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Computation of the Fresnel diffraction of starshades based on
a polygonal approximation

Simon Prunet, Claude Aime, André Ferrari, and Céline Theys

Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Nice, France

ABSTRACT

The design of starshades, i.e. external occulters for stellar coronography, relies on the fast and precise computa-
tion of their associated diffraction patterns of incoming plane waves in the telescope aperture plane. We present
here a method based on a polygonal approximation of the occulter’s shape, that allows fast computation of their
diffraction patterns in the Fresnel approximation, without aliasing artefacts. It is competitive with respect to
methods based on direct 2D Fourier transforms, or Boundary Diffraction Wave algorithms.
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1. INTRODUCTION

The goal of starshade screens is to obtain, with the help of an external screen placed in the line of sight of a
star, a zone of shadow of a size large enough to cover the entrance pupil of a large telescope, while at the same
time sustaining a small enough angle on the sky in order to leave extrasolar planets orbiting that star visible.
The precise shape of the occulter is optimized in order to obtain high contrast shadows on the entrance pupil,
typically on the order of 10−10 in intensity, with respect to the unobscured region.

To reach such high contrasts, computations of the occulter’s diffraction of light waves from the star need to
be achieved with great accuracy, and with sufficient speed to be able to efficiently explore the optical system’s
parameters (e.g. distance to the telescope, inner and outer radii of the occulter, number and shape of the petals,
robustness to phase errors, etc.), as well as other sources of parasitic light (e.g. solar and zodiacal glare). State
of the art diffraction computations, used e.g. in the SISTER1 simulation suite, rely on Boundary Diffraction
Wave algorithms.2,3 The major advantage of the latter methods, as compared to classical Fresnel convolution
integrals based on 2D Fourier transforms, is that they rely on boundary, 1D integrals to compute the diffraction
patterns, achieving very substantial gains in terms of computation speed. However, computations need to be
redone for each wavelength, with no possibility to separate computations related to the occulter shape and to
light diffraction per se.

We describe here a method that is following the traditional approach of 2D Fresnel convolution integrals, but
with the advantages of Boundary Diffraction methods, in the sense that at least part of the computations are
done using 1D boundary integrals. This is achieved by assuming that the occulter can be described by a polygon,
which can be done with arbitrary precision by increasing the number of vertices. In section 2, we describe the
formalism of the method. In section 3, we discuss the choice of vertices on the occulter’s perimeter, and in
section 4, we show how this method converges in terms of diffracted profiles for the NW21 optimized starshade,
and illustrate how it compares to traditional Fresnel convolutions. In section 5, we discuss the scaling of the
computation time with respect to both the number of vertices, and the number of output spatial frequencies of
the Fourier transform of the occulter’s mask, and finally conclude in section 6. More details can be found in
Ref. 4.
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2. FORMALISM

For the NW2 occulter of typical radius R = 36m, at a distance Z = 119770 km from the aperture plane, the
Fresnel number Φ = R2/(λZ) ≃ 21.6 at λ = 500 nm, which places the diffraction well within the Fresnel limit.
Let us consider an occulting mask f(r), r = (x, y), we have f(r) = 1 − t(r), where t(r) is a transparent mask
that is spatially bounded at radius R, i.e. t(||r||) = 0 for ||r|| > R. Following Ref. 4, the diffraction amplitude by
an occulter at distance Z from the telescope aperture located at z = 0, from a normal incident wave (incidence
angle ξ = 0), is:

Ψλ(0, r, Z) = f(r) ∗ 1

iλZ
exp(iπ

||r||2

λZ
)

= 1− t(r) ∗ 1

iλZ
exp(iπ

||r||2

λZ
). (1)

For incoming waves with an angle ξ ̸= 0, we can deduce the diffraction pattern in the following way:

Ψλ(ξ, r, Z) = Ψλ(0, r + ξZ,Z) exp(−2iπ
r.ξ

λ
). (2)

The 2D Fresnel convolution in Equation 1 can be computed using Fourier transforms:

Ψλ(0, r, Z) = 1−F−1[t̂(ρ)×F [
1

iλZ
exp(iπ

||r||2

λZ
)]], (3)

where t̂(ρ) = F [t(r)] is the Fourier transform of the transmission profile, and ρ = (u, v) is the vector of spatial
frequencies. We see that the wavelength only enters in the quadratic phase term, and the Fourier transform
of the transparent mask t̂(ρ) can be computed just once for all wavelengths. It is interesting to note that
Fourier transforms present in the right hand side of Equation 3 have very different properties: the first one is the
Fourier transform of a binary transparency mask, with sharp boundaries, and therefore has slowly decreasing
power at large ||ρ||, while the second, because of the finite extent of the field, has power localized at low spatial
frequencies.4

While the latter means that the Fourier product in Equation 3 only needs to be done for a relatively small
number of discrete values of ρ before being transformed back to image space via an inverse FFT, the former
means that great care must be taken to avoid aliasing while computing the Fourier transform t̂(ρ).

