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Neurocomputational mechanisms involved
in adaptation to fluctuating intentions
of others

Rémi Philippe 1,2,9, Rémi Janet1,2,9, Koosha Khalvati3, Rajesh P. N. Rao 3,4,
Daeyeol Lee 5,6,7,8 & Jean-Claude Dreher 1,2

Humans frequently interact with agents whose intentions can fluctuate
between competition and cooperation over time. It is unclear how the brain
adapts to fluctuating intentions of others when the nature of the interactions
(to cooperate or compete) is not explicitly and truthfully signaled. Here, we
use model-based fMRI and a task in which participants thought they were
playing with another player. In fact, they played with an algorithm that alter-
nated without signaling between cooperative and competitive strategies. We
show that a neurocomputational mechanism with arbitration between com-
petitive and cooperative experts outperforms other learning models in pre-
dicting choice behavior. At the brain level, the fMRI results show that the
ventral striatum and ventromedial prefrontal cortex track the difference of
reliability between these experts. When attributing competitive intentions, we
find increased coupling between these regions and a network that distin-
guishes prediction errors related to competition and cooperation. These
findings provide a neurocomputational account of how the brain arbitrates
dynamically between cooperative and competitive intentions when making
adaptive social decisions.

During social interactions, humans are often uncertain whether others
intend to compete or cooperate. The intentions of other agents can
fluctuate over time, making it challenging to develop successful
behavioral strategies. A key question is how the brain decides whether
the other is cooperating or competing during volatile situations in
which the nature of the social interactions is not explicitly determined,
as when others interact to achieve a common goal while maximizing
their own benefits. This question is of importance since it lies at the
heart of strategic social decisionmaking1–9. In these types of situations,
other agents can change behavior according to cooperative or com-
petitive intentions.

Cooperation is generally defined as involving a group of indivi-
duals working together to attain a common goal10,11. In contrast,
competition involves one person attempting to outperformanother in
a zero-sum situation12. A number of theoretical accounts and experi-
mental results demonstrate that the ability to mentalize, i.e. to simu-
late the other’s belief about one’s next course of action, is crucial for
strategically sophisticated agents6,7,13,14. The neurocomputational
mechanisms engaged in attributing intentions to others have been
studied in situations in which participants are explicitly informed
about the nature of the interactions, either in a collaborative context
alone15–17 or in a competitive context alone7,8,18–24. For example, during a
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cooperative game such as the coordination game, one of the best
strategies is to try to choose one of twopresented targets consistently.
In contrast, in a competitive game such as the matching pennies
game19,24, theoptimal strategy is to choosebetween two targets equally
often and randomly across trials. If the identity of the game played is
not known, the agent has to adjust his/her strategy based on repeated
interactions with others and to infer cooperation/competition on the
basis of observations. How the brain achieves such inference poses a
unique computational problem because it not only requires the
recursive representation of reciprocal beliefs about other’s intentions,
as in cooperative or competitive contexts alone, but it also requires
one to decide whether the other is competing or cooperating to
deploy an appropriate behavioral strategy.

Here, we sought to determine the neurocomputational mechan-
isms that underlie the inferences of whether a person is competing or
cooperating during volatile situations in which the nature of the
interactions is not explicitly signaled. A recent computational account
proposed that arbitration between strategies is determined by their
predictive reliability, such that control over behavior is adaptively
weighted toward the strategy with the most reliable prediction25. This
approach has been tested successfully in the domains of instrumental
or Pavlovian action selection26, model-based andmodel-free learning27

and learning by imitation or emulation28. Extending this concept of a
mixture of experts to social interactions, we investigated whether the
brain relies on distinct experts to compute the best choice between
two possible intentions attributed to others (cooperation or compe-
tition) and thenweights themby their relative reliability.We tested and
compared thesemixtures ofmodels, that attribute intentions to others
dynamically, with different classes of learningmodels: non-Bayesian vs
Bayesian and non-mentalizing vs mentalizing (see Table 1). This
allowed us to identify the algorithms and brain mechanisms engaged
with a key component of estimating other’s intentions, i.e., whether
the social partner was cooperating or competing.

The majority of theoretical frameworks used to model feedback-
dependent changes in decision making strategies, such as choice
reinforcement and related Markov Decision Process (MDP) models,
assume that optimal decisions can be determined from the observable
events and variables by the decision makers. Clearly, these assump-
tions do not capture the reality and complexity of human social
interactions because observable behaviors of other individuals pro-
vide only very partial information about their likely future behaviors.
Moreover, model-free RL algorithms assume that values (utility or
desirability of states and actions), change incrementally across trials
according to the choice outcomes. This assumption is invalid when
option values change abruptly, such aswhen the intention of the other
shifts between cooperation and competition. These limitations explain

why agents basing their behavior only on standard RL models can be
exploited by opponents using more sophisticated algorithms6,29.

Amore accurate account of strategic learning is based on a family
of RL models which adds a mathematical term to the classical Tem-
poral Difference (TD) algorithm to consider the other as an agent
having their own policy, which can be influenced by oneself6,29,30. For
example, fictitious play learning proposes a basic form of mentalizing
by having a representation of the other’s strategy. Influence models
also consider that RL can be supplemented by a mentalizing term that
represents howour actions influence those of others, updated through
a belief prediction error2,6,7,19,29,31–33. Such influence models formalize
not onlyhowplayers react to others’past choices, (first-order beliefs in
Theory of Mind: ToM), but also how they anticipate the influence of
their own choices on the others’ behavior, (i.e., mentalizing-related
second-order beliefs). Another modeling approach of theory of mind
uses Bayesian algorithms tomodel inferences about the future actions
of another by attempting to take their point of view and to simulate
their decision13,17,34. This strategy can be performed recursively so that
participants make inferences concerning the others’ inferences and so
on. Such a sophisticated approach could be grounded in the theore-
tical framework of Partially Observable Markov Decision Processes
(POMDPs)35. POMDPs provide a probabilistic framework for solving
tasks involving action selection and decision making under
uncertainty36,37. Notably, this approach has recently been applied to
strategic cooperation in groups35,38,39. These models, however, have
mainly been limited to signaled cooperative or competitive tasks in
which the intentions of players do not change over a given
period13,34,40,41.

Here, we tested the predictions of these different families of
learning models against one another, investigating not only non-
Bayesian vs Bayesian models and non-mentalizing vs mentalizing
models, but also amixture of models deploying an arbitration process
whereby the influence of attributing intentions to others is dynami-
cally modulated, depending on which type of intention (i.e. coopera-
tive vs competitive) is most suitable to guide behavior at a given time.
For themixture of models, two expert systems implement an identical
influence learning process, working together to make strategic deci-
sions. These two experts differ only by their priors, one expert asses-
sing competitive intentions and the other assessing cooperative
intentions, while a controller weight between these experts according
to their relative reliabilities. Each expert system uses a classic RL
algorithm complemented with a mentalizing term to infer the other’s
actions. This hypothesis extends the mixture of models to a more
general view in which the experts are differentiated not by their cog-
nitive processes, such as model based vs. model-free learning or
emulation vs. imitation27,28, but by their priors.

To determine the neurocomputational mechanisms that underlie
the inferences ofwhether a person is competing or cooperating during
volatile situations in which the nature of the interactions is not expli-
citly signaled, we used a novel model-based fMRI design (Fig. 1). We
used an iterative dyadic game in which participants were told that they
would interact with another person via a computer. Unbeknownst to
them, the other player was an artificial agent that switched between
blocks of cooperative trials and blocks of competitive trials when
playing a card matching game. Thus, the opponent algorithm’s goals
were the same as those of participants in the Cooperative blocks but
were opposite in Competitive blocks. Participants remained uncertain
with respect to the goals of their “partner” or “opponent”, which
alternated, without this being signaled. This task allowed us to inves-
tigate the algorithms used by the brain to recognize the “intentions” of
others and to adopt appropriate strategies when the modes of inter-
action (cooperation vs competition) are not indicated.

We show that a mixture of influence models best accounted for
the behavior in our task, referred to as the mixed-intentions influence
model. This Mixed-intentions influence model accounts for observed

Table 1 | Classification of models according to 3 categories

Model Mentalizing Bayesian Mixed
intentions

Influence model + (coop and comp) − −

Mixed-intentions
influence model

+ − +

1-ToM + (coop and comp) + −

1-ToM mixed
intentions

+ + +

Bayesian Sequence
Learner (BSL)

− + (depth 2
and 3)

−

RL − − −

WSLS (Win/Stay -
Lose/Switch)

− − −

The first column indicates the ability of the model to mentalize, the second represents whether
themodel is a Bayesianmodel, and the third concernsmodels that could be usedwith amixture
of experts.
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behavior inwhich theother’s goal is oftenonlypartially congruentwith
one’s own, allowing us to explain a continuous range of behavior
between pure cooperation and pure competition. At the brain system
level, we show that computational signals (decision value, prediction
error) from the two experts engage similar brain regions, due to the
fact that these experts implement an identical influence learning
process, each using different priors. Moreover, the ventromedial pre-
frontal cortex (vmPFC) and the ventral striatum track the reliability
difference signal from the controller. When comparing trials classified
as competitive versus cooperative by the controller, activity correlates
positivelywith the rewardprediction error (PE) signalmore in the right
temporo-parietal junction (rTPJ), dorsolateral prefrontal cortex
(dlPFC), and the intra-parietal sulcus (IPS). In addition, when partici-
pants expect higher utility for choosing according to competitive
rather than cooperative strategies, the vmPFC and the ventral striatum
track the intentions of others and show changes in functional con-
nectivity with the same brain system which discriminates reward PE
between believed modes of interaction. Together, these results pro-
vide a model-based account of the neurocomputational mechanisms
guiding human strategic decisions during games in which the inten-
tions of others fluctuate between cooperation and competition.

