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Trajectory tracking for aerobatics maneuvers in quadrotors vehicle

E. Ibarra2 and Pedro Castillo1,2

Abstract— Some inspection missions for quadrotors require
a previous definition of the trajectories before being tracked.
The well design of the trajectory can contribute for the success
of the mission when aggressive maneuvers are demanded. In
this paper, we propose a solution for designing and tracking
unconventional trajectories requiring aerobatics maneuvers in
quadrotors. The trajectory is based on the Hopf bifurcations
and the sliding mode approach to form spiral loops in 3D
around a pillar that need to be inspected by a quadrotor. The
control architecture is based on the sliding mode methodology
adding new parameters for achieving a desired angular velocity
around the stable limit cycle solution. The proposed solution
is validated in simulations and numerical results illustrate the
good performance of the proposed trajectory-tracking control
scheme.

I. INTRODUCTION

Surveillance and inspection tasks become popular for
aerial vehicles, specially for quadrotors. Such missions are
defined in a classical way (waypoints, etc.) and the challenge
here is to keep the aerial vehicle at hover in presence of
external perturbations. Avances in technology give us the
opportunity to develop more complex missions for the UAVs
(Unmanned Aerial Vehicles), improving significantly their
maneuvers.

Aerial path following is not a new challenge and it has
been studied since several years. Nevertheless the trajecto-
ries are classical or in most cases they are defined in the
horizontal plane, see [1]. For example, in [2] a controller
is proposed for path-following under different parameter
settings and wind disturbances. The obtained results are
interesting nevertheless the proposed trajectory is developed
in the horizontal plane. In [3], the author proposes a flight
control system capable to stabilize attitude and tracking a
trajectory accurately using a quadrotor vehicle. Simulation
results validate the proposed controller, nevertheless, from
figures it can observed that the trajectory is a square in 3D
and the vehicle performs only vertical and lateral displace-
ment keeping the orientation to zero. [4] have developed a
nonlinear control based on H∞ to solve the path tracking
problem for a quadrotor. The algorithm was validated in
simulation when the quadrotor follows a spiral trajectory.
This trajectory does not requires bigger changes in the
orientation, reducing the problem to making circles in a
plane and moving in the z axis. In [5], authors solve the
problem of position trajectory-tracking and path-following
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control design for underactuated autonomous vehicles in the
presence of possibly large modeling parametric uncertainties.
The algorithm was validated in simulations when the vehicle
is moving in 2D or 3D space. The trajectory used is a smooth
bounded curve parameterized by time. Similarly, [6] have
developed a method for accurate path following for miniature
air vehicles. The method is based on the notion of vector
fields, which are used to generate desired course inputs
to inner-loop attitude control laws. Experimental results
have demonstrated the good performance of the controller,
nevertheless the trajectory is defined only in the horizontal
plane.

In [9] the problem of constrained nonlinear trajectory
tracking control for UAVs is studied. Nevertheless, the
approach is validated in simulation with conservative tra-
jectories. In [8] the authors have investigated the feasibility
of a nonlinear model predictive tracking control (NMPTC)
for autonomous helicopters. The controller was implemented
an on-line optimization controller using gradient-descent
method. A circular trajectory is used in [7] for validating a
nonlinear control algorithm based on vision measurements.
The control performs well in simulation holding the quadro-
tor orientation stable.

New complex trajectories are now being designed for other
kind of aerial missions, see [10], [11], [12], [15], [13], [14].
In [12] a detailed comparison between two state-of-the-art
model-based control techniques (Linear Model Predictive
Controller (LMPC) vs Nonlinear Model Predictive Controller
(NMPC) for MAV trajectory tracking is presented. The
authors validated their results in real-time nevertheless, they
assume that the vehicle attitude is controlled by an attitude
controller which simplify the control problem. In [15] the
authors addressed a practical approach for optimal trajectory
tracking allowing distributed collision avoidance for multiple
unmanned aerial vehicles sharing the same workspace. The
solution is interesting nevertheless, authors focalized again
only in translation mouvements. In [13], an improved adap-
tive sliding mode (IASMC) control strategy was developed
to control the quadcopter’s attitude, while an interval type-2
fuzzy PID (IT2-FPID) controller was adopted to control the
quadcopter’s position for trajectory tracking. The controllers
were validated in simulations without important changes in
the attitude system. Finally in [14] authors pursued a model-
independent solution to the coordinated trajectory-tracking
control (CTTC) problem, whereby the USV unmanned sur-
face vehicle) is noncooperative with a quadrotor. Even if in
this work, authors proposed trajectory tracking they focus
in solutions for uncertainties, complex unknowns, nonlinear
dynamics, disturbances, and intermediate signals.



