published. It helps lowering the sensitivity to ReRAM varia-
bility, but without suppressing the need for important readout circuitry, and
still being limited to small MAC sizes with a maximum of nine inputs.

Partial and preliminary results of this work have been published at a
conference, based on simulations of our approach and measurements on a
test die lacking the periphery circuits20. This version adds silicon-based results
with a full BNN test-chip implementation and characterization, and a com-
plete modeling of the neuron’s error probability with regard to the neuron
size, operation voltages, clock frequencies, and programming conditions.

Results and discussion
RRAM-based capacitive neuron: overview and test chip experi-
mental validation
Binarized neural network test chip. Neural networks are composed of
neurons, which receiven inputs ini and produce a single output activation

aj ¼ g
X
i

ðwij × iniÞ þ bj

 !
; ð1Þ

where wij are the synaptic weights connecting the neurons, bj the neuron
biases, and g a non-linear activation function (see Fig. 1a). In binarized
neural networks, neuron activations and weights only take ± 1 values,
greatly simplifying eq. (1). The multiplication operation between an input
ini and a weight wij becomes an XNOR operation (replacing -1 values by 0,
see Fig. 1b), and the accumulation operation becomes a population count
(popcount) operation. The non-linear activation function g is replaced by
the sign function (Fig. 1c). The neuron output activation aj thus becomes

aj ¼ signðPOPCOUNTiðXNORðwij; iniÞÞ � tjÞ; ð2Þ

where tj is a threshold value given by training.
Our test chip aims at computing this equation robustly and efficiently.

It is designed and fabricated in a 130-nanometerCMOS technologywith co-
integrated ReRAM cells in the back-end-of-line between metal layers four
and five (see the “Test chips fabrication" section inMethods). Our test chip
includes three versionsof the sameBNNcircuit, differingby their numberof
inputs: 5, 9, and 23 (Fig. 1d). The three versions implement a ReRAM array
of size 10 × 5, 10 × 9 and 10 × 23 respectively. Figure 1e shows a micro-
photography of the 23-inputs neuron circuit, which we use throughout this
work. The core of the circuit is composed of a ReRAM array storing the
weights and a capacitive neuron circuit at the bottom of the array. Addi-
tionally, shift registers controlmultiplexers that connect the desired SLs and
BLs to metal pads, making ReRAM cells directly accessible for character-
ization purposes. For validation and error rate extraction, a scan chain
captures the XNORvalues in parallel and outputs them serially at the end of
the output neuron operation. The capacitive bridge is designed with 105-
femtofarad capacitors.

As illustrated in Fig. 1f and following eq. (2), our binarized neural
network circuit is composed of
• 2T2R-based XNOR operators using a fully differential in-memory

computing approach;
• two capacitive bridges connected respectively to the XNOR outputs

and their complementary values, to implement the popcount operator
in analog;

• extra bias capacitors on the two capacitive bridges to implement the
threshold value;

• a near-memory comparator to perform the sign function and the
difference between the popcount and the threshold values.

Theoutputof thecomparator is thebinaryvalueof theneuronactivation.
We now describe these elements in detail.
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RRAM-based robust in memory XNOR operation. As depicted in
Fig. 1f, the weights of a given neuron are stored in a single row of a
ReRAMarray. A key idea of our work is to rely on 2T2R (two transistors -
two resistors) ReRAM cells (Fig. 2a) connected in series, forming a
resistive bridge. Synaptic weights wij are coded in a complementary
fashion in the two ReRAM of the 2T2R cells, meaning that depending on
the value of the synaptic weight, either the left (R) or the right (RB)

ReRAM cell is programmed to a High Resistance state. The com-
plementary ReRAM is programmed to LowResistance State (seeMethod
for details on weight programming operations). The central point of the
resistance bridge – the source line SL – is therefore pulled either toward
the left or the right bit line, depending on the synaptic weight value. The
input neuron values are presented on the two bit lines also in a com-
plementary fashion, meaning that depending on the input neuron value,
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Fig. 1 | Binarized neural network test chip. a Neuron structure in a conventional
full precision neural network with n activation inputs. bMultiplication and XNOR
truth table equivalence for inputs and weights in {−1, 1}. The multiplication
operation is equivalent to the eXclusive NOR (XNOR) operation when replacing−1
values by 0. c Same neuron structure as in (a), in the binary case. d Binary Neural
Network (BNN) test chip optical microscopy photograph, with the three imple-
mented neuron sizes (5,9 and 23 inputs). The test chip is designed and fabricated in a
130-nanometer Complementary Metal-Oxide Semiconductor (CMOS) technology

with co-integrated Resistive Random Access Memory (ReRAM) cells in the back-
end-of-line between metal layers four and five. e Detail of the 23-inputs neuron
version. fGlobal architecture of the BNN circuit of the test chip, with 2-Transistors-
2-Resistors (2T2R) ReRAM cell using complementary coding to achieve robust
XNOR operation, and fully differential coding of popcount and threshold with
capacitive bridge to enhance comparison margin. SL Source Line, BL Bit Line, WL
Word Line.
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either the left or the right bit line is at the lowest voltage. The combination
of these two effects means that the source line naturally follows an
exclusive OR (XOR) between the weight and the neuron input (see
Table 1): the memory array performs XOR operations directly within
memory (the “In-memory XNOR operation” section in Methods
describes this operation more mathematically). To illustrate this opera-
tion, we measured the source line voltage distributions for the four cases
of the XOR truth table on an independent test chip featuring a 1024 2T2R
ReRAMarray without neuron circuits (see ref. 20), therefore allowing the
direct measurement of the source line voltages. The results shown in
Fig. 2b reveal significant read margins between the XOR distributions
tails and VDD/2. Figure 2c demonstrates successfully the simulated XOR
operation for the complete truth table. In our full system, these source line
voltages are used as input to inverter gates at the bottom of each source
line to compute the inverted XOR, namely XNOR, values.

