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3Paul Painlevé Laboratory, Department of Mathematics, University of Lille, Cité
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Abstract

This paper introduces a new kernel for pattern classification. The consolidation

kernel is designed to deal with a topological difficulty: a data set where some of the

clouds of points associated with the different categories are parted in multiple clusters,

possibly distant one from the other. It brings together such clusters. It is incorporated

in a multi-class support vector machine. A comparative experimental study highlights

its appealing properties.

1 Introduction

Over the last three decades, both the theory and the practice of pattern classification have

made rapid strides. Their joint progress is nicely illustrated by the solutions developed to

take into account basic features of the data distribution. For instance, efficient methods

are already available to deal with data endowed with a structure (Breiman, 2001), the

manifold hypothesis (Pope et al., 2021), or exploit isotropy (Tropp, 2015).

In that context, kernel machines (Schölkopf and Smola, 2002; Hofmann et al., 2008)

appear as models of choice. They benefit from the extensions that have made them

capable of computing directly polytomies, i.e., performing pattern classification with a

finite set of categories. An example is provided by the regularized kernel discriminant

analysis (RKDA) (Ye et al., 2008). However, the most popular family of multi-class kernel

machines is the one of multi-class support vector machines (M-SVMs) (see Guermeur,

2012; Doğan et al., 2016, for a survey). Those machines can be adapted to the specificities

of the data through the choice of the kernel. This article introduces a new kernel designed

to deal with situations where the description space X is included in the Euclidean space

Rp and disconnected part of it, possibly distant, contain points with the same label. The

consolidation kernel could be used as a kind of translation invariant kernel which at the

same time does not allow the translation to make closer points of different categories.

This behaviour is obtained by inferring information on the structure of the data (class

conditional distributions) through clusterings performed category by category on a set of

labelled points.

The rest of the paper is organized as follows. In the next section, we review existing

works dealing with transformation invariant kernels. Section 3 introduces our new kernel.

Its evaluation in the framework of a comparative study is the subject of Section 4. At last,

we draw conclusions in Section 5.
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2 State of the Art on the Transformation Invariant Kernels

Kernels have been designed for a variety of data: graphs (Kondor and Lafferty, 2002;

Gärtner et al., 2003; Smola and Kondor, 2003), strings (Lodhi et al., 2002; Joachims, 1998;

Salton et al., 1975) and of course images (Decoste and Schölkopf, 2002). For a good review,

we can refer to (Schölkopf and Smola, 2002). When it comes to transformation invariance,

the simplest idea is based on the generation of virtual examples (Poggio and Vetter, 1992;

Niyogi et al., 1998). In this approach, new examples are created using the transformation

of interest (translation or rotation for example) to enlarge the training set. A variant

of it, which applies to the computation of dichotomies only, is the virtual support vector

method (Schölkopf et al., 1996). There, the virtual examples are only generated from the

support vectors (that utterly define the boundaries between the categories). The drawback

is the enlarged memory and time complexities due to additionnal points. Very close

kernels formalizing the idea of virtual support vectors are the jittering kernels (Decoste

and Schölkopf, 2002; Schölkopf and Smola, 2002), where the transformation invariance

is in the kernel itself. For instance, κ∗ (x,x′) may be computed from a kernel κ using

T ∗ = argminT∈T {κ (x,x) + κ (Tx′, Tx′)− 2κ (x, Tx′)}, where T is a transformation group

and κ∗ (x,x′) is equal to κ (x, T ∗x′). Simard et al. (1998) introduced the tangent distance

to incorporate a priori knowledge, including transformation invariances, into the distance

measure. This distance was then incorporated in kernels by Haasdonk and Keysers (2002).

All these kernels can be generalized by computing an average kernel over any group of

transformations. This gives rise to the Haar-integration kernel (Schulz-Mirbach, 1994;

Haasdonk et al., 2005) defined for a standard kernel κ0 and a transformation group T ,

which contains the admissible transformations (see Schulz-Mirbach, 1994, for the formal

definition). The idea is to compute the average of the kernel output κ0 (Tx, T ′x′) over

all pairwise combinations of the transformed examples (Tx, T ′x′), ∀ (T, T ′) ∈ T 2. The

Haar-integration kernel κ of κ0 with respect to T is thus

κ
(
x,x′

)
=

∫
T 2

κ0
(
Tx, T ′x′

)
dTdT ′,

under the condition of existence of the integral.

