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Abstract. This paper addresses both the storage and communication
complexity issues of the blockchain. Techniques exist to optimize appli-
cation data, whose size may grow or shrink over time. On the other hand,
consensus data is vital to guarantee the trust we have in the blockchain,
and is kept in its entirety. The Non-Interactive Proof of Proof-of-Work
primitive addresses this scalability issue assuming a fixed computational
power. We present for the first time a construction that provably satis-
fies the requirements of a non-interactive proof of proof-of-work that is
secure against a 1/3 adversary in a dynamic environment. Succinctness,
security and onlineness of the scheme are proven, while experimental
results confirm the exponential reduction of the Bitcoin blockchain.

Keywords: blockchain · Proof-of-Work · logspace mining · variable difficulty

1 Introduction

Blockchain immutability, i.e. its ability to remain a permanent, indelible, and
unalterable history of transactions, is a feature that brings an unprecedented
level of trust to the stored data. In Proof-of-Work (PoW) based blockchains [1],
immutability results from i) cryptography, i.e. transactions are cryptographically
sealed in blocks, which are themselves cryptographically linked together in a
sequence starting from the unique genesis block, ii) block creation difficulty, i.e.
as blocks go deeper in the sequence it becomes infeasible to replace them by
another sequence of blocks, iii) distribution, i.e. each party maintains a copy of
the adopted sequence of blocks, and iv) a deterministic rule that allows parties to
decide which among several sequence of blocks is the blockchain. Cryptographic
fingerprints, PoW nonce, and block mining difficulty are sealed in each block
header, and because of their essential role in contributing to the construction of
one unique immutable sequence of blocks, they are called consensus data. Most
existing protocols require consensus data to be locally stored and sent over the
network to allow newcomers to synchronize with the system. Consensus data
grows linearly over time, hindering the long-term feasibility and thus adoption
of blockchain technology. Note that application data (e.g, accounts or UTXOs,
smart contract state evolution) are application dependent and belong to the core
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of each block. Application data may grow or shrink as time progresses, and so
multiple techniques exist and have been well deployed in practice to securely
optimize it, e.g., SNAP [2], Layer 2 constructions [3, 4], side chains [5, 6, 7],
or compression of multiple transactions into smaller ones [8]. These methods
are significant to compress application data, but inapplicable to consensus data.
Non-interactive Proofs of Proof-of-Work (NIPoPoWs) have been proposed by
Kiayias et al. [9] to address the scalability issue of consensus data. A NIPoPoW
is designed as a compact proof of the total amount of work that has gone into
building a PoW-based blockchain, and should convince in one interaction that it
represents a secure and succinct summary of an honest underlying blockchain.
Its construction relies on the properties of hash distribution, and consists in
sampling a polylogarithmic number of well chosen blocks in the total number
of blocks of the original blockchain to estimate its size [9, 10, 11]. However, the
security of their construction [9] is proven assuming that all the blocks of the
original blockchain have been mined with the same mining difficulty. This is a
strong assumption that does not match permissionless blockchains.

Envisioning NIPoPoWs compliant with variable mining difficulty raises nu-
merous challenges. Firstly, this calls for quantifying the extent to which a block is
worth sampling (i.e. defining its sampling level): two blocks with very close hash
values may not be equally representative due to their respective mining difficulty,
and inversely, two blocks showing completely different hash values may have the
same sampling level. Secondly it requires to securely dimension the number K of
blocks per sampling level to guarantee that, with high probability, the adversary
cannot show more difficulty in sampled blocks than what the honest parties can
do at any sampling level. Thirdly, this demands to be resilient to low difficulty
attacks, an attack in which the adversary exploits the verifiers’ inability to check
the veracity of “old” blocks’ mining difficulty. An adversarial strategy is to se-
cretly mine a blockchain whose “old” blocks are computationally easy blocks,
and for more recent blocks to match their mining difficulty with the one of the
honest blocks. Fourthly, this requires to be able to compare blockchains whose
sizes are extremely different. We are not aware of any NIPoPoW construction
that proposes to face those challenges. This is our objective.