The in-memory XNOR operation is expected to fail only if the device
programmed into low-resistance state has a resistance higher than the
device programmed into high resistance. This situation has a very low
probability to appear, since both devices have to be programmed impro-
perly. Additionally, the nonlinearity of the inverter amplifies the signal,
leading to clean binary outputs. These two elements make our approach
highly robust to variability. Note that a 2T2R strategy has already been
proposed to reduce bit errors in adigital context5,6,withdevices connected in
parallel read by precharge sense amplifiers. A unique benefit of our
approach is that, as the twodevices are connected in series, the current paths
in thememory array always include a high-resistance device. Therefore, the
in-memory XNOR operation relies on a low current, regardless of
the input and weight values. This also makes our approach naturally
immune to IR-drop effects (see Method for IR-drop projection on large
memory array).

Near-memory popcount and sign operation. Popcount and sign
operations are performed near memory using a switched-capacitor
addition circuit and a comparator (see Fig. 1f), following an approach

inspired by an SRAM-based work7,8. The use of a switched-capacitor
circuit is highly energy-efficient with regards to a digital implementation,
as, unlike in in-memory MAC realizations exploiting Kirchoff’s current
law, no direct current needs to be applied: energy is only consumed when
the capacitors are switching. The popcount circuit is based on a fully
differential approach with two capacitive bridges connected to com-
plementary inputs. The “On-chip operation of the popcount computa-
tion” section in Methods lists the different steps of the popcount
operation, realized in one clock cycle, and which leads the voltages of two
capacitive bridges to

VPC ¼ m
n
VDD ð3Þ

and

VPCB ¼ VDD �m
n
VDD; ð4Þ

where m is the number of XNOR outputs equal to one, i.e., the popcount
value, and n is the total number of XNOR outputs connected to each
capacitive bridge. The comparator takes as input these two voltages and
produces as output the binary activation aj of the neuron. This means that
the activation is set to one when more than half of the XNOR values are
equal to one (i.e., m > n

2). Therefore, the circuit naturally implements a
neuron (see equation (2)) with a threshold tj of n2.

Statistically, neural network inference simulations (see section “BNN
circuit performances at neural network scale”) show that a threshold setting
capability of ± 5% around the mean n

2 value is necessary and typically suf-
ficient to achieve a good accuracy. To offer this capability, we added
b = 2 × ⌊0.05 � n⌋ capacitors to each bridge in a complementary fashion.
These extra capacitors are connected to the source line of additional col-
umns in the ReRAM array, where the threshold are programmed (see the

Fig. 2 | 2-Transistors-2-Resistors (2T2R) bit cell
with in-memory eXclusive NOR (XNOR) func-
tionality. a Schematic of our proposed bit cell. The
weights, stored in the Resistive Random Access
Memory (ReRAM) 2-Transistors-2-Resistors
(2T2R) cell, and the activation input, applied on the
Bit Line (BL)/BLB, are both coded in a com-
plementary fashion. This creates a voltage divider
structure whosemiddle point is the Source Line (SL)
and is the image of the eXclusive OR (XOR)
operation between the weight and the activation
input. The final XNOR value is generated by an
inverter gate at the bottom of the SL. b XOR (≡ SL)
measured distributions with VLOW = 0.3 volts and
VHIGH = 0.9 volts on a 1204 2T2R ReRAM array
programmed using ICC = 200 microamperes and
VG(reset) = 3.3 volts, V(reset) = 2.5 volts.
c Simulated XOR operation on two 2T2R cells on
adjacent columns selected simultaneously (c.i). The
first cell stores a weight equal to zero (w = 0) while
the second cell stores aweight equal to one (w = 1). A
Vread of 0.2 V is used, corresponding to VLOW = 0.5
volts and VHIGH = 0.7 volts. The obtained plot (c.ii)
illustrates successfully the complete XOR truth
table. WL Word Line.
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“Threshold adjustment in the near-memory popcount operation” section in
Methods for the details concerning the threshold circuit).

Characterization results and error model
Characterization results on the BNN chips. To validate the function-
ality of our BNN circuit and its robustness against ReRAMvariability, we
first performed an extensive set of inference operations. These operations
are performed on the 23-inputs circuit of Fig. 1, with read voltages Vread

ranging from 0.2 to 0.6 volts and six different compliance currents used
during weights programming. (The precise read voltage and compliance
current definitions are given in the “Test chip characterization” section in
Methods.) Fig. 3 shows the measured XNOR and neuron error prob-
abilities (the methodology for obtaining these results is presented in the
“Test chip characterization” section inMethods).Wemeasured no errors
for a compliance current greater or equal to 110microamperes and a read
voltage greater than 0.3 volts. Figure 3b–d shows that in these conditions,
we also measured no errors in the neuron values, even for minimal value
of the difference between popcount and threshold values Δ (here repre-
sented by the difference between the number of inputs set to one in the
neuron’s two capacitive bridges). These results show that our circuit is
capable of highly robust computation.

