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Vision-based algorithm for autonomous aerial landing

A. E. S. Morando1, M. Ferreira Santos1, P. Castillo1 and A. Correa-Victorino1.

Abstract— The landing phase is a critical stage in au-
tonomous aerial landing, especially when the aerial vehicle
lands in a moving platform, as ground vehicles. In this
paper, a solution combining the information from the onboard
camera of the drone with an observer is used to estimate
and predict the future position of the landing platform. This
landing estimation is used in the control algorithm, based on
quaternions, for generating and tracking a landing trajectory.
The proposed solution is then validated in real-time experi-
ments (two scenarios) to demonstrate the well performance
and efficiency of the closed-loop system. Main graphs from
these experiments are reported in this paper. Moreover, as
this work aims to set the base for future developments, existing
limitations from this work are discussed in the last section.

I. INTRODUCTION

Aerial vehicles are interesting platforms that have been
developed for several applications. Nevertheless, an open is-
sue is their autonomous landing (since it is a high-incidence
stage whose accuracy and success can compromise the
entire mission). This challenge is even harder if the aerial
vehicle lands on a mobile platform evolving in unstructured
environments. An emerging solution for this problem is the
use of cameras with vision algorithms (for a detailed review
see [1]). A crucial step in aerial vehicle vision-based landing
is target detection in the camera frame.

A common solution is to denote the landing platform
with artificial markers accurately designed to be recognized
more easily, called fiducial markers. Indeed, these last are
a cost-effective solution since the pose of the camera can
be accurately computed based on the marker’s shape alone
with low CPU usage. For this reason fiducial markers are in
vogue: promising works are [2], [3], [4], and [5]. Originally
developed in 2014, squared ArUco markers [6] are among
the most used planar markers. With an open-source library
part of OpenCV available, it is possible to detect the marker
and compute the pose of its four corners knowing its size
and the camera calibration parameters. Thanks to their
accuracy, different works have achieved promising results
in detecting still [7] [8] and moving platforms [9] [10]
[11]. However, one of the main difficulties when resorting
to fiducial markers is when detection is missed due to
occlusion, shadows, or because the marker is not entirely
in the field of view of the camera. Hence, the challenge is
to predict the future position of the landing platform to both
preventively keep the target in the camera field and have a
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prediction in case of no recognition. Different studies have
been carried out over the years.

A possible solution is the well known Kalman filter
(KF) and its variations. In [8] authors resorted to a KF
for dealing with missed recognition of the still target. In
[9], an Extended Kalman Filter is used to predict the future
position of the landing platform in motion. More recently
an Alternating Predictive Observer [12] has been proposed
always regarding the vision-based landing on a ground
robot moving fast. It is worth pointing out that alternative
solutions for pose estimation and trajectory prediction are
proposed in the literature, notably deep learning methods
have emerged in recent years. On the one hand, PoseCNN
[13], Object-posenet [14], and ROFT [15] are just some
examples of Neural Networks aiming to detect and estimate
the pose of moving objects. On the other hand, Long Short-
Term Memory networks are widely used for predicting
trajectories [16] [17], as these last can be used without
making any assumptions about the model of the moving
agent and the measurement noise. Actually, also the vision-
based landing mission can be solved applying this paradigm,
notably reinforcement learning [18] [19]. Still, the main
drawbacks of these methods are the computational power
(which for embedded systems is limited) and the training
phase (indeed just generating a custom dataset is time-
consuming especially when using 3D bounding boxes).

In this paper, an autonomous vision-based control algo-
rithm for landing on a platform whose motion is proposed.
The cooperative target is in this case identified by an ArUco-
based marker. To deal with missed recognitions, it has been
chosen to resort to a KF as in [8] to predict the (x,y)-position
of the landing platform, which is used as desired value
for the aerial vehicle. Thanks to these two cost-effective
solution, the proposed scheme provides accurate estimates
and predictions ensuring a safe landing with a limited
onboard equipment, few parameters to be tuned, and a
limited computational load which makes it suitable for real-
time applications. This paper is organized in five sections.
In section II the key points of the implemented solution are
described. In section III the vision algorithm for estimating
the pose of the moving platform is introduced. The estimated
pose is employed in the landing trajectory tracking using a
control action presented in Section IV. In Section V the
setup and the main results obtained in experiments are
illustrated. Finally, in Section VI, conclusions are drawn
with a focus on the limitations of the presented work and
possible future developments.