To address this last problem, direct approaches using 2D pixelized versions of the occulter necessitate very
high resolutions: typically, in the case of the NW2 setup, up to 223 pixels per dimension,4 to achieve the contrast
at the center of the field predicted by analytical means.5 Therefore, we would like to use a method that retains
the computational advantages of Boundary Wave Diffraction techniques, while retaining the separation between
the occulter dependent term and the wavelength dependent Fresnel kernel.

First introduced in the context of radio receivers6 and later revisited and further developed in the field of
neutron and X-ray scattering,7 close forms of continuous 2D Fourier transforms of indicator functions of polygonal
shapes are expressed as discrete sums over polygon vertices with geometric and phase weights. These transforms,
being continuous, are by construction free of aliasing artefacts, and their precision is only limited by the quality
of the polygonal approximation of the occulter, that can be controlled by the number and position of the polygon
vertices.

Let us call vj , j = 1...N the coordinate vectors of the polygon vertices, rj = (vj+1+vj)/2 the middle of edge
j, and ej = (vj+1 − vj)/2 the vector joining vj and rj . The continuous 2D Fourier transform of the indicator
function of the polygon can, due to Stokes’ theorem, be expressed as a contour integral on the polygon perimeter.
Following Wuttke,7 let us define the function g(r) = 2πn̂× ρei2πρ.r, where a× c is the cross-product of vectors
a and b. Stokes’ theorem reads: ∫∫

Γ

d2r n̂.(∇× g) =

∮
∂Γ

dr.g, (4)

with a.b the scalar product of vectors a and b, Γ the polygonal shape and ∂Γ its oriented perimeter.



In our case, the left hand side of Equation 4 is equal to:∫∫
Γ

d2r n̂.(∇× g) = 4π2n̂.[iρ× (n̂× ρ]

∫∫
Γ

d2r ei2πρ.r

= 4π2i|n̂× ρ|2t̂(ρ)
= 4π2i||ρ||2t̂(ρ), (5)

while the right hand side can be expressed as a sum of integrals over the polygon edges. Parametrizing the points
of a polygon edge by rj(λ) = rj + λej , the right hand side reads:

∮
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dr.g =

N∑
j=1

ej .

∫ 1
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= 2π
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= 4π
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[n̂,ρ, ej ] sinc(2πρ.ej)e
i2πρ.rj . (6)

Using Equation 5 and Equation 6, we finally get:

t̂(ρ) =
1

iπ||ρ||2
N∑
j=1

[n̂,ρ, ej ] sinc(2πρ.ej)e
i2πρ.rj . (7)

This equation expresses the continuous Fourier transform of the occulting mask, as a sum over the polygon vertices
with simple geometric and phase weights. We emphasize the fact that no discretization has been necessary up to
now, so that this formula is free of any aliasing artefacts. We note that the sum runs over the polygon vertices,
a discrete set of points on the mask boundary, which number therefore scales as the square root of the number
of pixels in a 2D sampled version of the mask, as in Boundary Diffraction methods.

3. CHOICE OF POLYGON VERTICES

Some care needs to be used when choosing the polygon vertices to obtain a good approximation of the petal
occulter’s shape. Let us recall how the mask is designed in the first place; it is itself a binary approximation of a
circularly symmetric intensity filter whose (variable) transmission profile is optimized to obtain a required inten-
sity contrast level on the telescope aperture.8 The Fresnel convolution kernel itself being circularly symmetric
(see Equation 1), the diffraction pattern at the center of the field will be the same as that of the symmetric,
variable intensity filter, provided that the azimuthally averaged radial profile of the binary mask is identical to
that of the variable filter.

At radii r ∈ [rin, rout] for which the variable filter profile transmission f(r) is between 0 and 1, this can be
achieved by introducing a number P of petal shapes, that are deduced from a single one by rotations of angle
2π/P . The shape of the reference petal is then chosen such5 that∫ θ(r)

−θ(r)

dθ =
2π

P
f(r), (8)

with r, θ(r) defining the polar coordinates of the boundary of the petal upper half (0 ≤ θ(r) ≤ π/P ), the lower
half being deduced from the latter by symmetry with respect to the horizontal axis.