By contrast, we can see in Fig. 3a that errors start to occur for
compliance currents lower than 110 microamperes or read voltages lower
than 0.3 volts. To better understand these regimes, we programmed a
total of 13,800 weights on the test chip, for each of the six considered
programming conditions, and for all considered read voltages. We
measured their respective High Resistive State (HRS) and Low Resistive
State (LRS) values and the XNOR output. The experimental results for a
read voltage of 0.3 volts are presented in the scatter plot in Fig. 4a. Red
markers correspond to improper XNOR operations. The results confirm
that the lower the compliance current, the wider the (HRS, LRS) scatter
plot is. Couples close to the HRS=LRS diagonal present a low HRS to LRS
ratio and, therefore, a significant probability of giving erroneous XNOR
outputs, as shown in Fig. 4b. For instance, a ratio between four and six
leads to an XNOR error rate of 0.9% for Vread = 0.3 volts. Figure 4b also
shows that the effect is more substantial for lower read voltages: with
Vread = 0.2 volts, an HRS/LRS ratio between four and six leads to an
XNOR error rate of 3.9%.

Simulation results of the neuron circuit for scaled-up BNNs. In our
fabricated circuits, we saw that the voltage difference between the two
capacitive bridges remains sufficiently large to avoid any output neuron
activation error, when XNOR outputs are error-free (Fig. 3b–d). How-
ever, such errors may appear in circuits with larger input numbers, for
low Δ values, as this situation would lead to low voltage differences at the
comparator inputs: voltages VPC and VPCB can become very close. We,
therefore, performed extensive Monte Carlo simulations of circuits with
BNN sizes up to 513 inputs neurons and clock periods ranging
from 4 to 20 nanoseconds, for the full range of possible popcount and
threshold combinations (Δ values). We consider global and local sources
of variability, including mismatch, at three standard deviations.
For all simulated cases, 1000 runs are performed. To include the
ReRAM variability, the source line measured distributions of Fig. 2c,

corresponding to a compliance current of 200 microamperes and a read
voltage of 0.6 volts (and thus to error-free XNORoperations), are directly
injected at the XNOR inverter’s inputs.

Figure 5a–b shows the extracted neuron error distributions for the 33
and 513-inputs neurons, together with a Gaussian fit of the results. Con-
sistently with our measured results, for neurons up to 33 inputs, the output
presents no errors for a clock period higher or equal to 6 nanoseconds. The
smallest Δ value corresponds to a voltage difference of 34 millivolts for 33
inputs. As we increase the neuron sizes, this smallest voltage difference
decreases, down to only 2 millivolts for 513 inputs, and thus, the error rate
increases for small Δ values. Fortunately, the Gaussian error distributions
remain tight for clock periods higher or equal to 6 nanoseconds.

In the case of 513 inputs, Fig. 5 reveals a high error rate when the
difference between popcount and threshold is one. This suggests that the
readout circuit presents a precision equivalent to having half the number of
attainable voltage levels, resulting in an approximate equivalent precision of
8 bits instead of 9 bits.

Further analysis of the simulation results shows that 93.4% of the
neuron errors are due to the comparator, the remainder being due to the
clock and clear buffers, and the pull-down clear transistors. Figure 5d shows
the obtained standarddeviation for other neuron sizes for the different clock
periods. As expected, the longer the clock period is, the lower the standard
deviation is, asmore time is given for the clear and capacitive divider voltage
settling. Based on these results, we can set the minimum clock period to 6
nanoseconds.

Full BNN error model based on chip characterization and large BNN
circuit simulation. We now implement a full neuron error model as a
function of neuron size, read voltage, programming compliance current,
and clock period, based on the results presented in the last two subsec-
tions: XNOR errors are modeled using our experimental results directly,
while neuron circuits error is based on the Gaussian fits of our Monte
Carlo results. The mathematical details of the model are presented in the
“Error model" section in Methods. Based on our error model, we focus
here on a large neuron behavior for various usage conditions.

Figure 6 plots the error probability of a neuron with 513 inputs for a
clock period of six nanoseconds, and various compliance currents and read
voltages. The read voltage has a very limited impact on the error distribution
evolution, especially with a good initial programming current as in Fig. 6b.
This observation leads us to choose a low Vread to minimize the power
consumptionduring inferencewithout anynoticeable impact on theneuron
error probability.

BNN circuit performances at neural network scale
To evaluate the performance of our BNN circuit at the neural network scale,
we incorporated the error model introduced in the previous section (and
described in the “Error model” section in Methods - equation eq. (10)) into
the PyTorch21 deep learning simulation framework. Inferences are per-
formed for multiple programming conditions, read voltages, and clock
periods on the MNIST handwritten digit recognition and the CIFAR-10
image recognition datasets (see the “Neural network simulation” section in
Methods). Therefore, all MNIST and CIFAR results are simulated, but using
experimentally measured distributions of SL voltages and the developed
error model calibrated on our testchip. Figure 7 shows the obtained test
recognition rate, along with error-free baselines. For the MNIST task, a
negligible accuracy degradation is reported for all compliance current values.
Even for the most critical configuration (a 6 nanoseconds clock period, a
read voltage of 0.2 volts and a compliance current of 40 microamperes) the
accuracy degradation is only of 0.2% for a baseline accuracy of 98.3%.