Results
Behavioral signature of tracking intentions
In the Mixed-intentions task, participants were led to believe that they
were interactingwith another participant, in fact, theywere interacting
with an artificial agent (AA). Participants were asked to choose one of
two cards tomatch the other participant’s choice. Unbeknownst to the
participant, the AA tried to match the two cards (coordination game)
or to mismatch them (matching pennies game). To assess the degree

of participant’s cooperation, we used their probability of staying on
the same target as the previous trial. Indeed, there is one unique Nash
equilibrium for the matching pennies which is to randomly switch
target half the time, whereas less than 50% of switch signal coopera-
tion. We assessed how participants used the history of previous
interactions to make their choices to switch target. We used logistic
regression to examine whether participants selected the same target
as that from the previous trial (“Stay”) or chose the other target
(“Switch”), depending on whether the previous three trials (at t-1, t-2
and t-3) hadbeenwonor lost, whether theprevious decisions hadbeen
to Stay or Switch, and whether the previous interactions from those
trials indicated cooperation (Eq. 1). We also added sex, age and the
rank of each trial (first, second or third trial etc. i.e., time indicator) as
control variables. All trials except the first 5 trials were included in this
analysis. Cooperation was defined as the binomial variable represent-
ing the interaction between the last action of the Artificial Agent (AA)
and the participant’s own previous outcome (”Cooperativity signature
of AA”). This variable was set to 1 if either the participant had won on
the previous trial and the AA stayed on the same target in the next trial,
or if the participant lost on the previous trial and the AA switched to
the other target in the next trial. Otherwise, the variable was set to 0.
Indeed, if the AA is a cooperative partner, both players should choose
to keep the same target after winning to be more predictable.
Note that this definition needs to be distinguished from the degree of
participant’s cooperativity as defined by its probability to stay on the
same target than on the previous trial. No multicollinearity was found
between the regressors.

We found that the “Cooperativity signature of AA” predicted an
increase in the “stay” probability of participants at t-1 and t-2 (χ2 1ð Þ=
5:34, Cooperativity signature of AAt�1 : estimate=0:05, p =0.021,
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Fig. 1 | fMRI experiment. a After a fixation cross, four cards were presented on the
screen. The two cards shown on top of the screen represent the cards presented to
the opponent/partner (i.e., Artificial Agent), and not seen by the participant while
the two kings (one black and one red) are the cards presented to the participant
(shown in the bottomof the screen). The participants had to choose between these
two cards. At the time of the decision, the upper screen represents the display if the
AAmakes its choice first, while the lower screen shows how one card is highlighted
with yellow border if the participant makes his choice first. Then a screen presents

the participant’s and Artificial Agent’s choices together. Finally, at the time of
outcome the participant wins if both he/she chooses the same card as the AA (here
red king).bPayoffmatrix of the two typesofblock. Participant’s payoff (bottom left
of each small square) and theArtificialAgent payoff (top right of each small square).
c Frequency of winning (black line) during Competitive (red background) and
Cooperative (green background) blocks. The gray area represents the 95% con-
fidence interval. The orange background represents 5 initial trials in which the AA
was played randomly for initialization purposes.

Article https://doi.org/10.1038/s41467-024-47491-2

Nature Communications |         (2024) 15:3189 3



CI[0.01; 0.09]; χ2 1ð Þ=9:49, Cooperativity signature of AAt�2 :

estimate=0:05, p =0.002, CI[0.02; 0.08]; Fig. 2a). This suggests the
participants tracked whether the other agent was cooperating during
the two previous trials (but not before). Participants used the outcome
of the latest trial tomake thenext decision (stayingor switching target)
according to a win/stay, lose/switch strategy (χ2 1ð Þ= 15:68,
winningt�1 : estimate=0:16, p < 0.001, CI[0.09; 0.24]; Fig. 2a). The
lack of effect of the Cooperativity signature of AA at t-3 cannot be due
to correlationwith the regressors at t-1 or t-2, sincea logistic regression
model including only the regressors at t-3 (Previous winning inter-
action(t-3) (i.e. the boolean outcome of the previous interaction, 1 if it
was a win, 0 if it was a loss), Switch(t-3), Cooperativity signature of
AA(t-3)), showed that there was only an effect of Switch at (t-3) and not
Previous winning interaction(t-3) and Cooperativity signature of AA(t-
3). Additional behavioral data analyses showing evidence for separate
cooperative and competitive experts are shown in Supplementary
Note 1 and Supplementary Figs. 1-3.

Computational models tracking intentions of the other agent
To elucidate the computations underlying strategic decision making,
we compared the results of different computational models. These
models were split into five classes (see Supp. Methods). The first class
ofmodelswerebasedonheuristics and includedWin-Stay/Lose-Switch
and Random Bias models. The other four classes of algorithms can be
classified into non-Bayesian versus Bayesian model families in one
dimension and mentalizing versus non-mentalizing model families in
the other dimension. Thus, the second class of models includes non-
Bayesian, non-mentalizing models represented by reinforcement
learning (RL) models. The third class represents non-Bayesian menta-
lizingmodels, namely the “influencemodels”whichare RLmodelswith
an additional term representing how the actions of one player influ-
ence those of the other player. The fourth type corresponds to Baye-
sian non-mentalizing models, exemplified by the k-Bayesian Sequence
Learner which tracks the probability that one target will be selected by
the AA after a history of specific length k. The fifth class of models
contains Bayesian mentalizing models, which are the k-ToM models
using recursive Bayesian inferences of depth k to predict the future
choice of theAA. Eachmentalizingmodelwas tested using 3 versions: a
competitive, a cooperative and a ‘mixed intentions’ version. The
‘mixed intentions’ version computes two separate decision values

according to competitive and cooperative experts, respectively, and
arbitrates between them based on the difference in their respective
reliability (see Fig. 3a and Supp.Methods). The twoexperts are running
in parallel and there is no need for payoffmatrices to be learnt. Indeed,
they are hard coded in each expert and only the balance between the
two experts has to be learned trial by trial. We defined reliability as the
difference in unsigned value functions for two choices given by spe-
cific learning algorithms (See SI).

Next, we performed a group-level random-effect Bayesian model
selection on the free energy computed by the model’s estimation,
taking into account potential outliers and the number of free
parameters42,43. We found that the ‘mixed intentions influence’ model
was most frequently the best fit across the population (pEP=0.98)
(Fig. 2b), demonstrating that participants employed mentalizing-
related computations in our mixed intentions task. This finding also
indicates that arbitration between a cooperative and a competitive
expert best explains observed participants’ behavior, rather than
either expert taken individually. To check the validity of the compe-
titive/cooperative behavioral signature, we performed two additional
analyses and found that each signature could be recovered by its
corresponding expert model, but not by the other (Supplementary
Fig. 6). These analyses consisted of logistic panel data regressions,
(one for the cooperative model alone and one for the competitive
model alone), clustered by simulation on the “Stay” strategy. To do
this, we first generated a total of 310 datasets with the influence
competitivemodel playing against the same sequences of AA’s choices
as the real players. To avoid contingencies between AA choices and
model choices, we used the sequence of AA choices generated against
real participants as a non-contingent opponent for the model which
generates new data. We next generated data with the influence coop-
erative model using the same method. These logistic regression ana-
lyses included only a constant as predictor variable to directly
compare the probability to stay independently of other variables, on
behavior simulated by the competitive expert alone, or the coopera-
tive expert alone. No multicollinearity was found between the regres-
sors in the two analyses.

These two analyses showed that each expert is able to reproduce
its corresponding behavioral signature. That is, the probability to stay
on the same target of the competitive expert was 0.508 (χ2 1ð Þ= 10269,
Probability to stay on the same target : estimate=0:508, p =0.116,

a b
ateB

Par�cipants’ probability to stay Bayesian Model Selec�on (BMS)

Coopera�vity
signature of AA

Fig. 2 | Model-free behavioral analysis andmodels’ comparison using Bayesian
model selection. a Model-free analysis. Random-effect logistic regression of the
decision to stay after selecting a specific target with respect to the action of the
artificial agent “Cooperativity signature of AA” (i.e., participant wins then AA –

Artificial Agent – stays or participant loses then AA switches), the previous winning
interaction (i.e., success or failure of past trials) and the choice to switch or stay,
over the previous three trials. Bars represent the marginal effect in the percentage
of each explicative variable on the probability to stay and the error bars represent
the 95% confidence interval. *p <0.05, **p <0.01, ***p <0.001 of a one-sided χ2, not
corrected for multiple comparison. (n = 31 independent participants each making
158 time-dependent decisions). Concerning the Cooperativity Signature effect at t-

1, t-2, and t-3, the respective p values were p =0.20, p =0.002 and p =0.101. Simi-
larly, for the previous winning interaction at t-1, t-2, and t-3, the respective p values
were p <0.001, p =0.225, and p =0.200. Finally, for the previous participant switch
at t-1, t-2, and t-3, the respective p values were p =0.137, p =0.057, and p =0.016.
b Model comparisons based on Bayesian model selection. The protected excee-
dance probabilities indicate that the Mixed-intentions Influence model (Inf 2
expert) explains decisions in the mixed intention task better than others: Bayesian
Sequence Learner (BSL), Heuristic models: Random Bias (RB), Win/Stay-Lose/
Switch (WSLS), Reinforcement Learning (RL), influence model competitive, influ-
ence model cooperative, 1-ToM competitive, 1-ToM cooperative, 1-ToM 2 experts.
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CI[0.499; 0.518]), whereas against the same sequences of AA
choices the cooperative expert stayed on the same target significantly
more frequently with a probability of 0.521 (χ2 1ð Þ= 10935,
Probability to stay on the same target : estimate=0:521, p <0.001,
CI[0.512; 0.530]). Thus, the cooperative expert cannot recover the
competitive signature accurately and the competitive expert cannot
recover the cooperative signature.

