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Abstract
We present a hybrid similarity kernel that exemplifies the integration of short-
and long-range descriptors via the use of an average kernel approach. This
technique allows for a direct measure of the similarity between amorphous con-
figurations, and when combined with an active learning (AL) spectral clustering
approach, it leads to a classification of the amorphous configurations into uncor-
related clusters. Subsequently, a minimum size database is built by considering a
small fraction of configurations belonging to each cluster and amachine learning
interatomic potential (MLIP), within the Gaussian approximation scheme, is fit-
ted by relying on a Bayesian optimization of the potential hyperparameters. This
step is embedded within an AL loop that allows to sequentially increase the size
of the learning database whenever the MLIP fails to meet a predefined energy
convergence threshold. As such, MLIP are fitted in an almost fully automatized
fashion. This approach is tested on twodiverse amorphous systems thatwere pre-
viously generated using first-principlesmolecular dynamics. Accurate potentials
with less than 2 meV/atom root mean square energy error compared to the ref-
erence data are obtained. This accuracy is achieved with only 175 configurations
sampling the studied systems at various temperatures. The robustness of these
potentials is then confirmed by producing models with several thousands of
atoms featuring a good agreementwith reference ab initio and experimental data.

KEYWORDS
active learning clustering, average kernel, Bayesian optimization, Coulomb matrix, Gaussian
approximation potential (GAP), hybrid similarity kernel, SOAP descriptor, spectral clustering
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1 INTRODUCTION

Machine learning interatomic potentials (MLIP)1–7 have
become a game changer in materials modeling as they
allow to expand the size and time scales of computer
simulations well beyond those achieved by quantum-
mechanical-based techniques, yet keeping a similar
accuracy.8,9 In the particular case of amorphous systems,
producing quantitative models usually requires the use of
first-principles molecular dynamics (FPMD)8,10,11 with a
typical model size of the order of hundred atoms. FPMD
simulations generate trajectories of a given system at
various thermodynamical conditions (pressure, temper-
ature, etc.) that represent a time-ordered concatenation
of atomistic configurations of the studied system. While
powerful, such technique remains heavy and costly as it
requires the use of large computing facilities over a long
periods of time that can go up to a year.12
At this level, machine learning (ML), whether in the

framework of high-dimensional artificial neural networks
(NNs)1,13,14 or in the framework of kernel-based meth-
ods, such as the Gaussian approximation potential (GAP)
framework,2,15–21 offers a promising approach to construct
fast and accurate MLIPs that enable to go beyond the lim-
itations of first-principles simulations, yet keeping similar
accuracy. MLIP can leverage these issues by exploiting
the FPMD data (trajectories, energies, forces, stress, etc.)
to fit the multidimensional potential energy surface of
the explored phase space. Successful training enables
atomistic simulations to achieve precision comparable
to quantum mechanics, while significantly reducing the
computational cost by many orders of magnitude. Never-
theless, the accuracy and transferability of these potentials,
relies on, first, the construction of the database on which
they are fitted, second, on the model hyperparameters
and the way they are chosen.1,22,23 Addressing these issues
require the use of ML techniques at two levels: (i) a
classification of the atomistic snapshots based on a mea-
sure of their similarity that enables to construct minimal,
yet representative, fitting database,24,25 and (ii) finding
the optimal model hyperparameters required to achieve
an accurate MLIP fit.26 Focusing on the first point (i),
generally, finding the optimal number of learning configu-
rations is a key toward the development of general-purpose
MLIPs, particularly when dealing with a large chemical
space as this minimizes the required computational cost
and ensures an efficient representativity of the data. In
addition, efficient on-the-fly training and reinforcement
learning schemes require a precise selection of uncorre-
lated training configurations. Therefore, developing ML
schemes that optimize the data usage (i.e., data-efficient
training and data-distillation schemes) is a field that is
gaining considerable attention and is considered as the

next challenge in computational materials science. In
this context, very recently, Finkbeiner et al.27 provided
a scheme to identify uncorrelated atomic configurations
from extensive data sets by relying on a nonstandard
NN workflow, known as the random network distillation
(RND), for training machine-learned interatomic poten-
tials. Ben Mahmoud et al.28 tackle the question of how
exactly one chooses the structures that inform the model.
In particular, the authors question the possibilities of mak-
ing general-purpose cost-effective potentials trained on
very large data sets. To reach this goal, the authors com-
ment on “data set distillation” procedure to reduce large
data sets and buildmultipurposemodels. In another work,
Speckhard et al.29 tackled the question of “How big is Big
Data?” with a particular focus on the generalization of
models to similar data sets and on the possible ways to
gather high-quality data sets from heterogenous sources.
Finally, Kaur et al.30 provide an approach that requires
only a few tens of training structures to achieve sub-kJ/mol
accuracy in the sublimation enthalpies and sub 1% error in
densities for ice polymorphs at finite temperature and pres-
sure. In this work, the training model size is optimized by
studying the convergence of the average potential energy
and density from simulations in the constant temperature,
constant pressure sensemble (NPT) ensemble as a function
of the size of the training set.
In the case of amorphous configurations, the root

mean square displacement (RMSD)measured between the
Cartesian coordinates of the atoms, which is readily made
invariant to relative translations and rotations, is the most
apparent option for a metric to compare atomic struc-
tures. However, it is very difficult to expand the RMSD
to cope with scenarios where atoms in the two struc-
tures cannot be clearly mapped onto one another (due
to combinatorial shift and scaling as a function of the
size of the molecules being compared).31 Starting with
descriptors intended to represent atomic environments
in a way that is unaffected by rotations, translations,
and permutations of equivalent atoms and then com-
bining them to produce a global measure of structural
similarity is a particularly promising route for compar-
ing structures.32 This concept often depends on identifying
the optimal correspondence between pairs of environ-
ments in the two configurations.31,33 A particularly elegant
framework for obtaining invariant local descriptors of
atomistic environments is the smooth overlap of atomic
positions (SOAP).24,34 The SOAP descriptor represents
atomic geometries by using a localized expansion of a
Gaussian-smeared atomic density. This expansion is con-
structed using a weighted sum of orthonormal functions
derived from spherical harmonics and radial basis func-
tions. Therefore, the estimation of a specific physical prop-
erty is broken down into individual contributions centered

 15512916, 2025, 1, D
ow

nloaded from
 https://ceram

ics.onlinelibrary.w
iley.com

/doi/10.1111/jace.20128 by U
niversité D

e L
im

oges, W
iley O

nline L
ibrary on [12/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3 of 19 SHUAIB et al.

on atoms. These contributions effectively capture correla-
tions between atoms inside each localized environment.
The assumption of locality, justified by the nearsighted-
ness principle35 of electronic matter, is very advantageous
as it effectively reduces the complexity of the regres-
sion task, often encountered in ML schemes. The SOAP
descriptor facilitates a thorough characterization of short-
range order, allowing the identification of features that
assess varying degrees of (dis)order in a givenmaterial.36,37
However, it falls short in providing detailed quantifica-
tion of medium-range order and network connectivity,
crucial aspects for understanding amorphous systems.
Long-range electrostatic interactions are well-recognized
for their significant contribution to the characterization
of several systems, including ionic systems,38 interfaces
with macroscopic polarization,39 electrode surfaces,40 and
the field of nanoscience as a whole.41 Capturing long-
range effects without making any prior assumptions about
the nature of the learning target is a challenging task
that can be tackled utilizing a global representation of
the studied system, such as Coulomb matrix,42 many-
body tensor representations,43 and multiscale-invariant
dictionaries.44 A recent study conducted by Grisafi et al.
has introduced a new framework for atomistic represen-
tations that can accurately capture long-range interactions
by considering the local value of an atom-density poten-
tial. Thus, by combining a representation that captures
long-range correlationswith the transferability of an atom-
centered additive model, this approach outperforms cur-
rent ML methods and provides a conceptual framework
for incorporating nonlocal physics into atomistic ML.45 A
particularly promising approach to compare amorphous
structures is to combine descriptor that is designed to rep-
resent local atomic environments (such as SOAP) with
another descriptor capturing the long-range effects (such
as Coulombmatrix), to yield a global measure of similarity
between structures.
Coming to the second point (ii), training MLIP con-

tinues to pose significant challenges. One of the primary
difficulties lies in defining the optimal hyperparameters
for the selected fitting technique and effectively select-
ing the appropriate training data set. When dealing with
extensive data sets, the process of selecting training setups
in a knowledgeable manner may become arduous. Active
learning (AL), as defined in Refs. 18, 26, 46, 47 is an
ML method in which a learning algorithm systematically
finds the best hyperparameters and identifies the least
number of training database necessary to develop a super-
vised ML model that achieves higher accuracy compared
to models trained using a manual construction of the
database.26 AL has been employed in the generation of
databases and the acceleration of the fitting process by
relying on an iterative scheme that aims at enhancing the

