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Observer-based Adaptive Control for Slung Payload
Stabilization with a Fully-actuated Multirotor UAV

Abstract

This article presents an observer-based adaptive sliding mode controller for a

fully-actuated hexacopter unmanned aerial vehicle, performing trajectory track-

ing in a perturbed environment while carrying a cable-suspended payload. Based

on the unavailability of a payload swing sensor, an extended high-gain observer

is designed, providing full-state and disturbance estimation including payload

motion. Such disturbances are compensated into the control loop to dampen the

oscillations, thus improving the flight performance of the hexacopter driven by

the adaptive control, providing robustness against bounded perturbations and

chattering reduction. The stability of the observer and the control method on

this system is guaranteed through Lyapunov theory. Simulations using a multi-

body emulator demonstrate time reduction in payload dampening while control-

ling the aircraft trajectory, compared to a feedback regulation-based adaptive

controller.

Keywords: Hexacopter UAV, Cable Suspended Payload, Sliding

Mode Control, Extended Observer.

1. Introduction

In recent years, technological progress has had a significant relevance on

the improvement of unmanned aerial vehicles (UAVs) capabilities, commonly

deployed into environments that involve carrying out high-performance maneu-

vers, such as payload transportation for commercial services and disaster re-5

sponse [1, 2, 3], which has been implemented through the integration of robotic

arms [4] or containers [5] on the body of the rotorcraft. Similarly, a different
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approach relies on suspending the payload by attaching a cable directly to the

UAV [6]. This method has been proposed to accomplish specific tasks like water

collection and transportation for firefighting operations [7], and payload deliv-10

ery in areas where the landing of the aircraft is extremely difficult [8]. However,

the complexity of the system increases since the mechanism is susceptible to

oscillations due to the lack of actuators to control the pendulum-like behavior

of the suspended payload.

Strategies for cable swing attenuation have been previously addressed in15

the literature. Such as in [9] where an algorithm is proposed to establish the

optimal trajectory between two points, reducing the oscillation of a payload

hung to a quadcopter-type UAV (Quad-UAV). Additionally, the authors in [10]

present a nonlinear backstepping controller that reduces the oscillations of a sus-

pended payload attached to an underactuated hexacopter type UAV (UA-Hex)20

by rejecting the external disturbances that affect the vehicle due to wind using

an open-loop and a feedback type trajectory generation approach. Nonetheless,

these proposals usually require angle measurements of the payload swing, which

could implicate the use of additional sensors or mechanisms.

To address the concerns related to the payload movement measurement,25

different approaches have been proposed. For instance, a passivity-based control

scheme is presented in [11] and to reduce the oscillations of a suspended payload

on a Quad-UAV, where the main advantage is that swing measurement is not

required, as well as a robustification of this method for a Planar Vertical Take-

off and Landing (PVTOL) vehicle with a suspended ball is described in [12].30

Furthermore, in [13] a control based on an uncertainty and disturbance observer

is proposed, where it is possible to maneuver the aircraft with a suspended load

in a disturbed environment while reducing the oscillations. Similarly, in [14]

a control scheme is given employing one perturbation observer together with

an extended observer, to smooth out the payload dynamics on a Quad-UAV.35

In [15], the authors introduce an approach involving two nonlinear controllers.

Their proposal exploits the coupling between the payload and the Quad-UAV

position dynamics to mitigate the oscillations.
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Prior studies employ underactuated multirotor UAVs (UA-UAVs), which,

due to their aerodynamics, require coordinated control of their rotation and the40

thrust of their motors to displace the aircraft. This represents a disadvantage

when it is necessary to reject environmental disturbances, especially when these

disturbances are incident horizontally to the aircraft. As a result, new tech-

niques have emerged to improve the flight performance of UAVs. Such is the

case of [16] where a dynamic feature weight selection method for robust visual45

target tracking is proposed. Its authors report a superior performance of this

method compared to others in the state-of-the-art.

To overcome these challenges, several alternatives have been proposed to

convert UA-UAVs into fully-actuated devices [17] and expand their capabili-

ties. One of the simplest modifications to enable a hexacopter UAV to exert50

horizontal forces is implementing a passive tilting of its motors, as reported in

[18]. Inspired by this attribute, in [19] the authors presented a version of a fully

actuated hexacopter, driven by an adaptive sliding mode controller (ASMC),

performing a trajectory that does not require roll or pitch tilting. Additionally,

the ASMC offers robustness against uncertainties and bounded perturbations,55

and reducing the stress on the actuators by regulating the control gains. Such

action is directly related to the decrement of the chattering associated with

conventional sliding modes.