Additionally, only the Mixed-intentions Influence model (and not
the cooperative or the competitive one) successfully reproduced the
effect of the Cooperativity signature of AA on the probability to stay, as
in the participants (Fig. 3b and Supplementary Fig. 6, and Supp. Note 1).
We conducted a logistic regression to understand how the Mixed-
intentions Influence model explained differences in behavioral strategy
to stay or switch target. This analysis included the reward prediction
error at t-1, the valence of the arbitration between cooperative and
competitive intentions at time t (sign(Δ); 1 for cooperative and -1 for
competitive), and the interaction between these two variables. No mul-
ticollinearity was found between the regressors in this analysis. This
analysis revealed a main effect of the valence (cooperative or competi-
tive) of the arbitration (χ2 1ð Þ=23:32, valence of the arbitrationt :

estimate=0:239, p<0:001, CI 0:142; 0:0:336½ � Fig. 3c) indicating that
participants tended to stay more on the same target when they
attributed cooperative intentions to the other. Moreover, when we

tested how previous outcome might be used to make a decision
according to the currentlymore reliable expert, we found an interaction
effect, i.e. participants integrated the prediction error in their strategy
differently depending on the attributed intention (χ2 1ð Þ= 5:98,
valence of the arbitrationt � rPEt�1 : estimate =0:185, p =0:0145,
CI 0:037;0:333½ � Fig. 3c). That is, large negative prediction errors
increased the probability that the participant would stay on the same
target when the controller attributed cooperative intentions compared
to when it attributed competitive intentions. In addition, we also per-
formed another logistic regression analysis using the same variables and
the actual mode of interaction (i.e., Competitive block trials versus
Cooperative block trials). Again, nomulticollinearity was found between
the regressors in this analysis.Wedidnotfind the same interactioneffect
when we compared actual Competitive and Cooperative block trials
(χ2ð1Þ= 16:32, Block typet � rPEt�1 : estimate =0:007, p =0:8394, CI
½�0:056;0:069�, χ2ð1Þ= 1:44, Block typet : estimate=0:03, p =0:229,
CI½�0:07;0:017�and χ2ð1Þ= 5:98, PEt�1 : estimate =0:14, p < 0:001,
Supplementary Fig. 7, see Supp. Note 1), showing that the classified
intentions, rather than Competitive vs. Cooperative blocks, affected the
useofpredictionerror. Finally,weconducted supplementary analyses to
check the robustness of our Mixed-intentions influence model (See
Supp. Note 1 and Parameter recovery matrix and confusion matrix in
Supplementary Figs. 4 and 5).

ateB

Probability to stay
Data generated from : mixed-inten�ons model

0

0.25

0.5

0.75

1

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
Predic�on Error (PE at t-1)

Classified coopera�ve

Classified compe��ve

Predic�ve effect of PE at trial t-1 on 
probability to stay at trial t

c

Pr
ob

ab
ili

ty
to

 st
ay

a Schema of the 
mixed inten�on 
model

b

Coopera�vity
signature of AA

Fig. 3 | Schemaof themixed-intentions Influencemodel,model-free generative
analysis, and predictive effect of the predictionerror on theprobability to stay
on the same target. a Scheme of the Mixed-intentions Influence model. Two
influence models (one cooperative – left, blue– and the other competitive – right,
yellow) compute a value for choosing one specific target. A controller uses the
difference between the absolute value of the value of each expert (called reliability)
to compute a probability that the other is cooperating. Then, themodelweights the
value of each expert according to the probability of being in cooperative and in
competitive modes to produce a final decision value. Then it compares its pre-
dictions to the actual reward and computes a new value for each expert. b Model-
free generative analysis.We generatedn = 310 sets of independent data using a free
parameter from a normal distributionwithmean and standard deviation calculated
from the models fitted to the population, against the fixed sequences of choices
that the artificial agent made against participants during the experiment. We
regressed the behavioral decision to stay after selection of a specific target on the

previous trial depending on the interaction of the previous outcome and the action
of the artificial agent (“Cooperativity signature of AA”), the success or failure of up
to three previous trials, and the action to switch or stay of the participant. Bars
represent the marginal effect in the percentage of each explicative variable on the
probability of stay. The error bars are the 95% confidence interval (random-effect
logistic regression, χ2). For the cooperativity signature of the AA at t-1, t-2, and t-3,
the p-values are respectively p <0.001, p =0.003 and p =0.070. For the previous
winning interaction at t-1, t-2, and t-3, the p-values are p <0.001, p =0.649, and
p <0.001, respectively, and finally, for the previous participant switch at t-1, the
p-value is p < 0.001. cMarginal effect (in percentage) of the prediction error at trial
t-1 on the probability to stay (at trial t) on the same target in trials classified as
cooperative (at trial t, green dots) and trials classified as competitive (at trial t, red
dots) (e.g. for a -1 prediction error, the probability to stay in a trial classified as
cooperative increases by 82%). Error bars are the 95% confidence interval. *p < 0.05,
**p <0.01, ***p < 0.001 (random-effect logistic regression).
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We reasoned that when facing an individual who can change his/
her intentions to compete or cooperate over time, the brain may
implement distinct experts to compute the best choice based on these
two possible intentions (i.e., cooperative or competitive) weighted by
their relative reliabilities. We, therefore, built such an ‘arbitrator’
computation as a sigmoid function of the difference in reliability
between the cooperative and competitive interactions (Δ), with an
added bias (δ) that characterized each individual’s tendency to attri-
bute competitive (δ > 0) or cooperative (δ <0) intentions to others. To
assess the intentions of the other, participants only have access to the
outcomes of previous interactions, the choice (to stay or switch) of the
artificial agent in previous trials, and the interactionbetween these two
types of information.

We hypothesized that repeated successes in a social context
should favor the attribution of cooperative intentions because a series
of victories suggests that both players are satisfied with the outcome.
In such situations, the other player (i.e. AA) would become more pre-
dictable, which is an important feature to build cooperation44. More-
over, the interaction between the outcome and the AA’s choice (i.e.,
the tendency of the AA to “stay” after a participant wins or “switch”
after a participant loses) should drive the arbitrator to favor the
cooperative mode, because playing the same winning target for both
players corresponds to the pure-strategy Nash equilibrium of the
Cooperative game. To test this hypothesis, we regressed the signed
difference in reliability on (1) the participant’s last outcome, (2) AA’s
choice to “stay” or to “switch” and (3) the interaction between the

participant’s outcome and the AA’s choice to stay or switch (Coop-
erativity signature of AA) for up to three retrospective trials. We
found that the past two interactions between participant’s outcome
and AA’s action (Cooperativity signature of AA), the last outcome, and
switches by the AA at trial t-2 and t-3 explained the difference in
reliability (χ2 1ð Þ=33:64, Cooperativity signaturet�1 : estimate =0:59,
p < 0:001, CI 0:393;0:794½ �; χ2 1ð Þ=4:20, Cooperativity signaturet�2 :

estimate=0:06, p =0:040, CI 0:003;0:125½ �; χ2 1ð Þ= 182:79,
Victoryt�1 : estimate = 1.99, p <0.001; χ2 1ð Þ= 7:23, switcht�3 :

estimate = −0.097, p = 0.007), Fig. 4a). No multicollinearity was found
between the regressors in this analysis.

Together, these analyses show that participants’ behavior, when
alternating between unsignaled cooperative and competitive blocks, is
best explained by the Mixed-intentions Influencemodel. According to
these findings, people use mentalization to update their beliefs about
future chosen targets, and dynamically arbitrate between the pre-
dicted intentions of the other agent to compete or cooperate (Fig. 3a).
Having characterized the computations of the dynamic adaptation to
the changing intentions of others, we next tested where latent vari-
ables of these computations are encoded at the brain system level.

Model-based fMRI analyses
First, we investigated whether the brain systems engaged by the two
experts were similar regarding the decision value (DV) and reward
predictionerror (PE) of eachexpert. Todo this, for themixed-intention
influence model, we built a GLM (GLM0) including, at the first level,

-0.5
0

0.5
1

1.5
2

2.5

Coopera�vity
signature

Previous winning
interac�on

Par�cipant
switch

ateB

Reliability difference Δ 
(coopera�ve – compe��ve)

t-1
t-2
t-3

25%

35%

45%

55%

65%

75%

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

Fi�ed probability for coopera�ve interac�on

Reliability difference 
Δ = –

x = 5
29

5

4.2

3.4

a b

c

y = 10

y = 10

Coopera�vity
signature of AA

Fig. 4 | Reliability difference from the controller as a function of behavioral
signatures, predicted probability to cooperate computed by the model and
BOLD signal correlating with the reliability difference of the Mixed-intentions
Influence model. a Difference in reliability is influenced by the Cooperativity sig-
nature of the Artificial Agent (AA), specifically the interaction of the previous par-
ticipant’s outcome followed by the action of the artificial agent (Participant wins
then AA stays and participant loses then AA switches), the latest outcome and the
computer’s switch at trial t-2 and t-3. Bars represent the marginal effect in per-
centage of each explicative variable on the probability to stay. Error bars are the
95% confidence interval. *p <0.05, **p <0.01, ***p <0.001 of a χ2, not corrected for
multiple comparison. (n = 31 independent participants each making 158 time-
dependent decisions). Concerning the Cooperativity Signature effect at t-1, t-2, and

t-3, the respective p values were p <0.001, p =0.040, and p =0.466. Similarly for
the previous winning interaction at t-1, t-2, and t-3, p <0.001, p =0.962, and
p =0.094. Finally, for the previous participant switch at t-1, t-2, and t-3, p =0.198,
p =0.078, and p =0.007. b Mean probability of the participants attempting to
cooperate across all participants (black line) for the 163 trials computed by the
Mixed-intentions influence model. The initial orange area is the 5 random initi-
alizing trials, green areas are the Cooperative blocks and red areas are the Com-
petitive blocks. The gray area is the 95% confidence interval. c BOLD signal in
ventral striatum, mPFC, and posterior cingulate cortex (PCC) is correlated with the
difference in reliability, Δ, of estimated competitive and cooperative intentions
(p < 0.05 whole-brain family-wise error).
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decision values (DV) from the competitive expert, decision value from
the cooperative expert, PE from the competitive expert and PE from
the cooperative expert. Specifically, there were 4 onsets including the
time of the cue presentation (cards on screen), participant’s button
press, AA’s choice and feedback time. At the time of the cue onset, the
parametric regressors were the DV for staying on the same target
generated by the competitive expert, and the DV for staying on the
same target generated by the cooperative expert. Similarly, at the time
of feedback, the regressors were the PE generated by the competitive
expert and the PE generated by the cooperative expert. We performed
an ANOVA including DV and PE of each expert. Activity in the ventral
striatum for the DV of staying on the same target was commonly
observed for the two experts (P = 0.007 Family-Wise Error cluster
corrected, initial cluster forming threshold of p <0.001, Supplemen-
tary Fig. 8a). When directly comparing the DV of the two experts, we
did not find any separate brain region (P >0.95 FWE cluster corrected,
initial cluster forming threshold of p < 0.001). For the reward predic-
tion error (PE), the two experts showed common activity in the ventral
putamen (P <0.001), the anterior medial PFC (P <0.001), posterior
cingulate cortex (p =0.035 and the lateral OFC (P < 0.001) (Supple-
mentary Fig. 8b) (all Ps are FWE cluster corrected, initial cluster
forming threshold of p <0.001).

