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Abstract 49 

Human land use changes have altered soil erosion for millennia with extensive 50 

consequences on terrestrial and aquatic ecosystems as well as on biogeochemical cycles along 51 

the land-ocean continuum. Despite their great importance, past erosion trends have high 52 

uncertainties limiting quantitative estimates of long-term erosion dynamics. Here, we applied a 53 

new approach combining well-dated paleo-records of soil erosion from lake sediments and a 54 

spatially distributed semi-empirical model to simulate annual soil erosion in six lake watershed 55 

systems in the Northwestern Alps during the Holocene. Progressive and abrupt changes in soil 56 

erosion are detected in the six watersheds. Progressive erosion explains most of the soil exports 57 

observed during the Early to Mid Holocene period (from 11,700 to 3,000 cal. yr. BP), while 58 

transient erosion crises (i.e. periods of abrupt increase in the erosion rates spanning 59 

approximately 1,000 ± 500 years) led to massive soil losses during the Late Holocene period (from 60 

3,000 to 1,000 cal. yr. BP). Our coupled approach of proxy-model reconstruction shows that the 61 

transient erosion crises represent the half of the total soil erosion exports during the Holocene. 62 

These estimates defy current representations of large-scale soil erosion during the Holocene that 63 

do not consider transient erosion crises, hence potentially underestimating the anthropogenic 64 

perturbation of lateral fluxes and fate along the land-ocean continuum. Our results further suggest 65 

that erosion and/or land cover proxies need to be consistently integrated into model approaches 66 

when attempting to estimate past variations in mass exports from terrestrial to aquatic ecosystems 67 

over centennial to millennial timescales. 68 
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IV.1 Introduction 72 

Accelerated soil erosion from Anthropogenic Land Cover Change (ALCC) has become a 73 

major threat to land productivity, inland water quality and biogeochemical cycles in the past 74 

centuries (Borrelli et al., 2013; Lal, 2020; Regnier et al., 2013; Sabatier et al., 2014; Syvitski et al., 75 

2005). Moreover, recent studies highlighted that the anthropogenic perturbation of soil erosion 76 

extends over much older periods. More specifically, during the Holocene, the anthropogenic 77 

modifications of watersheds, including vegetation clearance and burning, as well as agricultural 78 

and urban extensions (Ellis et al., 2020), have increased soil erosion rates from approximately 79 

4,000 BP to 2,000 BP (Arnaud et al., 2016; Hoffman & Li, 2009; Jenny et al., 2019; Roberts, 1991; 80 

Syvitski & Kettner, 2011). However, cumulative exports and the extent to which erosion fluxes 81 

have been perturbed by human activities are still rarely constrained quantitatively especially for 82 

preindustrial times (Rapuc et al., 2021; Syvitski & Kettner, 2011) due to the scarcity of observations 83 

and/or the low temporal resolution of paleo-records. Hence, this quantitative gap limits our ability 84 

to disentangle the anthropogenic perturbation of erosion from the natural background flux. These 85 

limits further hamper the investigation of long-term cascading effects along the land-ocean 86 

continuum, such as nutrient loss, reduced carbon storage, declining biodiversity, and soil and 87 

ecosystem stability (Robinson et al., 2017). 88 

 89 

Recent developments in proxy-based approaches from natural archives have provided 90 

great advances in the understanding of past soil erosion spanning centennial to millennial 91 

timescales. Lake sediment archives provide a key source of evidence for assessing soil erosion 92 

that occurs in lake watersheds and are integrative of all fluxes and processes that remove soil, 93 

rock, or dissolved material from the watershed, including gully, till, or rill erosions and bank 94 

undercutting (e.g., Arnaud et al., 2016; Arnaud & Sabatier, 2022; Jenny et al., 2019). More 95 

specifically, accumulation rates of terrigenous materials have been described as a reliable proxy 96 

of soil erosion in lake sediment archives (e.g. Bajard et al., 2016) 97 

 98 

However, only a few studies compare total soil erosion exports between different 99 

watersheds (Bajard et al., 2017; Rapuc et al., 2021; Zhao et al., 2022, 2023). Indeed, extrapolating 100 

lake sediment accumulation rates (g.cm-2.yr-1) to watershed erosion export (t.km-2.yr-1) depends 101 

on various non-linear processes and phenomena related for instance to lake morphometry, 102 

sediment delivery ratios and/or hydrological connectivity. 103 

 104 
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Contrary to those approaches, soil erosion models operate directly at the watershed scale. 105 

Soil erosion models have been improved to provide current estimates of erosion rates from plots 106 

(Chen & Thomas, 2020; Rozos et al., 2013) to large basins and global scales (Naipal et al., 2020). 107 

Nevertheless, erosion simulations over the Holocene period are still uncertain and show 108 

limitations, including the lack of available forcing data such as large scale accurate land cover 109 

reconstructions. Meanwhile, large-scale ALCC reconstructions have emerged from 110 

socioeconomic data and models to overcome the lack of reconstructions derived from pollen fossil 111 

records (e.g., History database of the Global Environment (HYDE), (Goldewijk et al., 2017); 112 

Kaplan and Krumhart 2010 (KK10), Kaplan et al., 2011). We acknowledge that these ALCC 113 

estimates are currently being conducted by an active scientific community, for instance via the 114 

The Past Global Changes (PAGES) LandCover6k initiative (e.g. Harrison et al., 2020). Despite 115 

limitations (i.e., uncertainties in population density estimates, sparse data distribution), recent 116 

global reconstructions of past soil erosion dynamics (Van Oost et al., 2007; Wang et al., 2017; 117 

Wang & Van Oost, 2019) are based on these ALCC socioeconomical reconstructions. These 118 

global approaches have been successfully tested with erosion proxies but from only a few sparsely 119 

distributed sites and only for the last hundred years. 120 

 121 

The objective of this paper is to take advantage of both soil erosion model approaches and 122 

sediment proxies derived from natural archives to provide realistic estimates of soil erosion. To 123 

overcome both paleo and model limitations, our study focuses on erosion dynamics in a specific 124 

region (Northwestern Alps) and aims to explore the whole Holocene period with a high spatial 125 

density of sites within this region. Indeed, the method presented in this paper takes advantage of 126 

previously gathered sediment archives of six nearby watersheds in the Alps integrating paleo 127 

reconstructions of past soil erosion fluctuations (Arnaud, 2014; Bajard et al., 2016, 2017, 2018; 128 

Doyen et al., 2016; Doyen et al., 2013; Giguet-Covex et al., 2011; Higgitt et al., 1991; Jones et al., 129 

2013) and of the soil erosion model approach with the modern calibration/validation of soil erosion 130 

models (Borrelli et al., 2013; Naipal et al., 2015; Panagos, Borrelli, Poesen, et al., 2015). In this 131 

way, temporal variability of past soil erosion proxies (e.g., terrigenous supplies) has been 132 

combined with a RUSLE-based soil erosion reconstitution constrained in time by land cover 133 

change data (HYDE) (Figure 1). The objectives are to: 1) enable soil erosion models to benefit 134 

from the temporal resolution of proxies and 2) provide quantitative estimates of soil erosion, 135 

expressed as soil erosion unit in t.km-2.yr-1. 136 
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 137 
Figure 1: Methodological framework of the conversion method used in this study. SAR = Sediment 138 

Accumulation Rate in square centimeters per year for Annecy and in centimeters per year for Anterne, TAR = 139 
Terrigenous Accumulation Rate in milligrams per square centimeters per year, Ti = Titanium element count in kilo 140 

count per second, cal. yr. BP = calibrated year before present, SRP = Scientific Reference Period, EDF = Empirical 141 
Density Function. 142 