Despite the availability of a considerable number of studies on UA-UAV

payload transport, the research conducted with fully-actuated UAVs is limited.60

For this reason, in [20] has been proposed an oscillation reduction approach for a

payload hanging on a fully-actuated hexacopter (FA-Hex). The study considers

the unavailability of a hardware sensor to obtain the oscillation angles, therefore,

an extended high-gain observer (EHGO) is proposed, which uses the hexacopter

state measurements to estimate the payload motion. Since the dynamics of the65

payload are coupled to the displacement of the rotorcraft, the FA-Hex position

control is driven by the combination of the EHGO and the ASMC (EHGO-

ASMC), while the rotation control of the FA-Hex is operated with the feedback

regulation-based ASMC scheme. Through this technique, it is possible to reduce
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payload oscillations by estimating and compensating them in the control loop.70

Therefore, the main contribution of the current manuscript relies on the im-

provement of the approach presented in [20], providing the closed-loop stability

analysis of the observer-based control system by means of Lyapunov theory. Fur-

thermore, the system previously described according to the Euler-Lagrange con-

vention, is solved through the computer-assisted design (CAD) representation75

of our real hexacopter using SIMULINK/SIMSCAPE MULTIBODY software,

which allows obtaining a closer representation of the dynamics of the experi-

mental FA-Hex. Then, a reference trajectory is established for the FA-Hex to

be performed in a disturbed environment. The same scenario is evaluated us-

ing two control approaches, in the first one, the EHGO-ASMC scheme is used,80

while in the second one, the feedback-regulation ASMC scheme is applied. The

simulation comparison of these schemes, with a realistic trajectory scenario, ev-

idences the feasibility of the EHGO-ASMC approach, by significantly reducing

in magnitude and duration the payload oscillations produced by external distur-

bances and sudden changes of direction in the aircraft trajectory, with a proper85

management of the control effort as well as computing capacity requirement.

The paper is structured as follows: The dynamic model of the hexacopter-

payload system is introduced in Section 2 , while the design of the EHGO-ASMC

approach as well as the development of the closed-loop stability proof are given

in Section 3. The simulations and the analysis of the results are shown in90

Section 4. Finally, the conclusions are summarized in Section 5.

2. System Dynamic Model

In this section, the model of the hexacopter-payload system is developed

according to the Euler-Lagrange method. First, the reference frames are es-

tablished and illustrated in Figure 1. The following payload conditions are

considered: The cable has a constant known length and depreciated mass and

deformation. The payload swing αx, αy is limited to −90◦ < αx < 90◦, and

−90◦ < αy < 90◦. The payload is represented as a constant weight ball, and
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the air resistance is zero. Hence, this system is represented by:

M(q)q̈ + C(q, q̇)q̇ + G(q) = u, (1)

where its elements are defined as follows:

• q = [γ, η, µα]T ∈ R8, contains the generalized coordinates.

• γ = [x, y, z]T ∈ R3, expresses the hexacopter position.95

• η = [φ, θ, ψ]T ∈ R3, denotes the hexacopter attitude.

• µα = [αx, αy]T ∈ R2, includes the cable swing angles.

From Figure 1, γP = [xp, yp, zp]
T expresses the ball position. L holds the wire

length, whereas l indicates the spacing from every propeller with respect to the

aircraft center. The UAV and the payload weights are denoted by M and m.

By means of the Euler-Lagrange method, the Lagrangian L is determined:

L =
1

2
(M +m)(ẋ2 + ẏ2 + ż2) +

1

2
Ixφ̇

2 +
1

2
(IyC

2
φ − IzS2

φ)θ̇2

+
1

2
(IxS

2
θ + IyC

2
θS

2
φ + IzC

2
φC

2
θ )ψ̇2 − IxSθφ̇ψ̇ + (Iy − Iz)CφCθSφθ̇ψ̇

+
1

2

(
mL2C2

αy + Ip
)
α̇x

2 +
1

2

(
mL2 + Ip

)
α̇y

2 +mLCαxCαy α̇xẋ

+mLSαxCαy α̇xż −mLSαxSαy α̇yẋ+mLCαy α̇y ẏ +mLCαxSαy α̇y ż

+Mgz +mg(z − LCαxCαy ).

(2)

The matrices integrating the general system equation (1) are acquired by re-

ordering the terms from (2). Therefore, the inertia matrix is:

M(q) =


MMA 03×3 MCP

T

03×3 MPP 03×2

MCP 02×3 MCC

 ∈ R8×8, (3)

with:

MMA =


M11 0 0

0 M22 0

0 0 M33

 ; MPP =


M44 0 M46

0 M55 M56

M64 M65 M66

 ;

MCP =

 M71 0 M73

M81 M82 M83

 ; MCC =

 M77 0

0 M88

 .
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Then, the Coriollis matrix is set as:

C(q) =


03×3 03×3 CPP

03×3 CHR 03×2

02×3 02×3 CPR

 ∈ R8×8, (4)

with

CHR =


0 C45 C46

C54 C55 C56

C64 C65 C66

 ; CPP =


C17 C18

0 C28

C37 C38

 ; CPR =

 C77 C78

C87 C00

 .
The gravity vector is:

G(q) =
[
0, 0, (m+M)g, 0, 0, 0, mLgSαxCαy , mLgCαxSαy

]T
, (5)

and the system input is indicated by u = B(q)FM, where B(q) ∈ R8×6 is a

transformation matrix defined by

B(q) =


BTP(q) 03×3

03×3 BTA(q)

02×3 02×3

 , (6)

with

BTP(q) =


B11 B12 B13

B21 B22 B23

B31 B32 B33

 ; BTA(q) =


B44 B45 B46

B54 B55 B56

B64 B65 B66

 .
And FM ∈ R6 reflects the rotors forces generated over the FA-Hex frame.