In this work, a non-conventional trajectory for aerial
inspection missions in 3D is conceived. The trajectory has
some properties that increases the maneuverability of the
aerial vehicle to perform acrobatic maneuvers. For designing
the trajectory ideas from the bifurcation theory ([17], [18],
[16]) and the concept of the sliding surfaces ([19], [20],
[21]) are considered. In addition, flight properties (nonlinear
dynamics) and constraints (initial conditions, etc) of the
aerial vehicle are taken into account when the trajectory is
conceived for 3D movements. A nonlinear controller based
on the integral sliding mode technique is developed to assure
the trajectory tracking and to achieve robustness since the
beginning.

This solution can be used for different applications where
aerial agressive acrobatic maneuvers are needed. For exam-
ple, for inspecting a pillar, see Figure 1, some constraints
are imposed (the quadrotor needs to point its frontal camera
all time to the pillar for inspect it) and need to be abided by
the controller.

Fig. 1. Inspection mission with acrobatic maneuvers.

This paper is organized as follows; some preliminaries
notions for designing the trajectory are given in section II.
The trajectory is conceived and explained with details in
section III. The nonlinear controller is developed in section
IV. Simulation results showing the good performance of
the controller when tracking the trajectory are also depicted
in this section. Finally, conclusions about this work are
discussed in section V.

II. PRELIMINARIES

In books of nonlinear ordinary differential equations as for
example [17], [18], [16], when the term bifurcation parameter
µ is mentioned, it is referred to describe the type of stable or
unstable solutions around equilibrium points or also stable or
unstable solutions around isolated closed paths, commonly
named limit cycles. As a consequence, the type of stability
is determinated by considering the parameter µ < 0, µ =
0 & µ > 0. For example; consider the system given by
ẋ = y, ẏ = µx with µ ∈ (−∞,∞). The phase diagram

contains a center for µ < 0 and a saddle for µ > 0, these
classifications representing radically different types of stable
and unstable system behaviors. The change in stability occurs
when µ = 0 meaning that a bifurcation occurs.

Note that the limit cycles can only occur in nonlinear
differential equation as for example

ẋ = µx+ γy − x(x2 + y2)
ẏ = −γx+ µy − y(x2 + y2)

(1)

where µ and γ are constant parameters and x, y are states
of the system. The previous system has a single equilibrium
point at the origin. This system can be represented in polar
coordinates defining r2 = x2+y2 and tan(χ) =

y

x
, implying

that x = r cos(χ) and y = r sin(χ). And then

ṙ = r
(
µ− r2

)
, χ̇ = −γ. (2)

One particular solution is r =
√
µ and χ = −γ t, that

corresponds to the limit cycle, x =
√
µ cos (γ t) and y =

−√µ sin (γ t) with t is the time. Also ṙ > 0 when 0 < r <√
µ and ṙ < 0 when r >

√
µ. Observe that if µ ≤ 0,

then the entire diagram consists of a stable spiral at the
origin. If µ > 0 then there is a unstable spiral at the origin
surrounded by a stable limit cycle which grows out of the
origin. Notice that when the parameter µ generates a limit
cycle, the Hopf bifurcation appears. The stability cases with
parameters µ < 0, µ = 0 & µ > 0, with γ > 0 & γ < 0
respectively are shown in Figure 2. Notice from this figure
that the parameter γ is not a bifurcation parameter cause it
only produces a steady clockwise spiral motion if γ > 0,
and a steady counterclockwise spiral motion if γ < 0.

µ < 0
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Fig. 2. Development of a limit cycle in a Hopf bifurcation.