The combined use of erosion proxies and a soil erosion model will allow us to provide 143 

harmonized quantitative estimates of soil erosion within the study area. These new estimates 144 

result in a nearly twofold increase of the previous RUSLE-based estimations of soil erosion 145 

spanning the Holocene (i.e. Wang & Van Oost, 2019). 146 

IV.2 Material and methods 147 

Study sites 148 

Six alpine lake watersheds have been used for this study (Petit Lac d’Annecy, Anterne, 149 

Benit, Moras, Paladru & La Thuile) within the Northwestern Alps (Figure 2). These study lakes 150 

were chosen for the availability of terrigenous proxies in their respective lacustrine sediment 151 

sequences covering from the last 2000 years to the last 12 000 years (Table 1). 152 
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 153 
Figure 2: Location of the six study lakes and their watersheds in the Northwestern Alps. Lake areas are in blue, 154 

Lake watersheds contour in black line, River channels in blue line, RUSLE grid of five hundred meters spatial 155 
resolution in black mesh, the HYDE landuse for the year 2017 has been drawn to represent the proportion of the study 156 

area where the land use intensity (i.e. cropland and pastures) is under 10 percent in green and above 10 percent in 157 
red per HYDE mesh for present time. 158 

Site Core Erosion proxy Time period 
(cal. yr. BP) Source 

Annecy LA13 SAR (cm2.yr-1) [0 ; 4350] Jones et al., 2013 

Anterne ANT-07  SAR (cm.yr-1) [0 ; 9550] Giguet-Covex et al., 2011 

Benit BEN14 & BEN16  TAR (mg.cm-2.yr-1) [-50 ; 2110] Bajard et al., 2018 

Moras MOR08-MC TAR (mg.cm-2.yr-1) [-50 ; 3950] Doyen et al., 2013 

Paladru PAL09-MC Ti (kcps) [-50 ; 10025] Doyen et al., 2016 

Thuile THU10 Erosion (t.km-2.yr-1) [-64 ; 12010] Bajard et al., 2017 

Table 1: Erosion proxies used in this study: SAR = Sediment Accumulation Rate in square centimeters per year for 159 
Annecy and in centimeters per year for Anterne, TAR = Terrigenous Accumulation Rate in milligrams per square 160 
centimeters per year, Ti = Titanium element count in kilo count per second, Erosion = sediment yield in tons per 161 

square kilometer per year, cal. yr. BP = calibrated year before present. 162 

All the study sites are of glacial origin and are distributed along a southwest to northeast 163 

altitudinal gradient with watershed maximum altitudes ranging from 420 meters above sea level 164 

(asl) for the Moras watershed to 2,494 meters asl for the Anterne watershed (Table 2). The lake 165 
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altitudes range from 304 meters asl for Lake Moras to 2,063 meters asl for Lake Anterne. The 166 

average annual rainfall ranges from 960 mm.yr-1 for Lake Moras to 1,878 mm.yr-1 for Lake Anterne 167 

(Table 2). Finally, three sites are known for the presence of gully erosion forms within their 168 

respective watershed (Anterne, Benit and La Thuile), potentially indicating high erosion rates. 169 

Site 
Lake 
area 

(km-2) 

Watershed 
area 

(km-2) 

Lake 
alt. 

(m. asl) 

Upstream 
watershed 
alt. (m. asl) 

Annual 
rainfall 

(mm.yr-1) 
Gully 

erosion Source  

Annecy 26.5 170.4 460 2254 1646 No Jones et al., 2013  

Anterne 0.12 2.55 2063 2494 1878 Yes Giguet-Covex 
et al., 2011  

Benit 0.04 0.9 1450 2230 1110 Yes Bajard et al., 2018  
Moras 0.02 4 304 420 960 No Doyen et al., 2013  

Paladru 3.92 55 492 780 1160 No Doyen et al., 2016  
Thuile 0.06 1.6 874 1209 1600 Yes Bajard et al., 2016  
Table 2: Study sites features: Lake area = lake area in square kilometers, Watershed area = watershed area in 170 
square kilometers, Lake altitude = lake altitude in meters above sea level, Upstream watershed alt. = upstream 171 

watershed maximum altitude in meters above sea level, Annual rainfall = mean annual rainfall in millimeters per year, 172 
Gully erosion = presence of gully erosion. 173 

Available data 174 

Proxies 175 

Long-term monitoring of sediment loads in rivers around the world provides evidence for 176 

assessing recent changes in soil erosion, but such records rarely go back more than fifty years. 177 

Nonetheless, many opportunities exist to exploit the natural archives preserved within lake 178 

sediments, river banks, deltas, alluvial and colluvial soils to extend contemporary records and 179 

provide evidence of changes in soil erosion over a range of time scales from decades to millennia. 180 

Among these archives, lake sediments can provide continuous records of erosion, also often 181 

called terrigenous inputs, at various scales corresponding to the size of the lake catchment.  182 

 183 

Various proxies can be used to reconstruct the erosion dynamic (e.g. Giguet-Covex et al., 184 

2023). The diversity of these proxies partly depends on the sedimentary fabric, itself being the 185 

result of physical, chemical and biological features and processes (e.g. geological and climatic 186 

context, vegetation cover, topography). Another factor explaining the diversity of erosion proxies 187 

found in the literature is the access to instrumental measurements by the research teams. In this 188 

study, one terrigenous proxy has been selected per study site (Table 1). The choice was guided 189 

by the previous publications of the different study sites, most of which aimed to trace the erosion 190 

dynamic. Consequently, they proposed and used the most reliable proxy for assessing erosion 191 

dynamic in each system (Table 1). First, the continuous sediment accumulation rate (SAR; cm.yr-192 
1)  is available for a period of 4,350 years for Lake Annecy (LA13, Jones et al., 2013) and for a 193 

period of 9,550 years for Lake Anterne (ANT-07, Giguet-Covex et al., 2011). SARs from lakes 194 

integrate three basic forms of sedimentary processes related to surface erosion, mass movement 195 
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and linear transport. Hence, SARs were computed for the lake-catchment where it was assumed 196 

that the lake productivity fluxes were relatively low or constant over time compared to 197 

allochthonous sources. Second, the terrigenous accumulation rate (TAR; mg.cm-2.yr-1) is available 198 

for a period of 2,160 years for Lake Benit (BEN14 & BEN16, Bajard et al., 2018) and for a period 199 

of 4,000 years for Lake Moras (MOR08-MC, Doyen et al., 2013). TAR has the great advantage of 200 

relating to allochthonous supplies only, and may be useful in reconstructing erosion from lake 201 

archives supplied by significant autochthonous fraction. The relative Ti content from XRF core 202 

scanner analyses (kcps) is available for a period of 10,075 years for Lake Paladru (PAL09-MC, 203 

Doyen et al., 2016). The erosion flux (t.km-2.yr-1) is available for a period of 12,075 years for Lake 204 

La Thuile (THU10, Bajard et al., 2017) and has been the only quantified data already available 205 

and directly exploitable as erosion unit within our study sites. 206 

 207 

All proxies show a global increasing trend in soil erosion over the Holocene (Figure 3), i.e. 208 

minimal values at the beginning of each record and slightly (e.g. Moras watershed) or significantly 209 