II. PROBLEM STATEMENT

As it has been already stressed, the main objective of
this work was to guide an Unmanned Aerial Vehicle (UAV)
towards a Unmanned Ground Vehicle (UGV) playing the
role of landing platform using the information got from the
onboard vertical camera.

The following assumptions are stated: 1) the UAV is
equipped with a RGB camera pointing down, 2) the aerial
robot is flying with a defined altitude, 3) the ground vehicle
either is steady or it moves slowly with a constant speed,
4) due to the drone microcontroller limitation, the image
processing pose is estimated for experimental validation on
a ground station, 5) at the end of the landing mission, the
drone keeps a constant height over and close the ground
robot (therefore, ground effect of propellers can be ignored).

The two main sub-issues identified here are to estimate
and predict the future position of the target on the ground
vehicle, and to compute the control action for trajectory
tracking.

III. TARGET DETECTION AND POSE ESTIMATION

The first challenge to tackle is to compute the pose of the
target, ~̆xt, in the global reference frame starting from the
images of the vertical RGB camera. As shown in Figure 1,
the required computations are executed on the ground station
which communicates with the UAV through a TCP client-
server structure and through VRPN with the motion capture
system (MoCap) (that will be also used as ground truth). The
camera frame is processed following several steps and for
each of them a dedicated ROS node has been implemented.

Fig. 1: Implemented solution with a focus on the commu-
nication protocols and the image processing steps.

The first ROS node uav camera receives the vision infor-
mation and the global position of the UAV measured by the
OptiTrack motion capture system via VRPN streaming. In
short, the node combines this information in a custom mes-
sage which is then published on the /camera/image height
topic.

The listening node node aruco detection catches this last
message and computes the relative pose of the target in the
camera frame, which is expressed by the translational vector
~T and the rotational vector ~R, using ArUco markers. Note
that in this work, instead of using a classical ArUco marker,
a custom marker has been defined. Indeed, during some
experiments intended to test the detection and accuracy of

the pose estimation, it has been seen that the marker was not
found when the altitude of the UAV was less than 60 cm,
which is still too far to ensure a safe landing. This problem
has been settled by using different markers of different sizes.
The intuition is that bigger markers are detectable at higher
heights, while the smaller ones come to help as the drone
comes closer to the landing platform. Different markers
can be put either side by side or embedded them, from
which the name eArUco [20]. For this work, the second
arrangement has been chosen. Moreover, it has not been
used the marker proposed in [20] since at high altitudes the
image was too blurred and it was not possible to detect the
marker. Therefore, in the end a custom marker has been
defined embedding ArUco markers from a 4×4 dictionary
instead of a 7×7 one. The hint is that if on one hand by
using more bits it is possible to encode more markers, on
the other hand a dictionary with fewer squares is easier to
detect. For the choice of the embedded markers composing
the e-Aruco, it must be taken into consideration that: 1)
the outer marker should be white in the center since ArUco
markers require a white border to be segmented, 2) the inner
marker should have a percentage of white higher than black
squares since at higher distances it should result in a white
dot. The proposed marker is the one in Figure 2. The outer
marker has id 190 and length 28.5 cm, while the inner one
has id 979 and size 5 cm.

Fig. 2: Proposed eArUco marker.

Figure 3 shows a comparison of the detection of the inner
and the outer markers, in blue and red, respectively, at the
different heights of the UAV. In this case, the marker was not
detected at heights lower than 80cm since it was not entirely
contained in the frame which was not the case when using
the classical ArUco marker.

Fig. 3: Detection of the inner and outer marker composing
the eArUco.