MLIP accuracy.18,48–50 Recently, AL methods have been
integrated with Gaussian process (GP)-based force fields,
such as GAP,51 and included in an FPMD framework.52
This enables an on-the-fly fitting of force fields specifically
tailored for a given studied system.53,54 One prominent
example within the field of glass materials modeling is
the simulation of a Hafnium dioxide (HfO2) system.18 In
this work,18 the authors presented a technique that aims to
achieve a clustering of an unlabeled data set of HfO2 dis-
ordered snapshots by relying on a distance metric derived
from the calculation of pairwise root mean square devi-
ations between atomic positions. Subsequently, Bayesian
optimization (BO)was used to select uncorrelated learning
configurations from these obtained clusters. The results of
this work show that the AL scheme was able to reach an
energy fit tolerance of 5.0 meV/atom with a data set only
containing ≈300 configurations. While useful, it is worth
noting that the selection of the number of clusters is user-
dependent. In addition, extending the applicability of the
RMSD method to situations where the mapping of atoms
between two structures is ambiguous poses significant
challenges, as mentioned above.31
In our work, we provide an alternative modeling strat-

egy to achieve the aforementioned goals, whileminimizing
the human bias. In particular, we introduce a hybrid simi-
larity kernel that integrates local (SOAP)34 and long-range
(Coulomb matrix)42 descriptors through an averaging ker-
nel approach.24 This method enhances the classification
of amorphous configurations by leveraging both short-
and long-range structural information, facilitating the
construction of a representative training database. The
similarity matrix is then converted into a distance matrix
and fed to a classification algorithm that outputs a set of
clusters, each containing structurally similar amorphous
snapshots. Subsequently, we propose a strategy that auto-
matically builds a database with a minimal number of
uncorrelated configurations that will be used to fit GAP
MLIP. Our AL workflow strategy involves the follow-
ing steps: (1) Construction of a hybrid similarity matrix
using SOAP and Coulomb matrix descriptors. (2) Conver-
sion of the similarity matrix into a distance matrix for
spectral clustering, iteratively adjusted to achieve optimal
clustering. (3) Selection of diverse, uncorrelated training
configurations from the identified clusters. (4) Fitting of
the GAP MLIP using BO to refine the hyperparameters,
ensuring the model meets predefined energy convergence
criteria. This iterative process continues until the MLIP
attains the desired accuracy This method is applied to two
amorphous systems previously generated by FPMD.55,56
We find that the AL approach is able to build databases
with less than 175 configurations that efficiently describe
the model at high temperature (liquid state), at room tem-
perature (glassy state), and during the quenching process.

 15512916, 2025, 1, D
ow

nloaded from
 https://ceram

ics.onlinelibrary.w
iley.com

/doi/10.1111/jace.20128 by U
niversité D

e L
im

oges, W
iley O

nline L
ibrary on [12/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SHUAIB et al. 4 of 19

The optimized MLIPs achieve an energy accuracy of less
than 2.0meV/atom compared to FPMD reference data and
are then used to generate large amorphous systems with
several thousands of atoms, which were found to yield a
good agreement with the reference FPMD data as well as
the experimental measurements.
The paper is organized as follows: Methods are pre-

sented in Section 2, where we provide a description of
the FPMD data sets, the clustering procedure, and the AL
approach. In Section 3, we report our results on cluster-
ing and AL MLIP fit and discuss the real and reciprocal
space properties of the obtained amorphous models. The
conclusions of our work are presented in Section 4.

2 METHODS

2.1 FPMD data set

We focus on three data sets built on different glassy systems
previously generated by FPMD.55,56 The first data set (data
set A) focuses on an amorphous AsTe3 system that was
generated by resorting to FPMD (more details available
in Ref. 55 and Subsection 1.1 in supplementary material).
In the original work, the modeling of AsTe3 is conducted
by resorting to the Becke, Lee, Yang, and Parr (BLYP)57
exchange and correlation functional within the framework
of density functional theory (DFT) and using a periodic
cubic cell that has 240 atoms, consisting of 60 As and 180
Te. The glass was produced after a thermal annealing cycle
followed by a residual stress calibration.58
The second data set (data set B) deals with amorphous

TeO2 generated in Ref. 56. We consider the system gen-
erated with BLYP exchange and correlation functional on
480 atoms (160 Te and 320 O). The TeO2 glassy model was
generated by quenching from the melt, followed by a sub-
sequent residual stress calibration (more details available
in Ref. 56 and Subsection 1.1 in supplementary material).
Finally, the third data set (data set C) is made of the

second data set, to which configurations of the 𝛾 − TeO2

crystalline system were added. 𝛾 − TeO2 is the first sta-
ble polymorph obtained by crystallization of the glass. The
𝛾 − TeO2 data set was generated by resorting to BLYP func-
tional and a model of 48 atoms (16 Te and 32 O). In order
to produce a high-temperature configuration of the crys-
tal, the model was annealed in the constant temperature,
constant volume ensemble (NVT) ensemble (Γ point) for
15 ps at T = 1000 K, 14 ps at T = 650 K, and 14 ps at
T = 300 K.56 For more details, refer to Subsection 1.1 in
supplementary material.
To ensure the consistency of the database, we recalcu-

lated the DFT energies, forces, and virial stresses for all
configurations in Refs. 55, 56 using a uniqueDFT setup and
an energy cutoff of 1000 Ry.

2.2 Descriptors and similarity
measurement

2.2.1 Smooth overlap of atomic orbitals

In the context of the SOAP descriptor, the representation
of a given local atomic environment  around an atom
𝑖 within a cutoff distance 𝑟𝑐𝑢𝑡 involves the summation
of Gaussian functions that represent the local density of
atoms inside the environment . These functions have
a variance of 𝜎2 and are centered on each of the atoms
belonging to . The total atomic density is then given by:

𝜌(𝑟) =
∑
𝑖∈

exp

(
(𝑥𝑖 − 𝑟)2

2𝜎2

)
, (1)

where 𝑥𝑖 is the position of the atom 𝑖. The SOAP kernel is
thereafter characterized as the overlap of the local atomic
neighbor densities, integrated over all three-dimensional
(3D) rotations �̂�.
The measure of local atomic environment similarity

requires the use of a kernel function24 that is generally
normalized in order to achieve a self-similarity value of
unity for the given environment when compared to itself.
The construction of the SOAP kernel, including the inte-
gration across all rotations, can be conducted analytically.
First, the atomic neighbor density can be expanded as a
function of spherical harmonics 𝑌𝑙𝑚(𝑟) and a collection of
orthogonal radial basis functions 𝑔𝑏(𝑟) as follows:

𝜌(𝑟) =
∑
𝑏𝑙𝑚

𝑐𝑏𝑙𝑚𝑔𝑏(|𝑟|)𝑌𝑙𝑚(𝑟). (2)

The expansion coefficients 𝑐𝑏𝑙𝑚 are collected and orga-
nized into a vector �̂�() that corresponds to the power
spectrum. Subsequently, a polynomial kernel can be con-
structed to measure the similarity of two local atomic
environments, 𝑄 and 𝑄′ as follows34:

k(,′
) =

[
𝓁[𝑃()]