(e.g. Annecy watershed) increasing values up to the present time. 210 

 211 
Figure 3: Erosion trends in the six studied sites reconstructed from lake sediment records delimited for the 212 
three SRPs. SAR = Sediment Accumulation Rate in square centimeters per year for Annecy and in centimeters per 213 
year for Anterne, TAR = Terrigenous Accumulation Rate in milligrams per square centimeters per year, Ti = Titanium 214 

element count in kilo count per second, Erosion = erosion flux in tons per square kilometer per year, cal. yr. BP = 215 
calibrated year before present. 216 

Furthermore, some tipping points and/or abrupt peaks can be observed for all records. 217 

Based on this qualitative description, three main periods, not necessarily simultaneous, can be 218 

distinguished. The first and older period can be characterized by a low and relatively stable erosion 219 

rates with, in some cases, a slight increase of the signal toward the most recent period. The 220 
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second period is characterized by an acceleration of soil erosion defining a tipping point in the 221 

signal described in some study sites as an “erosion crisis” (Arnaud et al., 2016 and Bajard et al., 222 

2017), i.e. an ephemeral period of time of major erosion lasting from about a hundred to a 223 

thousand of years, and finally a period of slight but greater erosion increase corresponding to the 224 

post-“erosion crisis” period. These three Scientific References Periods (SRP) are called Pre-Crisis 225 

Period, Crisis Period and Post-Crisis Period, respectively. The starting and ending dates of SRP 226 

defined based on the analyze of the signal structures, described above and discussed in the 227 

previous publications can be found in Table 3. 228 

Site Source 
SRP dates (cal. yr. BP) 

Post-Crisis Crisis Pre-Crisis 

Annecy Higgitt et al., 1991 ; 
Jones et al., 2013 [0 ; 500] [500 ; 2110] [2110 ; 4350] 

Anterne Giguet-Covex et al., 2011 [0 ; 1300] [1300 ; 5550] [5550 ; 10165] 
Benit Bajard et al., 2018 [-50 ; 700] [700 ; 1100] [1100 ; 2110] 
Moras Doyen et al., 2013 [-50 ; 1600] [1600 ; 2200] [2200 ; 3950] 

Paladru Doyen et al., 2016 [-50 ; 1100] [1100 ; 2200] [2200 ; 9950] 
Thuile Bajard et al., 2017 [-64 ; 800] [800 ; 2500] [2500 ; 12010] 

Table 3: Scientific References Periods (SRP) definition and associated references. Three periods are studied in 229 
this study: the Post-Crisis, the Crisis and the baseline conditions relative to the Pre-Crisis. 230 

At this point, despite the reliability of these proxies, conducting an intercomparison of 231 

erosion rates between the six sites is challenging due to the lack of a common quantitative 232 

information provided by these proxies, i.e. there is no common unit. This limitation prompted us to 233 

perform erosion model simulations as a complementary approach, and the details of these 234 

simulations of erosion are presented below. 235 

 236 

RUSLE-HYDE 237 

The soil erosion production of each study site has been estimated with a RUSLE-based 238 

soil erosion reconstruction for the whole Holocene period. The well-known Revised Universal Soil 239 

Loss Equation (RUSLE, (Renard et al., 1997; Wischmeier & Smith, 1978)) is a semi-empirical 240 

model able to estimate the mean annual soil loss rate by sheet and rill erosions within a study 241 

area according to the following equation: 242 

𝐸 =  𝑅 ∗  𝐾 ∗  𝐶 ∗  𝐿𝑆 ∗  𝑃 243 

where E (t.ha-1.yr-1) is the annual average soil loss, R (MJ.mm.ha-1.h-1.yr-1) is the rainfall erosivity 244 

factor, K (t.ha.h.ha-1.MJ-1.mm-1) is the soil erodibility factor, C (dimensionless) is the land cover-245 

management factor, LS (dimensionless) is the slope length and slope steepness factor and P 246 

(dimensionless) is the support practices factor (farming direction, strip cropping, etc.) (Panagos, 247 

Borrelli, Poesen, et al., 2015).  248 

 249 
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RUSLE has been yearly computed with the C factor varying each year according to the 250 

HYDE database land use spatialization. While alternative land cover databases are available, the 251 

HYDE database provides a spatially distributed global reconstruction of anthropogenic land cover 252 

changes for the whole Holocene period (11,950 to -67 BP) for 75 dates with a spatial resolution of 253 

5 arcmin (~85 km2 at the equator) (Goldewijk et al., 2017). The HYDE database in this case was 254 

adapted to the regional scale of the study. The other RUSLE factors RKLSP (R, K, LS & P) have 255 

been kept constant over time by using the respective RUSLE2015 raster grid of each factor 256 

(Panagos, Borrelli, Poesen, et al., 2015). This means that the RUSLE erosion simulations 257 

variability is here only driven by the ALCC temporal variability in association with the other factors 258 

spatial variability (Supplementary material, Figure S5). In other terms, only the long-term impacts 259 

of ALCC on erosion have been simulated. Coupling effects with, for example, rainfall erosivity 260 

factor across time are not the purpose of this study. However, we also performed some analyses 261 

to test the potential significance of this factor (see section “Sensitivity analysis of RUSLE-HYDE”). 262 

Cropland, grazing and natural forestland categories have been considered in the RUSLE-HYDE 263 

simulation (RUSLE-HYDE refers in what follows to this RUSLE model forced by the HYDE 264 

database). A respective C factor has been associated with each land use category according to 265 

the literature (Panagos, Borrelli, Meusburger, et al., 2015): 0.233 for cropland areas, 0.0903 for 266 

grazing land areas and 0.0001 for natural forestland areas: 267 

𝐸𝑖 = 𝛼𝑅𝐾𝐿𝑆𝑃 ∗  (𝐿𝑈𝑛𝑎𝑡 𝑖 ∗  𝐶𝑛𝑎𝑡  +  𝐿𝑈𝑔𝑟𝑎𝑧𝑖 ∗  𝐶𝑔𝑟𝑎𝑧 +  𝐿𝑈𝑐𝑟𝑜𝑝𝑖 ∗  𝐶𝑐𝑟𝑜𝑝) 268 

where E is the annual average soil erosion (t.km-2.yr-1), i is the ith simulated year, RKLSP is the 269 

RUSLE state parameter, LUnat is the natural forestland fraction, LUcrop is the cropland fraction, 270 

LUgraz is the grazing land fraction, Cnat is the natural forestland C factor, Ccrop is the cropland C 271 

factor and Cgraz is the grazing land C factor. 272 

 273 

The range of the values simulated with RUSLE-HYDE are shown in Figure 4 for the six 274 

watersheds. It should be noted that the RUSLE-HYDE model did not simulate the erosion Crisis 275 

Period recorded by the proxies at the different sites. If the erosion model provides quantitative 276 

estimates but contradict the temporal trend shown by the proxies, it must be concluded that the 277 

proposed model and approach is not suitable for solving our problem. The idea then arises of 278 

whether it is possible to reconcile the presumably accurate temporal variability of erosion provided 279 

by the proxies (i.e. non-quantitative or semi-quantitative) with the quantitative estimates of the 280 

erosion model by developing an original approach based on statistics using the signals variability. 281 



 

 - 12 - 

 282 
Figure 4: Erosion trends simulated with erosion models for each individual Alpine study site, in tons per 283 

square kilometer per year. Note that RUSLE-PALEO (red), a simulation constrained by sediment proxies, effectively 284 
captures the erosion crisis. On the other hand, RUSLE-HYDE (blue), which is not constrained by sediment proxies, 285 

fails to do so. This underscores the significance of considering local proxy controls when simulating past erosion 286 
dynamics. 287 