Our contributions. We present a NIPoPoW construction that:

– Provably handles proof-of-work blockchains whose mining difficulty varies
with the system computational power;

– Provably compresses proof-of-work blockchains: O(poly log(b)) blocks of in-
formation (b is the number of blocks of the blockchain) are sufficient to mine
new blocks and to synchronize all the nodes of the system;

– Provably achieves security against a Byzantine adversary controlling strictly
less than 1/3 of the computational power;

– Provably dimension our security parameter K;

– Experimentally shows that when |C| → ∞ (where |C| is equal to the number
of blocks of C), we have 2K log(|C|) ≤ NIPoPoW (|C|) ≤ 3K log(|C|), where
NIPoPoW (|C|) represents the number of blocks of the NIPoPoW.
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In the remainder of the paper, Section 2 details the related work with a par-
ticular emphasis on Kiayias et al.’s NIPoPoW scheme. Section 3 presents the
model of the system, and Section 4 formally specifies the addressed problem.
Section 5 proposes our instantiation of NIPoPoWs. Section 6 provides proofs for
security, succinctness, onlineness, and the dimensioning of the security parame-
ters. We conclude in Section 7.

2 Related Work

2.1 Light clients

The problem of blockchain becoming of considerable size was initially predicted
by Satoshi Nakamoto in the original paper that introduced Bitcoin [1]. He offered
a simple solution, Simplified Payment Verification (SPV), that only requires a
client to store block headers and leave out transactions. Still, the amount of data
that needs to be downloaded from the network grows linearly with the size of
the blockchain. FlyClient [12] allows a succinct and secure construction of proofs
in a setting with variable difficulty. They make use of Merkle mountain ranges
to reference the whole previous blockchain from every block. If a full node has
a proof and mines a new block on top of it, they cannot create a new optimal
proof without holding the whole chain. CoinPrune [13] still requires to store the
entire chain of block headers prior to the pruning point. Another approach to
build succinct proofs is to rely on SNARKS (Succinct Non-Interactive Argument
of Knowledge). Coda [14] is such a construction. Coda compresses a chain to
polylogarithmic size and updates the proof with new blocks. However, leveraging
SNARKs requires a trusted setup for the common reference string.

2.2 Non-Interactive Proofs of Proof-of-Work

A Non-interactive Proof of Proof-of-Work (NIPoPoW) primitive aims at con-
structing a proof that is representative of the size of the original blockchain.
Such a primitive has been proposed and instantiated by Kiayias et al. [9], and
elegantly relies on the idea that sampling a small set of well chosen blocks is
sufficient to estimate the size of the original blockchain [9, 10, 11]. To be kept as
a sample, a block needs to satisfy a specific property on its cryptographic hash.
The distribution of hash values is stochastic, and thus some blocks end up with
hash values significantly below the mining target T . Blocks that hash to a value
less than T/(2ℓ) are called ℓ-superblocks [10], where T is the mining target and
ℓ ≥ 0 is called the level of the block. The notion of ℓ-superblock reflects block
rarity. In expectation, for a blockchain C of n blocks, only one block of C is a
(log(n))-superblock, two blocks of C are (log(n)−1)-superblocks, . . ., and all the
blocks of C are 0-superblocks. The construction proposed by Kiayias et al. [9]
consists in keeping the 2K most recent blocks of each level, where K is a security
parameter, whose value by rule of thumb is set proportionally to the common
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Table 1: Compression schemes. |C|: number of blocks in chain C, c: block header
size, tx: size of block transactions, k: common prefix parameter, a: snapshot size,
χ: size of the uncompressed sub-chain.

Storage Communication Online Variable Adv.
Difficulty

BTC SPV |C|c+ log(tx) |C|c+ log(tx) ✓ 1/2
Kiayias [10] |C|c+ ktx + a poly log(|C|)c+ ktx + a 1/3
FlyClient [12] |C|c+ ktx + a poly log(|C|)c+ ktx + a ✓ 1/2
Kiayias [9] poly log(|C|)c+ ktx + a poly log(|C|)c+ ktx + a ✓ 1/3
Jain [15] poly log(|C|)c+ ktx + a poly log(|C|)c+ ktx + a ✓ 1/2
This work poly log(|C|)c+ (χ+ k)tx + a poly log(|C|)c+ (χ+ k)tx + a ✓ ✓ 1/3

prefix parameter k 3. Their proof is resilient to a 1/3-adversary. The authors
in [15] extend Kiayias et al. [9]’s scheme to obtain a proof that is correct in
presence of a 1/2-bounded PPT adversary. Their main idea is to attach increas-
ing weights Wβ(ℓ) to ℓ-superblocks, making them “diamond-blocks” so that the
selected proof is the heaviest. Because the adversary has minority mining power,
they cannot create a heavier sequence of diamond blocks faster than the honest
parties, for the same reason that an adversary cannot create a longer regular
blockchain faster than the honest parties create one. Still, Jain et al. [15] prove
the correctness of their construction in a static setting, that is assuming that
the mining difficulty is constant.