The relative pose of the target is estimated using either the
inner or the outer markers. In the case of both markers are
detected, if the altitude of the drone is greater than 1.15m
the outer marker is chosen for the pose estimation. In the
other case, the inner marker is preferred. The idea is that
the larger is the marker in the camera image, the more
the estimated relative position is reliable. Still, at smaller
altitudes the outer marker is not entirely contained in the
field of view of the camera and the inner marker becomes
bigger in the image. The vectors ~T and ~R obtained using the
OpenCV functions library are then published on the aruco
topic, see Figure 1. Subsequently, a dedicated node called
node aruco tf broadcasts the transformation from the ref-
erence frame corresponding to the target, estimated target,
and the camera frame which is defined by those two vectors.

To handle all these frames with the Fl-Air framework, the
tf tool has been used. On one hand, Fl-Air is an open-source
framework developed by the Heudiasyc laboratory in C++
with the purpose of developing applications for UAVs. On
the other hand, the tf tool [21] organizes the frames in a
tree structure and is possible to listen to a transformation
from one frame to another if these two are connected in the
tree. In case of detection, there exists a path between the
frame estimated target and flair.

Notice that, the target could be not always detected and
the measurement could be also noisy, therefore, a KF was
introduced for improving estimation. Indeed, the estimated
pose with the ArUco marker in most of the cases presents
some variations that can be modeled as additive white noises
with zero mean. The use of the KF helps also to smooth
estimated references to nearly constant values preventing
undesired behaviors. To use the KF algorithm, we propose
an evolution model relying on the simplifying assumption
that the target is moving slowly with a constant speed.
Considering this assumption, the target motion can be then
described by the following linear model (see Figure 4)

xk+1 = xk + vx,k ∆t vx,k+1 = vx,k

yk+1 = yk + vy,k ∆t vy,k+1 = vy,k

zk+1 = zk + vz,k ∆t vz,k+1 = vz,k

ψk+1 = ψk + ωk ∆t ωk+1 = ωk

where xk, yk, zk are the estimated position coordinates of
the target expressed in discret time, vx, vy, vz define their
linear velocities, ψ and ω denote the angular position and
rate of the heading, and ∆t is the sampling time.

Fig. 4: Evolution model describing the target motion.

From Figure 1 the ROS node node kf tries to look up
for the transformation between the frames flair and esti-
mated target. In case no exception is thrown, the measure
vector is defined as ~y =

[
Tx Ty Tz ψ

]T
where Ti, for

i = x, y, z, is the translational vector in each axis, and ψ is
computed using the quaternion q representation.

The state at the current instant k, ~̂xk|k, is updated using
the measurement ~y and afterwards the state at the next
instant k+ 1 is predicted, ~̂xk|k+1. Then, in order to predict
the future position of the target at N > 1 future steps, the
prediction is integrated N − 1 times using the evolution
model, i.e., multiplying it by AN−1, obtaining ~̂xk|k+N .
~̂xk|k+N is published using an odometry message to arrive
on the topic KF/X k N k at which the node uav camera
subscribed, see Figure 1.

IV. CONTROL ACTION

Up to now, all the ROS nodes running on the ground
station to estimate the target pose have been explained.
At the end of the chain of ROS nodes, the prediction
of the future pose and velocities of the target at N next
steps are sent to the UAV via TCP. Once the drone
has received the data, this information is used to com-
pute the control action. In particular, the dynamic model
and controller proposed in [22] have been used. The
aerial configuration used is a quadcopter vehicle with state
~xav =

[
xav yav zav φav θav ψav

]T
defining its

position xav, yav, zav in the inertial frame and orientation
φav, θav, ψav . Notice that in [22] the system is proposed to
be fully controlled virtually with 6 control inputs defined
as ~u =

[
ux uy uz

]T
and ~τ =

[
τφ τθ τψ

]T
. The

controller is based on quaternion formulation which is an
extension of complex numbers where the imaginary part,
q, is composed of three components that can be collected
in a three-dimensional vector. The quaternion is therefore
defined as q = q0 + q ∈ H, q ∈ R3, q0 ∈ R.
The controller is defined in two parts. The first one is
an inner attitude controller, ~τ , defined to track the desired
trajectory ~xd =

[
xd yd zd

]T
The second part is the high

translational controller for the trajectory tracking given by
~u := −K~x~e~x −K~̇x~̇e~x where