III. TRAJECTORY DESIGN FOR ACROBATIC MANEUVERS

Consider that the X axis of the inertial frame is placed
on the longitudinal part of the pillar as can be appreciated in
Figure 1. Therefore, analyzing the plane (Y,Z) the challenge
will be to obtain a nonlinear system based on (1) that can
guarantee to establish a desired radius r as well as an
angular velocity around an equilibrium point (h, k). This
radius will define the desired position for the aerial vehicle
in the coordinates Y,Z.

Hence, defining y1r and z1r as the desired position of the
vehicle, then

ẏ1r = µy1r + γ z1r − y1r
(
y21r + z21r

)
ż1r = −γ y1r + µz1r − z1r

(
y21r + z21r

)
.

(3)

Notice that the mission requires agressive maneuvers
around the pillar, for this, we will focus in the bifurcation
parameter µ > 0 to generate a limit cycle around the origin.
However the goal will be to have it around any point (h, k)



thus define ey1r = y1r −h and ez1r = z1r −k and it follows
that

ėy1r = µey1r + γez1r − ey1r
(
e2y1r + e2z1r

)
ėz1r = −γey1r + µez1r − ez1r

(
e2y1r + e2z1r

) (4)

with the limit cycle defined as (see Figure 3)

y1r = h+
√
µ cos (γt)

z1r = k −√µ sin (γt) .
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Fig. 3. Approach of two phase paths to the stable limit cycle (y1r −h)2+
(z1r − k)2 = µ, with χ̇ = −γ

Observe from Figure 3 that the paths approach the limit
cycle from both sides, if γ > 0 a steady clockwise spiral
motion is presented. Similarly, if γ < 0 a steady counter-
clockwise spiral motion appears around the limit cycle.

Assuming that (h, k) are constant thus, system (4) can also
be written as

ẏ1r = µey1r + γez1r − ey1r
(
e2y1r + e2z1r

)
ż1r = −γey1r + µez1r − ez1r

(
e2y1r + e2z1r

) (5)

The initial conditions for position are given by (y1r0 , z1r0 ),
then ey1r0 = y1r0 − h and ez1r0 = z1r0 − k. Nevertheless
from (5) the initial conditions for the velocity (y2r0 , z2r0 )
are

y2r0 = µey1r0
+ γez1r0

− ey1r0
(
e2y1r0

+ e2z1r0

)
z2r0 = −γey1r0 + µez1r0

− ez1r0
(
e2y1r0

+ e2z1r0

) (6)

with µ, γ, y1r0 , z1r0 dependency, that could produce high
initial values for the velocity.

Initial independent conditions

The concept of sliding surface is used for rewriting equa-
tions in (5) and allowing the aerial vehicle to have initial
independent conditions in its velocity. Consider the following
system

ẏ1r = y2r ż1r = z2r
ẏ2r = uy ż2r = uz

(7)

and define the sliding surfaces, Sy, Sz as

Sy = y2r − µey1r − γez1r + ey1r

(
e2y1r + e2z1r

)
Sz = z2r + γey1r − µez1r + ez1r

(
e2y1r + e2z1r

) (8)

where uy and uz will be defined later to assure Si → 0
asymptotically and choose freely (y2r0 , z2r0 ). Derivating (8)
with respect to time, it results

Ṡy = uy +
(

3e2y1r + e2z1r − µ
)
y2r +

(
2ey1r ez1r − γ

)
z2r

Ṡz = uz +
(
γ + 2ey1r ez1r

)
y2r +

(
3e2z1r + e2y1r − µ

)
z2r

Thus, propose

uy = −
(

3e2y1r + e2z1r − µ
)
y2r −

(
2ey1r ez1r − γ

)
z2r − kySy

uz = −
(
γ + 2ey1r ez1r

)
y2r −

(
3e2z1r + e2y1r − µ

)
z2r − kzSz.

then it yields,

Ṡy = −kySy; Ṡz = −kzSz (9)

with ky, kz > 0. Solving the previous equations, the solutions
are

Sy(t) = e−ky tSy(0); Sz(t) = e−kz tSz(0) (10)

where Sy(t), Sz(t) → 0 when t → ∞. Notice that (8) is
equivalent to

ẏ1r = Sy + µey1r + γez1r − ey1r
(
e2y1r + e2z1r

)
ż1r = Sz − γey1r + µez1r − ez1r

(
e2y1r + e2z1r

) (11)

and rewriting in polar coordinates, it follows that

ṙ = Sy cos(χ) + Sz sin(χ) + r
(
µ− r2

)
χ̇ =

1

r
Sz cos(χ)− 1

r
Sy sin(χ)− γ. (12)

A particular solution is r =
√
µ and χ = −γ t as in (2).