CIFAR-10 image recognition is a much more challenging task.
Figure 7b–d shows the accuracy loss, compared to a software precision
baseline of 90.6%, for various conditions, along with the corresponding
energy efficiency in TOPS/W. The accuracy loss (in percentage points) is
low, although it is higher than in theMNIST case. Even for a read voltage of
0.2 volts, and for a standard compliance current (110 microamperes), we

Table 1 | Truth table of the proposed in-memory XNOR
operation

Weights Neuron input XOR (SL) XNOR

bin R RB bin BL BLB (V) bin

0 LRS HRS 0 VLOW VHIGH <VDD/2 0 1

0 LRS HRS 1 VHIGH VLOW >VDD/2 1 0

1 HRS LRS 0 VLOW VHIGH >VDD/2 1 0

1 HRS LRS 1 VHIGH VLOW <VDD/2 0 1
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observe only 0.9% precision loss for a clock period of 20 nanoseconds (1.4%
for a clock period of 8 nanoseconds, and 2.3% for a clock of 6 nanoseconds).
Overall, the compliance current has a remarkably low impact on the
accuracy: only a truly low value of 40 microamperes substantially degrades
the accuracy.

We conducted inference on the CIFAR-100 dataset, which is more
intricate. As expected, the software accuracy baseline is lower (68.86%) than
for theMNIST and CIFAR-10 datasets. Figure 7a(3) shows the CIFAR-100
accuracy curves as a function ofXNORerror rate for different clock periods.
Accuracy is less resilient than in theCIFAR-10 task (Fig. 7a(2)). Still, despite
the increased complexity of the dataset, we noted only a modest precision
loss of 3.25% at a clock period of 20 nanoseconds, with a read voltage of 0.2

volts and a standard compliance current of 110 microamperes. For shorter
clock periods of 8 nanoseconds and 6 nanoseconds, the precision loss
increases to 5.4% and 10%, respectively.

We now estimate the energy efficiency for our 130-nanometer
implementation, for a read voltage of 0.2 volts, a compliance current of 110
microamperes, and a clock period of 6 nanoseconds. Themean current of a
single 2T2R complementary bit cell is 1.2microamperes, leading to a power
consumption of 135.7 microwatts for a 513 inputs neuron (including the
10% extra cells for the bias). The use of 2T2R complementary resistive
bridges drastically decreases the ReRAM current consumption during the
neuron operation, as one of the ReRAMdevices is always in high resistance
state. Themean power consumed by two inverters, twoAND gates and two
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Fig. 3 | Experimental measurement of the error rate for eXclusive NOR (XNOR)
and neuron activations. aMeasured XNOR error percentages for different com-
pliance current ICC and read voltage Vread. b–dMeasured neuron error percentages
for ICC equal to 110 microamperes to 220 microamperes resp., for Vread

ranging from 0.4 volts to 0.6 volts and for Δ - the difference between popcount and

threshold values, here represented by the difference between the number of
inputs set to one in the neuron’s two capacitive bridges - ranging from −3 to 3.
A value of zero means that no error was measured. The experimental details for
obtaining these results are presented in the “Test chip characterization" section
in Methods.
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capacitors (including the clear operation) is 2 microwatts when the XNOR
result is unchanged, and 4microwatts when the XNOR value switches. Our
simulations showed an inference XNOR activity factor lower than 25%.
Based on the 25% value, the total power consumed by the inverters, AND
gates, and capacitors of a 513 inputs neuron is 1.4 milliwatts. The complete
neuron power consumption is 1.96 milliwatts after adding the buffers, clear
transistors, and sense amplifier power consumption. Considering that we
perform two operations (multiplication and accumulation) per neuron
input (including the bias) with the thresholding operation at the end, the
total number of operations, in a single clock period, is 1127, which corre-
sponds to 0.188 TOPS and an energy efficiency of 96 TOPS/W. Addition-
ally, to evaluate the power consumption of our solution in a 22-nanometer
technology, we re-designed and simulated our neuron using a commercial
22-nanometer Fully Depleted Silicon On Insulator (FDSOI) technology
design kit and obtained an energy efficiency of 449 TOPS/W.

A low read voltage maximizes the BNN circuit energy efficiency and
preserves the inference accuracy. A longer clock period decreases the
maximal energy efficiency, as shown in Fig. 7b–d: for a read voltage of 0.2
volts, themeanenergy efficiencyof our 130-nanometer test chip is 96TOPS/
W for a clock period of 6 nanoseconds, 72 TOPS/W for a clock period of 8
nanoseconds, and 29 TOPS/W for a clock period of 20 nanoseconds.
Considering the 22-nanometer projection, these numbers become 449
TOPS/W, 337 TOPS/W, and 135 TOPS/W, respectively.

Tables 2 and 3 compares our work with state-of-the-art approaches,
both current-based16,17,22 and resistive-divider-based19. All of them consider
a limitednumberof inputs per cycle of respectively 4, 9, 16, and8, to limit the
impact of ReRAM variability. Compared to these solutions, we achieve
similar or higher energy efficiency. However, although these solutions show
high efficiency regarding partial MAC operations, they do not include in
their evaluation the sum of all the partialMAC as well as the activation cost,
as we propose in our solution. Comparing the MNIST and CIFAR-10
accuracy is challenging as most papers do not provide such results. How-
ever, when the accuracy is provided16,22, we achieve comparable CIFAR-10
accuracy and accuracy loss, while using only binary weights and activations.
Thus, our solution offers comparable or superior energy efficiency than
contemporary approaches while maintaining accuracy.

Themost natural baseline for the neuron circuit would be a fully digital
implementation, whichwould showno computation error and thus achieve
software baseline accuracy, but at the cost of a higher power consumption.
We have not performed the energy consumption study, but it has been
thoroughly been performed in the initial work that inspired us7 (in this case,

the neuron circuit is used with SRAM). In their work, they estimated the
energy per classification of the switch capacitor array to be 4.2 times lower
when compared to a hand-designed digital implementation of the switch
capacitor neuron. In the digital implementation, a digitalWallace tree adder
is used instead of the analog capacitive DAC circuit.