Hence: FM = [Fx,Fy,Fz, τφ, τθ, τψ]
T

. Such forces yield from the product be-

tween the allocation matrix Mϕ and the vector Ω2 ∈ R6 which includes the

square of the angular speed of all the motors. Then, FM = MϕΩ2, and

Mϕ =


Mϕ11 · · · Mϕ16

...
. . .

...

Mϕ61 · · · Mϕ66

 ∈ R6×6. (7)

The FA-Hex proposed is parameterized by the values given in TABLE I. The

process to obtain the Lagrangian, as well as the values of the M(q), C(q),

B(q), and Mϕ matrices, are detailed in [19] and [20]. Through this model, it is100

possible to design the control scheme, which is developed in Section 3.
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3. Controller Design

This section includes the observer-based controller design. Moreover, its

stability proof using Lyapunov’s theory is developed. In (1), the state vector

q includes the payload swinging angles in terms of µα. However, since this105

proposal assumes that such angle measurements are unavailable, Remark 1 is

established. Then, the EHGO is proposed allowing the estimation of the position

and velocity of the hexacopter, as well the external perturbations which include

the payload swing. In addition, since the cable is hung exactly at the center of

mass of the aircraft, the pendulum dynamics is matched only to the hexacopter110

position [10]. Therefore, the EHGO is designed for γ = [x, y, z]T ∈ R3.

Remark 1. In the observer-based controller design, the effects of the payload

are treated as perturbations, thus considering q = [γ, η]T ∈ R6.

The conventional sliding mode algorithm has some drawbacks, for instance

the chattering issue, however, it offers significant advantages, such as robustness115

to bounded perturbations. Therefore, the adaptive term is included, which

helps to minimize the chattering, preserving the robustness and convergence in

finite time and reducing the excessive control effort. As a result, this approach

consider a feedback regulation-based ASMC scheme for the attitude η, while

the FA-Hex position γ is operated by the EHGO-ASMC approach, as can be120

seen in the Figure 2.

To design the controller, let us take the system (1) assuming the Remark 1:

ẋ1 = x2,

ẋ2 = f(x, t) + g(x)u + ddd(t), (8)

y = x1,

where x1 = q, x2 = q̇, f(x, t) = M(q)−1[−C(q, q̇)q−G(q)], g(x) = M(q)−1,

and u = B(q)FM. Load swing, as well as any externally disturbing forces, are

considered in the term ddd(t). Therefore, the attitude controller is presented, and125

subsequently the EHGO-ASMC position control is designed.
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3.1. ASMC attitude control

The control objective is to drive the position eηeηeη = η − ηd and the angular

velocity error ėηėηėη = η̇ − η̇d to zero, for which the following sliding surface is

established:

σa = ėηėηėη + λaeηeηeη, (9)

where, ηd ∈ R3 indicates the attitude reference, while λa ∈ R3×3 is a diagonal

matrix gain with λa,i > 0, for i = 1, 2, 3. Thus, the time derivative of σa is

σ̇a = (f(η, t) + g(η)ua)− η̈d + λaėηėηėη. (10)

To fulfill the control objective, the following feedback control is proposed:

ua = g(η)−1(−f(η, t)− λaėηėηėη + η̈d + υauxa), (11)

where, υauxa ∈ R3 is the auxiliary term that includes the ASMC method:

υauxa = −Ka(t) |σa|1/2 sign(σa)− k2σa, (12)

with k2 ∈ R3×3 as a positive diagonal gain matrix, and Ka(t) ∈ R3×3 as a

diagonal matrix of the adaptive gains, whose dynamics are described by

K̇a(t) =

k1sign(|σa| − µa), if Ka > Kmina ,

Kmina , if Ka ≤ Kmina .

(13)

This scheme guarantees a minimum control effort with the diagonal matrix130

Kmina ∈ R3×3, ensuring no zero control. Diagonal matrix gain k1 ∈ R3×3

adjusts the adaptation level, while µa ∈ R3 operates as the detection threshold

for the sliding mode loss, triggering the increase or decrease of the control gains.

It also provides the benefits of the standard sliding mode approach.