Table 1 summarizes the storage and communication complexity of these con-
structions, indicates whether or not the construction is sufficient to create new
blocks and to synchronize any newcomer, whether it fits a dynamic environment,
and finally whether it is robust against a 1/2 or a 1/3-bounded PPT adversary.
This work improves on existing solutions by providing a scheme that is both
online, i.e. one can mine blocks directly from the proof, and works in a variable
difficulty setting against a 1/3-bounded PPT adversary. The storage and com-
munication costs of our scheme are comparable to Kiayias et al. [9] and Jain et
al. [15]. We add one constant, keeping our scheme in polylogarithmic complexity.

3 Model of the system

We consider proof-of-work blockchains, that is blockchains whose block construc-
tion requires solving a resource consuming calculation [16]. We specifically focus
on consensus data (i.e., application data is not considered as it is application
dependent). We assume that each block contains a snapshot of the application
state. Proofs of correctness of our construction relies on the model adopted by
Kiayias et al [9]. Specifically, we consider a synchronous setting where time is
quantized into discrete rounds [9] during which each party can send a message

3 For any two blockchains C1 and C2, with |C1| ≤ |C2|, we say that k is the common
prefix of both blockchains, if C1, from which the k most recent blocks have been
removed, is a prefix of C2.
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to other parties, receive the messages sent to it during the round, and execute
computational steps based on the received messages. We assume the presence of
an adversary that models the behaviors of adversarial parties. We note a series
n = {nr}r∈N to represent the total number of participants of the system over
time, t = {tr}r∈N of which are adversarial. The relative proportion of malicious
participants is bounded by a variable δ, typically called the advantage of honest
parties, and we have ∀r : tr ≤ (1 − δ)(nr − tr). Each party is allowed to make
ρ queries to the cryptographic hash function in every round to create a block
(specifically to find an adequate nonce). We say that a block b is valid if its header
contains a nonce, along with non-double spending transactions, that hashes to
a value h below a given mining target. The cryptographic hash function h(.)

behaves as an ideal random function, and is modelled as a random oracle [17].
It produces a constant length κ output, where κ is a security parameter typi-
cally equal to 256. The adversary can query the cryptographic hash function up
to tr × ρ times per round [18]. Note f the probability that at least one of the
honest queries is successful, i.e. the probability that at least one honest party
successfully mines block during one round.

We suppose that the adversary is a rushing adversary in the sense that they
can observe what the honest parties have done during the round before using
their computational power at the end of the round. The adversary is also a Sybil
adversary as they can inject as many additional messages as they wish by faking
multiple identities. We limit the adversary to a probabilistic polynomial-time
Turing machine that behaves arbitrarily. The adversary may thus not follow
the prescribed algorithms, but it remains computationally bounded. Hence, it
cannot, in a polynomial number of steps of time or space, forge honest party
signatures or break the hash function and signature scheme with all but negligible
probability. Therefore, we name our adversary the 1/3-bounded PPT adversary.
Any party following the prescribed protocol is called an honest party. In the
following, blockchains will often be denoted as C, . . . , C′, while blocks will be
denoted by b, . . . , b′.

4 The addressed problem

The addressed problem is the construction of a non-interactive proof that is rep-
resentative of the underlying PoW-based blockchain C. Such a proof is denoted
by Π and is created with the NIPoPoW primitive. This primitive consists of two
operations. Given a blockchain C, Compress(C) creates the proof Π, and given
a set of proofs Π = {Π1, . . . ,Πn}, operation Compare(Π1, . . . ,Πn) compares all
the Π1, . . . ,Πn and outputs one proof Πi ∈ Π. The objective of this work is to
instantiate both operations such that for any 1/3-bounded PPT adversary, the
following properties hold:

Security: For any set of proofs Π = {Π1, . . . ,Πn} such that among them
at least one has been provided by an honest party, Compare(Π1, . . . ,Πn)
returns Πi, representative of the most recent honest chain that accumulated
the most work;
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Succinctness: For any blockchain C maintained by an honest party, we have
|Compress(C)| = O(poly log |C|);

Onlineness. For any blockchain C maintained by an honest party, we have
Compress(C · b) = Compress(Π · b);

where C · b (resp. Π · b) indicates that block b is appended to C (resp. proof Π).
Onlineness is crucial for scalability, as it states that parties can mine blocks di-
rectly from the proof. The underlying blockchain does not need to be maintained,
i.e., the proof is self-contained.