3D trajectory

For the inspection task, the aerial vehicle must move from
an initial position x1r (0) = x1r0 to a constant desired
position xeq , i.e., ex1r

= x1r − xeq → 0 when t → ∞.
Then, define

ėx1r
= ex2r

ėx2r
= ux

(13)

Propose Sx = ėx1r
+ cex1r

with c > 0, thus Ṡx = ux +
c ex2r and designing ux = −c ex2r − kxSx, with Kx > 0, it
follows that Ṡx = −KxSx, where the solution is given by
Sx(t) = exp (−Kx t)Sx(0) that it is an asymptotic stable



solution. And this implies that ex1r
→ 0 and ex2r

→ 0 when
t→∞. Also observe that (13) is equivalent to

ẋ1r = x2r
ẋ2r = ux

(14)

where ux = −c ex2r
− kxSx, with kx > 0, achieves to do

x1r → xeq and x2r → 0 when t → ∞. Notice that ux can
be expressed as

ux = −kx c︸︷︷︸
kpx

ex1r
− (c+ kx)︸ ︷︷ ︸

kdx

ex2r
(15)

where kpx and kdx are positive constants.
Therefore, the trajectory for acrobatic mission inspection

in 3D is given by

ẋ1r = x2r
ẏ1r = y2r
ż1r = z2r

ẋ2r = ux
ẏ2r = uy
ż2r = uz

(16)

where ux, uy , uz are defined as

ux = −c x2r − kxSx
uy = −

(
3e2y1r + e2z1r − µ

)
y2r −

(
2ey1r ez1r − γ

)
z2r − kySy

uz = −
(
γ + 2ey1r ez1r

)
y2r −

(
3e2z1r + e2y1r − µ

)
z2r − kzSz.

with Si, i : x, y, z, proposed as

Sx = x2r + cex1r

Sy = y2r − µey1r − γez1r + ey1r

(
e2y1r + e2z1r

)
Sz = z2r + γey1r − µez1r + ez1r

(
e2y1r + e2z1r

)
with positive coefficients c, kx, ky , kz and γ > 0 or γ <
0 depending of the sense of turning around the limt cycle
(y1r − yeq)2 + (z1r − zeq)2 = µ.

Numerical validation

Suppose that the aerial vehicle needs to inspect a tube
with coordinates (−9, 10, 3.5) m in its center and with
r = 1m. Thus, the trajectory conditions are: equilibrium
reference at (xeq, yeq, zeq) = (−9, 10, 3.5) m, initial position
(x1r(0), y1r(0), z1r(0)) = (−3, 5, 0) m and initial velocity
(x2r(0), y2r(0), z2r(0)) = (0, 0, 0) m/s with γ = −4 and
µ = 4, and coefficients c = 0.75, kx = 0.4, ky = 2,
kz = 2. The initial position could change as desired by the
user, µ is chosen to be r = 2m that it is bigger than radios
tube. Observe from Figure 4, that using (16) the trajectory
is designed pretty well.