3.2. EHGO-ASMC position control135

Consider the model from (8) taking into account only γ, then: χ̇1 = χ,

χ̇2 = f(χ, t) + g(χ)up + ∆(t), y = χ1, with, χ1 = γ, χ2 = γ̇, and f(χ, t) =

M(γ)−1[−C(γ, γ̇)γ̇ −G(γ)], g(χ) = M(γ)−1, and up = B(γ)Fx,y,z. Vector

8



up = [ux, uy, uz]
T expresses the position control input, while Fx,y,z ∈ R3 the

linear forces exerted by the motors. Hence, an extended third-order system is140

developed, which is valid only for the aircraft translation dynamics:

χ̇1 = χ2

χ̇2 = χ3 + f̂(χ̂, t) + ĝ(χ̂)up (14)

χ̇3 = ξ(χ)

y = χ1.

Perturbations are included in the state χ3, such as the forces of the payload

motion affecting the hexacopter:

χ3 = f(χ, t)− f̂(χ̂, t) + [g(χ)− ĝ(χ̂)]up. (15)

Thereby, the observer from [21] is chosen for the extended system (14), hence:

˙̂χ1 = χ̂2 +
κ1

ε
(χ1 − χ̂1)

˙̂χ2 = χ̂3 + f̂(χ̂, t) + ĝ(χ̂)up +
κ2

ε2
(χ1 − χ̂1) (16)

˙̂χ3 =
κ3

ε3
(χ1 − χ̂1),

with ε as the bandwidth gain, and factors κ1,2,3 are chosen as the polynomial

s3 +κ1s
2 +κ2s+κ3 = 0 is Hurtwiz. This observer leads to the following ASMC

design.145

Similar to (9), the sliding surface is:

σp = ˙̂γ − γ̇d + λp(γ̂ − γd), (17)

with γd ∈ R3 as the reference position, and λp ∈ R3×3 as a diagonal matrix

gain with λp,i > 0, for i = 1, 2, 3. The time derivative of σp leads to,

σ̇p =
(
χ̂3 + f̂(χ̂, t) + ĝ(χ̂)up

)
− γ̈d + λp( ˙̂γ − γ̇d). (18)

Finally, the following observer-based adaptive control is proposed:

up = ĝ(χ̂)−1(−χ̂3 − f̂(χ̂, t)− λp( ˙̂γ − γ̇d) + γ̈d + υpaux), (19)

where υpaux follows the ASMC described in (12) and (13), renaming the vari-

ables: υauxa → υpaux, Ka(t) → Kp(t), σa → σp, k2 → k4, k1 → k3,

9



µa → µp, and Kmina → Kminp . When γ̂(0) 6= γ(0), high-gain observers

present a peaking phenomenon which leads the system to become unstable. To

avoid such effects, control input up is passed through a saturation function as

suggested in [22]. Then,

up =W sat
[
(Wĝ(χ̂)−1)(−χ̂3 − f̂(χ̂, t)− λp( ˙̂γ − γ̇d) + γ̈d + υpaux)

]
(20)

with, W > max
∣∣∣ĝ(χ̂)−1(−f̂(χ̂, t)− λp( ˙̂γ − γ̇d) + γ̈d + υpaux)

∣∣∣, and sat(a∗) =

min{1, |a∗|}sign(a∗).

The EHGO, estimates the full-state regarding the position of the FA-Hex as

well as the disturbances that affect the vehicle, allowing then, its compensation,

which results in a considerable oscillation reduction for the suspended payload.150

3.3. EHGO-ASMC stability analysis

The closed-loop stability analysis of the observer-based adaptive controller

is addressed. Hence, the following definitions and lemmas are introduced.

3.3.1. Definitions and lemmas

Suppose a nonlinear system h(x) : Rn → Rn with x ∈ Rn such that

ẋ = h(x(t)), x(t0) = x0, h(0) = 0 (21)

Definition 1 [23]. The origin of (21) is finite-time stable if it is Lyapunov

stable and any solution x(t, t0, x0) = 0, ∀t ≥ Tc(x0) > 0, with Tc as the settling

time.

Definition 2 [24]. The solution of system (21) is practical finite-time stable if

∀x(t0) = x0 there is some z > 0 and a settling time Tc(z, x0) > 0 that satisfy

||x(t)|| < z ∀t ≥ t0 + Tc.

Lemma 1 [24, 25]. Suppose that a continuous function V (x) exists for system

(21) such that V (0) = 0 and V (x) > 0 for all x 6= 0. Therefore, the origin of

(21) is practical finite-time stable if

V̇ (x) ≤ c1V (x)r + c2 (22)
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with, c1, c2 > 0 and 0 < r < 1. Furthermore, the trajectories of x are bounded

in finite-time as

lim
w→w0

x ∈
(
V r(x) ≤ c2

(1− r)c1

)
(23)

where, 0 < w ≤ 1, 0 < w0 < 1. Finally, the settling time function is given by

tc ≤
V 1−r(x0)

c1w0(1− r)
(24)

3.3.2. EHGO-ASMC convergence analysis155

Considering the fast dynamics of the observer, the term (κiεi )(χ1 − χ̂1) for

i = 1, 2, 3 from (16), converges to a region of small values ω(ε) after a short

period of time [26] since (χ1 − χ̂1) → 0. Therefore, the EHGO (31) can be

analyzed as a follows

˙̂χ1 = χ̂2 (25)