These kernels have sound foundations but lack flexibility for cases where there are no

straightforward transformations to exploit. Besides, they do not depend on the nature of

the task (supervised learning in our case). In the following section, we introduce a similar

kernel, more flexible in that it depends on the learning task and captures explicitly the

properties of translation invariance exhibited by the different categories.
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Figure 1: Graph of function hdi .

3 Consolidation Kernel

The present work is inspired by our practice of (supervised) classification: the set of point

associated with a category can be separated into several clusters for many complex reasons.

The idea is here to design a kernel bringing together these clusters while keeping away

clusters from different categories. It is implemented in the following way. Let Y denote

the set of categories and let sm = {(xi, yi) : 1 6 i 6 m} ⊂ X × Y be a set of labelled

points. First, the subsets of sm associated with the different categories are fragmented

into a number of relevant clusters (by means of a clustering method). Second, a set of

directions {ci,2 − ci,1 : i ∈ J1;MK} is obtained by application of two rules:

1. ci,1 and ci,2 are prototypes of clusters associated with the same category;

2. the vector ci,2−ci,1 does not connect two clusters associated with different categories.

Along each direction ci,2 − ci,1, we want the kernel value to oscillate somehow according

to the periodic function hdi with di = ‖ci,2 − ci,1‖2 defined on R as follows:

∀k ∈ Z, ∀t ∈ [0, di) , hdi (kdi + t) =
4

d2i
t2 − 4

di
t+ 1,

and depicted in Figure 1.

This function could be replaced by any similar di-periodic function with maximal value

at 0, decreasing on [0, di/2] and increasing on [di/2, di]. The purpose of this behaviour

is to take into account the lengths of the admissible translations. With functions hdi at

hand, the consolidation kernel can be defined in the following way.

Definition 1. Let sm be a set of labelled examples and {ci,2 − ci,1 : i ∈ J1;MK} the cor-

responding set of directions produced by the clustering method. The consolidation kernel
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κ, parameterized by λ ∈ (0, 1), σ = (σi)06i6M ∈
(
R∗+
)M+1

and τ = (τi)16i6M ∈ RM+ , is

defined for every (x,x′) ∈ X 2 by:

κ
(
x,x′

)
= (1− λ) exp

{
−1

2

‖x− x′‖22
σ20

}
+ λ

M∑
i=1

τihdi
(〈
µi,x− x′

〉
2

)
exp

{
−1

2

‖x− x′‖22
σ2i

}

where (µi)16i6M =
(

1
di

(ci,2 − ci,1)
)
16i6M

.

The general idea of this definition, in line with those of the state-of-the-art transfor-

mation invariant kernels, is that when computing the similarity between two points, not

only should their distance be taken into account, but also other terms characterizing the

data regularities. To prove that κ is a valid kernel, it suffices to replace the functions hdi

with their Fourier expansions, giving for every (x,x′) ∈ X 2:

κ
(
x,x′

)
= (1− λ) exp

{
−1

2

‖x− x′‖22
σ20

}
+ λ

M∑
i=1

τi

∞∑
j=0

aj cos
(
2jπ
〈
µi,x− x′

〉
2

)
exp

{
−1

2

‖x− x′‖22
σ2i

}

= (1− λ) exp

{
−1

2

‖x− x′‖22
σ20

}
+ λ

∞∑
j=0

M∑
i=1

τiaj cos
(
2jπ
〈
µi,x− x′

〉
2

)
exp

{
−1

2

‖x− x′‖22
σ2i

}
,

where a0 = 1
3 and (aj)16j6∞ =

(
4

j2π2

)
16j6∞

. This alternative expression of the function

makes simpler the comparison with the well-known spectral mixture (SM) kernel (Wilson

and Adams, 2013) given by:

∀
(
x,x′

)
∈ X 2, κSM

(
x,x′

)
=

Q∑
q=1

aq
|Σq|1/2

(2π)p/2
cos
(

2π
〈
µq,x− x′

〉
2

)
exp

{
−1

2

∥∥∥Σ1/2
q

(
x− x′

)∥∥∥2
2

}
,

where the parameters θ =
{
aq,Σq,µq

}
are mixture weights, bandwidths and frequencies.

The kernel κ appears as the convex combination of a Gaussian kernel and an infinite

weighted sum of SM kernels. Since all the weights are positive, then according to Propo-

sition 13.1 in Schölkopf and Smola (2002), κ is also a kernel. The SM kernel can discover

quasi-periodic stationary structures. Our kernel is an extension of the Gaussian kernel

that focuses on one kind of structure: translation invariance.