Notice from Figure 5 the asymptotic convergence of Sx,
Sy , Sz to zero, which this means that x1r → xeq = −9 when
Sx → 0 asymptotically, and the dynamics (y1r, z1r) will ap-
proach to the stable limit cycle (y1r − 10)

2
+(z1r − 3.5)

2
=

4 when simultaneously Sy , Sz → 0 asymptotically.
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Fig. 4. Desired trajectory (x1r , y1r , z1r ) in looping spiral.
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Return to the base station

In the aerial mission, once the inspection task is done
in some time TF1 , the aerial vehicle needs to return to
the base station, for our study it is considered to be at
the initial position. Observe that at time TF1

the initial
conditions are given by (x1r(TF1

), y1r(TF1
), z1r(TF1

)) and
(x2r(TF1

), y2r(TF1
), z2r(TF1

)) respectively. Thus, define the
next errors

ẽx1r = x1r − x1r(0); ˙̃ex1r = ẽx2r = x2r
ẽy1r = y1r − y1r(0); ˙̃ey1r = ẽy2r = y2r
ẽz1r = z1r − z1r(0); ˙̃ez1r = ẽz2r = z2r

Therefore the goal will be that at interval time TF1
≤ t ≤

TF , ẽx1r
, ẽy1r , ẽz1r and ẽx2r

, ẽy2r , ẽz2r approach to zero
asymptotically. Propose the following differential equations

˙̃ex1r = ẽx2r
˙̃ey1r = ẽy2r ˙̃ez1r = ẽz2r

˙̃ex2r
= ũx ˙̃ey2r = ũy ˙̃ez2r = ũz

(17)

where ũx, ũy , ũz are the control inputs to achieve asymptotic
convergence of the errors.

Now define the following variables σx, σy , σz and their
derivatives σ̇x, σ̇y , σ̇z as

σx = ẽx2r
+ c̃ ẽx1r

σy = ẽy2r + b̃ ẽy1r σz = ẽz2r + d̃ ẽz1r
σ̇x = ũx + c̃ ẽx2r

σ̇y = ũy + b̃ ẽy2r σ̇z = ũz + d̃ ẽz2r



with positive gains c̃, b̃, d̃. Proposing the control inputs ũx,
ũy , ũz as

ũx = −c̃ ẽx2r
− k̃xσx

ũy = −b̃ ẽy2r − k̃yσy
ũz = −d̃ ẽz2r − k̃zσz

(18)

with k̃i > 0, it follows that

σ̇x = −k̃xσx, σ̇y = −k̃yσy, σ̇z = −k̃zσz (19)

where the solutions at the interval time TF1
≤ t ≤ TF will

be given as σi(t) = exp
(
−k̃i (t− TF1

)
)
σi(TF1

), i : x, y, z,
implying that σi is an asymptotically stable solution. Notice
that if t → TF , with TF = ∞, then this means that σx →
0, σy → 0, σz → 0. Nevertheless we expect to have σx ≈ 0,
σy ≈ 0, σz ≈ 0, for small times TF1 , and this will imply to
obtain

ẽx2r
= −c̃ ẽx1r

, ẽy2r = −b̃ ẽy1r , ẽz2r = −d̃ ẽz1r

whose solutions will be given as

ẽx1r = exp (−c̃ (t− TF1)) ẽx1r (TF1)

ẽy1r = exp
(
−b̃ (t− TF1)

)
ẽy1r (TF1)

ẽz1r = exp
(
−d̃ (t− TF1)

)
ẽz1r (TF1)

Consequently this implies that x1r → x1r(0), y1r →
y1r(0), z1r → z1r(0) and x2r → 0, y2r → 0, z2r → 0.

Note that (17) can be also written as

ẋ1r = x2r ẋ2r = ũx
ẏ1r = y2r ẏ2r = ũy
ż1r = z2r ż2r = ũz

(20)

∀ TF1
≤ t ≤ TF .

Coupling the trajectories

The idea is to design only one trajectory to perform the
mission. Switching between two trajectories programmed
separately could be a problem when the vehicle is moving
fast enough. Therefore, we can propose the following general
trajectory

ẋ1r = x2r ẋ2r = g1(t)ux + f1(t)ũx
ẏ1r = y2r ẏ2r = g1(t)uy + f1(t)ũy
ż1r = z2r ż2r = g1(t)uz + f1(t)ũz

(21)

where g1(t) and f1(t) are given by

f1(t) =

{
e(n(t−TF1

))

1

0 ≤ t < TF1

TF1
≤ t ≤ TF

(22)

g1(t) =

{
1− f1(t)