RUSLE-PALEO: combine proxy-data with the RUSLE-HYDE model 288 

The approach proposed here to reconstruct the erosion dynamic quantitatively and in a 289 

way that is comparable across different locations and spatial scales consists in converting paleo-290 

environmental data of erosion into erosion units by taking advantage of outputs from soil erosion 291 

models (RUSLE-HYDE model). In other words, the goal is to find the conversion function that 292 

allows to convert non quantitative or semi-quantitative proxies values into quantitative soil erosion 293 

values expressed with the same unit (t.km-2.yr-1) as with the RUSLE quantitative estimates. 294 

Directly comparing proxies and RUSLE-HYDE time series is not feasible. Indeed, as an example, 295 

linear regressions between RUSLE-HYDE and proxies show a weak correlation factor (cf. Table 296 

4: R2 raw data column; Supplementary material, Figure S6). This can be easily understood as the 297 

RUSLE-HYDE time series displays periods with variability comparable to that of the proxies (Post-298 

Crisis Period), alongside periods with little variability, whereas the proxies exhibit high peak values 299 

(Crisis Period Figure 3 and Figure 4). 300 

Site Post-Crisis SRP 
(cal. yr. BP) 

R2 

(raw data) R2 EDF Slope correlation Scaling constant 

Annecy [0 ; 500] 0.66 0.85 1190.83 - 45.44 

Anterne [0 ; 1300] 0.24 0.91 2062.28 -74.87 

Benit [-50 ; 700] 0.02 0.96 5.93 -11.54 

Moras [-50 ; 1600] 0.02 0.87 0.51 -1940.66 

Paladru [-50 ; 1100] 0.09 0.93 1.20 -86.89 
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La Thuile [-64 ; 800] 0.10 0.94 1.00 1.17 
Table 4: Correlation metrics between erosion trends from model (RULSE-HYDE) and proxies (lake sediment 301 

records). Metrics are provided for raw data and after EDF conversion. Erosion values have been correlated over the 302 
Post-Crisis SRP. Post-Crisis SRP = Post-Crisis Scientific References Period in calibrated year before present, R2 raw 303 

data = correlation between entire raw proxy and RUSLE-HYDE time series, R2 EDF = correlation factor between 304 
quantiles of the EDF established on the Post-Crisis SRP, Slope correlation = slope of the correlation between EDFs. 305 

Our erosion signals incorporate both 1) temporal variability, representing periods of 306 

high/low signal variability, and 2) statistical variability, reflecting distributions of values with varying 307 

proportions of high/low values. Concerning temporal variability, it is noteworthy that numerous 308 

processes can take place along the watershed between the soil erosion production (simulated by 309 

the soil erosion model) and the cumulative sedimentation at the bottom of the studied lakes 310 

(measured by the proxy): deposition and remobilization on hillslope pathways (i.e. the sedimentary 311 

cascade that can be more or less significant in the different topographical contexts and can be  312 

expected to increase with the size of watersheds), lake hydraulic dynamics, etc. These processes 313 

are not considered by the RUSLE model. For these reasons, it cannot be assumed a priori that 314 

the proxy time series and the soil erosion model simulations are synchronous, as possibly large 315 

and varying time delays may occur between soil erosion and lake sediment accumulation 316 

(Hoffmann, 2015). This is the key assumption underlying the proposed approach to converting 317 

different erosion proxies into comparable erosion rates between sites. The conversion function 318 

has then to be established independently of the temporal variability of both proxies and RUSLE 319 

time series. But the statistical variability of both signals can still be considered as relevant and be 320 

used to build this conversion function. 321 

 322 

A suitable mathematical tool to analyze the statistical variability of a signal independently 323 

of its temporal variability is the Empirical Distribution Function (EDF). An EDF is an estimate of 324 

the Cumulative Distribution Function (CDF) F, which can be defined for a real-valued variable X 325 

by the following equation: 326 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) 327 

where P is the probability that the variable X takes on a value less than or equal to x. 328 

The EDF then takes the value 0 when x = xmin , and the value 1 when x = xmax , with xmin and xmax 329 

being the minimal and maximal values of a given sample, respectively. If the EDF of a given signal 330 

is a straight line, this means that the signal contains the same proportion of each range of its 331 

values (i.e. as much as low and high values). If the EDF is convex, this means that the signal 332 

contains a larger proportion of high values, and if the EDF is concave, this means that the signal 333 

contains more smaller values.  334 

 335 

Once the EDFs of the proxy has been built, it can be confronted to the EDF of the 336 

associated RUSLE simulation. By selecting a given set of quantiles (Q), it is possible to establish 337 
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a relation between the EDF of the RUSLE simulation and the EDF of the proxy signal by 338 

interpolating a function between the associated QRUSLE values and the QProxy values for the chosen 339 

set of quantiles:  340 

𝑄RUSLE = f(QProxy) 341 

In this study, a set of quantiles from 10% to 100% by steps of 5% have been chosen to 342 

sample the different EDFs. Also, without any proven reason to use more complex approach, a 343 

simple linear interpolation has been established between the quantile values of the RUSLE’s EDF 344 

and the quantile values of each proxy’s EDF: 345 

𝑄𝑅𝑈𝑆𝐿𝐸 = 𝑎. 𝑄𝑃𝑟𝑜𝑥𝑦 + 𝑏 346 

where a is the slope correlation, b is the intercept value. 347 

 348 

Reaching this point, it is now possible to convert non quantitative proxies’ values into 349 

quantitative values with the RUSLE simulation. Altogether, the step by step method summarised 350 

in Figure 1 consists in: 351 

1. Extract the data of both proxy and RUSLE data on the time period with the most similar 352 

statistical variability between the two signals, the Post-Crisis Period SRP in our case. 353 

2. Build the EDFs of both proxy and RUSLE data subseries. 354 

3. Associate each value of both proxy and RUSLE data to the chosen set of quantiles (from 355 

10% to 100% by steps of 5% in our case) from its respective EDF. 356 

4. Establish a regression model between the paired values of the proxy’s EDF and the 357 

RUSLE’s EDF, a linear relationship in our case (Figure 5). 358 

5. Convert the proxy into a quantitative RUSLE value with the regression model. 359 

 360 
Figure 5: Correlation metrics (R2 and p-value) between model (RULSE-HYDE) and proxies (lake sediment records) 361 

data after the EDF conversion. Estimated erosion values have been correlated over the Post-Crisis SRP. SAR = 362 
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Sediment Accumulation Rate in square centimeters per year for Annecy and in centimeters per year for Anterne, TAR 363 
= Terrigenous Accumulation Rate in milligrams per square centimeters per year, Ti = Titanium element count in kilo 364 

count per second, Erosion = erosion flux in tons per square kilometer per year. 365 

The question remains of choosing the relevant time period to set up the EDFs correlation. 366 

As mentioned above, the Crisis Period is obviously not suitable for comparison between proxies’ 367 

time series and RUSLE simulations as the RUSLE simulations deeply fails to simulate this peak 368 

variability. The Crisis Period has then not been considered to establish proxies’ conversion 369 

functions. The Pre-Crisis Period shows little variabilities for proxies and nearly constant values of 370 

the RUSLE simulation (Figure 4): it makes little sense to correlate a signal with a quasi-constant 371 

or event constant signal. This period is then not suitable for the EDFs correlation, but it is worth 372 

noting that this period is in a way still taken into account as it represents the minimal values for 373 

proxies time series and RUSLE simulations, minimal values which are used in the method 374 

described before. It appears then that the period with the most similarity between the proxies and 375 