5 NIPoPoWs in a variable setting

5.1 Variable mining difficulty

Let C be some PoW-based blockchain. To guarantee that on average the time
interval between any two successive block creations is constant, despite unpre-
dictable variations of the global hashing power, miners in PoW-based blockchains
periodically recalculate the block mining difficulty. The period of time between
any two successive recalculations is called an epoch. In Bitcoin, an epoch is made
of m = 2016 blocks, i.e. two weeks. The mining difficulty at epoch i represents
how much more difficult it is to mine a block at epoch i than it was when the
genesis block of the blockchain was created. The mining difficulty is inversely
proportional to the mining target [1]. This last notion refers to the PoW inequa-
tion satisfied by any block b of a PoW-based blockchain, i.e., h(b) ≤ Ti, where
Ti represents the mining target at epoch i. Let ∥b∥ refer to the difficulty sealed
in b’s header. If ∥b∥ = 1/Ti, block b is valid for epoch i. By abuse of notation we
write b ∈ Ti if b was mined during epoch i.

5.2 Evaluating the significance of a block

We revisit the definition of block level, introduced in Kiayias et al [9]. The level
of a block is an indicator of its significance: the higher the level of a block is, the
more it is representative of the number of blocks of C. The level of a block is a
projection of its hash value over its mining period onto the unit interval [0, 1].
A level may contain blocks whose mining target is different, which just reflects
the fact that those blocks are equally representative of the original blockchain,
but have been created in epochs that involved different computational powers.

Definition 1. (Level of a block) Let κ be the security parameter of the mining
process, then for any block b ∈ C such that b ∈ Ti, the level of b is defined as

Level(b) = max

{
ℓ ∈ J0, κ− 1K

∣∣∣∣ h(b)Ti
≤ 1

2ℓ

}
.

By definition, a block of level ℓ is also a block of level ℓ′ for all 0 ≤ ℓ′ < ℓ. We
say that the level of block b is ℓ if ℓ is the largest value for which h(b)/Ti ≤ 1/2ℓ
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holds. Figure 2 in Appendix A shows the number of blocks as a function of their
level. By convention, the genesis block has an infinite level. A block of level ℓ is
called a ℓ-block. On average, one needs to create 2ℓ blocks to obtain one block
of level ℓ. By sampling only the last blocks of each level, one will be able to
exponentially compress the blockchain.

5.3 Construction of a NIPoPoW

NIPoPoWs requires two operations: the Compress() operation that builds the
NIPoPoW, and the Compare() operation that selects among a set of collected
NIPoPoWs the one that reflects the “best” underlying blockchain. Our instan-
tiation of these operations are close to the ones proposed in [9]. This is very in-
teresting because it keeps the elegance of the original construction, and it makes
ours adapted to both static and variable difficulties. Apart from the block level
function which guarantees the scalability of our construction, our instantiation
ensures that any verifier is capable of auditing the difficulty of the NIPoPoW
blocks, prevents low difficulty attacks, and copes with the extremely rare sce-
nario in which NIPoPoWs have no blocks in common, i.e., NIPoPoWs that reflect
blockchains whose sizes are extremely different.

Notations used in the algorithms We note C an interlinked blockchain, with
C[i] denoting its ith element. C[: j] denotes blocks from the genesis blocks to the
jth block exclusive, and C[i :] denotes blocks from the ith element inclusive to
the end of C. C[i : j] denotes blocks from the ith element inclusive to the jth

block exclusive. Block indices i and j can be replaced by blocks A and Z. We
then write C{A : Z} to designate the chain from block A inclusive to Z exclusive.
Again, any end can be omitted. A negative index means to take blocks from the
end, C[−1] denotes the tip of C. We write C ↑µ to mean the subsequence of C
containing only its µ-blocks. The C ↑ operator is absolute: (C ↑µ) ↑µ+i= C ↑µ+i.
Since C is interlinked, C ↑µ is a chain too. Given two chains C1 and C2, C1 ⊆ C2
means that all of C1’s blocks are in C2. We denote C1 ∪C2 the chain consisting of
all blocks in either chains. C1 ∩ C2 denotes the chain consisting of blocks only in
both chains. We note C1 \C2 the chain consisting of blocks in C1 but not C2. The
chain filtering operators [·], {·}, ↑ have precedence over the ∪, ∩ and \ operators.