Next proposition illustrates the effect of the additional terms by showing that we can

get κ (x′′,x) > κ (x′′,x′) even though ‖x′′ − x‖2 > ‖x′′ − x′‖2.

Proposition 2 (Property of kernel κ). Suppose that κ is parameterized as follows. There

exists σ ∈ R∗+ such that σ = σ1M+1 and τ = 1
M 1M . Let x, x′ and x′′ be three points in

X such that for every i in J1;MK, 〈µi,x′′ − x〉2 ∈ diZ and 〈µi,x′′ − x′〉2 ∈
di
2 +diZ. Then

‖x′′ − x′‖22 ∈
(

max
{

0, ‖x′′ − x‖22 + 2σ2 ln (1− λ)
}
, ‖x′′ − x‖22

)
implies that κ (x′′,x) >

κ (x′′,x′) although ‖x′′ − x‖2 > ‖x′′ − x′‖2.
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Proof.

κ
(
x′′,x

)
− κ

(
x′′,x′

)
= exp

{
−1

2

‖x′′ − x‖22
σ2

}
− (1− λ) exp

{
−1

2

‖x′′ − x′‖22
σ2

}
> 0.

Obviously, the conclusion of Proposition 2 can be achieved under other (weaker) con-

ditions. Those selected only exhibit the advantage of being simple and easy to verify. An

illustration is provided by the chessboard problem studied in the following section.

4 Experiments

The new kernel is assessed in the framework of a comparative study, where the reference is

provided by the Gaussian kernel. Both kernels are incorporated in an M-SVM: the one of

Weston and Watkins (1998), hereafter referred to as the WW-M-SVM. Our implementation

of this machine can be found at the following address: https://members.loria.fr/

YGuermeur/WW-M-SVM.tar.

4.1 Experimental Setup

In all the experiments below, the clustering method implemented to derive the directions µ

used by the consolidation kernel is theK-means algorithm. Only the valueK of the number

of clusters changes. Furthermore, model selection is minimal, so as to ease reproducibility.

It is limited to the soft margin parameter C of the machine and the bandwidths of the

radial basis functions (RBFs). The weights τ only take one value, 1
M , and the coefficient

λ of the convex combination is fixed to 0.1.

4.2 Standard Benchmark Data Sets

This experiment aims at comparing the selected combinations of machine and kernel with

the state of the art. It is directly inspired by the one performed by Doğan et al. (2016)

to compare nine M-SVMs equipped with a Gaussian kernel. Here, the nine M-SVMs are

replaced with three machines. These machines are the WW-M-SVM equipped with the

Gaussian kernel and the consolidation kernel, hereafter referred to as our machines, and

the model identified as best (over the nine) by Doğan and his co-authors: a simplified im-

plementation of the WW-M-SVM whose decision boundaries are linear (instead of affine),

in the reproducing kernel Hilbert space (RKHS) spanned by the kernel. Over the twelve
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data sets from the UCI machine learning repository (Blake et al., 1998) initially used, only

ten are kept: those without missing data. Their description is provided in Table 1. The

experimental setup is also a five-fold cross validation, with the training set being split so

as to produce a validation set for model selection. For each data set, the M + 1 RBFs of

the consolidation kernel share one single value for their bandwidth. At last, the parameter

K of the clustering method is set equal to 5.

Data set #Examples #Attributes #Classes

Abalone 4177 8 3

Car Evaluation 1728 6 4

Glass Identification 214 9 6

Iris 150 4 3

Opt. Rec. of Handwritten Digits 5620 64 10

Page Blocks 5473 10 5

Landsat Satellite 6435 36 6

Image Segmentation 2310 19 7

Red Wine 1599 11 7

White Wine 4898 11 7

Table 1: UCI data sets used in the experiments.

The results obtained for the three machines are given in Table 2. Here, literature

designates the simplified variant of the WW-M-SVM used by Doğan et al. (2016). Its

test performances are those provided by the authors (using their own model selection

procedure). The last column provides the values of the hyperparameters used for the

machine equipped with the consolidation kernel.

It is easy to observe that the true WW-M-SVM outperforms the simplified variant (in

fact all the nine machines used in Doğan et al. (2016)), on at least two data sets: Abalone

and White Wine. On the contrary, for this M-SVM, the choice of the kernel makes little

difference. The aim of the experiments of the next section is to assess this difference when

the problem is known to be favourable to the new kernel.