RUSLE-HYDE statistical variabilities is the Post-Crisis Period, i.e., the period from the present to 376 

the end of the Crisis Period. 377 

 378 

Due to the interpolation, it is not certain that the converted proxy value will be greater or 379 

equal to zero at this step, as it should be. To ensure that the converted proxies have all values 380 

greater or equal to zero instead of using raw values of proxies and RUSLE simulations, the method 381 

has been applied on the values of proxies minus their minimum value on the all Holocene period 382 

and on the values of RUSLE minus their minimum value on the all Holocene, which is 383 

corresponding in all cases to the minimum value of the Pre-Crisis Period. Furthermore, the linear 384 

interpolations have been performed forcing the intercept term to be equal to zero and the final 385 

relationship between the QRUSLE values and the QProxy values has been corrected from their 386 

respective minima with a scaling constant c (Table 4). 387 

 388 

The method suggested here has then been applied for the six watersheds on the Post-389 

Crisis Period. In what follows, the converted erosion proxies using RUSLE in the study watersheds 390 

are called RUSLE-PALEO data (Figure 4). 391 

 392 

Estimation of uncertainties 393 

Erosion proxies conversion 394 

The confidence interval of each EDF has been estimated with the Dvoretzky-Kiefer-395 

Wolfowitz (DKW) inequality (Dvoretzky et al., 1956): 396 

𝑃(𝐿(𝑥) ≤ 𝐹(𝑥) ≤ 𝑈(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ≥ 1 −  397 

𝐿(𝑥) = 𝑚𝑖𝑛{𝐹(𝑥) + , 1} 398 

𝑈(𝑥) = 𝑚𝑎𝑥{𝐹(𝑥) − , 0} 399 
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 400 

where  is the margin of error, n is the number of data points and  is the confidence level. 401 

 402 

The DKW inequality has been applied on the EDF distribution of each study site 403 

(Supplementary material, Figure S3) to approximate the uncertainties of RUSLE-PALEO. 404 

 405 

Sensitivity analysis of RUSLE-HYDE 406 

The inherent limitations of the RUSLE model to represent some key processes of erosion 407 

like soil incision (e.g. gully erosion) and the limited forcing data available (mainly for rainfall and 408 

soil erodibility) do not allow us to explore the specific controlling factors of erosion over long-term 409 

trends, but rather to investigate whether the simulated erosion values are included within realistic 410 

orders of magnitude. Despite these limitations, it is probably reasonable to assume that there does 411 

exist a 'natural variability’ of the forcings factors throughout the Holocene. Additionally, an 412 

‘anthropogenic variability’ could have been triggered by human activities over short-term periods, 413 

in particular during Crisis Periods. The effects of these two variabilities on erosion can be tested 414 

using a sensitivity analysis, targeting a range of realistic values of the forcing factors of the erosion 415 

model. 416 

 417 

The land use intensity, the rainfall erosivity and the soil erodibility have been considered 418 

as the most relevant forcing factors to explain long-term erosion dynamics in the Northwestern 419 

Alps according to the hypothesis raised by (Bajard et al., 2016, 2017; Giguet-Covex et al., 2011, 420 

2014, 2023) in this specific region. Indeed, according to the non-arboreal pollen data in most of 421 

our study sites (Supplementary material, Figure S1), there were low landscape opening intensities 422 

during the Pre-Crisis Period, then a clear increase in landscape opening appeared during the 423 

Crisis Period, suggesting a strong variation in land cover change, and finally the Post-Crisis Period 424 

has experienced a higher intensity of landscape opening than in the Pre-Crisis Period. At the 425 

alpine scale, annual rainfall appears to have remained fairly stable over the last 8,000 years 426 

according to (Arthur et al., 2023), but the uncertainty of the rainfall estimations is about 50 %. In 427 

several study sites, the organic horizons of the soils formed during the Early to Mid Holocene 428 

period have given way to deeper and more erodible horizons over the most recent periods (marls 429 

in La Thuile watershed, flysch rocks in the Bénit watershed and black shales, calcshales and 430 

shales in Anterne). 431 

 432 

The sensitivity analysis of RUSLE-HYDE has been conducted with six scenarios of land 433 

use intensity (C factor), rainfall erosivity (R factor) and soil erodibility (K factor) (Supplementary 434 

material, Table S1). These scenarios consider the influence of both natural and anthropogenic 435 
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potential variabilities on soil erosion according to realistic variations in the identified forcing factors 436 

over the whole Holocene period, and more specifically during the Crisis Period of each study site. 437 

The natural variability has been simulated with variations of  20 %, and the anthropogenic 438 

variability has been simulated with variations greater than  20 %. 439 

IV.3 Results and interpretations 440 

Method corroboration 441 

The relationships between proxies’ quantiles and RUSLE-HYDE quantiles are relatively 442 

linear in the chosen period and led to acceptable correlation coefficients compared to the raw 443 

correlation coefficients between the RUSLE-HYDE and the proxies from the full periods, except 444 

for the Annecy and Anterne watersheds (Figure 4 and Table 4). Moreover, the slope correlation 445 

factor from the linear regression is equal to 1 on the La Thuile watershed (Table 4). This is 446 

reassuring, as the La Thuile proxy is already expressed as a soil erosion unit (the only one among 447 

the six watersheds). It is worth noting that this small watershed with steady slopes, a short hillslope 448 

length and a simple lake watershed shape is expected to have a close relationship between soil 449 

erosion production and sediment accumulation in its lake. It was then hoped that the conversion 450 

relationship would give a slope factor close to 1, as it is the case. This is then a good corroboration 451 

test for the method suggested in this paper. 452 

 453 

RUSLE-HYDE underestimation 454 

The Relative Difference (RD) between RUSLE-PALEO and RUSLE-HYDE has been 455 

estimated using the following equation: 456 

RD = 𝑅𝑈𝑆𝐿𝐸−𝑃𝐴𝐿𝐸𝑂     −     𝑅𝑈𝑆𝐿𝐸−𝐻𝑌𝐷𝐸
𝑅𝑈𝑆𝐿𝐸−𝑃𝐴𝐿𝐸𝑂

 * 100 457 

where RD is expressed in percentage RUSLE-HYDE and RUSLE-PALEO are both expressed in 458 

t.km-2.yr-1. 459 

 460 

The RD for our six sites shows an underestimation of RUSLE-PALEO by RUSLE-HYDE 461 

ranging from 3% for Annecy to a maximum of 60% for Anterne, with an overall underestimation of 462 

51% for all the sites (Table 5). This means that modeling soil erosion with HYDE is omitting close 463 

to the half of soil erosion exports during the Holocene, at least within our study sites. This 464 

underestimation is mainly due to the failure of RUSLE-HYDE to reproduce the Crisis Periods. 465 

 Denudation (cm) Erosion (t.km-2.yr-1) Proportions (%)  

Site 
Total 
DD 

Crisis 
DD 

Mean 
full period 

Mean 
Post-Crisis 

Mean 
Crisis 

Mean 
Pre-Crisis 

Confidence 
interval 

Total 
RD 

Part 
Crisis 

Annecy 33.84  16.92 15.43  6.17 155.36 364.60 132.87 23.10  49.82 3.87 45.59 

Anterne 106.34  16.38 68.02  7.31 195.11 390.52 264.09 11.80  22.35 60.45 63.97 

Benit 9.56  7.43 4.02  1.40 88.27 83.65 150.56 19.65  45.55 38.01 42.09 
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Moras 268.91  163.29 140.90  26.19 1564.53 640.58 3107.09 118.45  568.48 53.91 52.40 