⊤
⋅
[
𝑃(

′
)
]
+ 𝑐0

]𝑑
, (3)

where the parameter 𝑐0 is chosen to be equal to 1 to avoid
homogeneous output results from the kernel, and the 𝓁
parameter is known as the kernel slope. To achieve high
accuracy, we set the kernel degree to 𝑑 = 4. This concept of
similarity can also be seen as a distance measure between
the two environments:

𝑑(,
′
) =

√
2 − 2k(,′ ). (4)

Within this definition, similar environments are close to
each other (short distance) and vice versa. In this work,
we resort to the SOAP descriptor as implemented in the
DScribe software.59 The radial basis function used in our

 15512916, 2025, 1, D
ow

nloaded from
 https://ceram

ics.onlinelibrary.w
iley.com

/doi/10.1111/jace.20128 by U
niversité D

e L
im

oges, W
iley O

nline L
ibrary on [12/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



5 of 19 SHUAIB et al.

study is a polynomial basis set of order 4, as described in
the original SOAP work. The polynomial basis function
is guaranteed to decay to zero at 𝑟𝑐𝑢𝑡.24,34 SOAP calcula-
tions for measuring local atomic environment similarity
are performed with a very effective numerical integration
method, where the values of 𝑙𝑚𝑎𝑥 and 𝑛𝑚𝑎𝑥 are set to 8.

2.2.2 Coulomb matrix

TheCoulombmatrix42 is a straightforward description that
emulates the electrostatic interaction occurring among
atomic nuclei within a given system. The pairwise, two-
body matrix used in this approach is influenced by the
Coulomb potential and serves to represent the atomic
species and interatomic distances within atoms belong-
ing to a finite system. The components of this matrix are
defined by:

𝑖𝑗 =

⎧⎪⎨⎪⎩
0.5𝑍2.4

𝑖
, for 𝑖 = 𝑗

𝑍𝑖𝑍𝑗

𝑅𝑖𝑗
, for 𝑖 ≠ 𝑗

⎫⎪⎬⎪⎭, (5)

where 𝑍 represents the atomic number, and 𝑅𝑖𝑗 denotes
the Euclidean distance between atoms 𝑖 and 𝑗. The deter-
mination of the shape of the diagonal terms was achieved
by fitting the potential energy of neutral atoms.60 The
Coulomb descriptor is not designed in a manner that
guarantees its dot product accurately depicts the overlap
of atomic distributions. Therefore, a Laplacian kernel61
is used to assess the long-range similarity between two
environments as:

𝑤(,
′
) = exp

[
−𝜁‖𝑖𝑗() −𝑖𝑗(

′
)‖], (6)

where 𝜁 is a hyperparameter that control the decay of the
Laplacian kernel function. The similarity concept can be
also converted to a distance measure using Equation (4).
Similar to SOAP, the Coulomb descriptor is computed as
implemented in DScribe package. In order to provide con-
sistent dimensions for matrices representing systems with
varying numbers of atoms, we consider zero-padding to
have a unique matrix size corresponding to the biggest
system in the data set.
For most applications, it is convenient to normalize the

kernel. This ensures that the self-similarity of any envi-
ronment is equal to one, resulting in the final kernel:24

�̃�(,
′
) =

𝐺(,
′
)√

𝐺(,)𝐺(′ ,′ )
, (7)

where �̃�(,
′
) represents the normalized kernel and

𝐺(,
′
) refers to one of the kernels in Equation (3) or

(6). For two identical environments, the kernel returns
a value of 1, while it returns 0 for completely differ-
ent ones. All values between 0 and 1 reflect the level of
similarity.

2.3 Hybrid similarity matrix

In order to build a similarity matrix between various con-
figurations in a given data set, we construct a global
similarity kernel. Figure S1 shows the general methodol-
ogy used to construct the global similarity kernel. This
global similarity description is either based on an averaged
similarity measure between local atomic environments or
between environments accounting for long-range interac-
tions.
To this end, we consider a general case with two con-

figurations containing 𝑁𝐴 and 𝑁𝐵 atoms. We compute
for all pairs of atoms 𝑖 in structure 𝐴 and atoms 𝑗 in
structure 𝐵 their SOAP similarity using Equation (3). As
such pairwise similarity matrix of all the local atomic
environments between the two configurations can be
constructed24:

𝐶𝑖𝑗(𝐴, 𝐵) = k
(
𝐴
𝑖
,𝐵

𝑗

)
. (8)

Subsequently, the average local similarity measure of
the two configurations 𝐴 and 𝐵 can be achieved by com-
puting the average of the 𝐶𝑖𝑗 matrix, yielding a single
value. In practice, we resort to the average kernel as
implemented in DScribe to measure the average sim-
ilarity between the two structures (configurations) as
follows24:

𝐾𝑆𝑂𝐴𝑃(𝐴, 𝐵) =
1

𝑁𝐴 × 𝑁𝐵

∑
𝑖𝑗

𝐶𝑖𝑗(𝐴, 𝐵)

=

⎡⎢⎢⎣𝓁
[
1

𝑁𝐴

∑
𝑖

𝑃
(
𝐴
𝑖

)]⊤
⋅

[
1

𝑁𝐵

∑
𝑗

𝑃
(
𝐵
𝑗

)]
+ 𝑐0

⎤⎥⎥⎦
𝑑

.(9)

In this implementation, the computation of 𝐾𝑆𝑂𝐴𝑃 is
achieved at a low cost by retaining the average SOAP fin-
gerprint across all atom environments in both structures.
By repeating this procedure for all the configurations

belonging to the considered data set, we construct the aver-
age SOAP similarly matrix of dimension 𝑁 ×𝑁, where 𝑁
is the number of configurations in the data set.
The same methodology can also be applied to calculate

an average measure of similarity between configurations
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based on the Coulomb matrix:

𝐾𝐶𝑜𝑢𝑙𝑜𝑚𝑏(𝐴, 𝐵) =
1

𝑁𝐴 × 𝑁𝐵

∑
𝑖𝑗

𝐶
′

𝑖𝑗
(𝐴, 𝐵) =

1

𝑁𝐴 × 𝑁𝐵

exp

[
−𝜁

∑
𝑖𝑗

‖𝑖𝑗(
𝐴) −𝑖𝑗(

𝐵)‖],
(10)

where 𝐶′

𝑖𝑗
(𝐴, 𝐵) represents the pairwise long-range sim-

ilarity of all local atomic environments between two
configurations calculated through the Laplacian kernel
(Equation 6).
Following this procedure, we nowhave a globalmeasure

of the similarity between all the configurations within a
given data set by relying on an atom-centered similarity
measure (i) of local atomic environments (SOAP kernel)
(ii) and of the long-range order (Coulomb matrix). Each
of these quantities carries valuable information about the
compared systems. We note that the sole use of either
global similarity kernels as an input forML classification of
the atomistic configurations within the data set is not effi-
cient as one loses a part of the information related to the
structure during the averaging procedure. Instead, in this
work, we propose a hybrid kernel approach that combines
both the SOAP and Coulomb average kernels in a way to
take advantage of the local and long-range descriptions of
the studied systems. We show that this procedure leads
to an efficient classification of amorphous configurations
obtained during molecular dynamics (MD) simulations.
The hybrid similarity kernel is defined as follows:

𝐾𝐻𝑦𝑏𝑟𝑖𝑑(𝐴, 𝐵) = (1 − 𝛿) × 𝐾𝑆𝑂𝐴𝑃(𝐴, 𝐵)

+𝛿 × 𝐾𝐶𝑜𝑢𝑙𝑜𝑚𝑏(𝐴, 𝐵). (11)

The hyperparameter 𝛿 controls the relative weight of
the two kernels 𝐾𝑆𝑂𝐴𝑃 and 𝐾𝐶𝑜𝑢𝑙𝑜𝑚𝑏 in the description of
a given system. This kernel can also be converted into a
distance metric as follows62:

𝐷(𝐴, 𝐵) =
√
2 − 2𝐾𝐻𝑦𝑏𝑟𝑖𝑑(𝐴, 𝐵). (12)

𝐾𝐻𝑦𝑏𝑟𝑖𝑑(𝐴, 𝐵) can be used to compute a similaritymatrix
between all the configurations and systems within a given
data set, leading to a distance measure that can subse-
quently be used to classify the data set into clusters of
structurally similar elements. The ultimate goal of this pro-
cedure is to extract from each cluster a given number of
configurations that can then be gathered to build a mini-
malist data set for training MLIP. In this way, regardless of
the size of the reference data set, one can always insure an

efficient selection of the least number of required configu-
rations that are needed to achieve a complete description
of the studied systems and their properties. This can be
achieved through a proper AL approach.