0

0 ≤ t < TF1

TF1
≤ t ≤ TF

(23)

with n > 0.
From Figure 6 observe that when n increases its value,

during almost all the entire interval time 0 ≤ t < TF1
, f1(t)

remains small and almost zero, even when t takes values

close to TF1. Therefore, it is possible to consider that for
all 0 ≤ t < TF1

, f1(t) and g1(t) could be given by

f1(t) ≈ 0; g1(t) = 1− f1(t)︸ ︷︷ ︸
≈0

≈ 1

assuring that for 0 ≤ t < TF1
and with high values of n > 0,

the system (21) has similar dynamics that (16).
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Fig. 6. f1(t) for different values of n > 0

Finally for the interval time TF1 ≤ t ≤ TF and from (22)
and (23), it yields

f1(t) = 1; g1(t) = 0

Implying that system (21) is the same that (20), this signifies
that (21) takes the same dynamics for returning at the base
station with coordinates (x1r(0), y1r(0), z1r(0)).

Hence it was proved that the system (21) takes two
different dynamics for all the interval time 0 ≤ t ≤ TF .

Numerical validation:
Consider the mission given in section III with same char-

acteristics. The objective is to include the trajectory to return
to the base station (x1r(0), y1r(0), z1r(0)) = (−3, 5, 0) at
time TF1

= 11. The gains for the final phase are c̃ = 2,
b̃ = 3, d̃ = 4, k̃x = 2, k̃y = 4, k̃z = 4 for satisfying (20).

In Figure 7 the two different dynamics can be analyzed,
notice that both are executed at the interval time 0 ≤ t < TF1

and TF1
≤ t ≤ TF .

Fig. 7. Dynamics (x1r, y1r, z1r) with acrobatic motion around
(xeq , yeq , zeq) and return to (x1r(0), y1r(0), z1r(0)).



T ime[sec]
0 2 4 6 8 10 12 14 16

0

1

2

3

4

5

6

Sx (t) = exp (−kx t)Sx (0) for 0 ≤ t < TF1

Sx (t) 6= exp (−kx t)Sx (0) for TF1
≤ t ≤ TF

T ime[sec]
0 2 4 6 8 10 12 14 16

-200

-150

-100

-50

0

Sy (t) = exp (−ky t)Sy (0) for 0 ≤ t < TF1

Sy (t) 6= exp (−ky t)Sy (0) for TF1
≤ t ≤ TF

T ime[sec]
0 2 4 6 8 10 12 14 16

-100

-80

-60

-40

-20

0

Sz (t) = exp (−kz t)Sz (0) for 0 ≤ t < TF1

Sz (t) 6= exp (−kz t)Sz (0) for TF1
≤ t ≤ TF

Sy

Sx

Sz

Fig. 8. Sx, Sy and Sz performance at the interval time 0 ≤ t ≤ TF .

In Figure 8 the asymptotic convergence of Si can be
appreciated, this convergence occurs only at the interval time
0 ≤ t < TF1

, where this guarantees that (x1r, y1r, z1r) will
do the acrobatic maneuver around (xeq, yeq, zeq). For TF1

≤
t ≤ TF , we can notice that the asymptotic convergence
around zero is lost for Si, meaning that the first dynamic has
been switched to the return dynamic. Similarly in Figure 9
the σi convergence to zero is presented for all TF1

≤ t ≤ TF .
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Fig. 9. Asymptotic convergence of σx, σy and σz ∀ TF1 ≤ t ≤ TF .

IV. TRAJECTORY TRACKING CONTROL

The control challenge will be to track the proposed tra-
jectory (x1r, y1r, z1r) using the dynamics of a quadrotor
vehicle. Remember that the vehicle evolutes in 3D with
coordinates x, y, z and angles ψ, θ, φ for yaw, pitch and roll
respectively.