˙̂χ2 = f̂(χ̂, t) + ĝ(χ̂)up + χ̂3 (26)

where, the states vector χ = [χ̂1, χ̂2, χ̂3]T describes the slow variables of the

system, whilst the scaled estimation errors vector ξ = [ξ1, ξ2, ξ3]T with,

ξ1 =
χ1 − χ̂1

ε2
, ξ2 =

χ2 − χ̂2

ε
, and ξ3 = χ3 − χ̂3 (27)

represents the fast variables. Then, the following theorem is established:160

Theorem 1. The observer-based control approach composed of the con-

troller with practical finite-time convergence (19) and the EHGO with asymp-

totic convergence (16) forces the observation errors (χ1 − χ̂1), (χ2 − χ̂2), and

(χ3 − χ̂3) to a region ω(ε) with observer gain ε sufficiently small.

Proof. Recalling that χ1 = γ1, χ2 = γ2, and χ3 = γ3, the observer-based

controller (19) in closed loop with the dynamics (18) can be represented without

loss of generality in single-input single-output form as:

up = σ̇p − γ̂3 (28)

with,

σ̇p = −Kp(t)|σp|
1
2 sign(σp)− k4σp + γ3 (29)

11



Now, let [28]

V (σp) =
1

2
σ2
p +

1

2
(Kp(t)−Ks)

2 (30)

be a Lyapunov candidate function for the stability analysis of the adaptive165

sliding mode scheme such that:

(Kp(t)−Ks) < 0 (31)

Ks(t) >
1

|σp|
1
2

(Q1 − k4|σp|) (32)

0 < |γ3| ≤ Q1 (33)

where Ks refers to a certain value of the adaptive gain Kp that guarantees the

disturbance is counteracted, and Q1 is the maximum bound of the disturbance

term γ3. Thus, as long as Kp(t) > Kminp , the time differentiation of (30) is:

V̇ (σp) = σpσ̇p + (Kp(t)−Ks)(k3 sign(|σp| − µp)) (34)

Furthermore, by replacing (29) and (33) in (34), it yields:

V̇ (σp) ≤ |σp|(−Kp(t)|σp|
1
2 sign(σp)− k4σp +Q1) + (Kp(t)−Ks)(k3 sign(|σp| − µp)) (35)

Then, let terms ±Ks|σp|
3
2 be included such that:

V̇ (σp) ≤ |σp|(−Ks|σp|
1
2 − k4|σp|+Q1) + (Kp(t)−Ks)(k3 sign(|σp| − µp)− |σp|

3
2 ) (36)

Now, consider the change of variable ηp = Ks|σp|
1
2 + k4|σp| −Q1. Hence,

V̇ (σp) ≤ −ηp|σp|+ (Kp(t)−Ks)(k3 sign(|σp| − µp)− |σp|
3
2 ) (37)

Finally, let us aggregate ±ηq|Kp(t) − Ks| with, ηp > 0 and |Kp(t) − Ks| =
−(Kp(t)−Ks); to get:

V̇ (σp) ≤ −ηp|σp| − ηq|Kp(t)−Ks|+ |Kp(t)−Ks|(ηq − k3 sign(|σp| − µp) + |σp|
3
2 )

≤ −ηp
√

2
√

2
|σp| − ηq

√
2
√

2
|Kp(t)−Ks|+ |Kp(t)−Ks|(ηq − k3 sign(|σp| − µp) + |σp|

3
2 )

≤ −min
{
ηp
√

2, ηq
√

2
}( |σp|√

2
+
|Kp(t)−Ks|√

2

)
+ |Kp(t)−Ks|(ηq − k3 sign(|σp| − µp) + |σp|

3
2 )

(38)

Referring to Lemma 1, (38) can be rewritten in the form of a practical finite-

time stable system

V̇ (σp) ≤ −ηvV (σp)
% + χv (39)

12



with ηv = min
{
ηp
√

2, ηq
√

2
}

, % = 0.5, and χv = |Kp(t)−Ks|[ηq−k3 sign(|σp|−

µp) + |σp|
3
2 ]. Moreover, there is a value Γ > 0 and a finite-time Tc(Γ, σp0) for

all σp that belongs to R such that |σp| ≤ Γ ∀t ≥ t0 + Tc [24]. Therefore, the

achievement of the sliding mode can be divided in two phases: (1) the reaching

phase when |σp| > Γ; and (2) the controller convergence when |σp| ≤ Γ. Now,

the following assumptions are taken into account:

Assumption 1: During the reaching phase of the sliding mode, all the tra-

jectories from the sliding surface are bounded inside a positively invariant set:

Ξζ = {V (σp) ≤ Υ1} × {|σp| ≤ ζ} (40)

Likewise, during the convergence phase, the trajectories of the sliding surface

get inside a positively invariant set:

ΞΓ = {V (σp) ≤ Υ2} × {|σp| ≤ Γ} (41)

with boundary terms Υ1 > Υ2 and ζ > Γ ≥ µp.