Next, we constructed a GLM (GLM1) to identify brain regions
tracking the arbitration process (i.e., Δ: signed reliability difference,
reliability for cooperationminus that of competition) between the two

experts (one for cooperation, the other for competition). We added
the reliability difference Δ as parametric regressor at the decision
stage, as well as the previous winning interaction (i.e. the boolean
outcome of the previous interaction, 1 if it was a win, 0 if it was a loss),
the previous switch and Cooperativity signature of AA of the previous
trial, as non-orthogonalized parametric regressors to allow them to
compete for the variance. At the outcome phase, we added the reward
prediction error as a parametric regressor and controlled for the effect
of the other’s intention by addingΔ as a non-orthogonalized regressor.
The bilateral ventral striatum (x,y,z = 14,12,−2, P <0.001 and x,y,z =
−13,7,−6, P <0.001), and vmPFC (x,y,z = 6,46,−6, P =0.001) tracked the
difference in reliability between experts (Δ) at the decision time (all Ps
are FWE cluster corrected, initial cluster forming threshold of
p < 0.001, Fig. 4c and Supplementary Table 2), and this cannot be
explainedby theprevious outcomealone orCooperativity signatureof
AA. Bilateral dorsal striatum (DS; x,y,z = 17,6,−12, P < 0.001 and
−14,3,−11, P <0.001), bilateral orbitofrontal cortex (OFC; x,y,z =
44,36,−14, P =0.003 and −44 52 8, P < 0.001), posterior cingulate
cortex (PCC; x,y,z = 2,−35,38, P =0.010), and bilateral angular gyrus
(x,y,z = 45,−30,47, P <0.001 and −54,−62,39. P = 0.005) encoded the
reward prediction error at the outcome time (all Ps are FWE cluster
corrected, initial cluster forming threshold of p < 0.001, Fig. 5a and
Supplementary Table 3).

To identify the brain areas encoding the reward prediction error
more robustly when the competitive expert was deemedmore reliable
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trials estimated to be either competitive or cooperative. Right: specific brain
regions correlating with PE when trials were classified as competitive as compared
to cooperative: dlPFC (x,y,z = 30,9,42), IPS (x,y,z = 42,−47,42) and rTPJ (x,y,z =
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the data.
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than the cooperative one, we tested another GLM (GLM2). Trial onsets
were separated according to whether the value of the signed reliability
differenceΔwaspositive or negative. If this valuewas positive, the trial
was classified as cooperative, and competitive otherwise. The com-
puted decision value for staying on the same target was used as a
parametric regressor at the time of choice and the reward prediction
error computed by the Mixed-intentions influence model was used as
parametric regressor at the time of outcome. We found that the right
dlPFC (x,y,z = 35,11,36, P =0.003), the IPS region (x,y,z = 50, −50, 32,
P =0.001) and the right temporoparietal junction (rTPJ; x,y,z =
51,−50,33, P =0.001 FWE cluster corrected) more stongly encoded
reward prediction error in trials classified as competitive versus
cooperative (p <0.05, FWE, Fig. 5b, c and Supplementary Table 4). This
effect could not be explained by smaller variance in the PE regressor in
trials classified as competitive trials compared to those classified as
cooperative, since we observed no difference in regressor variance on
these two types of trials (p =0.57, Levene’s test). No areas showed
stronger PE signalsduring the trials classified as cooperative compared
to competitive. It should be noted that this differential PE coding
reflects the classification of the current trial as cooperative vs. com-
petitive (fMRI results, Fig. 5b). In contrast, the behavioral results in
Fig. 3c show that the effect of rPE on behavior depends on how the
next trial might be classified.

Connectivity analysis
Finally, we performed a generalized psycho-physiological interaction
(gPPI) seed-to-voxel connectivity analysis to understand the interac-
tions between brain regions tracking the arbitration process (i.e. Δ:
reliability difference) for the cooperative and competitive experts and
those regionsmore engagedwith the PEwhen the controller attributes

competitive rather than cooperative intentions to the AA (see Meth-
ods). We used the ventral striatum and vmPFC, which encoded the
controller, as a combined ROI, as the seed regions (ROI extracted from
theGLM1 striatal and vmPFCactivity) for trials classified as competitive
compared to those classified as cooperative (i.e. trials for Δ <0 or
Δ >0) at the decision time. We found stronger effective connectivity
between regions encoding the difference in reliability and the right
dlPFC (x,y,z = 38,34,34), the left IPS region (x,y,z = −48;−44;58) and the
left TPJ (x,y,z = −42,−40,50, p < 0.05 FWE; Fig. 6 and Supplementary
Table 5) at the decision time for trials classified as competitive com-
pared to those classified as cooperative. This result indicates that the
dlPFC, IPS and left TPJ receive an input signal at the time of choice
according to the difference in reliability with respect to the anticipated
competitive versus cooperative intention of others. This brain network
largely overlaps with the brain network differentiating PE encoding
between trials classified as competitive versus cooperative at the
outcome (Fig. 5b). This difference in connectivity could not be due to a
general higher coupling during classified competitive trials compared
to classified cooperative trials. Indeed, we tested for a difference in
global efficiency between classified competitive and classified coop-
erative trials using graph theory and found no differences between the
two modes of interaction (Global efficiency: T(26) = 0.75; puncorrected =
0.46). Moreover, we also tested for differences between modes of
interaction (competitive and cooperative) in local efficiency, and
found that no node exhibited different local efficiency between trials
classified as competitive and those classified as cooperative.

Discussion
To make a strategic decision when facing an individual with unknown
and fluctuating intentions, it is necessary to make inferences as to
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brain regions (mPFC and ventral striatum) from the controller and regions
encoding more the prediction error in these classified trials. For the con-
nectivity analysis, the BOLD signal was extracted from seed regions (mPFC and
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cooperative and competitive intentions of others (in Blue). The psychophysiolo-
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34, p <0.05 FWE threshold at p <0.001) in trials classified as competitive as com-
pared to those classified as cooperative.
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whether we are in a competitive or cooperative situation. In the con-
text ofminimal information, for examplewhen only the past choices of
the other are available, but not their outcomes, such inferences are
muchmore difficult thanwhen the other’s intention is known (e.g., in a
competitive game)19. Here, we provide evidence that the brain
engages in dynamic tracking of another individual’s intentions,
despite having no explicit information regarding whether the situa-
tion is cooperative or competitive. We found that strategies of par-
ticipants were mostly affected by the outcomes of previous
interactions and by a “signature” of the other’s cooperativity, i.e., the
tendency of the other (here the Artificial Agent, AA) to stay on the
same target after the participant wins. Comparison between com-
putational models demonstrated that such behavior is best
explained by a model in which choice is driven by a controller that
tracks the reliability difference between cooperative and competitive
intentions. The fMRI results show that the neural computations of
this controller are implemented in the ventral striatum and the
vmPFC. Thus, both behavior and brain imaging results can be
accounted for by a model that includes a controller that allocates
weights according to different experts’ predictions. At the time of
outcome, a brain network, including the rostral anterior cingulate
cortex (rACC), ventral striatum and lateral OFC encoded prediction
error similarly in trials classified as competitive or cooperative.
However, prediction error signals in some brain areas depended on
the classification of the current trial as cooperative or competitive as
classified by the controller. That is, a distinct brain network, com-
posed of the bilateral dlPFC, bilateral IPS regions and the rTPJ was
more engaged for trials classified as competitive compared to those
classified as cooperative. This latter brain network reflects a differ-
ential use of the outcome of the social interaction as a function of
whether it is classified as competitive or cooperative (Fig. 2d).

Mentalizing processes are essential to correctly infer the strategy
of others. This is true in the Cooperative context, in which participants
performed above chance, reflecting their ability to effectively infer the
other’s (i.e., AA’s) behavior. In the Competitive context, participants
performed below the chance level, showing that the AA was able to
predict their behavior and exploit their previous choices/outcomes.
The Mixed-intentions Influence model was most consistent with the
data and generated behavior similar to that of the participants. Each
expert model is an expanded RL model, with a term accounting for
one’s previous choice influencing the choice of the other. Although
only the influence term differed between the competitive and coop-
erative models, the Mixed-intentions Influence model tracked inten-
tions based on this second-order mentalizing term by weighting the
contribution of cooperative and competitive experts. One key aspect
of this Mixed-intentions Influence model is that it captures higher
order structures (fluctuations between cooperation and competition)
during social interactions. In contrast, an important limitation of the
classical RL model is that it does not exploit higher-order structures
such as interdependencies between different stimuli, actions, and
subsequent rewards. Previous studies demonstrated that models
incorporating such structures can account for individual decision
making in different situations45–48. Here, we showed that the repre-
sentation of abstract states, such as whether the other is cooperating
or competing, can be extended to social decisions and underlies the
ability to build strategies. To confirm that the Mixed-intentions Influ-
encemodel accountedmore for neural activity in brain areas involved
in social interactions, we formally compared the brain regions cov-
arying more with the decision value for staying on the same target, as
computed by the winning model, compared to the decision value for
staying on the same target, computed by a simple RL model (Supple-
mentary Fig. 9b). One crucial difference between a simple RL model
and the Mixed-intentions Influence model is that in the former, only
the value of the chosen option is updated and the valuation of the
option that was not chosen does not change. In the latter, both the

values of the chosen and unchosenoptions are updated to incorporate
the knowledge that the current state has a given reliability to be
cooperative or competitive. The controller weights the valuation
produced according to the competitive or cooperative hypothesis
using a sigmoid function of the difference in reliability between the
two experts.