Compressing a blockchain The Compress() algorithm aims at sampling a
polylogarithmic number of well chosen blocks from the blockchain. Only those
blocks will appear in the NIPoPoW, i.e. all the other ones will be pruned. This
requires every block header to keep pointers to the last preceding block of every
level so that sampled blocks form a valid chain. The algorithm is parameterized
by the security parameters K, χ and k. Parameter K is dimensioned to be large
enough so that, for a blockchain made of |C| blocks, K guarantees that with
any high probability a 1/3-adversary cannot exhibit more difficulty in its own K
sampled blocks of level ℓ, for all 0 ≤ ℓ ≤ log |C|, than what the honest parties can
show. Parameter χ represents the minimum number of blocks necessary for any
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verifier to check that the most recent part of the NIPoPoW exhibits a correctly
computed mining difficulty. Finally, parameter k represents the common prefix
parameter [19]. Once a block is anchored more than k blocks deep in a blockchain,
this block has a negligible probability to be pruned from the main blockchain by
a fork. Note that in the static construction (e.g., [9, 15]) it is assumed that all
the blocks of the blockchain have been created with the same constant difficulty.
Thus, there is no need for an uncompressed part in those cases.

Specifically, the CompressK,χ,k() algorithm first separates the blockchain into
three sub-chains. The unstable, uncompressed, and compressed sub-chains. The
unstable sub-chain contains the k most recent blocks of the blockchain. The term
unstable refers to the fact that those k most recent blocks have a non negligible
probability to be pruned during a fork resolution. The analytical dimensioning
of the common prefix parameter k by Garay et al. [19] in a variable setting
shows that k is proportional to the ratio m/τ , where m is the length of an
epoch and τ is the dampening factor in Bitcoin’s mining target recalculation.
A conservative evaluation gives k = 323. Those k blocks are returned as such
by the CompressK,χ,k() algorithm. The uncompressed sub-chain contains the χ
most recent blocks of the blockchain after having removed the k most recent
ones. We set χ = 2m as this is the minimal value to keep all blocks of at
least the most recent epoch (recall that an epoch contains 2016 blocks). Those
χ blocks are also returned as such by the algorithm. Finally, the compressed
sub-chain is built by sampling at least 2K but no more than 4K blocks per
level of the blockchain. Specifically, the algorithm determines the highest level
ℓ of the blockchain, that is the highest level that contains at least 2K ℓ-blocks.
Note that the few blocks whose level is larger than ℓ are also kept at level ℓ.
This guarantees that appending new blocks to the proof progressively leads to
higher block levels. Then for each lower level 0 ≤ µ < ℓ, the 2K most recent
µ-blocks are kept, as well as all µ-blocks coming after the Kth block of level
µ+1, counting from the end. This guarantees that any two consecutive levels of
the construction intersect in at least K blocks. The compressed sub-chain is also
returned by the algorithm, as well as the highest level ℓ. Hence, the NIPoPoW
consists of the chain of blocks obtained by appending those three sub-chains. Due
to space constraints, pseudo-code of the CompressK,χ,k(C) algorithm appears in
Appendix B. Figure 3 in Appendix A shows the compression of the first blocks
of the Bitcoin blockchain.

Comparison algorithm The Compare() algorithm is fed with NIPoPoWs. Note
that it also accepts full blockchains as input, since its first step is to Compress()
each of its inputs to be able to compare them on an equal basis. The algorithm
is parameterized by the same parameters as the CompressK,χ,k() one. It com-
pares iteratively its next NIPoPoW (i.e., the next input) with the best current
one. Specifically, given two NIPoPoWs to be pairwise compared, the algorithm
looks for the smallest level µ at which both NIPoPoWs share a common block
b. Block b is called the last common ancestor (LCA) of both NIPoPoWs. The
existence or not of a LCA between any two NIPoPoWs provides crucial infor-
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mation on their underlying full blockchains. Firstly, it indicates that their sizes,
which in average are equal respectively to 2K2ℓ and 2K2ℓ