~e :=
[
xav − xd yav − yd zav − zd

]T
is the error position, K~x, K~̇x are gains matrices. The attitude
controller is computed using the desired quaternion qd that
is calculated with the position controller ~u with the form

q′d =
(
~b · ~u+ ‖~u‖

)
+~b× ~u qd =

q′d
‖q′d‖

where ~b is a unitary vector denoting the axis in which the
thrust acts in the body frame. The attitude controller is
defined as

~τ := −2Kη ln qe − kη̇ ~Ω

where ~Ω is the angular velocity vector, Kη and Kη̇ are gains
matrices, and qe ∈ H is the quaternion attitude error defined



as
qe := q∗d ⊗ q

In [22] the stability analysis is demonstrated ensuring the
convergence to the desired landing trajectory.

Before to land, the aerial vehicle must be aligned with
the mobile platform. For this case, xd = x̂t and yd = ŷt,
where x̂t and ŷt are just the first two components of ~̂xk|k+N .
Concerning zd, the reference altitude decreases slowly over
time to prevent blurs and have better detection conditions.

V. RESULTS AND DISCUSSIONS

To validate and show the efficiency of the proposed
solution, some tests have been carried out in the indoor
arena considering two challenging scenarios. The experi-
mental set up includes the ground station OptiTrack com-
puter, the OptiTrack system (MoCap), and the two robots
(aerial and ground). The aerial vehicle is a Parrot AR 2.0
drone equipped with a vertical camera with a resolution of
320×240 pixels, focal length of 27.17 mm, and rate of 60
Hz. The UGV is a JetRacer with a Jetson Nano computer
onboard. In order to put the marker on the robot and let
the quadcopter lands on it, a metallic structure with a grid
has been installed on the agent. The ground vehicle has
a dedicated controller for moving slowly in line. Both the
experiments are considered in three stages: a) hover flight
at a fixed altitude, b) alignment with respect to the ground
vehicle, c) landing. As the main goal is to prove the vision
algorithm for landing, in the first stage, the drone takes off,
in manual mode, close to the target until a desired altitude,
with the goal to cover the marker in the camera frame. After
that, the second stage begins. Once the aerial vehicle is
aligned with respect to the marker frame (ground vehicle),
the last stage starts. In real-time experiments, the “landing”
task ends when the quadcopter reaches a constant height
small enough over the marker (ground robot). At this time,
the user can declare the end of the mission and then stop the
motors. It is worth pointing out that in both case studies the
KF parameters have been tuned. Indeed some experiments
were done using only in the closed-loop system the MoCap
measurements. In those experiments images were recorded
from the camera as well as the OptiTrack measurements in a
rosbag file. Then offline, the rosbag has been run together
with all the implemented ROS nodes and by trial and error
the parameters have been tuned to get the best as possible
estimates.

A. Static landing platform
These KF parameters for the landing in a static platform

are the following

x0 =
[
0.5 −0.5 −0.2 0 0 0 0 0

]T
P0 = diag(2.25, 2.25, 1e−27, 2.25,

1e−27, 1e−27, 1e−27, 1e−27)

while the covariance matrices of the model and measurement
noises are

Q = 1e−14 I8×8 R = diag (σ2
x, σ

2
y, σ

2
z , σ

2
ψ)

where I8×8 denotes the identity matrix, σx = σy =
σz = 0.7, and σψ = 0.01449. Figure 5 shows that the
custom marker is detected for almost the entire duration
of the maneuver. Concerning the estimation and prediction
of the horizontal position, Figures 6 and 7 illustrate these
performances. From figures, the estimated values using just
ArUco markers is in orange line, the prediction values after
N = 5 steps is in blue line and the position of the target
using the MoCap system is in black line.

Fig. 5: Altitude performance of the drone when using the
vision algorithm. Notice from figure that in green line the
’flag’ used for notifying if the marker is detected or not.
Notice also that the vision estimation z̆ of the target is pretty
well even if the target is not detected.

Fig. 6: Horizontal performance of the target xt, its estimated
value using the vision algorithm, x̆t and its estimated
prediction x̂t.