Note that, although truly state-of-the-art performance on more com-
plex datasets such as CIFAR-100 and ImageNet requires multi-bits weights
and neuronal activations, recent research has shown surprisingly high
performance on these datasets using binarized neural networks. For
example, using a dedicated type of neural architecture search23 achieved
66.5%TOP-1 and86.8%TOP-5 accuracyon ImageNetusing fully binarized
neural networks. These results are promising for the development of binary
neuromorphic circuits implementing relatively complex tasks.

Conclusions
In thiswork,we characterize for thefirst time aBNNcircuit basedona2T2R
RRAM array with a capacitive output neuron and demonstrate experi-
mentally its high robustness against ReRAM variability. The XNOR values
are computed in memory using 2T2R ReRAM cells with complementary
weight coding and a single inverter located at the bottom of the source line.
The popcount and threshold operations are implemented with a fully dif-
ferential capacitive divider, which naturally presents low variability, allow-
ing the realization of large ReRAM-based neurons (with up to 513 inputs).
Measurement shows very good performances with low XNOR and neuron
error rates. The neuron robustness is studied with different programming
conditions, ReRAM operating voltages, and clock periods, and a neuron
error model is developed and tuned on the measured and simulated circuit
responses, before being embedded in the Pytorch environment to perform
BNN inferences on the MNIST and CIFAR-10 datasets. These neural net-
work simulations reveal that due to the intrinsic tolerance of binarized
neural networks to errors, it canbe favorable to choose low read voltages and
programming currents, as they respectively promote energy efficiency and
device endurance, with low impact on network-level accuracy. For a clock
period of 6 nanoseconds, our 513 inputs BNN circuit provides an appealing
peak energy efficiency of 96 TOPS/W and 449.3 TOPS/W for respectively a
130-nanometer and a 22-nanometer implementation.

Methods
Test chips fabrication
Most experimental results of the paper were obtained using the test chip
presented in Fig. 1. This test chip implements the proposedBNNcircuit and
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Fig. 4 | Statistical measurements of eXclusive NOR (XNOR) operation. a (Hight
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ICC values (13,800 points each) with Vread = 0.3 V. Red markers correspond to
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ratio distributions for the six considered ICC values. The experimental details for
obtaining these results are presented in the “Test chip characterization” section in
Methods.
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is designedand fabricated ina 130 nmCMOS technologywith co-integrated
ReRAM cells in the back-end-of-line between metal layers M4 and M5.
ReRAM cells are composed of a HfO2 layer sandwiched between TiN and
Ti/TiN layers. Figure 4 plots theVSL voltage, which is not readily available in
the BNN test chip. For this purpose, we use a different test chip, constituted
of a simple 1204 2T2R ReRAM array. The ReRAM cells of this test chip are
using the samematerials as the BNN chip, and were fabricated in an earlier
run. In our fabricated circuit, we used 105 fF capacitors. This choice of
relatively large capacitors was a conservatice choice to ensure circuit func-
tionality. On the other hand, in the simulations used to estimate the energy
consumption of scaled-up systems,weused amore aggressive value of 3.9fF.

ReRAM simulation model
We used a ReRAM Verilog-A model to design the programming circuits
of our demonstrator. For simulation of the neuron circuits, we preferred

to use another methodology to capture accurately the impact of the
variability of ReRAM (which is very challenging to model in a Verilog-A
model): we use experimentally-measured SL voltage distributions for the
XOR operation (measured on the 130-nm fabricated demonstrator) as
inputs of the simulations. For the 22 nm FDSOI technology, to stay on
the side of caution, we assumed that the thick-oxide access transistors
used in the 22 nm node would be equivalent to those used in the 130 nm
node within the ReRAM array, and we used the same SL voltage
distributions.

2T2R programming
Figure 8 illustrates the biasing conditions to program a specific ReRAM in a
2T2R bitcell. The device to be programmed is highlighted in green in Fig. 8.
The programming process begins with the activation of the selected word-
line (WL). The RESET or SET voltages are then applied across the selected
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Fig. 5 | Monte Carlo simulations of neuron operation. Simulated neuron error
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These simulations include transistor variability using the foundry design kit
and the eXclusive OR (XOR) distributions of Fig. 2. d Standard deviation of the
Gaussian fit of the simulated neuron error rate, for different neuron sizes and
clock periods.
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device through the BL and SL. Since the second ReRAM device in the
selected2T2Rcell is also accededdue to the sharedWL, an inhibitionvoltage
needs to be applied to avoid any write disturb. Therefore, in the case of a
RESET operation, the BL of the unselected ReRAM device is grounded
(Fig. 8a), whereas for a SEToperation it is biased at the SETvoltage (Fig. 8b).
The total writing time of a single ReRAM device is 2 microseconds. No
write-and-verify technics have been used.

IR drop projection on large memory array
Our approach is specifically designed to effectively address IR drop issues
by implementing a single WL activation at a time. This method ensures a
limited current of 1.2 microamperes in each 2T2R cell per column,
calculated as Vread/(RHRS+ RLRS), assuming a compliance current of 110
microamperes and a Vread of 0.2 volts. To demonstrate the resilience of
our XNOR operations against IR drop, we conducted an analysis con-
sidering the parasitic resistors of the metal lines for each bitcell. We
calculated the VSL voltage, accounting for the IR drop, with a Vread of 0.2
volts, for column size up to 1kbits. For the top row, the VSL voltage
reaches a high value of 0.69V or a low value of 0.51V. At the bottom row
(1000th row), the (VSL) voltage is reduced by 1.35% for the high
value and respectively 1.83% for the low value. This very limited
reduction in the VSL voltage swing, from the top to the last row,
demonstrates the robustness of our approach when applied to large
memory array sizes.