2.4 Active learning

The objective of AL is to autonomously choose “n” diverse
uncorrelated learning configurations from a reference data
set63,64 that will be later used for fitting MLIP using the
GAP model.2 The overall strategy implemented in this
work is outlined in Figure 1. Once the hybrid similarity
matrix is constructed on the FPMD data set (Figure 1, part
A), it is first converted into a distance matrix using Equa-
tion (12) then fed to the spectral clustering algorithm65–67

as implemented in Scikit-learn.68
Spectral clustering technique is based on a robust and

powerful theoretical framework69 that does not rely on
any assumptions about the overall structure of the data.
This algorithmhas the ability to converge toward optimum
solutions and exhibits strong performance when applied
to sample spaces of variable shapes or data sets with a
nonconvex nature.70 In practice, the data clustering issue
is considered as a problem of graph partitioning, where
each data point in the data set is represented as a vertex.
The weight of the edge linking two vertices corresponds to
the similarity value between the respective data points.71
The obtained network can be further decomposed into
related components (or domains) using specific graph-cut
techniques.70 The obtained components are then referred
to as clusters. This technique requires a prior definition of
the number of clusters that the algorithm needs to achieve.
Instead, here we iteratively vary the total number of clus-
ters (𝑁𝑐), and compute for each clustering iteration (𝐼′) the
average distance between all the clusters as:

< 𝑑𝐼′ >=
2

𝑁𝑐(𝑁𝑐 − 1)

𝑁𝑐∑
𝑠,𝑠′=1

𝑠≠𝑠′

𝑑𝑠,𝑠′ (13)

where, 𝑑𝑠,𝑠′ represent the distance between clusters 𝑠 and
𝑠′, which can be obtained as follows:

𝑑𝑠,𝑠′ =
1

𝑁𝑠 × 𝑁𝑠′

∑
𝐴∈{𝑠}

𝐵∈{𝑠′}

𝐷(𝐴, 𝐵), (14)

𝑁𝑠 and 𝑁𝑠′ refer to the total number of configurations
in clusters 𝑠 and 𝑠′, respectively, and 𝐷(𝐴, 𝐵) denotes the
distance between configurations 𝐴 and 𝐵 as computed
in Equation (12). The total number of clusters (𝑁𝑐) is
increased with step of one until a distance convergence
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7 of 19 SHUAIB et al.

F IGURE 1 Hybrid similarity-based clustering and active learning machine learning interatomic potential (MLIP) workflow: (A) The
computation involves the assessment of local (SOAP, smooth overlap of atomic positions) and long-range (Coulomb) similarities based on the
average kernel method. The global similarity between two configurations is computed for a given value of 𝛿 and afterward transformed into a
distance matrix. (B) The distance matrix is provided as input to the spectral clustering algorithm iteratively until the change in the average
distance between obtained clusters reach the desired threshold 𝑑𝑡𝑜𝑙 . This clustering procedure is repeated for different values of 𝛿. The value
of 𝛿 in Equation (11) is varied from 0 to 1 with a step of 0.1 and at the end the best value of 𝛿 is selected. (C) The training and test data samples
are built successively from the selected 𝛿 clusters in order to fit the Gaussian approximation potential (GAP) model until the desired level of
accuracy is attained. During each cycle I of data sampling, Bayesian optimization does real-time hyperparameter adjustment of the GAP
model. After convergence the best MLIP is used to run MD.

 15512916, 2025, 1, D
ow

nloaded from
 https://ceram

ics.onlinelibrary.w
iley.com

/doi/10.1111/jace.20128 by U
niversité D

e L
im

oges, W
iley O

nline L
ibrary on [12/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SHUAIB et al. 8 of 19

threshold 𝑑𝑡𝑜𝑙 is reached (Figure 1, part B). The change in
the average distance between all the clusters between two
consecutive iterations Δ𝑑 =< 𝑑𝐼′ > − < 𝑑𝐼′+1 > should be
less than 𝑑𝑡𝑜𝑙. Hence, we stop the clustering procedure
at the smallest number of clusters that satisfy this con-
vergence criteria. The obtained list of uncorrelated clus-
ters can further be visualized in a two-dimensional (2D)
map by resorting to the multidimensional scaling (MDS)
method72–74 as implemented in Scikit-learn library.68 This
map illustrates the spatial connections between different
data points where items that share similarities are posi-
tioned in close proximity to each other, while those that
are distinct are positioned farther away from one another.
After extracting the list of uncorrelated clusters, we now

focus on fitting the GAPMLIP by relying on an AL scheme
(Figure 1, part C). This scheme aims at constructing amin-
imalist data set and at the same time optimizing the GAP
hyperparameters. First, we extract from each uncorrelated
cluster a fraction 𝐼𝑝𝑒𝑟𝑐 of configurations in a way to build
a small database representative of the structural variety in
the reference database. 𝐼𝑝𝑒𝑟𝑐 is a user-provided input and
depends on the size of the reference data set. Next, this
small database is split into a training set (70% of the data)
that will be used to train the GAP model and a test set
(30% of the data) that will serve as a measure of the accu-
racy of the achieved MLIP through the calculation of the
root mean square error (RMSE) on the predicted energies
compared to the reference FPMD data.
Within GAP methodology, the potential energy surface

is decomposed into individual energy points, where each
point is expressed as a sum of a local atomic energy func-
tions, denoted 𝜖𝑖 . The functional form of 𝜖𝑖 depends on the
geometry of the local atomic environment surrounding the
central atom 𝑖, within a cutoff radius of 𝑟𝑐𝑢𝑡. Subsequently,
the Gaussian regression procedure is used to establish a
model for the total energy as a linear combination of non-
linear kernel functions. GAP has been effectively used in
the modeling of glasses, liquids, and crystals.18,19,55 In the
present study, we resort to standard GAP MLIP approach,
as implemented in QUIP,2 where the structure is described
through a combination of two descriptors: SOAP descrip-
tor and a nonparametric two-body distance descriptor.
This approach is implemented to mitigate the occurrence
of nonphysical clusters of atoms. It should be noted that
the Coulomb matrix is not used when fitting GAP, as it is
solely used to build the hybrid kernel that will allow the
clustering of the amorphous configurations.
The GAP model, has intrinsically several hyperparam-

eters that need fine-tuning in order to determine the
optimal model for a given training data set. BO is an
effective methodology for the automatic optimization of
hyperparameters in ML models that are computationally

expensive.75,76 The BO framework comprises a surrogate
model that represents the objective function and an acqui-
sition function that facilitates the selection of the next
set of hyperparameters to be sampled. In practice, the
BO algorithm conducts a series of explorations over the
hyperparameter space in order to construct a surrogate
model based on an error metric. Subsequently, a sequence
of exploitation is conducted using the insights acquired
during the first step, with the objective of enhancing the
surrogate model and obtaining more refined samples of
hyperparameters that have the potential to minimize the
error measure. The error is measured on the test set as
the deviation of the predicted energies from the reference
FPMD data. The energy convergence threshold (𝐸𝑡𝑜𝑙) is
user-defined and is set to 2 meV/atom in this work. In
the case the optimal GAP model refined using BO fails
to meet the desired level of accuracy, another loop of AL
is initiated where the size of the database initially set to
𝐼𝑝𝑒𝑟𝑐 of the reference data set, will be increased by Ipers
(or any other user defined fraction) (Figure 1, part C). In
general, for the 𝑛th AL iteration, the database size should
correspond to 𝑛 × 𝐼𝑝𝑒𝑟𝑐, until reaching 100% of the ref-
erence data set size.18 The AL workflow stops when the
RMSE in energy prediction for the optimal GAP model
reaches or falls below𝐸𝑡𝑜𝑙, orwhen themaximumdatabase
size is reached. As such, upon convergence, we obtain the
smallest possible training database together with the opti-
mal GAP hyperparameters that are required to achieve an
accurate GAP MLIP potential.