Activity in the ventral striatum and vmPFC increased as the pre-
diction of cooperation from the controller becamemore reliable than
the competitive prediction. These brain regions dynamically track the
difference in reliability between intentions classified as cooperative
and competitive in a situation when the nature of the social interac-
tions is unknown. Previous reports demonstrated a role of the ventral
striatum when making cooperative choices alone, in response to a
partner’s cooperative choice in an explicit cooperation task49 and also
in the attribution of intentions in a competitive context29. Our findings
show that strategic social behavior can be explained by a Controller
(i.e. mixture of experts) according to which cooperative/competitive
social behavior results from the interaction of multiple systems, each
proposing possible strategies for action25,27,28. The ventral striatumwas
involved in computing both the reliability difference between the
competitive and cooperative experts at the time of choice (Fig. 4c) and
the prediction error at the outcome (Fig. 5a). This ventral striatum
engagement could reflect that it anticipatesmore social victories at the
time of choice, when one is more likely to be in a cooperative rather
than a competitive context, and that it also encodes unexpected social
victories. These findings indicate that the reliability difference and the
PE signals are both used to adapt to fluctuating intentions of others
during different interactional contexts (Fig. 3a). This is consistent with
previous studies reporting that the ventral striatum is engaged with
mutual cooperation49 andwith the fact that this region is reliably active
in relation to others’ rewards and contains cells that link own rewards
to self or others’ actions50.

One strength of our computational approach was to assess and
compare a large variety of competing models, including Bayesian
Sequence learners, Reinforcement Learning, Heuristic models, recur-
sive learning model 1-TOM, influence models for only cooperative
strategies or competitive strategies and a mixture of experts either
using influence models (Mixed-intentions influence model) or using
1-ToM (1-ToM mixed intentions). Many have never previously been
directly tested against each other. Other models (active inference,
fictitious learning and Hierarchical Gaussian Filter) were also tested
but did not pass themodel recovery analyses, and are only reported in
the Supp. Methods for completeness. Our results agree with studies
concluding that social learning may be driven by reinforcement pro-
cesses that include a mentalizing term3,6,8,29,51. We demonstrate that
when a task is not explicitly signaled as cooperative or competitive,
this evokes the arbitration between strategies determined by pre-
dictive reliability. Behavior is hence controlled by giving a higher
weight to the strategy with the most reliable prediction28. Note that in
our setting the only information that can be integrated by participants
is their own choices, rewards and the history of the choices made by
the other (i.e., AA). The structure of the task was not directly obser-
vable because the nature of the social interaction (i.e cooperative or
competitive) was never explicitly signaled to participants, and the
rewards of the other were not observed. The resulting complexity and
uncertainty might reduce the benefit of model-based strategies, as
suggested recently52,53, and might increase the use of simpler trial and
error learning. This contrasts with previous neuroimaging studies that
investigated learning of social interactions in either competitive or
cooperative situations alone (matching pennies or rock-paper-scissors
games against computerized opponents)24,54. Our findings alsobroadly
agree with a cognitive hierarchy of strategic learning mechanisms,
proposing that distinct levels of strategic thinking correspond to dif-
ferent levels of sophistication of learning mechanisms55. However, we
propose a more general model based on a mixture of influence
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learning experts that function in parallel and are then compared with
respect to their relative reliability.

Competitive social interactions often emerge in situations where
an agent’s outcome depends on the choices of others, which requires
the ability to infer the intentions of others6. In the context of ourmixed
intentions task, when participants make a choice driven by the com-
petitive expert, which ismore reliable than the cooperative expert, the
PE signal is more robustly encoded in the dlPFC and rTPJ/IPS. Thus,
priors on the context of interaction (competitive or cooperative)
during the decision time, modulate the way the reward prediction
error will be implemented at the time of outcome. Although this brain
network has previously been reported when inferring the intentions of
others8,38,56, the strength of our computational account of theory of
mind processes is to specify that this brain system computes a PE
differently for trials that the controller classifies as competitive versus
cooperative. This reflects a differentiation of PE signals in the imple-
mentation and use of the outcome of the social interaction, as a
functionof the classified interaction (Fig. 3c). Nevertheless, thisfinding
does not indicate that each expert is encoded in separate brain
regions. Indeed, computational signals (decision value and PE) from
the two experts engaged common brain regions (see results and
Supplementary Fig. 8). The fact that we did not observe that each
expert is encoded in separate brain regionsmay be seen as a limitation,
since the behavioral model assumes two ‘experts’ learning in parallel.
However, the algorithmic and the brain system levels have to be
distinguished57. Separate expert systems can be observed at the
behavioral and computational levels for cooperation and competition,
but it does not necessarily follow that separate brain systems must be
assumed for these experts. Indeed, the two experts, each using dif-
ferent priors, implement the same cognitive process (i.e., influence
learning). This is a different situation than previous mixture of models
theories which weigh experts implementing different cognitive
processes28. This is a key conceptual distinction which extends the
mixture of models to a more general view in which the experts are
differentiated not by their cognitive processes but by their priors.

It should be noted that PE was not more volatile in trials when the
competitive expertwasmore reliable than the cooperative expert. This
rules out the possibility that the observed difference in PE encoding
reflects higher PE volatility in competitive contexts. When comparing
intentions classified as cooperative compared to competitive, partici-
pants tended to bemore predictable, staying more on the same target
after experiencing an unexpected social defeat (i.e., after higher
negative PE) (Fig. 3c). This behavior likely reflects a signal sent to the
other to indicate one’s willingness to stay on the same target, despite
bearing the potential cost of staying on this target6,8,58. This is a key
feature of successful coordination44 in which agents who want to
trigger reciprocity49 are willing to incur a cost to promote cooperation
from the other.

Finally, we found higher effective connectivity between seed
regions encoding the reliability difference of the controller (vmPFC
and striatum) and brain regionsmore engaged in PE for trials classified
as competitive versus cooperative (dlPFC, TPJ) (Fig. 6). This indicates
that brain regions engaged in the input of the arbitration process at the
time of choice are more strongly coupled (respectively decoupled)
with brain regions encoding PE for intentions classified as competitive
(respectively for intentions classified as cooperative). This reflects a
differential use of the outcomeof the social interaction as a function of
whether it is classified as competitive or cooperative. Thus, according
to the intention attributed by the controller to the other, PE signals
differed and the strength of effective coupling increased between
regions encoding the reliability difference of the controller and the
dlPFC-TPJ network. When one expert is more reliable than the other,
the Mixed-intentions Influencemodel predicts that the PE is driven by
the valuation of the more reliable expert. Since the only difference
between experts is the sign of the second-order mentalizing term, this

suggests that the dlPFC-TPJ network at the outcome is more engaged
when there is a need to mentalize intentions of other agents with
opposing goals (i.e., intentions classified as competitive). Moreover,
engagement of the dlPFC-TPJ network increases the probability of
switching following a trial classified as competitive by the controller,
allowing behavioral adaptation by virtue of the reliability difference
signal.

In conclusion, our work provides evidence that the mixture of
expertsmodel explains behavior in socially volatile situations differing
only by the reward function of other agents. These two experts only
differ by their priors on how their reward function takes into account
another agent’s reward (i.e., the second order mentalizing term), and
were sufficient to discriminate the others’ intentions. These findings
provide a mechanistic framework explaining the neurocomputations
underlying learning in strategic social interactions. We extend to the-
ory of mind processes (i.e., inferring cooperative vs competitive
intentions and adapting to changes between these modes of interac-
tion) a computational account similar to mixture of experts proposed
to arbitrate between strategies in other domains, such as exploitation
vs exploration59,60, “model-based” vs “model-free” systems25,27,52 and
learning by imitation vs emulation28. Finally, our Mixed-intentions
Influence model may be useful in the fields of computational devel-
opmental psychology and computational neuropsychiatry to identify
how specific computational components of the theory of mind
develop in healthy children and are modified in neurological
disorders61.

Methods
Participants
This study was approved by the National Ethics Committee (CPP Est II:
18/592, ANSM: 2018-A01135-50), and all participants gave their
informed written consent. A total of 31 participants (aged 20–40,
M= 27, SD = 5.1–17 women) were recruited via a daily local newspaper
and the University of Lyon 1mailing list. All participants were screened
to exclude those with medical conditions including psychological or
physical illnesses or a history of head injury to prevent having con-
founding variables. Sex was determined based on self-reporting.
Information about gender has not been collected. Sex-based analyses
were not performed because the n is relatively low to compare
between men and women. No statistical method was used to pre-
determine the sample size. No data were excluded from the analyses.

Mixed intentions task
Participants performed a novel task comprising 163 trials in an MRI
scanner. They were led to believe that they were interacting with
another person via a computer interface, while in fact, they were
playing against an artificial agent (AA) managed by a computer pro-
gram. Such simulated social interactions allowed us to investigate the
dynamics and neural mechanisms arbitrating between multiple learn-
ing algorithms. Participants were faced with a screen containing four
cards, two face down (the other player’s cards) and two face up (their
own cards). Participants were informed that to win, they had to choose
a card of the same color as the one the other person was going to
choose. Experimenters were careful not to specify whether the other
was an adversary or a partner. Participants were told that they and the
other player had to make their choices in four seconds (Fig. 1a). If the
Artificial Agent (AA) played before the participant, one of the two face-
down cards was removed from the playing field. If the participant
chose first, only the selected card remained on the playing field. Then,
when both had chosen, the chosen cards were revealed and the par-
ticipant received a reward if the card colors matched, otherwise they
received nothing. Participantswere led to believe that their final payoff
would be increased by 10 c (euro) for each winning interaction. No
information about the other’s payoff was given to the participants,
they only knew that after an interaction, the other ‘participant’ would
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see the same screen but with their own outcome which could be dif-
ferent from the participant.