Read-disturb experimental evaluation
The primary motivation behind selecting the lowest possible voltage for
ReRAM devices during MAC (Multiply and Accumulate) operations is
to minimize inference power consumption. Operating at low voltages
also serves as an effective strategy to mitigate read disturb issues. In our
specific case, the voltage Vread across the bit lines is shared between two

complementary ReRAM devices connected in series. As a result, each
device experiences a voltage lower than Vread, and the HRS cell always
experiences a greater voltage drop compared to the low resistance state
(LRS) cell, making it more prone to read disturb issues. We conducted
read cycling experiments on 2T2R ReRAM cells programmed in a
complementary manner, to evaluate read disturb effects. For the read
cycling experiments, Vread voltages ranging from 0.2 volts to 0.6 volts are
applied. Both BL (bit line) and BLB (complementary bit line) are
grounded, and the Vread voltage is directly applied to the selected source
line (SL). The Vread voltages are delivered as successive pulses with rise
and fall times of 100 nanoseconds and an application duration of 100
nanoseconds. Within each decade, we extract the high resistance state
(HRS) value with a pulse of 0.1 volts for a duration of 10 microseconds.
In these experiments, the full Vread voltage is applied on each ReRAM,
and timings are above the one used in our design, due to generator
limitation: these cycling experiments represent a worst-case scenario
both in terms of voltage and timing. The measured HRS resistance for
various Vread pulses up to 108 cycles is shown in Fig. 9b. For Vread

voltages of 0.4 volts and below, no discernible trend of read disturb is
observed in terms of mean HRS values, even after 108 cycles. The only
noticeable change is a larger dispersion of the HRS values compared to
the initial distribution. Conversely, we observe a clear disturbance when
Vread reaches 0.6 volts, for pulse counts exceeding 105, resulting in the
HRS value being reduced to 70% of its original value. Figure 9c presents
the same measurements with an added one-millisecond relaxation time
between each pulse. We observe a clear reduction in read disturb: for
Vread = 0.6 V, the HRS value decreases to only 86% of its original value
after 105 cycles. Again, for Vread values equal to or below 0.4 volts, no
definitive trend of read disturb on the mean HRS values is observed,
although there is a larger dispersion of the HRS values compared to the
initial distribution. Applying pulses with a duration of 100 nanoseconds
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Fig. 6 | Modeling of a 513-input neurons. Heatmap view of the error probability
distributions for a neuron with 513 inputs and a clock period of 6 nanoseconds, as a
function of read voltage and Δ value (difference between popcount and threshold

value). The iso-lines correspond to error probabilities ranging from 0.05 to 0.5 with a
step of 0.05. a, b correspond to a compliance current ICC of 40microamperes and 150
microamperes. The error model is detailed in the “Error model” section inMethods.
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represents an extreme case as we considered clock periods below 20
nanoseconds in our design. If we assume that a 100 nanoseconds pulse is
equivalent to 100 pulses of one nanosecond, we can extrapolate that our
design would be read disturb free for a read voltage of 0.2 volts, even
after 1010 cycles, considering a worst case scenario.

In-Memory XNOR operation
The weight coding is the following: (R,RB) = (HRS,LRS) if wij = 1, and
(R,RB) = (LRS,HRS) if wij =−1, with LRS being the Low Resistance and
HRS the High Resistance State of the ReRAM. The activation input is
applied on the Bit Lines (BL) and complementary bit lines (BLB) also in a
complementary fashion, such as ðVBL;VBLB

Þ=(VHIGH,VLOW) if ini = 1, and
ðVBL;VBLB

Þ=(VLOW,VHIGH) if ini =−1. Once the activation input is
applied, the 2T2R structure behaves as a resistive bridge, whose middle

point, the Source Line (SL) voltage, is given by

VSL ¼ ðVBL � VBLB
Þ: RB

ðRþ RBÞ
þ VBLB

whenVBL >VBLB
ðini ¼ 1Þ

VSL ¼ ðVBLB
� VBLÞ:

R
ðRþ RBÞ

þ VBL whenVBL <VBLB
ðini ¼ �1Þ:

ð5Þ
We choose VLOW and VHIGH to be symmetric with respect to VDD/2

(VDD being the circuit supply voltage). The voltage Vread = VHIGH-VLOW

serves as the read voltage for the devices and is chosen lower than the
ReRAM threshold voltage to avoid read-disturbance during the XNOR
operation. As theReRAMs are coded to complementary values, the ReRAM
in the HRS state always takes the largest voltage drop and pushes VSL to the
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Fig. 7 | Neural network simulations. a Inference accuracy for the MNIST, CIFAR-
10 and CIFAR-100 datasets, as a function of eXclusive NOR (XNOR) error prob-
ability. Markers indicate the inference precision for ICC = 40 microamperes, 60
microamperes, and 80microamperes with Vread = 0.3 volts. CIFAR-10 accuracy loss
(in percentage points, compared to the software precision baseline of 90.6%) for the

different compliance current and read voltage Vread, along with the corresponding
energy efficiency in TOPS/W, for a 513-inputs neuron and a clock period of (b) 6
nanoseconds, (c) 8 nanoseconds and (d) 20 nanoseconds (see the “ReRAM simu-
lationmodel”, “Error model” and “Neural network simulation” sections inMethods
for the implementation details).
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bit line voltage of the ReRAM in the LRS state. Consequently, by eq. (5), the
VSL voltage follows the XOR truth table (see Table 1).