Finally, Figure 8 shows the predicted horizontal ve-
locities of the target v̂xt

and v̂yt . Notice that there is
obviously no changes in these estimations because the
platform is still. A video of this experiment can be seen
at : https://youtu.be/ftxDdAU0fHA.

B. Moving landing platform
The next experiment considered the scenario where the

target is in motion. The reference trajectory for the UGV



Fig. 7: Position behavior of the target yt, its estimated value
using the vision algorithm, y̆t and its estimated prediction
ŷt.

Fig. 8: Predicted translational velocities of the still target in
the horizontal plane.

has been chosen as a straight line along the x-axis with a
constant reference velocity, to keep everything linear.

The test is organized as follows: in a first phase, the
drone tracks (during a small time) the ground robot with a
constant altitude and using the MoCap measurements. This
is done for converging the KF estimations and avoiding
undesired behaviors. In a second stage, the aerial drone
follows and land, autonomously, on the UGV using the
vision information.

The new values for the initial guesses and the model noise
covariance are

x0 =
[
−0.5 −0.5 −0.2 0.15 0 0 0 0

]T
P0 = diag(4, 4, 1e−27, 2.25,

0.01, 0.01, 1e−27, 1e−27)

Q = diag(1e−14, 1e−14, 1e−14, 1e−14,

1e−7, 1e−7, 1e−27, 1e−7)

while R is unchanged from the previous experiment.
From the experimental results it can be observed that the

altitude decreases more quickly (see Figure 9) and there are
time intervals in which the target is not detected due to blurs
in the image, which were not the case in the first test.

Fig. 9: Altitude of the drone and detection of the custom
marker, here in some time intervals the marker was not
found.

Fig. 10: Horizontal performance of the target xt, its esti-
mated value using the vision algorithm, x̆t and its estimated
prediction x̂t, when the platform is moving.

Fig. 11: Lateral performance of the target yt, its estimated
value using the vision algorithm, y̆t and its estimated
prediction ŷt, when the platform is moving.

Concerning the accuracy of the estimated position, the
mean error between the true value xt and the predicted
value x̂t is 0.18 m while between yt and ŷt is −0.06 m,
see Figures 10 and 11. Even if some errors (no detection)
are presented in the experiment, this does not prevent the
success of the mission, nevertheless, we consider that a
better tuning of the parameters could lead to better results.
Observe also that experiment works well because following
the hypothesis 2) in section II, the measure obtained in the



last detection is used as current measure ~y to give as input
to the KF. This is reasonable since, assuming the marker is
moving slowly, the e-ArUco will be in a neighborhood of
the previous position. In addition it is worth pointing out
that the horizontal reference is not the prediction from the
KF x̂k|k+1 but x̂k|k+N = AN−1x̂k+1|k, so that the UAV can
anticipate the UGV and keep it in the field of view. A video
of this experiment can be seen at : https://youtu.be/9gGIiv-
lWzY.

VI. CONCLUSIONS

In this paper, a solution for autonomous landing of an
aerial vehicle devoid of GPS measurements, using vision
algorithms was presented. The challenge was complicated
when introducing the dare to land on a moving platform.
The solution used fiducial markers for estimating the pose of
the target to land. Two different experiments were proposed
for validating the landing solution. In both scenarios, tests
shown that accurate estimates and predictions concerning
the UGV state can be obtained with the proposed method-
ology, ensuring the success of the landing mission. Never-
theless, some further improvements can be made.

Future work will consider the relative pose between the
agents, expressed either in the camera or in the Fl-Air
reference, to control the drone. Observe that this would
introduce some non-linearities in the evolution and measure-
ment models. In case those non-linearities are strong, the KF
will be no more sufficient and it will be necessary to resort
to more sophisticated tools. In the perspective of doing some
outdoor experiments, the Parrot AR 2.0 cannot be used as
it does not come with a built-in GPS receiver. Nonetheless,
other kind of aerial vehicles need to be considered as, Parrot
Bebop 2.0 and the Intel Aero Drone that are equipped
with GPS-capabilities. In addition it could be interesting to
introduce an ascending phase in case of no detection target.
By increasing its height, the drone will have a wider field
of view of the scene and potentially it will find again the
target.
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