Importantly, unbeknownst to the participants, the artificial agent
alternated between Competitive and Cooperative trial blocks. During
this “mixed intentions” task, the AA’s strategy was determined by
alternating 13 trials of a matching pennies (MP) task (Competitive
blocks), and 10 trials of a coordination game (Cooperative blocks).
Importantly, if the regularity in the switches (every 10 or 13 trials)
between modes was detected, we would expect a learning effect over
time, reflecting higher success rate for late relative to early blocks,
both for the Cooperative blocks and for the Competitive blocks.
Logistic regression, however, indicated no statistically significant
effect of theblocks’ rankon the success rates in theCooperative blocks
(no significant rank effect, effect size on success rate = 0.14%,
p =0.637). Similarly, there was no significant learning effect over
blocks for the Competitive blocks (no rank effect, effect size on suc-
cess rate =0.06%,p =0.779). In addition, similar logistic regressions on
the probability to switch indicated no statistically significant change in
the switch strategy across Competitive blocks (size effect of Compe-
titive block rank: 0.004, p =0.095) or across Cooperative blocks (size
effect of Cooperative block rank: 0.001, p =0.765).

The artificial agent algorithm was designed to predict the color
that would be chosen by the participant on the basis of a probabilistic
analysis of the two previous choices and outcomes (see SI for the
algorithm). Here we defined a competitive choice, made by the AA, as
choosing the card of the color the participant was expected not to play
and a cooperative choice as choosing the card with the same color.
Thus, the artificial agent exploited the bias of the participants in a
stochastic way, i.e. the more predictable the participant was, the more
the algorithm made correct competitive or cooperative choices (see
SI). Participants were not informed of the switches between the two
blocks (Cooperative vs Competitive), however, their goalwas always to
choose the same color as that chosen by the other player (i.e. the AA).

The MP task is competitive, and the computer uses the record of
the participant’s choice and reward history to minimize the partici-
pant’s payoff. Therefore, in this case the participant’s optimal strategy
during the MP task is to choose the two targets randomly across trials.
During the coordination game, the AA tried to maximize the partici-
pant’s payoff and in this case the participants should try to choose one
of the two targets consistently so that the computer can choose the
same target as them. Since the participant is not informed of either the
goals of the AA or the switches between blocks, they must adjust their
strategy based on recent experience and infer cooperation/competi-
tion on the basis of their observations.

This task was designed to identify key components of the adap-
tation to the other’s intentions regarding whether others are coop-
erating or competing. We took advantage of the fact that an
individual’s estimates as to whether they are engaged in a cooperative
or competitive interaction can be assessed even when the individual is
interacting with a computer program rather than another person.
Transitions between the Competitive and Cooperative blocks were
unsignaled, therefore participants had to discover by trial and error
the most successful strategy over consecutive blocks. This alternation
between the two interaction modes functioned well because the par-
ticipant’s winning rate was significantly higher in Cooperative (mean
60% std 1%) than in Competitive (mean 44% std 1%) trials (two-tailed
Wilcoxon sign rank test p < 10-3 CI95 [0.10; 0.24]). Moreover, not only
the winning rate (which could be driven by the other’s change in
strategy) shows that the design functions well, but also the change in
switching strategies of participants. Indeed, the switching strategy of
participants depended upon the mode (Cooperative or Competitive)
of interaction on the previous trial (Mean difference =5.43%,
p =0.036), but participants also changed their switching strategy using
the Cooperativity signature of AA depending on the mode (Coopera-
tive or Competitive) of the Artificial agent of the previous trial (Mean

difference = 9.61%, p =0.0012, marginal effect of panel data logistic
regression clustered by participant of switch strategy on the mode of
interaction, the Cooperativity signature of AA and their interactions,
nomulticollinearity was found between the regressors in this analysis).
The cooperativity Signature of AAwas defined as the binomial variable
representing the interaction between the last action of the Artificial
Agent (AA) and the participant’s own previous outcome. That is, the
Cooperativity signature of AA was set to 1 if either the participant had
won on the previous trial and the AA stayed on the same target in the
next trial, or if the participant lost on the previous trial and the AA
switched to the other target in the next trial. Otherwise, the variable
was set to 0. Indeed, if the AA is a cooperative partner, both players
should choose to keep the same target after winning to be more
predictable.

Artificial agent
The AA calculated the probability p for the participant to select a
particular target colorbasedon the history of the twoprevious choices
and their outcomes. Then, this prediction was exploited in a prob-
abilistic fashion (see SI): in the Cooperative mode the AA chose the
color card it predicted with probability p, while in the Competitive
mode this color was chosen with probability 1-p.

Behavioral analysis
For the logistic regressions, we reported significantmarginal effectof a
given variable under the name “estimate” (for example:
Cooperativity signaturet�1 : estimate).

Logistic regression : ln
P

1� P

� �
=x0 +w1X 1 +w2X2 + . . . ð1Þ

Xi represents independent variable and wi represents the asso-
ciatedweight in the logistic regression. P represent the probability of a
given event. The marginal effect of the variable X 1 is defined as:

ŷ1 =mean logit�1 w1

� �� � ð2Þ

The mean is computed across all observed data. Thus, the mar-
ginal effect called “estimate” can easily be interpreted as the discreet
change of the dependent variable given a unitary change of an inde-
pendent variable.

For the linear regressions, reported “estimate” represents wi i.e.,
the regression coefficient. Indeed, in a linear regression, marginal
effect of a variable is equal to the estimated coefficient.

For both logistic and linear regression, we specified a data panel
on Stata (Version 14.1) to account for the repeated measures within
each participant’s game. We then used a random-effects model with
cluster–robust standard errors for panels nested within participants,
allowing for intra-participant correlation. The optimization method
was maximum likelihood estimation using Gauss–Hermite quadrature
to approximate the likelihood. For the coefficient estimation, we used
a robust estimator (sandwichmethod also called Eicker–Huber–White
standard errors) to be robust for heteroscedasticity.

We assessed the distribution’s normality and equality of variance
where applicable. If these assumptions weremet, we proceeded with a
parametric test; otherwise, we opted for the non-parametric version of
the test.

Models
To test for a dynamic tracking of implicit intention, we compared 11
models with 6 involving theory of mind (Inf, k-ToM) and the remaining
5 to control for other possible strategies. The influence models (Inf)
rely on Taylor expanded reinforcement learning6 to take into account
the influence of one’s own strategy on the strategy of the other. k-ToM
models also take into account the influence of one’s own strategy on
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the other but in a Bayesian fashion13,34. These twomodelswere adapted
in their cooperative and competitive versions. Moreover, we con-
structed an adaptation of these two models (Inf, k-ToM) in which an
arbitratorweights the cooperative and competitive versions according
to their reliability beforemaking thedecision. Finally, because k-ToM is
a recursivemodel (“I think that you think that…),we included k-ToMof
depth one and two for each version.

To control for strategies that did not include theory of mind we
added 5othermodels including twoBayesian inference types (HGF and
BSL). The Hierarchical Gaussian Filter (HGF)62,63 basically tracks the
external volatility of the artificial agent’s choices in a Bayesian hier-
archical way. The Bayesian Sequences Learner (BSL) strategy relies on
Bayesian inference given past sequences of choices. In a model free
analysis, we found that participants tended to use the past 2 choices to
make their next choice, so we used sequences of depths 2 and 3.
Finally, we added two non-Mentalizing non-Bayesian models, a rein-
forcement learning model (RL) and a model based on the heuristic
Win-Stay / Lose-Switch that we observed in the model free analysis.

Models were individually fit using Variational Based method with
the VBA toolbox. Every prior was set to their default values. With this
method we were able to find free parameters that minimized the free
energy of the model64.

TheBayesianmodel selection (BMS)wasperformedusing theVBA
toolbox (Variational Bayesian Analysis) in a random effect analysis
relying on the free energy as the lower bound of model evidence. We
use protected Exceedance Probability measurements (pEP)42 to select
the model which was used most frequently in our population.

fMRI data acquisition
MRI acquisitions were performed on a 3 Tesla scanner using EPI BOLD
sequences and T1 sequences at high resolution. Scans were performed
in a Siemens Magnetom Prisma scanner HealthCare at CERMEP Bron
(single-shot EPI, TR / TE = 1600/30, flip angle 75°, multiband acquisi-
tion (accelerator factor of 2), in an ascending interleaved manner with
slices interlaced 2.40mm thickness, FOV = 210mm. We also use the
iPAT mode with an accelerator factor of 2 and the GRAPPA method
reconstruction. The number of volumes acquired varied given the time
the participant took to make their decisions. The first acquisition was
made after stabilization of the signal (3 TR). Whole-brain high-resolu-
tion T1-weighted structural scans (0.8 ×0.8 ×0.8mm) were acquired
for each participant, co-registered with their mean EPI images and
averaged across participants to permit anatomical localization of
functional activations at the group level. Field map scans were
acquired to obtain magnetization values that were used to correct for
field inhomogeneity.

fMRI data analysis
Image analysis was performed using SPM12 (Wellcome Department of
Imaging Neuroscience, Institute of Neurology, London, UK, fil.ion.ucl.
ac.uk/spm/software/spm12/). Time-series images were registered in a
3D space to minimize any effect that could result from participant
head-motion. Once DICOMs were imported, functional scans were
realigned to the first volume, corrected for slice timing and unwarped
to correct for geometric distortions. Inhomogeneous distortions-
related correction maps were created using the phase of non-EPI gra-
dient echo images measured at two echo times (5.20ms for the first
echo and 7.66ms for the second). Finally, in order to perform group
and individual comparisons, they were co-registered with structural
maps and spatially normalized into the standard Montreal Neurologi-
cal Institute (MNI) atlas space using the DARTEL method. Then we ran
ARTrepair to deweight scans that could includemovement artefacts65.

We ran general linear models (GLMs) analyses to identify which
brain regions encoded: (a) one’s belief that one is interacting in a
cooperative or in a competitive situation (Δ); (b) the rewardprediction

error (PE) after interactions classified as cooperative or competitive;
(c) the PE difference between the trials classified as cooperative vs
competitive. In every GLM, an event was defined as a stick function.
The participant’s button press and the AA’s selection of target were
defined as onset of no interest in all GLMs. For all GLMs, missing trials
were modeled with four events (cue, participant’s button press, AA’s
choice and outcome) as separate onsets without additional parametric
regressors. Head movement parameters were added as parametric
regressors of no interest to account for motion-related noise. Because
the behavioral analysis showed that the bias towards competitive
interaction affects the strategy of participants, we added the compe-
titive bias (δ) as a covariate at the second level analysis in all GLMs.