For the polygon vertices, we made the simple choice of doing a regular sampling of the upper half reference
petal that is linear in radius, with n points on that interval. We will explore later the effect of varying n on the
intensity contrast achieved by the polygonal mask thus defined. In Figure 1, we show a pixelized mask and its



Figure 1. Pixelized petal mask of the NW2 setup, with 24 petals (yellow), together with a polygonal approximation of the
continuous mask (blue line) and the associated vertices (red points). There are 100 vertices per half petal, for a total of
4752 vertices in total, comparable to the square root of the number of pixels. Left, middle and right panels respectively
show the entire mask with it padding region, and zooms on the petal centered around 45◦ and 15◦ degree of azimuth.
These numbers are chosen for display purposes only, as the actual numbers chosen in the diffraction calculations will be
much larger to achieve the required contrast levels. Dimensions are in meters.

border as defined by the polygonal approximation. In this example, the linear pixel size is 4096 (including the
padding region needed for the FFT), while the total number of vertices of the polygon is 4752, corresponding to
n = 100 vertices per half petal. We see that, with a number of polygon vertices roughly equal to the square root of
the number of pixels, we obtain a visually smoother approximation of the continuous occulter shape. In the next
section, we will show the results obtained for the radial intensity contrasts with the polygonal approximation,
as a function of the number of vertices.

4. RESULTS

Still using the NW2 setup, Figure 2 compares the computation of the 2D Fourier transform of the masks, in their
respective approximations as pixelized image and polygonal shape. In this comparison, the number of pixels per
axis of the discrete mask is 223 = 8388608, while the occulter support is limited to 221 = 2097152 pixels per axis,
the large extra padding zone being used to control aliasing in the FFT. The number of polygonal vertices is set
to n = 8000 per half petal, for a total of 383952 vertices. Note that only the real part of the Fourier transform
is shown, as the imaginary part is null by symmetry. The left panel shows the mask transform obtained with
the polygonal approximation, the middle panel shows the difference of the continuous Fourier transform using
the polygonal approximation and that obtained from the 2D FFT of the pixelized mask, while the right panel
shows the difference of Fourier transforms obtained with the polygonal approximation, with respectively 4000
and 8000 vertices per half petal.

Amplitude differences in the middle panel are homogeneous on the order of a few 10−5, while the maximum
of the Fourier transform, corresponding to the area in meters of the occulter, is ∼ 2691. Apart from differences
linked to the peak of the Fourier transform at large scales (central frequencies), the difference pattern in the
middle panel appears repetitive, with a mashrabiya-like appearance, and is most probably due to aliasing artifacts
of the pixelized mask transform. This is further confirmed by the difference map of the right panel between two
transforms using the polygonal approximation with different sampling rates: this difference map is typically
of a smaller amplitude already compared to that of the middle panel, showing the level of convergence of the
polygonal approximation in Fourier space.

Another test of the polygonal approximation consists, of course, in computing the numerical properties of the
diffraction pattern in the telescope aperture plane, and more specifically the level of intensity contrast achieved



Figure 2. Left panel : Central 2000 × 2000 pixel regions of the petal occulter 2D Fourier transform, computed at
(8192×8192) discrete locations using the continuous Fourier transform of the polygonal approximation, with 8000 vertices
per half petal, for a total of 383952 vertices. Middle panel : Difference between the Fourier transform computed with the
polygonal approximation and the 2D FFT of a pixelized mask of very high resolution (223×223, which includes a padding
zone three times larger than the occulter itself to reduce aliasing). Right panel : Difference between two transforms using
both the polygonal approximation, with 4000 and 8000 vertices per half petal, respectively.

using polygonal approximations to the occulter. Figure 3 shows, in logarithmic scale, a radial intensity profile for
an incoming plane wave of unit amplitude, taken along the horizontal axis. The figure shows the radial profile
for different sampling rates of the polygonal approximation, going from 100 to 8000 vertices per half petal of the
NW2 occulter. We notice that the 10−10 intensity contrast is achieved within a radius of 5 meters (except at the
very center), and also that the radial profiles for polygonal approximations, respectively based on 4000 and 8000
vertices per half petal, are indistinguishable in this figure, suggesting that the polygonal sampling used here is
large enough.