Then, define ex1 = x1 − x1r; ey1 = y1 − y1r and ez1 =
z1−z1r with x1 = x, y1 = y, z1 = z, ẋ1 = x2, ẏ1 = y2 and

ż1 = z2. Therefore from the quadrotor dynamics, see [22],
it follows that

ėx1 = ex2 ; ėx2 = − sin(θ1)
1

m
U1 − δx

ėy1 = ey2 ; ėy2 = cos (θ1) sin (φ1)
1

m
U1 − δz

ėz1 = ez2 ; ż2 = cos (θ1) cos (φ1)
1

m
U1 − δz

with δx = g1 (t)ux + f1 (t) ũx, δy = g1 (t) uy + f1 (t) ũy
and δz = g+g1 (t) uz+f1 (t) ũz . m is the mass of the aerial
vehicle and U1 defines the control input.

Propose U1 as

U1 =
m rz

cos (θ1r) cos (φ1r)
(24)

then for assuring convergence of the translation errors to
zero, the following relations are obtained

φ1r = tan−1
(
ry
rz

)
(25)

θ1r = tan−1
{

(−1) cos(φ1r)

(
rx
rz

)}
(26)

and

φ2r =
cos2 (φ1r)

rz
[ṙy − ṙz tan (φ1r)] (27)

θ2r =
cos2 (θ1r)

rz
[rx sin (φ1r)φ2r − ṙz tan (θ1r)− ṙx cos (φ1r)](28)

with rx = δx + Vx; ry = δy + Vy; rz = δz + Vz; and
Vx = kpxex1

+ kdxex2
; Vy = kpyey1 + kdyey2 ; and Vz =

kpzez1 + kdzez2 .

If φ1 → φ1r, θ1 → θ1r and ψ1 → ψ1r then this will imply
that exi , eyi , ezi → 0. Therefore, the following objective is
to define a robust controller to assure the convergence of the
orientation to the desired values.

The attitude dynamics of the quadrotor, see [22], can be
written in the errors terms as

ėφ1
= eφ2

;
ėθ1 = eθ2 ;
ėψ1 = eψ2 ;

ėφ2
= f̄1 + b1Uφ + ξ1

ėθ2 = f̄2 + b2Uθ + ξ2
ėψ2 = f̄3 + b3Uψ + ξ3

with eφ1
= φ1 − φ1r, eθ1 = θ1 − θ1r, eψ1

= ψ1 − ψ1r,
ėφ1

= eφ2
= φ2−φ̇1r, ėθ1 = eθ2 = θ2−θ̇1r, ėψ1

= eψ2
−ψ̇1r

where φ1 = φ, θ1 = θ, ψ1 = ψ, φ̇1 = φ2, θ̇1 = θ2, ψ̇1 = ψ2.
Uj , j : φ, θ, ψ represents the attitude control input and ξi,
i : 1, 2, 3 means an external and unknown perturbation.

In addition,

f̄1 =
(
eθ2 + θ̇1r

)
(eψ2

γ1 − β1)− φ̈1r

f̄2 =
(
eφ2

+ φ̇1r

)
(eψ2

γ2 − β2)− θ̈1r
f̄3 =

(
eθ2 + θ̇1r

)(
eφ2

+ φ̇1r

)
γ3 − ψ̈1r

where γ1 =

(
Iy − Ix
Ix

)
, γ2 =

(
Iz − Ix
Iy

)
, γ3 =(

Ix − Iy
Iz

)
, β1 =

Ir
Ix

Ω, β2 =
Ir
Iy

Ω, b1 =
l

Ix
, b2 =

l

Iy
,

b3 =
l

Iz
.



The distance between each motor to the gravity center of
the vehicle is denoted by l. The inertia of the vehicle in each
axis is defined by Ix, Iy and Iz while the inertia of the motor
is represented by Ir, the speed of the rotor is defined by Ω.
For our mission the vehicle is not changing in heading then
the desired yaw angle is considered constant ψ̇1r = ψ̈1r = 0.