Specifically, in GLM1, there were 4 onsets, including the time of
the cue presentation (cards on screen), participant’s button press,
AA’s choice and the feedback time. Parametric regressors were the
difference in reliability Δ, the Cooperativity signature of AA(t-1), the
previous winning interaction (t-1) (i.e. the boolean outcome of
the previous interaction, 1 if it was a win, 0 if it was a loss) and the
participant switch(t-1) at the time of the cue onset. At the outcome
phase, parametric regressors were the reward prediction error (PE) as
well asΔ to control for the effect of the believed intention of the other
on the PE brain encoding.

In a secondGLM (GLM2),we separated trials given the sign ofΔ - δ
(positive or negative) to identify brain regions specifically engaged in
cooperative or competitive mental states (δ is a free parameter cap-
turing the participant’s bias toward competitive intent).Δ refers to the
difference in reliability of cooperative and competitive prediction and
δ is the competitive bias. For this GLM, there were 6 onsets, including
the cue for trials classified by the winning Mixed-intentions influence
model as cooperative or competitive, participant’s button press, AA’s
choice and the feedback time for trials classified by the Mixed-
intentions influence model as cooperative or competitive. Trials were
classified by the Mixed-intentions influence model as either coopera-
tive or competitive and parametric modulators were: the difference in
reliabilityΔ and the decision value for staying on the same target at the
time of the cue and the PE and Δ at the time of feedback. Three par-
ticipants who always attributed the same intention to the AA were not
included in GLM2. Themean number of trials classified as competitive
byparticipantswas81.4 ( ± 3:75 SE). This represents approximately half
of the trials (total number of trials = 163).

To test the additional hypothesis that brain activation observed
for belief in other’s intentions (Fig. 4c) is also present in Competitive vs
Cooperative blocks, we conducted two more GLMs. One of them,
GLM3, is similar to GLM2, i.e., we separated trials into two categories
(in Cooperative or Competitive), but the distinction was made using
the real mode of the AA rather than the classification made by the
controller. Other onsets and parametric regressors were left unchan-
ged. Another GLM was applied to check that the results observed in
GLM2 were not simply due to the effect of volatility of the rewarded
target. This GLM (GLM4) is similar to GLM2, i.e., trials were classified
according to the sign of Δ - δ. The only difference was that we added
the actual probability that the AA would choose the same target as the
previous trial as a parametric regressor at both the time of the cue and
at the outcome. For each GLM, we turned off the serial orthogonali-
zation function of regressors to allow them to compete for the
variance.

We computed one paired t-tests with contrasts for main effect of
Δ in GLM1 and effect of PE at the outcome time. Thenwe computed the
contrast between competitive and cooperative PE regressors in GLM2,
GLM3 and GLM4. Finally, we computed a paired t-test between this
contrast, derived from GLM2 and GLM3, to formally test whether
activation coming from the difference between classified trials was
significantly higher than those coming from the difference between
the actual modes of interaction as determined by the trial block.
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Reported brain areas showa significant activity at the threshold of
p <0.05, whole brain family-wise error (FWE), corrected for multiple
comparisons at the cluster level (threshold at P < 0.001 uncorrected).

Psychophysiological interaction (PPI) analysis
Wedefined the attribution of cooperative or competitive intentions by
the winningmodel at the time of decision-making as the psychological
factor. Thus, we were able to investigate the difference in effective
connectivity when deciding cooperative or competitive intent. For this
PPI analysis, we focused on decision time and effective connectivity
between regions encoding the others’ intentions and all other voxels.
Thus, for the physiological factor, we took the BOLD signal of the
combined striatal and vmPFC regions elicited in GLM1 as encoding the
intention of others. Otherwise, we used the same regressor parameters
and onsets as GLM2.

Reported brain areas showa significant activity at the threshold of
p <0.05, whole brain family-wise error (FWE) corrected for multiple
comparisons at the cluster level (threshold at P < 0.001 uncorrected).

To test the hypothesis of a difference in either global or local
efficiency between the two classified modes of interaction (competi-
tive or cooperative), we used the conn toolbox. We included in the
analyses a network with all ROIs of the conn toolbox. We then selected
the 15%most connected nodes (i.e., adjacencymatrix threshold at cost
=0.15). This thresholdwas selected to enable the connectivity graph to
be as close as possible to a “small world”when referring to both global
and local efficiencies.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All display items in themainmanuscript and supplementary information
can be reproduced using the data available at the links below: DOI for
github with data and scripts : https://doi.org/10.5281/zenodo.10299140,
https://zenodo.org/records/10299140. This repository includes the
behavioral data, as well as generated data, the parameters and onsets
used to build the first level fMRI GLM, and all the scripts used for mod-
eling and analysis. The pre-processed fMRI data are available at: https://
neurovault.org/collections/EOCXPHRJ/. Anonymized raw fMRI data are
available upon request by contacting JC Dreher at: dreher@isc.cnrs.fr.

Code availability
Codes supporting the results are available at GitHub (https://github.
com/remiphilipp/Mixture_intention.git). It also includes the Zenodo
link: https://zenodo.org/records/10299140.

References
1. Carter, R. M. K., Bowling, D. L., Reeck, C. & Huettel, S. A. A distinct

role of the temporal-parietal junction in predicting socially guided
decisions. Science (80-.). 336, 109–111 (2012).

2. Bhatt, M. A., Lohrenz, T. & Camerer, C. F. & Montague, P. R. Neural
signatures of strategic types in a two-person bargaining game.
Proc. Natl. Acad. Sci. USA 107, 19720–19725 (2010).

3. Behrens, T. E., Hunt, L. T., Woolrich, M. W. & Rushworth, M. F.
Associative learning of social value. Nature 456, 245–249 (2008).

4. Diaconescu, A. O. et al. Hierarchical prediction errors in midbrain
and septum during social learning. Soc. Cogn. Affect. Neurosci. 12,
618–634 (2017).

5. Suzuki, S., Adachi, R., Dunne, S., Bossaerts, P. & O’Doherty, J. P.
Neural mechanisms underlying human consensus decision-
making. Neuron 86, 591–602 (2015).

6. Hampton, A. N., Bossaerts, P. & O’Doherty, J. P. Neural correlates of
mentalizing-related computations during strategic interactions in
humans. Proc. Natl. Acad. Sci. USA 105, 6741–6746 (2008).

7. Coricelli, G. & Nagel, R. Neural correlates of depth of strategic
reasoning in medial prefrontal cortex. Proc. Natl. Acad. Sci. USA
106, 9163–9168 (2009).

8. Hill, C. A. et al. A causal account of the brain network computations
underlying strategic social behavior. Nat. Neurosci. 20,
1142–1149 (2017).

9. Ogawa, A. & Kameda, T. Dissociable roles of left and right tem-
poroparietal junction in strategic competitive interaction. Soc.
Cogn. Affect. Neurosci. 14, 1037–1048 (2019).

10. Deutsch, M. A theory of competition and cooperation. Human
Relations 2, 129–152 (1949).

11. Deutsch, M. Cooperation and trust: some theoretical notes. in
Nebraska Symposium on Motivation, 1962. (ed. Jones, M. R.)
275–320 (Univer. Nebraska Press, 1962).

12. Thibaut, J. W. The Social Psychology of Groups. 1st edn (Routledge,
1959). https://doi.org/10.4324/9781315135007.

13. Devaine, M., Hollard, G. & Daunizeau, J. The social Bayesian brain:
does mentalizing make a difference when we learn? PLoS Comput.
Biol. 10, e1003992 (2014).

14. Camerer, C. F., Ho, T. H. & Chong, J. K. A cognitive hierarchymodel
of games. Q. J. Econ. 119, 861–898 (2004).

15. Mi,Q.,Wang,C.,Camerer,C. F. &Zhu, L. Readingbetween the lines:
listener’s vmPFC simulates speaker cooperative choices in com-
munication games. Sci. Adv. 7, eabe6276 (2021).

16. Suzuki, S., Niki, K., Fujisaki, S. & Akiyama, E. Neural basis of condi-
tional cooperation. Soc. Cogn. Affect. Neurosci. 6, 338–347 (2011).

17. Yoshida, W., Seymour, B., Friston, K. J. & Dolan, R. J. Neural
mechanisms of belief inference during cooperative games. J.
Neurosci. 30, 10744–10751 (2010).

18. Fareri, D. S. & Delgado, M. R. Differential reward responses during
competition against in- and out-of-network others. Soc. Cogn.
Affect. Neurosci. 9, 412–420 (2014).

19. Seo, H., Cai, X., Donahue, C. H. & Lee, D. Neural correlates of stra-
tegic reasoning during competitive games. Science (80-.). 346,
340–343 (2014).

20. Lee, D., Conroy, M. L., McGreevy, B. P. & Barraclough, D. J. Rein-
forcement learning and decision making in monkeys during a
competitive game. Cogn. Brain Res. 22, 45–58 (2004).

21. Lee, D., McGreevy, B. P. & Barraclough, D. J. Learning and decision
making inmonkeys during a rock-paper-scissors game.Cogn. Brain
Res. 25, 416–430 (2005).

22. Abe, H. & Lee, D. Distributed coding of actual and hypothetical
outcomes in the orbital and dorsolateral prefrontal cortex. Neuron
70, 731–741 (2011).

23. Barraclough, D. J., Conroy, M. L. & Lee, D. Prefrontal cortex and
decision making in a mixed-strategy game. Nat. Neurosci. 7,
404–410 (2004).

24. Vickery, T. J., Chun, M. M. & Lee, D. Ubiquity and specificity of
reinforcement signals throughout the human brain. Neuron 72,
166–177 (2011).

25. Lee, S. W., Tadayonnejad, R., Cockburn, J., Iigaya, K. & Charpentier,
C. J.Why and how the brainweights contributions fromamixture of
experts. Neurosci. Biobehav. Rev. 123, 14–23 (2021).