′
, for some ℓ, ℓ′ ≥ 0

(see Definition 1) are very close to one another, that is ℓ = ℓ′. Secondly, a LCA
at level µ guarantees that the length of the common prefix of both underlying
blockchains is in average equal to 2K(2ℓ − 2µ−1) blocks. Note that if µ = 0
then both underlying blockchains are almost similar except possibly for their
most recent 2K + χ+ k blocks. Hence, two blockchains are comparable if their
NIPoPoWs share a LCA. Thus, just comparing the accumulated difficulty of both
NIPoPoWs from the LCA block is indicative of the best underlying blockchain.
Specifically, the CompareK,χ,k() algorithm computes, for both NIPoPoWs, the
sum of difficulties of blocks following block b in the compressed sub-chain plus
the sum of difficulties of all the blocks in the uncompressed and the unstable
sub-chains. The best NIPoPoW is the one that accumulates the most difficulty.
The algorithm iterates the same pairwise comparison process on the next inputs
(if any). If each pairwise comparison exhibits a LCA, then the algorithm returns
the best current NIPoPoW. On the other hand, the absence of common ancestor
between any two NIPoPoWs reveals strongly dissimilar underlying blockchains.
Such a dissimilarity is either due to the presence of a fork that has never been
resolved since nearly the inception of both blockchains. The other reason is a
long-lasting obsolescence of one of the two underlying blockchain. Assuming
the absence of network partition, the former case indicates that one of the two
NIPoPoWs is adversarial while the second case reflects a blockchain that has al-
most never been updated with new blocks. The most efficient way that allows a
verifier to handle such a situation is to create and diffuse a transaction including
a privately generated random beacon and then observing the network for at least
K/f rounds. The synchrony assumptions and the adversarial model guarantees
that any honest transaction sent in a round is received by all honest parties in
the same round, and that on average it takes K/f rounds to create K blocks,
where K is our security parameter and f is the probability for honest parties to
create at least one block during one round. After K/f rounds, the verifier con-
siders all the blockchains that exhibit a block containing its beacon, and picks
the heaviest one. The verifier can safely keep the NIPoPoW generated from the
chain with the most difficulty, as the existence of the beacon prevents the adver-
sary from mining blocks in advance. For space limitation reasons, pseudo-code
of the CompareK,χ,k(C1, . . . , Cn) algorithm is given in Appendix B.

6 Analysis

6.1 Preliminary definitions

Our analysis relies on Garay et al.’s Bitcoin Backbone with chains of variable
difficulty model [19], as well as concepts introduced in Kiayias et al.’s protocol [9].
The analysis strongly relies on Garay et al.’s notion of typical executions [19].
An execution E of the protocol generates a sequence S of rounds. An execution
E is typical if the considered random variables do not deviate too much from
their expected values, i.e. at distance ε of their expected value. From Garay
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et al. [19] we have |S| > m/(16τf), where m represents the number of blocks
defining an epoch, i.e. m = 2016 for Bitcoin, f is the probability for honest
parties to create at least one block in a round, and τ is the dampening filter
in Bitcoin target’s recalculation function. A round r is successful if the honest
parties succeed in creating at least one block during r, and is uniquely successful
if the honest parties succeed in creating exactly one block during r. Given a
chain C, and d ∈ R+, d ∈ C[i] if ∥C[: i]∥ ≤ ∥C[: i]∥+ d < ∥C[: i+ 1]∥. We denote
by Qr the random variable that represents the difficulty of the block created
during a uniquely successful round r. If r is not uniquely successful then Qr = 0.
By extension,

∑
r∈S Qr represents the accumulated difficulty obtained during an

execution of S rounds. Quantity
∑

j∈J Aj represents the accumulated difficulty
obtained by the adversarial parties over a set of queries J . Considering a set
of queries rather than a set of rounds allows the adversary to target specific
rounds during which it queries the hash function. Furthermore, by adopting a
similar approach as the one of Kiayias et al. [9], we generalize our results by
using the notion of block property satisfying a predicate P on its hash output
h ∈ {0, 1}k over its mining target T . A P -block is a block such that P (h/T )
= true. Probability ξP quantifies the probability that a block satisfies predicate
P . By abuse of notation, we denote by C ↑P the set of P-blocks of C. Finally,
we denote by ϕ the quantity ρ/2κ. For self-containment reasons, Appendix C
provides the formalisation of all the notions we use in our proofs. More details
can be found in Garay et al. [19]. Appendix D summarizes all the variables used
in this article.