Defining the next sliding functions Si as S1 = eφ2
+

M11eφ1 , S2 = eθ2 +M22eθ1 and S3 = eψ2 +M33eψ1 . Then,
Ṡ1 = f̄1+b1Uφ+ξ1+M11eφ2

, Ṡ2 = f̄2+b2Uθ+ξ2+M22eθ2
and Ṡ3 = f̄3+b3Uψ+ξ3+M33eψ2

. For eliminating the linear
part in Ṡi and achieving asymptotic convergence, propose

Uφ = b−11 (ū1 −M11eφ2
) , Uθ = b−12 (ū2 −M22eθ2) ,

Uψ = b−13 (ū3 −M33eψ2)

with positive gains M11, M22 and M33. For assuring that
eφ1 → 0, eθ1 → 0, eψ1 → 0 asymptotically in presence of
unknown and bounded disturbances ξi, i.e., |ξi| ≤ Li, we
propose the following integral sliding mode controls

ū1 = −ρ1Sign (S1 − Z1)− k1S1 (29)

Z1 = −k1
∫
S1dt (30)

with Z1(0) = S1(0) and ρ1 = α1 +
∣∣f̄1∣∣+ L1.

ū2 = −ρ2Sign(S2 − Z2)− k2S2 (31)

Z2 = −k2
∫
S2dt (32)

with Z2(0) = S2(0) and ρ2 = α2 +
∣∣f̄2∣∣+ L2.

ū3 = −ρ3Sign (S3 − Z3)− k3S3 (33)

Z3 = −k3
∫
S3dt (34)

with Z3(0) = S3(0) and ρ3 = α3 +
∣∣f̄3∣∣+ L3.

Observe that −ρi Sign(Si − Zi) compensates f̄i + ξi for
all t ≥ 0 if and only if Zi(0) = Si(0). Notice also that each
term −kiSi achieves to do Si → 0 asymptotically for all
t ≥ 0.

Trajectory-control scheme validation

The pillar is placed at (xeq, yeq, zeq) = (4, 0, 4)m and
the quadrotor initial position is (x10 , y10 , z10) = (0, 0, 0)m
with the initial condition for velocity as (x20 , y20 , z20) =
(0, 0, 0)m/sec. The aerial vehicle must to return at the base
station at time TF1

= 11sec. The gains used for coupling
the two trajectories (acrobatic trajectory and return to the
base station) are the same that considered previously. For
validating the control scheme, the gains are α1 = α2 =
α3 = 0.1, k1 = 5, k2 = 3 and k3 = 5.

In Figure 10 we can observe the well performance
of the quadrotor when tracking the desired trajectory
(x1r, y1r, z1r). In Figure 11, the φ1 performance is illus-
trated, note here that φ1 → φ1r since the beginning. This
signifies that the dynamics represented into the interval time
0 ≤ t < (TF1 = 11sec) give a spiral trajectory, with
center at (xeq, yeq, zeq) = (4, 0, 4)m, that is followed by
the quadrotor. Note that in the transition time TF1

= 11sec,

Fig. 10. Vehicle response when tracking the desired trajectory
(x1r, y1r, z1r).

the roll dynamics φ1 is modified, this means that the aerial
vehicle returns at the base station. In this figure it is possible
to appreciate the agressive maneuvers that the quadrotor does
for tracking the desired trajectory. The pitch behavior is
presented in Figure 12, notice that this performance is close
to zero. It is cause the maneuver is only done in the roll
angle. The performance on these angles at time TF1 = 11sec
is given when the vehicle returns to the base station.
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Fig. 11. φ1 and φir performance. Observe the agressives angles reached
by the quadrotor.
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Fig. 12. θ1 and θ1r convergence. As expected this angle is close to zero
because in the trajectory only the roll angle is used.

In Figure 13 the position control input response U1 is
represented and in Figure 14 the behavior controllers Uφ, Uθ
& Uψ are depicted. These controllers are responsible to do
that the quadrotor tracks the desired dynamics (x1r, y1r, z1r).

V. CONCLUSION

A special trajectory for aerial acrobatics maneuvers were
developed in this paper. The trajectory was conceived using
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Fig. 13. U1 control input response.
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Fig. 14. Uφ, Uθ and Uψ performance

the bifurcation theory and the sliding mode approach. The
goal of this trajectory is to do spiral loops around a point in
the 3D space and return to the base station. For achieving a
desired angular velocity around the stable limit cycle solu-
tion, the parameter gamma was introduced in the trajectory.
An integral sliding mode control was introduced for tracking
the proposed trajectory. Numerical results have shown the
well performance of the proposed trajectory-control scheme.

Future work includes the real-time validation in our plat-
forms.
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