Assumption 2: The system error is bounded by ||e|| ≤ h1 with h1 > 0 ∀t ≥ t0.

Furthermore, the system states are bounded by ||γ|| ≤ h1 +h2 with h2 > 0 ∀t ≥

t0.170

Assumption 3: There is a function Va(γ) that is bounded by class κ functions

H1 and H2 such that H1(||γ||) ≤ Va(γ) ≤ H2(||γ||) ∀γ ∈ Dγ with Dγ as the

domain of γ; and V̇a < 0 ∀‖γ‖ ≥ ϕ(‖γ‖) with ϕ as a continuous positive non-

decreasing function.

Assumption 4: There is a boundary value ς ≥ H2(ϕ(||γ||)) such that set175

{Va(γ) ≤ ς} is contained in the domain of all the solutions of the system.

According to [21], prior assumptions guarantee the boundedness of ‖γ‖, and

that sets ρ1 = {Va(γ) ≤ ς} × Ξζ and ρ2 = ρ1 × ΞΓ are positively invariant with

respect to system (28). Hence, at time t1 ≥ t0, e enters ρ1, and after a finite

time Tc > t1, e enters ρ2. Then, consider new terms:

β = max
γ∈ρ2

∣∣∣∣g(γ)− ĝ(γ)

ĝ(γ)

∣∣∣∣ (42)
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W (s) =
κ3

s3 + κ1s2 + κ2s+ κ3
(43)

||W ||∞ = sup
Re(s)≥0

Gmax(W (s)) (44)

with, ||W ||∞ as the supremum maximum singular value (Gmax) of transfer

function W (s) considering the right half plane [27]. It can be confirmed that

||W ||∞ = 1 if all the poles of W (s) are real. Now, suppose that [22]:

β <
1

||W ||∞
(45)

Furthermore, the scaled estimation error ξ3 from (26) is rewritten as:

ξ3 = f(γ)− f̂(γ) + (g(γ)− ĝ(γ))up − γ̂3 (46)

Since the saturation function from (20) is not continuously differentiable, a strat-

egy from [29] is adopted. Thus, such function is replaced with the continuously

differentiable term

ϑ(q) =


q if 0 ≤ q ≤ 1

q + q−1
ε
− q2−1

2ε
if 1 < q < 1 + ε

1 + ε
2

if q ≥ 1 + ε

(47)

which fulfills, |ϑ̇(q)| ≤ 1 and whose results are close to the ones from the satu-

ration function since |ϑ(q) − sat(q)| ≤ ε/2 ∀q ∈ R. Then, considering the time

differentiation of vector ξ, the closed-loop fast subsystem of the observer-based

controller yields:

εξ̇ξξ = ΛΛΛξξξ−Ψ1Ψ1Ψ1

∣∣∣∣g(γ)− ĝ(γ)

ĝ(γ)

∣∣∣∣ϑ̇(−γ̂3 − f̂(γ) + υpaux
Mĝ(γ)

)
κ3ξ1 + ε[Ψ1Ψ1Ψ1Θ1(·) +Ψ2Ψ2Ψ2Θ2(·)] (48)

where, locally Lipschitz functions Θ1 and Θ2 are well defined in [26] and are

bounded by Qb +Qc‖ξξξ‖ with Qb, Qc ∈ R+; Ψ1Ψ1Ψ1 = [0, 0, 1]T , Ψ2Ψ2Ψ2 = [0, 1, 0]T , and

matrix

ΛΛΛ =


−κ1 1 0

−κ2 0 1

−κ3 0 0

 (49)
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is Hurwitz. Furthermore, (48) holds if and only if γ ∈ ρ2. Since ε[Ψ1Ψ1Ψ1Θ1(·) +

Ψ2Ψ2Ψ2Θ2(·)] tends to a region ω(ε) in a short period of time with sufficient small ε,

(48) can be reduced to:

εξ̇ξξ = ΛΛΛξξξ −Ψ1Ψ1Ψ1

∣∣∣∣g(γ)− ĝ(γ)

ĝ(γ)

∣∣∣∣ϑ̇(−γ̂3 − f̂(γ) + υpaux
Mĝ(γ)

)
κ3ξ1 + ω(ε) (50)

In the same way, it can be selected as a negative feedback for the transfer

function

W (εs) =
κ

(εs)3 + κ1(εs)2 + κ2(εs) + κ3
(51)

Considering that |ϑ̇(q)| ≤ 1, equation (45), and equality ‖W (εs)‖∞ = ‖W (s)‖∞;

the circle criterion analysis from [26] is followed to conclude that the origin of

equation (50) is exponentially stable if and only if β‖W (s)‖∞ < 1. Similarly,

there is a Lyapunov candidate function Vξ(ξ)ξ)ξ) = ξξξTPξξξξ bounded by ε2h3 with

h3 > 0 . Hence, for a sufficiently small ε, a positive invariant set for the

extended high-gain observer is defined as {Vξ ≤ ε2h3}. If the latter holds,

set ρobs = ρ2 × {Vξ ≤ ε2h3} is positive invariant as well. Then, as long as

(γ, ξξξ) belongs to ρobs, ξ3 = γ(ε) and [21]

up =
−γ̂3 − f̂(x̂) + υpaux

ĝ(x̂)
=
−f(x) + υpaux

g(x)
+ ω(ε) (52)