2.5 MLmodeling of glassy systems

TheMLIP resulting from the AL fit is subsequently used to
runMD simulations by resorting to the LAMMPS classical
molecular dynamics simulation code.77 In particular, we
produceAsTe3 andTeO2 glassymodels by quenching from
themelt and consider for each system four system sizes (for
AsTe3: 240, 1920, 6480, and 30 000 atoms and for TeO2: 480,
3840, 12 960, and 30 720 atoms), with starting configura-
tions built randomly. The MLIP MD are performed in the
NVT or NPT ensemble using a Nosé–Hoover thermostat
to ensure thermal control78,79 and adopting a time step of
0.5 fs.
In the case of AsTe3 system, the glass is produced

through a thermal annealing cycle as follows: 5 ps at T =
300 K, 5 ps at T = 500 K, 100 ps at T = 650 K, 100 ps at T =
500 K, and 100 ps at T = 300 K. For the TeO2 system, the
following thermal annealing cycle was implemented: 5 ps
at T = 300 K, 5 ps at T = 500 K, 5 ps at T = 750 K, 100 ps at
T = 1000 K, 100 ps at T = 750 K, 100 ps at T = 500 K, and
100 ps at T = 300 K. Subsequently, all the studied systems
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9 of 19 SHUAIB et al.

undergo further annealing at T = 300 K for a duration of
100 ps in the NVT ensemble at lattice constants that cor-
respond to a pressure of 0 GPa, which were obtained from
Refs. 55, 56.

3 RESULTS

3.1 Clustering

The first focus of our study is to investigate the outcome of
the AL clustering workflow applied to FPMD data sets. In
order to evaluate the contributions from both long-range
and local atomic environments descriptors, the value of 𝛿
in Equation (11) is varied from 0 to 1 with a step of 0.1. For
𝛿 = 0 and 𝛿 = 1, the hybrid kernels correspond to exactly
the average SOAP and Coulomb kernels, respectively. For
each 𝛿 value, the optimal number of clusters is obtained by
theAL procedure that achieves a change in the average dis-
tance between all the clusters below 𝑑𝑡𝑜𝑙 which is set to be
very small due to the nature of the studied systems. Indeed,
the similarity between amorphous configurations is quite
high, especially those belonging to the same temperature
plateau, which requires very low values in order to distin-
guish them. In the case of AsTe3 (A data set), 𝑑𝑡𝑜𝑙 was set to
10−4, while for TeO2 systems (B and C data sets), 𝑑𝑡𝑜𝑙 was
set to 10−3.
As the choice of 𝛿 is arbitrary, one have to decide which

value is the more appropriate to achieve a good classifi-
cation of the studied amorphous configurations. This can
be achieved as follows: for a given 𝛿 value, we calculate
for each cluster (𝑠) the standard deviation of the ener-
gies (𝜎s) of the configurations belonging to that cluster
and then take the average standard deviation over all the
clusters (𝑁𝑐): 𝐸 =

1

𝑁𝑐

∑𝑁𝑐
s=1 𝜎s. This metric allows to have

a direct access to the level of dispersion of the achieved
classification. In the case clusters contain very different
configurations, the average energy standard deviation will
be high, and vice versa. Therefore, the best 𝛿 value is the
one corresponding to the lowest average standard devia-
tion. The results of the evolution of the average energy
standard deviation are shown in Figure 2.
In the case of TeOG

2
system (data set B), the cluster-

ing results are shown in Figure S2 with various 𝛿 values.
When 𝛿 = 0, the clustering is only dependent on the
local atomic environment similarity (SOAP)matrix. In this
case, besides configurations belonging to the temperature
plateau at T = 300 K with 0 GPa, we observe a signifi-
cant number of widely dispersed clusters with substantial
overlap over several temperature plateaus resulting in a
high < 𝜎 >𝐸 as shown in the bottom panel of Figure 2.
As such, sampling from these clusters containing a wide
energy dispersion might lead to an ill representation of
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F IGURE 2 The evolution of number of clusters (top panel)
and the average standard deviation on the energy < 𝜎 >𝐸 (bottom
panel) as a function of increased the value of 𝛿 for AsTe3 (data set A,
red line), TeOG

2 (data set B, blue line), and TeO
G+𝛾
2 (data set C, green

line). The considered tolerance of the change in the average distance
between obtained clusters for each system is also displayed.

the overall data. These results indicate the limitations of
using SOAP as a global descriptor for classification of dis-
ordered systems.80 For 𝛿 < 0.3, the inclusion of a small
fraction of long-range similarity matrix leads to a substan-
tial reduction of the number of identified clusters (see
Figure 2). These identified clusters show a well-organized
temperature-dependent structure, as shown in Figures S2
and S3. Specifically, each temperature plateau form one
cluster (or a very small number) which can be explained
by the insufficient information regarding the long-range
similarity between configurations. The number of clus-
ters exhibits a maximum value around 𝛿 = 0.5 before
decreasing for larger 𝛿 values.
In the case of the TeOG+𝛾

2
systems (data set C), similar

trends to those seen in the case of pure TeOG
2
are observed

in Figures 2, S3, and S4. We note that the inclusion of the
gamma-crystal configurations in the TeO2 database results
in the formation of well-distinguished clusters within each
temperature plateau when 𝛿 ≥ 0.2. This effect is primar-
ily driven by the dissimilarity between the gamma-crystal
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SHUAIB et al. 10 of 19

and the glass system, leading to a decrease in the over-
all average similarity between configurations. In addition,
a decrease in the number of clusters is noticed when the
value of 𝛿 exceeds 0.8, similar to that observed in the case
of the pure TeO2 data set.
Finally, in the case of AsTe3 systems (data set A), a very

high similarity value is observed between the amorphous
configurations, yielding a scattered and small number of
clusters when 𝑑𝑡𝑜𝑙 = 10−3 is used, as shown in Figure S5.
To overcome this limitation, 𝑑𝑡𝑜𝑙 of 10−4 is instead used,
thereby allowing for a better classification of configu-
rations belonging to the same temperature plateau as
displayed in Figure S6. Figure 2 shows also a similar evolu-
tion of the< 𝜎 >𝐸 and the number of clusters as a function
of 𝛿 compared to TeOG

2
and TeOG+𝛾

2
data sets.

Based on these results, 𝛿 values (0≤ 𝛿 ≤ 1) leading to the
smallest average standard deviation of energy were identi-
fied as optimum values. Consequently, the best values of 𝛿
were determined to be 0.6, 0.7, and 0.3 for data sets B, C,
and A, respectively.
Figure 3 displays the final classification of clusters used

to train the MLIP model for each of the studied data sets,
together with their respective clustering hyperparameters.
In addition, the organization of these clusters can be graph-
ically visualized in a 2D plot using the MDS method, as
shown in Figure 4.