4.3 Synthetic Data Sets

The first problem is a chessboard problem. This dichotomy computation consists in as-

signing to the points of a chessboard the color of the square to which they belong. For

such a problem, both the clusters and the translation invariances are obvious. We took
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Data set Literature Gaussian kernel Kernel κ C; 2σ2

Abalone 27.51 56.28 56.16 1.0; 0.6 · p

Car Evaluation 98.62 98.84 98.84 1.0; 0.4 · p

Glass Identification 68.78 68.40 68.36 0.5; 0.3 · p

Iris 96.35 96.00 96.00 1.0; 0.4 · p

Opt. Rec. of Handwritten Digits 98.77 98.72 98.72 1.0; 0.6 · p

Page blocks 96.83 96.47 96.47 1.0; 0.4 · p

Landsat Satellite 92.19 92.35 92.45 1.0; 0.08 · p

Image Segmentation 96.39 96.23 96.23 1.0; 0.08 · p

Red Wine 63.87 64.23 64.67 1.0; 0.4 · p

White Wine 64.86 66.42 66.62 0.8; 0.08 · p

Table 2: Respective performances of the three classifiers.

benefit of that to parametrize the kernel in an optimized way. We consider two variants,

both involving a 6 × 6 board, but differing in the nature of the training set. In the first

case, this set is sampled in the four squares at the bottom left corner of the board. In the

second case, the sampling involves fourteen squares randomly chosen among the thirty-six

ones. In both cases, each square possesses a 10× 10 grid of 100 points. The values of the

parameters are set as follows: the directions of translation correspond to the two main

diagonals and (C, σ20, σ
2
1, σ

2
2) = (1, 5, 250, 250). The two last bandwidths must be large

enough to take into account a long-range dependence.

The classifications obtained are depicted in the last two panels of Figures 2 and 3.

The superiority of the consolidation kernel over the Gaussian kernel is obvious as it is

closer to reproduce the complete 6 × 6 chessboard. Interestingly, using the consolidation

kernel, the results are better when having only 4 squares to learn from compared to 14

(the generalization performances are 78.44% and 67.83% respectively). This is surprising

but explainable as in the latter case, the periodic terms compete with the vanilla Gaussian

term. This is particularly noticeable for points belonging to [30, 50]× [30, 50] where in the

training set only one category is represented making it hard to assign points to the other

category.

The second synthetic problem is the Madelon one, from the NIPS 2003 feature selection

challenge (Guyon, 2003). This is another two-category classification problem whose basic

structure is described as follows. The data points are grouped in 32 clusters placed on the

7



(a) Four-square training set (b) Gaussian kernel (c) Consolidation kernel

Figure 2: Classifications with the Gaussian and the consolidation kernel for a four-square

training set.

(a) Fourteen-square training set (b) Gaussian kernel (c) Consolidation kernel

Figure 3: Classifications with the Gaussian and the consolidation kernel for a fourteen-

square training set.

vertices of a five dimensional hypercube and randomly labelled +1 or -1. Once more, the

data used are those available on the UCI repository website1 and the number of clusters of

the K-means algorithm is set equal to 5 (although 16 could have been more appropriate).

A five-fold cross validation is performed on the union of the training and validation sets

provided, corresponding to 2600 examples. For both kernels, model selection produces the

same values for the two hyperparameters: C = 1.0 and 2σ2 = 8.0 · p. The recognition rate

obtained with the consolidation kernel is 67.85%, versus 58.00% with the Gaussian kernel.

According to the two-sample proportion test, the superiority of the consolidation kernel

over the Gaussian kernel is statistically significant with confidence exceeding 0.95.

5 Conclusion

A new kernel has been introduced, which is designed to fit data sets where the clouds of

points associated with the different categories exhibit the following behaviour. They are

1https://archive.ics.uci.edu/dataset/171/madelon
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structured in clusters, possibly distant from each other and separated by clusters of other

categories. The consolidation kernel can be seen as a convex combination of a Gaussian

kernel and an infinite weighted sum of spectral mixture kernels. The main originality rests

in the estimation of the parameters of the SM kernels, which is dedicated to the task of

interest. It is non parametric, and based on a clustering of the clouds of points associated

with the different categories. Experimental results show a performance indistinguishable

from that of the Gaussian kernel on standard benchmarks which are not known to exhibit

the behaviour considered. On the contrary, the gain in significant on famous artificial

problems exhibiting this behaviour.

Our ongoing research deals with the empirical inference of the values of the hyperpa-

rameters K (clustering), λ, σ and τ . The final goal is to obtain an M-SVM capable of

highlighting unknown structures in real-world data sets.
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