6.2 Suppression of honest difficulty

The following technical lemmas will be deeply used to prove the correctness of
our solution. The two first ones show the condition under which the adversary
may impose its chain to honest parties (i.e., can suppress some of the honest
difficulty in the blockchain). On the other hand, Lemma 3 states that in execu-
tions long enough, the honest difficulty of the adopted blockchain dominates the
adversarial one. Proofs of these lemmas extend the ones presented in Kiayias et
al. [9]. Observe that in the constant mining difficulty setting [9] the height of a
blockchain (i.e., its number of blocks) is equivalent to its accumulated difficulty
as all the blocks are created with the same difficulty. In the variable mining
difficulty setting, there is some discrepancy between the height of a blockchain
and its accumulated difficulty and so to compare C and C′, we need to consider
the different possible relationships between the height of a chain and its associ-
ated difficulty. For space constraint reasons, we present the proofs of these three
technical lemmas to Appendix E.

Lemma 1 (Pairing). Consider a execution with an honest party, an adversary
and two chains C, C′. For any pair of distinct blocks C[i] and C′[i′] such that
∃d ∈ R+, d ∈ C[i] and d ∈ C′[i′], if C[i] was computed by an honest party in a
uniquely successful round, then C′[i′] was computed by the adversary.
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Lemma 2 (Suppression). If r is a uniquely successful round and the corre-
sponding block b does not belong to the chain of an honest party at a later round,
then there is a set of consecutive rounds S and a set J of adversarial queries in
S such that r ∈ S and

∑
r∈S Qr ≤

∑
j∈J Aj.

Lemma 3 (Unsuppressibility). Given a typical execution with an honest
party and an adversary, every set of consecutive rounds U has a subset S of
uniquely successful rounds, such that the following conditions hold:

1.
∑

r∈S Qr ≥
∑

r∈U Qr − 2
∑

j∈U Aj − (1 + ε)ϕ
∑

r∈2 m
16τf

tr,

2. After the last round in S the blocks corresponding to S belong to the chain
of every honest party.

6.3 Security, succinctness and onlineness

Intuitively, the P -block Common-Prefix Lemma shows that while the adversary
is able to accumulate difficulty in its private blockchain for a given period of time,
at some point the honest parties will accumulate more difficulty than what the
adversary has achieved to do.

Lemma 4 (P -block Common-Prefix). Given a typical execution with an
honest party and a 1/3-bounded PPT adversary, such that a chain C is adopted
by the honest party at round r, and there exists another chain C′ such that P-
blocks of C′ \ (C′ ∩ C) have at least 2(1 − ε)(1 + ε)ξP (|W ′|/2κ − ϕmγt/16τf)
difficulty, then with overwhelming probability, we have ∥C ↑P ∥ > ∥C′ ↑P ∥.

Proof. Let us consider an an execution that satisfies the assumptions of the
lemma. Let r∗ be the round during which the last honest block on C∗ = C ∩ C′

was computed. If no such block exists, we set r∗ = 0. Let us consider the set
of rounds S = {i : r∗ < i ≤ r} as well as two subsets S1 = {i : r∗ < i <
r∗ + m/16τf}, S2 = {i : r∗ + m/16τf ≤ i ≤ r}. We will study the execution
during the rounds in S. Let us denote by W ′ the set of adversarial queries on
C′ \C∗ at some round r ∈ S2. Finally, we denote by W the rest of the adversarial
queries, i.e. those executed on C′ \ C∗ at round r ∈ S1 or on C \ C∗ at any round
r ∈ S.

Using Lemma 3, there is at least
∑

r∈S Qr−2
∑

w∈W Aw−(1+ε)ϕ
∑

r∈2 m
16τf

tr

difficulty that the adversary cannot suppress on C. Each of those rounds con-
tributing difficulty produce a P -block independently with probability ξP . Thus
with overwhelming probability, the total quantity of difficulty in P -blocks on
C \ C∗ is at worst AP , where AP is defined in Equation (1).

AP = (1− ε)ξP ·

[∑
r∈S

Qr − 2
∑
w∈W

Aw

]
− (1− ε)ξP (1 + ε)ϕ

∑
r∈2 m

16τf

tr (1)

On the other hand, the difficulty quantity of P -blocks on C′ \ C∗ is at most
the difficulty in P -blocks from the W ′ queries and the queries executed during
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S1. The latter can be shown to be at most (1+ε)ξPϕ
∑

r∈ m
16τf

(nr− tr) difficulty.