26. Dorfman, H. M. & Gershman, S. J. Controllability governs the bal-
ance between Pavlovian and instrumental action selection. Nat.
Commun. 10, 1–8 (2019).

27. Wan Lee, S., Shimojo, S. & O’Doherty, J. P. Neural computations
underlying arbitration between model-based and model-free
learning. Neuron 81, 687–699 (2014).

28. Charpentier, C. J., Iigaya, K. & O’Doherty, J. P. A neuro-computational
account of arbitration between choice imitation and goal emulation
duringhumanobservational learning.Neuron 106, 687–699.e7 (2020).

29. Zhu, L., Mathewson, K. E. & Hsu, M. Dissociable neural representa-
tions of reinforcement and belief prediction errors underlie strate-
gic learning. Proc. Natl Acad. Sci. USA 109, 1419–1424 (2012).

Article https://doi.org/10.1038/s41467-024-47491-2

Nature Communications |         (2024) 15:3189 13

https://doi.org/10.5281/zenodo.10299140
https://zenodo.org/records/10299140
https://neurovault.org/collections/EOCXPHRJ/
https://neurovault.org/collections/EOCXPHRJ/
https://github.com/remiphilipp/Mixture_intention.git
https://github.com/remiphilipp/Mixture_intention.git
https://zenodo.org/records/10299140
https://doi.org/10.4324/9781315135007


30. Lee, D. & Seo, H. Neural basis of strategic decision making. Trends
Neurosci 39, 40–48 (2016).

31. Seo, H. & Lee, D. Behavioral and neural changes after gains and
losses of conditioned reinforcers. J. Neurosci. 29,
3627–3641 (2009).

32. Schwieren, C. & Weichselbaumer, D. Does competition enhance
performance or cheating? A laboratory experiment. J. Econ. Psy-
chol. 31, 241–253 (2010).

33. Bartolo, R. & Averbeck, B. B. Prefrontal cortex predicts state
switches during reversal learning. Neuron 106,
1044–1054.e4 (2020).

34. Devaine, M., Hollard, G. & Daunizeau, J. Theory of mind: did evo-
lution fool us? PLoS ONE 9, e87619 (2014).

35. Khalvati, K. et al.Modeling otherminds: Bayesian inference explains
human choices in group decision-making. Sci. Adv. 5,
eaax8783 (2019).

36. Rao, R. P. N. Decision making under uncertainty: a neural model
based on partially observable Markov decision processes. Front.
Comput. Neurosci. 4, 1–18 (2010).

37. Khalvati, K., Kiani, R. & Rao, R. P. N. Bayesian inference with
incomplete knowledge explains perceptual confidence and its
deviations from accuracy. Nat. Commun. 12, 1–16 (2021).

38. Park, S. A., Sestito, M., Boorman, E. D. & Dreher, J. C. Neural com-
putations underlying strategic social decision-making in groups.
Nat. Commun. 10, 1–12 (2019).

39. Khalvati, K., Mirbagheri, S., Park, S. A., Dreher, J.-C. & Rao, R. P. N. A
Bayesian theory of conformity in collective decision making. Adv.
Neural Inf. Process. Syst. 32, 9699–9708 (2019).

40. Rusch, T. et al. A neuro-computational characterization of theory of
mind processes during cooperative interaction. Neuropsychologia.
146, 243–246 (2019).

41. Barnby, J. M., Dayan, P. & Bell, V. Formalising social representation
to explain psychiatric symptoms. Trends Cogn. Sci. 27,
317–332 (2023).

42. Rigoux, L., Stephan, K. E., Friston, K. J. & Daunizeau, J. Bayesian
model selection for group studies - Revisited. Neuroimage 84,
971–985 (2013).

43. Rigoux, L. et al. Bayesian Model Selection for group studies. Neu-
roimage 46, 1004–1017 (2009).

44. Glover, S. & Dixon, P. The role of predictability in cooperative and
competitive joint action. J. Exp. Psychol. Hum. Percept. Perform. 43,
644–650 (2017).

45. Hampton, A. N., Bossaerts, P. & O’Doherty, J. P. The role of the
ventromedial prefrontal cortex in abstract state-based inference
during decision making in humans. J. Neurosci. 26,
8360–8367 (2006).

46. Schuck, N.W., Cai, M. B., Wilson, R. C. &Niv, Y. Human orbitofrontal
cortex represents a cognitive map of state space. Neuron 91,
1402–1412 (2016).

47. Niv, Y. Learning task-state representations. Nat. Neurosci. 22,
1544–1553 (2019).

48. Baram, A. B., Muller, T. H., Nili, H., Garvert, M. M. & Behrens, T. E. J.
Entorhinal and ventromedial prefrontal cortices abstract and gen-
eralize the structure of reinforcement learning problems. Neuron
109, 713–723.e7 (2021).

49. Rilling, J. K.,Gutman,D.A., Zeh, T. R.&Pagnoni,G. ANeural Basis for
Social Cooperation. Neuron 35, 395–405 (2002).

50. Báez-Mendoza, R. & Schultz, W. The role of the striatum in social
behavior. Front. Neurosci. 7, 1–14 (2013).

51. Suzuki, S. et al. Learning to simulate others’ decisions. Neuron 74,
1125–1137 (2012).

52. Kim, D., Park, G. Y., O′Doherty, J. P. & Lee, S. W. Task complexity
interacts with state-space uncertainty in the arbitration between

model-based and model-free learning. Nat. Commun. 10,
5738 (2019).

53. Castro-Rodrigues, P. et al. Explicit knowledge of task structure is a
primary determinant of human model-based action. Nat. Hum.
Behav. 6, 1126–1141 (2022).

54. Vickery, T. J., Kleinman, M. R., Chun, M. M. & Lee, D. Opponent
identity influences value learning in simple games. J. Neurosci. 35,
11133–11143 (2015).

55. Griessinger, T. & Coricelli, G. The neuroeconomics of strategic
interaction. Curr. Opin. Behav. Sci. 3, 73–79 (2015).

56. Boorman, E. D., O’Doherty, J. P., Adolphs, R. & Rangel, A. The
behavioral and neural mechanisms underlying the tracking of
expertise. Neuron 80, 1558–1571 (2013).

57. Lockwood, P. L., Apps, M. A. J. & Chang, S. W. C. Is there a ‘Social’
brain? Implementations and algorithms. Trends Cogn. Sci. 24,
802–813 (2020).

58. Behrens, T. E. J., Hunt, L. T. &Rushworth,M. F. S. Thecomputationof
social behavior. Science (80-.). 324, 1160–1164 (2009).

59. Domenech, P., Rheims, S. & Koechlin, E. Neural mechanisms
resolving exploitation-exploration dilemmas in the medial pre-
frontal cortex. Science (80-.) 369, eabb0184 (2020).

60. Donoso, M., Collins, A. G. E. & Koechlin, E. Foundations of human
reasoning in the prefrontal cortex. Science (80-.). 344,
1481–1486 (2014).

61. Chung, Y. S., Barch, D. & Strube, M. A meta-analysis of mentalizing
impairments in adults with schizophrenia and autism spectrum
disorder. Schizophr. Bull. 40, 602–616 (2014).

62. Mathys, C., Daunizeau, J., Friston, K. J. & Stephan, K. E. A Bayesian
foundation for individual learning under uncertainty. Front. Hum.
Neurosci. 5, 1–20 (2011).

63. Mathys, C. D. et al. Uncertainty in perception and the Hierarchical
Gaussian Filter. Front. Hum. Neurosci. 8, 1–24 (2014).

64. Daunizeau, J., Adam, V. & Rigoux, L. VBA: a probabilistic treatment
of nonlinearmodels for neurobiological and behavioural data. PLoS
Comput. Biol. 10, e1003441 (2014).

65. Mazaika, P. K., Hoeft, F., Glover, G. H. & Reiss, A. L. Methods and
software for fMRI analysis of clinical subjects. Neuroimage 47,
S58 (2009).

Acknowledgements
This research has benefited from the financial support of IDEXLYON
from Université de Lyon (project INDEPTH) within the Programme
Investissements d’Avenir (ANR-16-IDEX-0005) and of the LABEX COR-
TEX (ANR-11-LABX-0042) of Université de Lyon, within the program
Investissements d’Avenir (ANR-11-IDEX-007) operated by the French
National Research Agency. This workwas also supported by grants from
the Agence Nationale pour la Recherche to JCD (ANR Nos. 16-NEUC-
0003-01 and ANR-21-CE37-0032), and by CRCNS NIMH grant no.
5R01MH112166-03, NSF grant no. EEC-1028725, and a Templeton World
Charity Foundation grant to RPNR. We thank the CERMEP Staff for help
during scanning and Pr Edmund Derrington for critically reading and
correcting English in the draft of the manuscript.

Author contributions
J-C.D., R.P., R.P.N.R and D.L. developed the general concept, experi-
ment, and models. R.P. programmed the task and ran the experiment
under the supervision of J.-C.D. R.P. and R.J. developed the models and
implemented the algorithms under the supervision of J.-C.D., and ana-
lyzed the data in collaborationwith J.-C.D. R.P., R.J. and J.-C.D. wrote the
manuscript in collaboration with K.K., D.L. and R.P.N.R.

Competing interests
The authors declare that they have no competing interests.

Article https://doi.org/10.1038/s41467-024-47491-2

Nature Communications |         (2024) 15:3189 14



Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-47491-2.

Correspondence and requests for materials should be addressed to
Jean-Claude Dreher.

Peer review information Nature Communications thanks Jan Gläscher,
and the other anonymous reviewers for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-47491-2

Nature Communications |         (2024) 15:3189 15

https://doi.org/10.1038/s41467-024-47491-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Neurocomputational mechanisms involved in adaptation to fluctuating intentions of�others
	Results
	Behavioral signature of tracking intentions
	Computational models tracking intentions of the other�agent
	Model-based fMRI analyses
	Connectivity analysis

	Discussion
	Methods
	Participants
	Mixed intentions�task
	Artificial�agent
	Behavioral analysis
	Models
	fMRI data acquisition
	fMRI data analysis
	Psychophysiological interaction (PPI) analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