3.2 ALMLIP

After achieving clustering of the FPMD data sets, one
needs to select the most effective learning configurations
for fitting stable and accurate MLIP. This can be accom-
plished through an AL process, with the aim of attaining
a predefined energy convergence 𝐸𝑡𝑜𝑙 set to 2 meV/atom
and a stable MLIP. In order to assess the performances
of our scheme against common MLIP fitting practice, we
define the following MLIP potentials: MLIP(0) is obtained
with data selection based on clusters achievedwith an opti-
mized 𝛿 value. MLIP(1) is optimized based on a clustering
of the amorphous snapshots with the hybrid similarity ker-
nel with 𝛿 = 0. This choice corresponds to a clustering
solely based on SOAP descriptor as a global similarity met-
ric. Finally, we fit a potential, hereafter MLIP(2), using all
available data for AsTe3 (data set A) and TeO2 (data set
B) glassy systemswith the same hyperparameters obtained
forMLIP(0). ComparingMLIP(0) andMLIP(2) results will
be informative about the completeness of the minimal
database construction approach.
Focusing on the case of MLIP(0) (produced with data

selected using an optimal 𝛿 value), the AL yields excel-
lent training configurations with a minimal number of
AL iterations, namely, three iterations for both A and

B data sets. While for data set C, four AL iterations
were required to achieve a training database and GAP
hyperparameters that satisfy the convergence criteria.
Correspondingly, the MLIP(0) converged database sizes
(𝑁𝑡𝑟𝑎𝑖𝑛) contain 97, 127, and 175 configurations and cor-
respond to 10%, 10%, and 14% of the reference data set
size for A, B, and C data sets, respectively. These results
demonstrate the efficiency of the AL procedure that goes
beyond the bias and limitations that a user can induce
in manually building a data set based on a trial-and-error
approach.18,63 Coming to MLIP(1), the AL builds a mini-
mal data set and GAP hyperparameters that achieve the
energy convergence criteria after six iterations in the case
of AsTe3 (data set A) and two iterations in the case of
TeO2 (data set B). The obtained database sizes amount to
21% and 7% for AsTe3 and TeO2, respectively. Details of
the converged hyperparameters for MLIP(0) and MLIP(1)
are provided in Table S1. Moreover, Table S2 shows the
computational costs and memory requirement associ-
ated with the AL clustering, and AL MLIP optimization
processes.
The validation plots of the active learned MLIP(0) are

displayed in Figure S7 and show that it yields typical linear
correlations between the predicted GAP energies and the
corresponding DFT energies. For MLIP(0), MLIP(1), and
MLIP(2), the RMSE for the predicted energies are found
to be less than 2.0 meV/atom as set by the AL energy
convergence criteria. In addition, the convergence of GAP
forces compared to DFT falls below an RMSE value of 0.26
eV/Å (see Figure S7). We note that a GAP MLIP for glassy
AsTe3 is already available in the literature,55 however, it
was produced by training on a data set made of about 900
configurations. Overall, we here show that a properly built
clustering and AL procedure can outperform manual fit-
ting of MLIP leading to minimalist data sets as well as
well-converged MLIPs.

3.3 MLIP-MD

We now access the performances of our MLIP(0) in
producing amorphous systems and compare it to those
achieved with MLIP(1) and MLIP(2). To this end, MD sim-
ulations are performed to produce glassy systems using
the LAMMPS package with each of the obtained MLIPs
(MLIP(0), MLIP(1), and MLIP(2)). The initial configura-
tions are allmade of atoms randomly placed in a cubic sim-
ulation cell corresponding to the measured experimental
density.55,56
In the case of pure TeO2 glass models, we consider

the MLIPs built on data set B (TeOG
2
, MLIPB(0)) or data

set C (TeOG+𝛾
2

, MLIPC(0)) and generate systems with
sizes 480, 3840, 12 960, and 30 720 atoms. For the sake of
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11 of 19 SHUAIB et al.

F IGURE 3 Clusters used to generate a machine learning interatomic potential (MLIP) for each of the studied systems with their
corresponding value of 𝛿. Point distributions for data sets of 937, 1200, and 1245 points, for AsTe3 (data set A), TeOG

2 (data set B), and TeO
G+𝛾
2

(data set C), respectively. Dataset C is slit into the bottom two panels for a better visibility of the configurations of 𝛾 − TeO2. Points are colored
according to the cluster to which they are assigned.

comparison, systems with sizes 480 and 3840 are also
generated considering MLIPB(1) and MLIPB(2). In the
case of AsTe3 systems, we considerMLIP

A(0) and produce
models with 240, 1920, 6480, and 30 000 atoms. Similarly,
AsTe3 models of 240 and 1920 atoms were produced with
MLIPA(1) and MLIPA(2). All the initial configurations
were subject to a thermal annealing cycle as described
in Subsection 2.5. Details of the computational cost
associated with MD simulations via MLIP (MLIP-MD)
as implemented for each system size are available in
Table S2.

3.3.1 Total and partial structure factors

Focusing on obtained results from MLIP(0), Figure 5
depicts the computed total X-ray structure factor obtained

from the original FPMD models and the large MLIP(0)
models with ≈30 000 atoms, compared to experimental
data of pure TeO2 and AsTe3 glassy systems. Similarly,
Figure 6 shows the results of the partial Faber–Ziman
(FZ) structural factors. The results of total 𝑆(𝑞) and FZ
partial structure factors for other system sizes obtained
from our MLIP(0)-GAP models are provided in Figures
S8 and S9, respectively. Within typical statistical fluctua-
tions, our findings indicate excellent agreement between
the FPMD, the MLIP(0)-GAP models, and the experimen-
tal data over the whole range of reciprocal space. When
comparing MLIP(0) to FPMD results, the positions and
intensities of the peaks in the total 𝑆(𝑞) for AsTe3 glassy
system are well reproduce. Furthermore, as similar results
are obtained for all systemswith>240 atoms, one can infer
the stability of the producedMLIPA(0). Modest changes in
intensity and position of the first, second, and third peaks
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SHUAIB et al. 12 of 19

F IGURE 4 Two-dimensional (2D) plot of the hybrid similarity
matrix corresponds to best number of clusters found in each AsTe3
(data set A), TeOG

2 (data set B), and TeO
G+𝛾
2 (data set C). The color of

each point depends on the cluster to which it belongs.

in the calculated total 𝑆(𝑞) are observed for systems big-
ger than 240 atoms, hinting toward a veryminor size effect
in the description of the atomic structure of the AsTe3
glassy system. For 𝑞 > 5Å−1, one can notice slight discrep-
ancies between the modeled 𝑆(𝑞) and the experimental
data. These discrepancies were attributed to Te–Te corre-
lation interactions and call for the use of a higher level
of theory for describing the van der Waals (vdW) inter-
actions within the DFT framework.55 Generally, the fine
details of structure of Te-rich amorphous chalcogenides
have shown significant sensitivity to the adopted DFT
exchange and correlation functional and the used vdW
scheme.81,82
When considering the network topology of AsTe3, the

analysis of the partial FZ structure factors (see Figures 6
and S9) gives access to the respective contributions of dif-
ferent chemical species. Across all system sizes, there is
a notable concurrence between our MLIP(0) 𝑆FZTe-Te(𝑞) and
𝑆FZAs-Te(𝑞) structural factor and those obtained from FPMD.
However, the MLIP(0) 𝑆FZAs-As(𝑞) structure factor show a
dependence on the system size where a decrease in the
fluctuations for 𝑞 < 4Å−1 is observed formodels with 6480
and 30 000 atoms. This behavior is mainly due to the low

F IGURE 5 Total X-ray structure factor for amorphous TeO2

and AsTe3 glassy systems at T = 300 K. The experimental results
(black dashed lines) are compared to the calculated first-principles
molecular dynamics (FPMD) 𝑆(𝑞) (red lines) and to the 𝑆(𝑞) for the
large machine learning interatomic potential (MLIP) systems with
≈30 000 atoms (brown line for data set A, green line for data set B,
and blue line for data set C). The curves are shifted vertically for
clarity.

number of As atoms in the small models that lead to strong
statistical fluctuations. Therefore, system sizes larger than
those studied in this work might lead a better convergence
of the low 𝑞 range in the 𝑆FZAs-As(𝑞).
Coming to TeOG

2
(MLIPB(0), data set B) and TeOG+𝛾

2

(MLIPC(0), data set C) glassy models, the small ML-GAP
system with 480 atoms shows a good reproduction of the
FPMD reference data in terms of position and intensity.
In addition, for models with more than 480 atoms, the
intensity of the first 𝑆(𝑞) peak shows a slight increase
for both MLIPB(0) and MLIPC(0) models which can be
attributed to an increase in 𝑆FZTe-Te(𝑞) first peak intensity
as shown in Figure 6. We note that, in the case of the
largestMLIPB(0)model (30 720 atoms), the total 𝑆(𝑞) show
a very good agreement with the FPMD obtained results.
Furthermore, we note a very good agreement between cal-
culated FPMD and MLIP(0) FZ structural factors. Overall,
the good agreement between the MLIP(0) and the FPMD
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13 of 19 SHUAIB et al.