Coming back to the sampling strategy discussed in section 3, we used by simplicity a sampling of polygon
vertices that is linear in radius r, the corresponding azimuth (for vertices in the first upper half petal) being
chosen according to Equation 8. However, there is no reason a priori to think that this sampling choice is
optimal, at a fixed sampling rate, in terms of minimizing the errors linked to the polygonal approximation of the
continuous occulter. We therefore investigated a different sampling method, based on pruning of a polygon with
very high sampling rate (typically around 100k vertices per half petal), using the Douglas-Peucker simplification
algorithm.9 We stopped the pruning process when we recovered (roughly) the same number of vertices as in the
case of linear radius sampling with 8000 samples per half petal. Surprisingly enough, the results obtained on
e.g. the diffraction radial intensity profile were not competitive with the simple, linear sampling in radius with
a similar number of vertices.

However, the Douglas-Peucker algorithm uses a user-specified function for the distance of a point to a given
segment, and we haven’t explored alternative functions to the default orthogonal projection distance. Another
possible direction of improvement, would be to make the sampling policy an integral part of the intensity contrast
maximising strategy, by defining a differentiable loss function on the diffraction pattern that could be minimized
by allowing sampling points to slide along the continuous petal border, this is however out of the scope of the
present work.

5. COMPUTATIONAL ASPECTS

We give here a few details about the implementation of the continuous Fourier transform of the polygon indi-
cator function, as expressed by Equation 7. For arbitrary coordinates ρ in the frequency plane, Equation 7 is
implemented in a straightforward manner, either on cpu using numpy operations, or on gpu if available using
cupy arrays. It is obvious from this equation that the number of operations scales linearly with respect to both



the number of points in frequency space where the transform is needed, as well as the number of vertices in the
polygon.

The product of both numbers also defines, up to a constant multiplier, the memory footfprint. Care must
thus be taken not to overload the available memory, be it that of the cpu or of the gpu, depending where the
computation is done. The calculation is therefore done by slicing the array of required positions in the frequency
plane and iterating over that slicing; the user specifying the available memory resources, the number of slices is
computed in order to fill at best the available memory, minimizing the number of host to device transfers (in
case of a computation made on gpu).

0 5 10 15 20 25
r (meters)

12

10

8

6

4

2

lo
g 1

0I

100 points
1000 points
4000 points
8000 points

Figure 3. Radial profile of intensity contrast of the NW2 occulter diffraction pattern, as a function of the distance to
the optical center, in the telescope aperture plane. The number of points per half petal is shown in the legend. We can
see that by n = 4000 points per half petal, the profile computation has converged, as both green (n = 4000) and dotted
orange (n = 8000) lines are superposed.

Figure 4 shows the measured scaling (orange points) of the computation time for the NW2 occulter with its
24 petals, when varying either the sampling of the petals (left panel) or the number of output frequencies (right
panel), obtained here when using a Tesla V100 GPU. Both follow the expected linear scaling.

6. CONCLUSIONS

We presented a new way of computing the Fresnel diffraction pattern in the aperture plane of a telescope, caused
by a binary occulter with 24 petals in the NW2 setup.1 It is based on a traditional 2D convolution with Fresnel
kernels, however, it presents important differences with the method based on FFTs of the discretized problem.
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Figure 4. Left panel : Compute time of the continuous Fourier transform of the polygonal indicator function, as a function
of the number n of vertices per half petal of the NW2 setup. The total number of petals is equal to N = (n − 1) ∗ 48,
with 383952 vertices for n = 8000. Right panel : Same, but as a function of the number of output spatial frequencies. The
last point corresponds to a 8192× 8192 frequency grid. Both timings show the expected linear scaling from Equation 7.

Indeed, this method is based on a polygonal approximation to the occulter’s perimeter, allowing the computation
of the continuous 2D Fourier transform of its indicator function at arbitrary spatial frequencies, without any
aliasing. Also, it relies on the fact that, on a finite field of view, the Fresnel kernel acts as a low pass filter, which
implies in turn that only a limited number of spatial frequencies are necessary to achieve accurate computations
of the diffraction pattern in the telescope aperture plane.

These two aspects combined made it possible to obtain accurate diffraction patterns in about 1hr of GPU
time, compared to several days for a direct, 2D FFT based method.4 We note that the algorithm presented here,
based on known methods to compute the continuous Fourier transform of polygon indicator function, retains
the advantages of Boundary Diffraction Wave algorithms (in the sense that the most computationally intensive
2D integrals are transformed into manageable 1D contour integrals), as well as those of the traditional Fresnel
kernel convolution method, that separate the occulter dependent parts from the (wavelength dependent) Fresnel
kernels; this last point might be of relevance if further optimisation on the occulter’s shape is conducted beyond
the azimuthally averaged transmission profile.
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