Paladru 95.47  36.83 33.15  4.01 223.38 390.03 593.52 52.63  47.49 54.08 34.73 

La Thuile 10.81  1.73 6.77  0.24 69.62 49.65 130.35 1.67  1.87 23.81 62.61 

Sites 524.91  242.58 268.29  45.32 382.71 319.84 729.75 37.88  122.59 51.13 51.11 

Table 5: Estimates of soil denudation and erosion rates from RUSLE-PALEO. Total DD = cumulative sum of soil 466 
Denudation Depth in centimeters, Crisis DD = cumulative sum of soil Denudation Depth in centimeters for the Crisis 467 
Period, Mean full period = average soil erosion rate for the full period in tons per square kilometer per year, Mean 468 

Post-Crisis = average soil erosion rate for the Post-Crisis Period in tons per square kilometer per year, Mean Crisis = 469 
average soil erosion rate for the Crisis Period in tons per square kilometer per year, Mean Pre-Crisis = average soil 470 

erosion rate for the Pre-Crisis Period in tons per square kilometer per year, Confidence interval = uncertainty 471 
estimated with the DKW inequality in tons per square kilometer per year, Total RD = total relative difference between 472 
RUSLE-PALEO and RUSLE-HYDE in percentage, Part Crisis = fraction of the total soil erosion attributed to the Crisis 473 

Period in percentage. 474 

Soil erosion quantification and study sites inter-comparison 475 

The aim of our approach based on statistics is to convert diverse erosion paleo-proxies of 476 

erosion into a signal with a unique, and thus comparable, unit. Such approach may contribute to 477 

intercompare watersheds behaviors using proxies that are not easily quantitively comparable at 478 

first (Figure 4). 479 

 480 

The average RUSLE-PALEO erosion rate for the six watersheds is approximately 383 [70 481 

; 1,565] t.km-2.yr-1 for the full period (Table 5), revealing notable differences among the study sites 482 

with for instance estimated erosion values nearly 30 times greater for the Moras watershed than 483 

for the Benit watershed. Erosion estimates for the Post-Crisis Period (320 [50 ; 641] t.km-2.yr-1) 484 

align with estimations from other studies conducted in the Alps for the last century, ranging from 485 

385, 450, to 527 t.km-2.yr-1 (Hinderer et al., 2013; Panagos, Borrelli, Poesen, et al., 2015; 486 

Vanmaercke et al., 2011) and of 343 t.km-2.yr-1 for Europe (Fendrich et al., 2022). Though, the 487 

overall variability of erosion rates of the six study sites during the Post-Crisis Period is comparable 488 

with the variability in the Alps, but is really much higher than the variability in Europe (Figure 6). 489 

The range of variation recorded in watersheds ranging from the mountainous to the nival belts (La 490 

Thuile, Bénit and Anterne) is also close to the estimations provided for two periods, in 1950’s and 491 

in 2016, for the municipality of Montaimont, which cover the same vegetation belts and integrate 492 

similar landuse (2900 and 1600 t.km-2.yr-1, respectively) (Elleaume et al., 2022). The erosion 493 

estimates are much higher for the Crisis Period (730 [130 ; 3,107] t.km-2.yr-1) for most of the study 494 

sites, especially in Moras, Paladru, Benit and La Thuile, compared to the Post-Crisis Period (320 495 

[50 ; 641] t.km-2.yr-1) and the Pre-Crisis Period (38 [2 ; 118] t.km-2.yr-1) (Table 5 and Figure 6), This 496 

is underlying the major impact of transient erosion crisis on erosion rates during the Holocene in 497 

the Northwestern Alps with an average 20-fold increase in erosion rates from the Pre-Crisis 498 

conditions to the Crisis Period. Of course, these average values are given as rough estimates as 499 

they were not calculated on the same time periods (Figure 5 and Figure 6), but one may still 500 
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consider them as indicators of 1) the intensity of erosion within each study watershed, and thus of 501 

their erosion sensitivity and 2) of the spatial and temporal variability of this erosion intensity within 502 

the study area, especially considering the different erosion regimes during the Pre-Crisis Periods, 503 

the Crisis phases, and the Post-Crisis Periods. 504 

 505 
Figure 6: Soil erosion estimates for the Post-Crisis (left panel), for the Crisis (middle panel) and for the Pre-Crisis 506 
(right panel) Periods in the six study sites. Erosion is estimated with RUSLE-Paleo and is expressed in tons per 507 

square kilometer per year. 508 

Regarding the total soil denudation calculated based on Bajard et al., 2017; Hinderer et al., 2013 509 

with a mean bulk density of the soil of 1.3 g.cm-3 (Bajard et al., 2017), the Crisis Period represents 510 

approximately 51% of the total sediment export during the Holocene in our study sites (268  45 511 

centimeters for the Crisis Period versus 525  243 centimeters for the whole Holocene period; 512 

Figure 7, Table 5). This clearly shows that significant amounts of soil have been lost in the study 513 

watersheds during this period.  514 
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 515 

 516 
Figure 7: Cumulative soil denudation depth (cm) simulated by RUSLE-PALEO (red) and RUSLE-HYDE (blue). 517 

Panel a) presents the results per study site, while panel b) displays the cumulative sum for all the study sites. 518 

Sensitivity analysis 519 

The study sites do not respond equally to the chosen scenarios (Supplementary material, 520 

Table S1; Figure S4). For example, the scenario which best represents the erosion rates estimated 521 

for the Annecy watershed corresponds to the RUSLE-HYDE S0 scenario, i.e. by varying the C 522 

factor by + or - 20%. For the Moras and Paladru watersheds, the erosion rates simulated for the 523 

Crisis Period are reached close to the RUSLE-HYDE S4 scenario, i.e. by varying the C factor by 524 

+ 500 or - 50% and the R and K factor by + or – 50%. For the La Thuile watershed these values 525 

are reached close to the RUSLE-HYDE S6 scenario i.e. by varying the C factor by + 2000 or - 526 

50% and the R and K factor by + or – 50%. What these scenarios have in common is that the 527 

a) 

b) 
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erosion rates of the Crisis Periods were achieved by changing substantially the C factor, in other 528 

word the land cover-management factor.  529 

IV.4 Discussions and perspectives 530 

Method limitations & opportunities 531 

Some limitations and cautions can be raised. The choice of the erosion model may itself 532 

be questioned. The parsimonious RUSLE modeling approach is largely used by the soil 533 

community (e.g. Borrelli et al., 2020; Efthimiou, 2014; Naipal et al., 2015; Rozos et al., 2013). 534 

Nevertheless, the RUSLE model has limitations. For example, this model is fitted to compute 535 

average annual sheet and rill erosion and is not appropriate to compute gully erosion or extreme 536 

seasonal erosion events. Using RUSLE to reconstruct Holocene erosion is then recommended for 537 

watersheds that have few or no occurrences of gully erosion. Alternatively, one should consider 538 

employing our approach by using a more complex model capable of reproducing gully erosion, 539 

such as the Erosion Potential Model (EPM) (Gavrilović, 1962). In our study, only three lake-540 

watersheds recorded gully erosion, with limited extension in terms of area, over the six study sites. 541 