Figure 10 illustrates the operating principle of the XOR gate. The SL
voltage is naturally pulled towards the voltage of the LRS (low resistance
state) of the 2T2R cell thanks to the resistive bridge structure.

We cannotice that the voltage on SL does not fully swing, whichhas an
impact on the transition latency and transient DC-short current, as illu-
strated in Fig. 11. We performed transient simulations on our inverter
structure and extracted its transition latency and mean DC transient DC-

short current. VSL voltages are raised from 0 volts to their final value with a
rising timeof 300picoseconds.This is realistic as before theWLare activated
and theBL/BLB voltages are applied to perform theXNORoperation, the SL
voltage is equal to zero, and this voltage raises to VDD/2 ±Vread/2 once the
WL are activated. The transition latency is computed as the latency between
the time where the VSL signal reaches 50% of its total dynamic and the time
when the inverter’s output reaches 50% of its total dynamic. The transient
DC-short current is computed as themean currentwhile the inverter output
falls from 90% to 10% of its output dynamic. Using a compliance current of
ICC = 110microamperes andVread = 0.2 volts, we obtain a transition latency
ranging between [0.29, 0.41] nanoseconds, a mean transient DC-short
current ranging between [1.85, 2.64] microamperes, and a DC current
ranging between [0.41, 0.84] microamperes. Compared to a full swing SL
input, with a VSL voltage raised to VDD = 1.2 volts, the mean transition
latency is increased by 0.24 nanoseconds, the mean transient DC-short
current is reduced by 16.9 microamperes as the inverter’s peak of current is
lower for low VSL swings, and the mean DC current is increased by 0.52
microamperes. The obtained mean transient current values are low due to
the high threshold voltage technology used in our design.

Threshold adjustment in the near-memory popcount operation
As illustrated in Fig. 12b–d, depending on the number kj of ones applied on
the SLs of the bias columns (through the same resistive bridge approach as
for theXNORoperators), the popcount capacitive bridgewill be advantaged
ordisadvantaged compared to the secondcapacitive bridge, thus shifting the
threshold value tj down to aminimal value of tjmin

¼ n
2 � b

2 (kj = b) or up to a
maximal value of tjmax

¼ n
2 þ b

2 (kj = 0). The voltage of the two capacitive
dividers is then given by

VPC ¼mþ ðb� kjÞ
nþ b

:VDD

VPCB ¼VDD �mþ ðb� kjÞ
nþ b

:VDD;

ð6Þ

and the comparator output aj by

aj ¼ signðVPCB � ðVDD � VPCBÞÞ ¼ sign m� n
2
� b
2
þ kj

� �� �

¼ signðm� tjÞ;
ð7Þ

Table 2 | State-of-the-art comparison table (part 1)

ISSCC16 TCAS-II19 ISSCC17

2020 2021 2021

Node 22 nm 180 nm 22 nm

Input bits 1 2 4 1 1 4 8

Weight bits 2 4 1 2 4 8

Inputs on... BL WL WL

MAC scheme Ohm’s law Resistive divider Ohm’s lawa

Accumulation scheme Peripheral circuitry Resistive divider Kirchhoff law

Latency (ns) 9.8 13.1 18.3 15.98 113.65 214.17 4.9 10.3 14.8

TOPS/W 121.38 45.52 28.93 42.6 35.39 30.26 195.7 47.26 11.91

MAC size 16 9 4

Partial/total MAC Partial Partial Partial

Need for digital sum? Yes Yes Yes

Accuracy (MNIST) N/A N/A N/A N/A N/A N/A N/A N/A N/A

Accuracy (CIFAR10) N/A 90.18% N/A N/A N/A N/A N/A N/A N/A

Accuracy degradation (MNIST) N/A N/A N/A N/A N/A N/A N/A N/A N/A

accuracy degradation (CIFAR10) N/A 0.72% N/A N/A N/A N/A N/A N/A N/A
a(with temporal coding for inputs).

Table 3 | State-of-the-art comparison table (part 2)

ISSCC22 [our work]

2022 2022

Node 22 nm 130/22 nm

Input bits 1 8 1

Weight bits 1 8 1

Inputs on... WL BL

MAC scheme Ohm’s law Resistive divider

Accumulation scheme Kirchhoff’s lawa Capacitive divider

Latency (ns) 1.59 14.4 6 20

TOPS/W 416.5b 21.6c 96 / 449.3d 28.8 / 134.8d

MAC size 16 513

Partial/total MAC Partial Total

Need for digital sum? Yes No

Accuracy (MNIST) N/A N/A 98.26%e 98.26%e

Accuracy (CIFAR10) N/A 91.74% 88.32%e 89.71%e

Accuracy
degradation (MNIST)

N/A N/A 0.07%e 0.07%e

accuracy degradation
(CIFAR10)

N/A 0.46% 2.31%e 0.92%e

a(with BL discharge).
b(1286,4 TOPS/W with a sparsity of 90%).
c(61.8 TOPS/W with a sparsity of 90%).
d(22 nm typical simulation).
e(Vread = 0.2 V and ICC = 110 μA).
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which corresponds to eq. (2), m being the popcount value. Therefore, the
threshold tj is

tj ¼
n
2
� b
2
þ kj; ð8Þ

with kj an integer in the range 0 to b.

Test chip characterization
To program the ReRAM cells we use standard RESET conditions in all
situations (tRESET = 1microseconds,VWL(RESET) = 4 volts,VRESET = 2 volts).