F IGURE 6 The Faber–Ziman partial structure factors 𝑆𝛼𝛽(𝑞)
for glassy TeO2 and AsTe3 systems at T = 300 K obtained from
first-principles molecular dynamics (FPMD) (red lines) and
machine learning interatomic potentials (MLIP) for the systems
with ≈30 000 atoms (brown line for data set A, green line for data
set B, and blue line for data set C). The curves are shifted vertically
for clarity.

data for various system sizes reflects a very limited size
effect in these systems.

3.3.2 Total and partial pair distribution
functions (PDFs)

The calculated total and partial X-ray PDFs on ourMLIP(0)
models are depicted in Figure 7 (and Figure S10), and
Figure 8 (and Figure S11), respectively, and are compared
to the reference FPMDdata aswell as experimental results.
Overall, the measured and calculated total PDFs (𝐺(𝑟))
exhibit a pattern characteristic of amorphous materials.
The computed 𝐺(𝑟) from the FPMD and MLIP(0) models
exhibit a good level of agreement over the entire real space
range for all the studied systems, within typical statistical
fluctuations. When compared to the experimental results,
the computed𝐺(𝑟)’s reproduce themain experimental fea-
tures up to small discrepancies in the peak positions and

F IGURE 7 Total pair correlation function for TeO2 and AsTe3
systems at T = 300 K. The experimental results (black dashed lines)
are compared to the first-principles molecular dynamics (FPMD)
calculated 𝐺(𝑟) (red lines) and the large machine learning
interatomic potential (MLIP) glassy system with 30 000 atoms
(brown line for data set A, green line for data set B, and blue line for
data set C). The curves are shifted vertically for clarity.

intensities. Specifically, the level of agreement between
ML-GAP and FPMDPDFs is determined by computing the
Wright parameter (𝑅𝑋)83 as defined by Equation (15).

𝑅𝑋 =

{∑
𝑖

[
GFPMD(𝑟𝑖) − GML-GAP(𝑟𝑖)

]2∑
𝑖 [GFPMD(𝑟𝑖)]

2

} 1

2

. (15)

In this formula, GFPMD(𝑟𝑖) and GML-GAP(𝑟𝑖) represent the
FPMD and ML-GAP calculated total X-ray PDF at a given
distance 𝑟𝑖 , respectively.
In the case of TeO2 systems, the obtained 𝑅𝑋 values for

MLIPB(0) and MLIPC(0) models are equal to 44.4% and
44.6%, respectively, for systems with 480 atoms. For all sys-
tems with more than 480 atoms, the 𝑅𝑋 value decreases to
∼42% and ∼40% in the case of MLIPB(0) and MLIPC(0),
respectively (see Table S3). This minor reduction in 𝑅𝑋
obtained from MLIP(0) large models, hints toward a very
slight improvement in describing the overall topology of
TeO2 glass as we increase the system size.
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F IGURE 8 The partial pair correlation functions 𝑔𝛼𝛽(𝑟) for
TeO2 and AsTe3 glassy systems at T = 300 K obtained from
first-principles molecular dynamics (FPMD) (red lines) and large
machine learning interatomic potential (MLIP) models with
≈30 000 atoms (brown line for data set A, green line for data set B,
and blue line for data set C). The curves are shifted vertically for
clarity.

Focusing on comparing the calculated total X-ray 𝐺(𝑟)
obtained from MLIPB(1) (trained using configurations
selected assuming 𝛿 = 0) andMLIPB(2) (trained using the
whole reference data set)modelswith sizes of 480 and 3840
atoms to that obtained from FPMD simulation (refer to
Figure S12). The computed 𝑅𝑋 forMLIP

B(2) model shows
very similar values for both system sizes (480 and 3840
atoms) as shown in Table S3. Interestingly, these values are
also very close to those achieved withMLIPB(0) indicating
that this later, although trained with much less training
configurations, is able to correctly reproduce the amor-
phous structure of amorphous TeO2. As forMLIP

B(1), the
obtained 𝑅𝑋 values show higher values compared to those
achieved with MLIP(0) models. This result, shows that
MLIPB(1) models achieved with 𝛿 = 0 are less accurate
compared to those achieved with the optimized 𝛿 value
(MLIP(0)). Furthermore, besides being high, the 𝑅𝑋 value
obtained with theMLIPB(1) model increases from 51.2% to
61.6% (refer to Table S3) when the system size goes from
480 to 3840 atoms, reflecting the occurrence of size effect.

This increase is mainly due to an overestimation of the
intensity of the peaks at the medium-range distances.
Considering glassy TeO2 system based on B and C data

set (MLIPB(0) andMLIPC(0)) models, for 𝑟 values <5.0 Å,
the first and second 𝐺(𝑟) peaks exhibit little changes in
intensity compared to the FPMD reference𝐺(𝑟). It is worth
noting that the experimental total 𝐺(𝑟) shows a shoulder
at around 4.3 Å, which is not accurately captured by the
reference FPMD model. However, this shoulder is repro-
duced inMLIPB(0) andMLIPB(2) models (see Figure S12).
Here, MLIPB(1) fails to reproduce this feature and at the
same time leads to an overestimation of peak intensities
for 𝑟 > 5 Å as observed in the 3840 atoms model com-
pared to MLIPB(0) and MLIPB(2) models. By looking at
the partial pair correlation functions (Figures 8, S11, and
S13), we observe a good concordance between theMLIP(0),
MLIP(2), and FPMD results. Regardless of the system size,
we notice that the MLIPB(0), MLIPC(0), and MLIPB(2)
models show a Te–Te partial PDFs with a shoulder at
around 4.3 Å, corresponding to the shoulder observed at
the same position in the measured total 𝐺(𝑟), while this
shoulder is not reproduced inMLIPB(1) result.
Coming the 𝑔(𝑟) of AsTe3 systems, the first peak

observed for theMLIPA(0)models show a very good agree-
ment with the reference FPMD data, except for systems
with more than 6480 atoms, where a slight intensity over-
estimation is noticeable. The second 𝐺(𝑟) peak from the
MLIP(0) models, exhibits a slight sharpening of the peak
compared to the FPMD results for all the studied sys-
tems. For distances larger than 5.5 Å, FPMD and MLIP(0)
models show a good agreement with the reference data
and accurately capture the positions and intensities of the
experimental peaks that occur within this distance range.
The computed 𝑅𝑋 value on MLIPA(0) and MLIPA(2)

simulations are around ∼7% as presented in Table S3 for
the two considered system sizes (240 and 1920 atoms). This
can be correlated, again, to the efficiency of the presented
AL scheme in obtaining simple and accurate ML-GAP
models fitted on small databases that are representative
of the whole reference data set. Considering MLIPA(1),
we find 𝑅𝑋 equal ∼6.7% for model size with 240 atoms,
showing a close value to those achieved with MLIP(0).
However, by looking at the partial PDFs of amorphous
AsTe3 in Figure S13, we find that the MLIPA(1) shows a
good estimation of the intensity and the first peak posi-
tion of the As–As correlations, while it overestimates the
intensity of the second peak and underestimates its posi-
tion. As for the Te–Te and As–Te correlations, they are
found to be in a good agreement with those achieved with
the MLIPA(0) and reference FPMD data. Nevertheless,
when producing models with 1920 atoms and larger sizes
using MLIPA(1), the potential turned out to be unstable
as the amorphous models undergo severe segregation that
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leads to wrong structures. This instabilityMLIPA(1) might
be explained by the fact that the training database was
constructed by sampling clusters (achieved solely using
SOAP as a global descriptor) that are widely dispersed and
have a significant overlap of configuration across multiple
temperature plateaus.
Overall, these results demonstrate that clustering amor-

phous configurations using a global similarity descriptor
that includes both local and global descriptors with an
appropriate weight 𝛿, together with an AL approach leads
to accurate and stable MLIPs that outperform those fitted
using configurations extracted from clusters obtained by
only considering local descriptors. In addition, this mini-
mal size database approach leads to the same results when
a large size database is used to fit theMLIP, therefore high-
lighting the high potential of data-distillation strategies
within the field of computational materials science.