Consequently, erosion fluxes related to gully erosion should have been only minimally 542 

underestimated. This statement is also supported by the good linear correlation with a slope close 543 

to 1 between the proxy-based estimation of the erosion rates (Bajard et al., 2017) and the output 544 

of the RUSLE-PALEO approach at La Thuile, i.e. one gully-affected site (Figure 4). In our study, 545 

it is then not assumed that the use of RUSLE significantly affected our overall methodological 546 

development. Still, the ease of use of the RUSLE model provides an interesting tool to estimate 547 

long-term erosion dynamics at various spatio-temporal scales once these limitations have been 548 

taken into account. In a broader perspective, erosion models can also be useful to estimate 549 

processes and forcings involved in erosion dynamics and/or testing hypothesis. 550 

 551 

The erosion model has been forced in this study by the HYDE database. In the same way, 552 

one could question this choice. HYDE provides land use change reconstructions based on 553 

population density fluctuations over time. Other datasets exist to reconstruct past land cover that 554 

could be considered as viable alternatives to HYDE: pollen or sedaDNA datasets (e.g. Messager 555 

et al., 2022; Noël et al., 2001; Roberts et al., 2018) and vegetation dynamic models (e.g. 556 

REVEALS, Githumbi et al., 2022; LOVE,  Sugita, 2007; Anderson et al., 2006; Marquer et al., 557 

2020). Each of these methods, along with HYDE, have their own limitations, especially when 558 

applied over long time periods. Indeed, for instance, raw pollen or plant sedaDNA data are not 559 

producing a quantification of the land cover, but only relative changes. Furthermore, pollen 560 

provides local and regional signals and the exact source areas of pollen from the different species 561 

are not well known. On the contrary, sedaDNA origin is limited to the catchment area, but 562 

taphonomic issues of changes in the sources contributing to the signal may bias the 563 
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reconstructions of the land cover at the catchment scale (Giguet-Covex et al., 2019, 2023; Morlock 564 

et al., 2023). However, as sedaDNA is expected to be transferred mainly by erosion processes, 565 

we expect this tool to be highly relevant for tracking land cover evolution specifically in areas 566 

affected by erosion (Giguet-Covex et al., 2023; Morlock et al., 2023). Vegetation modelling from 567 

pollen records provide quantitative data but also has limitations linked to model assumptions and 568 

to the spatial resolution of the model that don’t really fit with the catchment scale. Because of these 569 

limitations, there is a risk that these methods do not entirely reproduce the true variations in past 570 

land cover changes, potentially leading to discrepancies and asynchrony between the RUSLE 571 

model based on these reconstructions and the erosion signal recorded in the sediment core. The 572 

development of our method allows us to overcome these limitations by focusing on the range of 573 

values rather than their exact synchronicity. Therefore, we recommend the use of land cover 574 

reconstructions that, at the very least, allow the erosion signal to be accurately reproduced during 575 

periods covering a wide range of values, such as those recorded during the Post-Crisis Periods in 576 

our study areas, in order to be able to apply our proposed conversion method (see method 577 

section). 578 

 579 

Our method is model-dependent because it relies on the calibration of the simulated 580 

erosion rates, but is also erosion proxy-dependent because it relies on the temporal variability of 581 

the proxy used in the conversion. In our case, we have considered the most relevant terrigenous 582 

proxy possible and available per study site. They differ from one site to another, and some proxies 583 

are best fitted to represent the incoming sediment yield from the watershed. Consequently, the 584 

quality of the outputs between our study sites is variable, which explains why we remained very 585 

general in the section “study site intercomparison”.  One may consider that the ‘ideal’ proxy would 586 

integrate only the terrigenous supplies from the watershed and its conversion in flux in g.cm-2.yr-1, 587 

by using also the sedimentation rate and the dry sediment density (i.e. TAR in Benit and Moras, 588 

Arnaud, 2014; Bajard et al., 2018; Doyen et al., 2013). However, this proxy does not consider the 589 

organic contribution to the terrigenous input, but only the minerogenic ones, and may thus 590 

underestimate the erosion estimates. Furthermore, we have to keep in mind that such 591 

quantifications, especially the amplitude of changes, can be significantly affected by the 592 

uncertainties in the age-depth model. The more constrained the age-depth model, the better the 593 

quality of the erosion signal. Another proxy that may be considered as “a very good proxy”, is the 594 

erosion rate, i.e. the variable we also want to model for inter-site comparisons. The estimation of 595 

this erosion rate also requires the calculation of  the TAR, but to extrapolate it then at the basin 596 

scale to estimate the entire catchment export (i.e. multiplying the TAR by the corresponding 597 

deposit surface for each sediment depth, for instance by assimilating the shape of the sedimentary 598 

fill to an ellipsoid) and to normalize it by the whole catchment surface (i.e. erosion rate in La Thuile; 599 

Bajard et al. 2017). In highly detrital systems with no significant variations of the dry sediment 600 

density as in Anterne (see Supplementary material, Figure S7a), the sedimentation rate can be 601 
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considered as a robust enough proxy. Finally, in lakes, where the autochthonous fraction can be 602 

significant and where no estimations of the dry density and/or of the minerogenic element 603 

contribution (%) are available, XRF core scanner measurements of a purely terrigenous element 604 

poorly affected by weathering processes may be used as alternative to the TAR and sedimentation 605 

rates (e.g. Ti at Lake Paladru). In conclusion, we recommend the use of the most realistic 606 

simulated erosion rates, at least for the period used for the correlation, and of the best erosion 607 

proxy to minimize uncertainties in the final erosion estimates. Additionally, this methodology would 608 

certainly benefit from further applications in other lake-watersheds and with several erosion 609 

proxies available by study site to assess the variability related with the choice of the proxy and the 610 

robustness of the method. As an example, the method has been tested with another proxy of 611 

erosion for Lake Anterne, the TAR. The quantification of erosion with the latter proxy is close to 612 

the one with the SAR with a Root Mean Square Error (RMSE) metric of 8.23 t.km-2.yr-1 between 613 

RUSLE-PALEO-SAR and RUSLE-PALEO-TAR for the full period (see Supplementary material, 614 

Figure S7b). 615 

 616 

Erosion crises implications on soil ressources & drivers 617 

Our study suggests that Crisis Periods appear to be highly conducive to erosion exports 618 

with likely high impacts on the watershed’s soils. Indeed, such Crisis Periods represent up to 64% 619 

of the total Holocene sediment exports in the study sites on a relatively short period of time, 620 

spanning approximately 1,000 (± 500) years and mainly occurring during the late Holocene (from 621 

3,000 to 1,000 cal. yr. BP). As discussed in Bajard et al., 2017, a non-return threshold of soil 622 

erosion in the Thuile watershed was exceeded during the crisis, with erosion exports higher than 623 

1000 t.km-2.yr-1. A nonreturn threshold of soil erosion has also been described in the Anterne 624 

watershed corresponding to erosion rates above 300 t.km-2.yr-1 from 3,400 cal. yr. BP (Giguet-625 

Covex et al., 2011). At La Thuile, it has been shown that above the non-return threshold reached 626 

during the crisis, soil formation cannot offset erosion exports, resulting in massive soil loss by 627 

exceedance of the tolerable erosion limit of the soil (Bajard et al., 2017). Our estimates of soil loss 628 

thickness during the crises represent a total soil denudation of 268.29  45.32 within the study 629 

sites. However, as RUSLE is only considering the erosion of the fine earth fraction, our estimation 630 

of soil loss  underestimates by 50% the previous estimations for Lake La Thuile (respectively 22 631 

and 10 centimeters in Bajard et al., 2017) where they considered a soil skeleton composed of 50% 632 

coarse elements and plant macroremains. Following the assumption that soil is not fully composed 633 

of fine particles by increasing our estimates by 50% (Egli et al., 2001, 2014), our estimations would 634 

align with previous quantifications of soil denudation for Lake La Thuile with a Holocene total soil 635 

loss of 22 ± 3.46 centimeters and a crises total soil loss of 13.54 ± 0.48 centimeters. 636 