Thus, with large enough saturation level and small enough bandwidth gain ε

the output-feedback system can be written as:

γ̇1 = γ2 + ω(ε) (53)

γ̇2 = f(x) + g(x)up + ω(ε) (54)

up = σ̇p + ω(ε) (55)

σ̇p = −Kp|σp|
1
2 sign(σp)− k4σp (56)

εξ̇ξξ = ΛΛΛξξξ −Ψ1Ψ1Ψ1

∣∣∣∣g(x)− ĝ(x)

ĝ(x)

∣∣∣∣ϑ̇(−γ̂3 − f̂(x) + υpaux
Mĝ(x)

)
κ3ξ1 + ω(ε) (57)

Scaled estimation error ξξξ achieves {Vξ ≤ ε2h3} after a time To � Tc since

To → 0 as ε → 0. Therefore, a proper small value of ε guarantees that the

trajectories of γ get inside set ρobs at a time t2 ≥ To; right after, they enter ρ2180

when t2 ≥ Tc. Thus, the proof is completed. �
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4. Simulation Results

This section presents the numerical simulations of the performance compar-

ison between the observer-based adaptive control approach versus the feedback

regulation ASMC scheme in a perturbed environment. To get a closer system185

representation of the real FA-Hex platform, SolidWorksTM CAD and Simscape

MultibodyTM environment from MATLAB/SimulinkTM are employed to assem-

ble the prototype and model the system, respectively (see Figure 2).

The emulated flights consist in the tracking of a maze-shaped trajectory with

a 50s duration, deployed on a 10m× 5m× 2m space. The FA-Hex is holding a190

ball of m = 0.5kg with a cable of L = 1m. The initial conditions for the system

have been established as q(0) = [0,−1.5, 1.0, 0, 0, 0, 0, 0.43]T . The system is

disturbed with a horizontal force incident on the FA-Hex defined by Px = 3N,

from t = 29s to t = 37s, representing a wind flow along the last section of the

maze trajectory. The control and observer parameters are shown in TABLE II.195

Then, a Runge-Kutta solver with a 0.01s step is used.

Figure 3 shows both the FA-Hex and the payload trajectories driven by the

ASMC and EHGO-ASMC schemes. In addition, the events of interest during the

simulation are indicated. In both trajectories, payload oscillations caused by the

initial condition and the disturbances are observed, however, the EHGO-ASMC200

scheme allows the FA-Hex to recover the reference trajectory while compen-

sating and significantly reducing the pendulum motion. Otherwise, the ASMC

gives a lower performance, since oscillation prevails after the disturbance forces.

The evolution of the oscillations from the payload for both controllers is

displayed in Figure 4. At t = 14s, an oscillation occurs in the αx angle for205

both scenarios, which is caused by the aircraft trajectory change. Under the

EHGO-ASMC scheme, the vehicle is able to attenuate such swinging within

7s, unlike the ASMC case, where the oscillation still exists at the time another

perturbation appears at t = 21s. Here, this oscillation is being dampened by

the EHGO-ASMC, until the wind disturbance happens at t = 29s. Subsequent210

to this perturbation, the EHGO-ASMC again attenuates the oscillation and it
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does it in 5s, while with the ASMC this remain up to the end of the trajectory.

The plot of αy shows the effect of the payload initial condition, as well as that

of the hexacopter direction changes, and the perturbation at t = 29s. For the

above three situations, the EHGO-ASMC effectiveness in smoothing oscillations215

is demonstrated. In addition, the time evolution of the payload coordinates with

xp, yp, and zp is shown. Considering the xp vs yp data, the superiority of the

proposed observer-based controller scheme is noticeable.

Figure 5 displays the aircraft position and attitude driven by both control

schemes. The capability of the UAV to travel using lateral forces, while the220

attitude is stabilized can be observed. Additionally, the effects of the initial

condition and the perturbation at t = 29s are highlighted to show that the

EHGO-ASMC scheme compensates for the pendulum motion of the payload by

making temporary deviations of the trajectory. Figure 6 shows that the forces

and torques required for tracking and external disturbances rejection, as well225

as compensate for the swinging, remain within the capabilities of the actual

hexacopter. Furthermore, this suggests a robust behavior of the controller,

without requiring excessive stress on the actuators.