Only the SET conditions differ, with compliance currents ICC ranging from
40 to 220 microamperes and tSET = 1microseconds,VWL(SET) = 2 volts,V
SET∈ [1.1, 2] volts. To extract the error probabilities in Fig. 3, we wrote
230 synaptic weights and measured their respective XNOR and neuron
output values. We repeated this experiment for all combinations of
voltages Vread ranging from 0.2 to 0.6 volts, and compliance current
going from 40 to 220 microamperes, and Δ – the difference between the
neuron’s two capacitive dividers inputs set to one – going from −3 to 3.
For each condition, we repeated the write and measurements steps
ten times. Thus, for each Vread and ICC conditions, the XNOR error
probability is based on 13,800 measurements. Similarly, for each Vread,
ICC and Δ values, the neuron error probability is based on 100
measurements.

On-chip operation of the popcount computation
To clear the capacitors before each operation, we included AND gates
between the inverters’ outputs and the capacitors, along with pull-down
transistors connected to the two capacitive dividers. The typical neuron
operation during an inference step is as follows. After selecting a given
word line WL, the activation values of the selected set of input neurons
are applied to the bit line BL, to generate the XNOR values. In parallel,
the clear (CLR) signal is activated to ground the top and bottom elec-
trodes of the neuron capacitors, to remove the charge. The XNOR digital
outputs are prevented from reaching the capacitors by the AND gates
and the clear signal set to VDD. When the clear phase ends, the XNOR
values pass through the AND gates to reach the capacitors, settling the
popcount/threshold voltages. The comparator compares the two capa-
citive divider voltages and computes the output neuron activation. This
full operation takes one clock cycle.

Error model
Weconsider a neuron ajwithN inputs (including the bias terms), n1 of each
are expected to lead to a one XNOR value. For simplicity, we focus on the
case n1 ≤ N=2

� �
, so that aj is expected to be one (our derivation can be

adapted to the other case straightforwardly). We call p the probability for a
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Fig. 9 | Read-disturb measurements. The read cycle experiment is performed on
cells programmed in a complementary manner with the following conditions: SET
operation - VSET = 2 volts with a current compliance of ICC = 200 microamperes,
SET duration tSET = 1 microseconds. RESET operation - VRESET = 2.5 volts without

any current limitation, RESET duration tRESET = 10 microseconds. a 2-Transistors-
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single 2T2R-based XNOR operator to give an erroneous output, which we
extract for various programming conditions and read voltages from the
experimental measurements of Fig. 3. We can obtain P({f0 = i}) the prob-
ability of having i XNOR outputs turning from a correct zero state to an
erroneous one state, and P({f1 = j}) the probability of having j XNOR out-
puts turning from a correct one state to an erroneous zero state, using

binomial laws

Pðff 0 ¼ igÞ ¼ N � n1
i

� �
× pi × ð1� pÞN�n1�i

Pðff 1 ¼ jgÞ ¼ n1
j

� �
× p j × ð1� pÞn1�j:

ð9Þ

Fig. 11 | Inverter latency and current simulations.
Inverter transition latency, mean transient Direct
Current (DC)-short current and DC current for a
compliance current of ICC = 110 microamperes and
Vread = 0.2 volts.
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We also introduce P({CN(x) = 1}) the probability of the capacitive
neuron (CN) giving an output of one when x XNOR outputs equal to one,
obtained for various neuron sizes and clock periods from the Gaussian
distributions of Fig. 5d. Then, we can compute the probability of the neuron
output aj being equal to one instead of zero by

Pðfaj ¼ 1jn1 ≤ N=2
� �gÞ

¼
XN�n1

i¼dN=2e�n1

Pðff 0 ¼ igÞ
Xminðn1 ;n1þi�dN=2eÞ

j¼0

Pðff 1 ¼ jgÞ× PðfCNðn1 þ i� jÞ ¼ 1gÞÞ

þ
XN=2b c

i¼0

Pðff 0 ¼ igÞ
Xn1

j¼maxð0;n1þi� N=2b cÞ
Pðff 1 ¼ jgÞ× PðfCNðn1 þ i� jÞ ¼ 1gÞ

ð10Þ

Impact of the proposed approach on the neuron error reduction
To assess the robustness of our approach taking into account ReRAM
variability, we compared it to a 1T1R fully analog-in-memory computing
approach, using Ohm and Kirchhoff’s law for MAC operations. Figure 13
presents a comparison of neuron error rates attributed to ReRAMs in our
approach (validated through experiments) and the expected error rates due
to ReRAMs using analog in-memory computing with the same ReRAM
variability. The Vread voltage is set at 0.3 V, and the compliance current is
110 μAtoalignwithourwork’s conditions.This Figure underscores that our
approach largely mitigates the impact of ReRAM variability, even under
these challenging conditions. This Figure is based on the variability our
hafnium oxide device technology, and the exact benefits of our approach
could vary depending on electrical properties of memory devices and net-
work architectures choices.

Neural network simulation
Errors are not considered for the first and last layers, since they are not
binarized. For theMNIST task, we used a fully connected network with three
hidden layers of 1025 neurons each. For the more challenging CIFAR-10
task, we used a binarized Visual Geometry Group (VGG) structure24, con-
sisting of six convolutional layers followed by three fully connected layers2.

Data availability
Data measured in this study is available from the corresponding authors
upon request. Thedatasets used to evaluate theneural networks are available
publicly online. The MNIST database of handwritten digits is available on
http://yann.lecun.org/exdb/mnist/index.html. The CIFAR-10 and CIFAR-
100 datasets are available on https://www.cs.toronto.edu/~kriz/cifar.html.

Code availability
The softwareprogramsused formodeling theBinarizedNeuralNetwork are
available from the corresponding authors upon request.
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