 637 

The drivers of these Crisis Periods are still not fully understood, and it would be relevant to better 638 

understand their causes. A concomitant land openness acceleration with the Crisis Periods has 639 
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been detected in the empirical land openness signal of most of our study sites (Supplementary 640 

material, Figure S1 and Figure S2). Moreover, the sensitivity analysis of RUSLE-HYDE shows 641 

that small variations in ALCC do not appear to explain all the erosion observed in our study sites 642 

(Supplementary material, Figure S4). If a variation of  20% in the C, R and K factors seems to be 643 

sufficient to explain the natural variability of erosion within the Post-Crisis and Pre-Crisis Periods, 644 

the only scenarios that permitted to reach the highest erosion rates observed during the Crisis 645 

Period have been obtained with significant variations in the C factor. This is evidencing the 646 

important sensitivity of erosion to ALCC even during transient time periods. For instance, the 647 

maximum C factor value for the Crisis Period in the La Thuile watershed is 0.149 between RUSLE-648 

HYDE S5 and S6 scenarios. This value can be related to high intensity pastoral and mid intensity 649 

agricultural activities C factor values according to Panagos, Borrelli, Meusburger, et al., 2015, 650 

which is consistent with the pollen diagram and sedaDNA data of this site (Bajard et al., 2016). 651 

The Crisis Period is also better simulated for an increase of 50% of the K factor, i.e. of the soil 652 

erodibility factor, which corresponds to a value of 0.043. Such a K factor value is in the range soils 653 

with a medium fine texture (0.029 to 0.049; Panagos et al., 2014) and not in the range of organic 654 

soils (0.019 to 0.033; Panagos et al., 2014), which may suggest a high contribution of deeper 655 

horizons compared to organic soil surface horizons. The concordance of the RUSLE-PALEO 656 

estimates with these scenarios seems to agree with the hypothesis that transient erosion crises 657 

have been mainly caused by considerable changes in land cover changes by landscape opening. 658 

Indeed, landscape opening could have triggered negative feedbacks on soil by increasing its 659 

susceptibility to rainfall erosivity and by causing incision in top soil horizons. Hence, further work 660 

is needed to consolidate these scenarios to trace back the most realistic causes of erosion crises 661 

in the Northwestern Alps. 662 

IV.5 Conclusion 663 

The method presented here shows that it may be possible to convert non-quantitative or 664 

semi-quantitative proxies to quantitative soil erosion estimates by combining well dated paleo-665 

records and a soil erosion model. This allowed, at least in the watersheds studied here, to show 666 

the transient erosion crises have significantly impacted the erosion rates during the Holocene. Not 667 

considering these Crisis Periods leads to a significant underestimation of the anthropogenic 668 

perturbation of the erosion cycle. Global databases of ALCC such as HYDE are of great interest 669 

to force erosion models. However, their scale may not be suitable, at least until now, to describe 670 

local-scale transient erosion dynamics despite their relatively great impact along the land-ocean 671 

continuum. This could speak in favor of the consistent integration of paleo-data (i.e erosion, 672 

pollens) into soil erosion modelling approaches. 673 
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IV.6 Supplementary material 678 

Supplementary 1 – Land openness empirical signals 679 

 680 
Figure S1: Land openness empirical signal (% of non-arboreal pollens) per study site according to the 681 

literature. References from top to bottom: Jones et al., 2013; Bajard et al., 2018; Doyen et al., 2013; Doyen et al., 682 
2016; Bajard et al., 2016. The black dotted lines and the red shaded area are representing the Crisis SRP of each 683 

study site. 684 

  685 
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Supplementary 2 – Erosion empirical signals 686 

 687 
Figure S2: Erosion empirical signal per study site according to the literature. References from top to bottom: 688 

Jones et al., 2013; Giguet-Covex et al., 2011; Bajard et al., 2018; Doyen et al., 2013; Doyen et al., 2016; Bajard et al., 689 
2017. The black dotted lines and the red shaded area are representing the Crisis SRP of each study site. 690 

  691 
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Supplementary 3 – EDF functions and confidence intervals 692 

 693 

 694 
○: EDF -      ○: EDF    ○: EDF +   695 

Figure S3 : EDF and confidence interval of both RUSLE and Proxy data of each study site. The black points are 696 
the EDF computed in the Post-Crisis SRP, the blue points are the lower bound of the confidence interval of the EDF, 697 

and the red points are the upper bound of the confidence interval of the EDF.  698 
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Supplementary 4 – Sensitivity analysis scenarios for RUSLE-HYDE 699 

Scenario C factor R factor K factor 
 Post-C & Pre-C Crisis Post-C & Pre-C Crisis Post-C & Pre-C Crisis 

S0  20 %  20 %  0 %  0 %  0 %  0 % 

S1  20 %  20 %  20 %  50 %  0 %  0 % 

S2  20 %  20 %  20 %  50 %  20 %  50 % 

S3  20 %  50 %  20 %  50 %  20 %  50 % 

S4  20 % 
+ 500 % 

 20 %  50 %  20 %  50 % 
− 50 % 

S5  20 % 
+ 1500 % 

− 50 % 
 20 %  50 %  20 %  50 % 

S6  20 % 
+ 2000 % 

 20 %  50 %  20 %  50 % 
− 50% 

Table S1: Scenarios used for the sensibility analysis of RUSLE-HYDE per SRP. Post-C & Pre-C refer to the Post-700 
Crisis and Pre-Crisis SRPs and Crisis to the Crisis SRP. 701 

Supplementary 5 – Sensitivity analysis of RUSLE-HYDE 702 

 703 
Figure S4: Sensitivity analysis of RUSLE-HYDE for each study site.  704 
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Supplementary 6 – RUSLE-HYDE factors distribution 705 

 706 

 707 
Figure S5: Respectively, the figures above are showing the: a) temporal distribution of the HYDE-C factor for each 708 

study site, and b) spatial distribution of the RUSLE2015-R, K, LS and P factors for each study site. 709 

  710 

a
) 

b
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Supplementary 7 – Raw correlation between proxies and RUSLE-HYDE 711 

 712 
Figure S6: Correlation metrics (R2 and p-value) between model (RULSE-HYDE) and proxies (lake sediment records) 713 

data before the EDF conversion. The correlated values are colored according to each SRP (Pre-Crisis in green, Crisis 714 
in red and Post-Crisis in grey). SAR = Sediment Accumulation Rate in square centimeters per year for Annecy and in 715 

centimeters per year for Anterne, TAR = Terrigenous Accumulation Rate in milligrams per square centimeters per 716 
year, Ti = Titanium element count in kilo count per second, Erosion = erosion flux in tons per square kilometer per 717 

year.  718 
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Supplementary 8 – Example of the use of another proxy for Lake Anterne 719 

 720 

 721 

Figure S7: Application of the method with the terrigenous accumulation rate (TAR, in g. cm-2.yr-1) for Lake 722 
Anterne: a) Correlation between the TAR and the SAR (used in this study), b) Erosion trends for RUSLE-PALEO with 723 
the SAR data in red and RUSLE-PALEO with the TAR data in grey. Values are in tons per square kilometer per year.  724 
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