Regarding the EHGO, the performance is detailed in Figure 7(a), where the

estimation error êγ = γ − γ̂ remains below 0.01m for the three observed axes.230

Figure 7(b) shows the perturbations χ3 affecting the FA-Hex on its x and y axes,

as well as their estimations χ̂3. In addition, TABLE III shows the performance

index for both scenarios. Since the payload motion is compensated with the

horizontal displacement of the UAV, the ASMC scheme shows slightly better

performance for FA-Hex trajectory tracking, but with continuous oscillation of235

the payload. These results indicate that the observer-based adaptive control

scheme EHGO-ASMC is particularly suitable for the oscillation damping of a

payload carried by a fully-actuated hexacopter, providing an appropriate control

effort management, despite the external disturbances. Finally, the use of any

additional device to measure the payload dynamics is obviated.240

17



5. Conclusions

In this research, an observer-based adaptive sliding mode controller has been

developed for a fully actuated hexacopter unmanned aerial vehicle subject to

disturbances while carrying a payload suspended by cable during a trajectory

tracking task. Considering the nonexistence of a device to measure the pay-245

load motion, an extended high gain observer has been proposed, allowing to

estimate the complete aircraft state, as well as external disturbances, includ-

ing those caused by the payload. These estimations have been compensated in

the control loop, to reduce the cable oscillations and improve the flight perfor-

mance. Moreover, the proposal has been analyzed using the Lyapunov theory,250

guaranteeing stability. Then, to demonstrate the performance and robustness

of this strategy, a perturbed simulated scenario has been set up in Simscape

MultibodyTM environment from MATLAB/SimulinkTM. The results of this

scheme have been compared with those using an adaptive controller which does

not compensate for the estimation of the payload motion inside the control255

loop. Simulation results demonstrate that the observer-based adaptive control

approach provides superior abilities to a fully-actuated hexacopter to attenuate

the oscillations of a suspended payload while developing a predefined trajectory.
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TABLE I. Parameters of the FA-Hex.

Parameter Value Unit Parameter Value Unit

M 1.71 kg Ip 0.0013 (kgm2)

l 0.23 m ϕ 20 deg

g 9.81 m/s2 α1 30 deg

Ix 0.0266 (kgm2) α2 −30 deg

Iy 0.0268 (kgm2) α3 −90 deg

Iz 0.0434 (kgm2) α4 −150 deg

m 0.50 kg α5 150 deg

L 1.0 m α6 90 deg

TABLE II. Controller and observer parameters.

Attitude EHGO Position

Parameter Value Parameter Value Parameter Value

λφ,θ,ψ diag(1.2, 1.2, 2.5) κ1x,y,z [3.0; 3.0; 1.0]T λx,y,z diag(1.5, 1.5, 3.0)

k1φ,θ,ψ diag(0.5, 0.5, 0.5) κ2x,y,z [3.0; 3.0; 1.0]T k3x,y,z diag(1.0, 1.0, 1.5)

kminφ,θ,ψ diag(0.01, 0.01, 0.1) κ3x,y,z [3.0; 3.0; 1.0]T kminx,y,z diag(0.1, 0.1, 0.1)

µφ,θ,ψ diag(0.2, 0.2, 0.2) ε 0.10 µx,y,z diag(0.1, 0.1, 0.1)

k2φ,θ,ψ diag(2.5, 2.5, 7.5) k4x,y,z diag(3.0; 3.0; 10)

TABLE III. Performance index of the simulated results.

MSE ITAE ||u||2
EHGO-ASMC ASMC EHGO-ASMC ASMC EHGO-ASMC ASMC

X 0.1408 0.1922 230.36 378.94 40.520 51.617

Y 0.0606 0.0568 130.59 123.23 126.74 125.11

Z 0.0019 0.0019 49.799 49.606 2189.1 2190.0

φ 0.0155 0.0153 95.601 98.172 14.807 15.628

θ 0.0004 0.0009 15.235 24.015 5.7270 7.2758

ψ 0.1009 0.1000 135.11 134.45 4.9489 4.9710

αx 0.0042 0.0166 41.550 124.41

αy 0.0063 0.0146 56.194 89.579
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Figure 1. Reference frames of the fully-actuated hexacopter UAV together with the suspended

payload.

Figure 2. Observer-based adaptive EHGO-ASMC diagram for the FA-Hex trajectory with

payload swing reduction. The system model has been solved with Simscape MultibodyTM

environment from MATLAB/SimulinkTM
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Figure 3. A three-dimensional representation of the trajectory followed by the hexacopter and

the payload. Events of interest in both simulations are highlighted.
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Figure 4. Payload dynamics along the simulation. The superiority of the adaptive observer-

based controller to reduce the oscillations faster and in the presence of disturbances is observed.

Figure 5. UAV flight trajectories. Small deviations required by the FA-Hex for the oscillations

reduction are observed.
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Figure 6. Forces required by the UAV driven by the EHGO-ASMC. The action of the hori-

zontal forces for the rejection of oscillations and trajectory tracking is shown.

[Hexacopter estimation errors by EHGO.]

[Payload and perturbations estimation.]

Figure 7. Observer performance on the estimation of the hexacopter position, as well as

payload motion and external perturbations.
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