3.3.3 Coordination number and local
environment analysis

The coordination numbers obtained through integration of
the partial X-ray PDFs (𝑔𝛼𝛽(𝑟)) can provide insights into
the network topology and connectivity. The average coor-
dination number 𝑛𝛼(𝑟), where 𝛼 refers to the considered
chemical species is shown in Table 1. Furthermore, the
decomposition of the of atomic local environments into dif-
ferent 𝑙-fold (𝑙 = 1, 2, 3, 4, or 5) is presented in Tables S4
and S5.
Looking at TeO2 systems, nTe and nO coordination num-

bers found from MLIPC(0) and MLIPB(0) models show a
very good agreement with the FPMD reference data for
all the considered systems sizes, indicating the very minor
size effects on the local environments. It is worth not-
ing thatMLIPB(0) andMLIPB(2) show very similar values
that are in excellent agreement with the FPMD results as
presented in Table 1. Furthermore, Table S5 shows that
irrespective of the model size the various 𝑙-fold environ-
ments of models MLIPB(0) and MLIPB(2) do not exhibit
significant evolution as a function of themodel size within
typical statistical fluctuations. In the contrary, we find that
MLIPB(1) models overestimate the average Te and O coor-
dination numbers compared to the FPMD reference data.
This overestimation is due to the reduction of the fractions
of onefold O and threefold Te atoms, while those of three-
fold O and 5-Te exhibit a considerable increase compared
to the FPMD results.
Coming to AsTe3 MLIP

A(0) systems, we find that 𝑛As
is in very good agreement with that obtained from the
FPMD data for systems with sizes up to 12 960 atoms.
For larger size systems a slight increase of 𝑛As is observed
and can be correlated to the slight increase observed in

the 𝑔As−As(𝑟). Irrespective of the system size, 𝑛Te is found
slightly larger than the reference FPMD results as shown
in Table 1. The atomic local environments of As and Te
atoms (see Table S4) indicate a few changes that could be
attributed to the improved description of the As–As corre-
lations in theMLIPA(0) model. Remarkably, it is observed
that the fraction of threefold Te increases by approxi-
mately 10% in the MLIP(0) model, while the proportion
of twofold Te decreases compared to the FPMD results.
This result is in agreement with the occurrence of three-
fold Te in amorphous AsTe3, which were longly addressed
in the literature.84,85 Unsurprisingly, the MLIPA(2) repro-
duce close result to MLIPA(0) and FPMD ones, while an
overestimation of the FPMD values is observed in the case
of MLIPA(1). We recall that this latter, MLIPA(1), turned
out to be unstable when producing systems larger than
240 atoms.

4 CONCLUSION

In this work, we present an automated workflow able to
deliver accurate and stable MLIP by efficiently exploiting
the FPMD data. Our strategy relies on the exploita-
tion of a local atomic environment descriptor based on
SOAP descriptor and a long-range descriptor based on the
Coulomb matrix to build a hybrid similarity matrix able
to compare amorphous snapshots. By efficiently tailoring
the mixing between the local and the long-range parts of
the hybrid similarity kernel, we show that one can achieve
a good clustering of the amorphous configurations for
both AsTe3 and TeO2 glassy systems. The clustering pro-
cedure is embedded within an AL loop that finds the best
number of clusters based on a threshold distance cutoff.
Subsequently, the achieved clusters are sampled to build
a training set for MLIP potential fitting in an AL fashion.
The MLIP hyperparameters are optimized through a BO
cycle that ensures an efficient convergence toward an opti-
mal setup that satisfies a user-defined energy convergence
threshold with respect to the reference data. In this man-
ner, we build minimum size databases, on top of which
MLIP can be achieved with ab initio accuracy.
Our workflow is tested on various data sets of glassy

AsTe3 and TeO2 systems, as well as pure TeO2 glass mixed
with TeO2 gamma polymorph, where we show that the
AL clustering procedure based on the output of the hybrid
similarity kernel leads to an efficient clustering of the
amorphous configurations of our systems. Consequently,
less than 200 configurations are generally required to
achieve an MLIP with ab initio accuracy. These MLIP
were used to generate atomistic models with sizes as
large as ≈30 000 atoms exhibiting excellent quantita-
tive agreement with both FPMD reference data and
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TABLE 1 Coordination numbers each chemical species 𝛼 as obtained from the active learning (AL) fit procedure with optimal 𝛿 value
(MLIP(0)), using configurations selected assuming 𝛿=0 (MLIP(1)) and one trained using all available data sets (MLIP(2)). Results computed
by integrating the pair distribution function. For glassy AsTe3 bond radius cutoff between As–As, As–Te, and Te–Te is 3.15 Å, 3.03 Å, and 3.2 Å,
respectively. While for TeO2 and TeO2 + 𝛾-crystal glassy systems, the used bond length cutoff between Te-O is 2.46 Å. Values between
parenthesis correspond to the first-principles molecular dynamics (FPMD) reference model.

𝒏𝜶
Model System size [atoms] 𝜶 MLIP(0) MLIP(1) MLIP(2)
AsTe3(data set A) 240 As 3.06 (3.04) 3.08 3.06

Te 2.13 (2.08) 2.17 2.04
1920 As 3.05 — 3.05

Te 2.14 — 2.04
6840 As 3.06 — —

Te 2.14 — —
30 000 As 3.12 — —

Te 2.14 — —
TeO2(data set B) 480 Te 3.70 (3.65) 3.98 3.72

O 1.85 (1.83) 2.00 1.86
3840 Te 3.71 4.04 3.67

O 1.85 2.02 1.84
12 960 Te 3.72 — —

O 1.86 — —
30 720 Te 3.70 — —

O 1.86 — —
TeO2 + 𝛾-crystal(data set C) 480 Te 3.75 (3.65) — —

O 1.87 (1.83) — —
3840 Te 3.74 — —

O 1.87 — —
12 960 Te 3.74 — —

O 1.87 — —
30 720 Te 3.74 — —

O 1.87 — —

experimental measurements, as shown by the consistency
seen in the structure factors and the PDFs. Furthermore,
our achieved MLIPs are compared to those achieved:
(i) by fitting GAP on all the available data sets (≈1000
configurations). The obtained structures indicate excellent
agreement to those obtained from the AL fit procedure,
which demonstrates that the reduced training data set is
sufficient for training the MLIP, (ii) by fitting GAP on a
database achieved using configurations from clusters that
were created based on only the local atomic environment
similarity matrix (SOAP) as a global similarity metric. As
a consequence of sampling over widely dispersed clusters
with substantial overlap of the amorphous configurations
over several temperature plateaus, the obtained structural
models show strong discrepancy with the FPMD results
and limited stability in the case of AsTe3. Thereby showing
that accounting for long-range correlations can be useful
in building minimal data sets that capture the intricacies

of the network connectivity in the case of amorphous
systems. Overall, our work demonstrates the powerfulness
of AL approaches in efficiently exploiting the FPMD data
and producing accurate atomistic potentials using ML
techniques. Ourworkflow can be readily applied to various
classes of systems, in particular, disordered systems.86
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