The former, in a typical execution, are at most (1+ ε)ξP
∑

w′∈W ′ Aw′ difficulty.
Thus, the difficulty in P -blocks on C′ \ C∗ is at most BP , where

BP = (1 + ε)ξP
∑

w′∈W ′

Aw′ + (1 + ε)ξPϕ
∑

r∈m/16τf

(nr − tr) (2)

We show that AP − BP ≥ (1 − ε)ξP (
∑

r∈S Qr − 2
∑

j∈J Aj), where this
lower bound is positive in a typical execution in which the power of the ad-
versary is bounded below 1/3 of the total power. We have AP − BP = ξP ((1−
ε)

(∑
r∈S Qr − 2

∑
j∈J Aj

)
+(1−3ε)

∑
w′∈W ′ Aw′−(1−ε)(1+ε)ϕ

∑
2m/16τf tr−

(1+ ε)ϕ
∑

m/16τf (nr − tr)). Since 0 < ξP ≤ 1, this is equivalent to showing that

(1− 3ε)
∑

w′∈W ′

Aw′ − (1− ε)(1 + ε)ϕ
∑

2m/16τf

tr − (1 + ε)ϕ
∑

m/16τf

(nr − tr) ≥ 0

To get the required amount of difficulty on C′, we need to find the amount a of
difficulty such that (1 + ε)

∑
w′∈W ′ Aw′ + (1+ ε)ϕ

∑
r∈m/16τf (nr − tr) ≥ a. The

inequality is verified with a = 2(1−ε)
∑

w′∈W ′ Aw′ −(1−ε)(1+ε)ϕ
∑

2m/16τf tr.

Following Definition 8 (Typical Execution) and Fact 1 (see Appendix C) from
[19], and re-injecting the probability ξP , we obtain the bound BP , i.e., BP ≥
2(1− ε)(1 + ε)ξP (|W ′|/2κ − ϕmγt/16τf). This completes the proof. ⊓⊔

Theorem 1 (Security). Given a typical execution with an honest party and
a 1/3-bounded PPT adversary, such that at round r the honest party has chain
C, and its corresponding proof Π = CompressK,χ,k(C), and the adversary has
chain C′, and its corresponding proof Π ′ = CompressK,χ,k(C′) and let Π∗ =
CompareK,χ,k(Π,Π ′) be the proof accepted by the verifier, then, with overwhelm-
ing probability, we have ∥Π∗{(Π∗ ∩ C)[−1] :}∥ ≥ ∥C{(Π∗ ∩ C)[−1] :}∥.

Proof. Let M the set of levels where both chains shared at least one block,
M = {µ ∈ N | Π ↑µ ∩Π ′ ↑µ ̸= ∅}, and let µ = min(M) if M ̸= ∅, µ = ⊥
otherwise (Section 5.3). Three cases must be considered according to µ’s value.

µ = 0: Recall that the verifier chooses the heaviest proof. (Π∗ ∩C)[−1] refers to
the last block shared by Π∗ and C, and Π∗{(Π∗∩C)[−1] :} refers to this very
same block and the set of blocks in Π∗ following it. Since we have µ = 0,
this last common block belongs to the last 2K+χ+k blocks of both chain C
and proof Π∗. At round r, the honest party has C, i.e. ∥C∥ ≥ ∥C′∥. Thus, the
only possibility to have Π∗ = Π ′ is that the adversary successfully mined a
block on top of Π, which is a valid extension heavier than the honest proof.

µ > 0: By definition of µ, Π ↑µ−1 ∩Π ′ ↑µ−1= ∅. By construction, both proofs
hold at least 2K(µ−1)+χ+k blocks after their common block b (Section 5.3).
By Lemma 4, Π is accepted.

µ = ⊥: In this case, the proofs do not share a common block. We thus use the
beacon method to create this reference block. After K/f rounds, we are able
to pick the chain containing the beacon which has the most work, and thus
determine the value of Π∗ accordingly. ⊓⊔
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Theorem 2 (Succinctness). For any infinite sequence S of rounds and for any
subsequence Sj ⊆ S of consecutive rounds, any honest miner stores O(K2 log(r))
blocks at round r ∈ Sj.

Proof. Consider a proof Π generated by an honest prover from an underly-
ing chain C, and suppose for contradiction that |Π| ∈ ω(K log(r)). Consider
(D, X,Ω, ℓ) = Compress(C). By assumption on Π, we have

∑
µ∈N |D[µ]| ∈

ω(K log(r)), since χ, k are constant. Let ℓ = max{µ ∈ N | D[µ] ̸= ∅}, and
let us consider some µ ≤ ℓ such that D[µ] ∈ ω(K log(r)) and thus D[µ] ∈
Ω(K2 log(r)). Note r0, r1 the rounds in which D[µ][0], D[µ][−1] were created re-
spectively. Consider U the set of consecutive rounds between r0 and r1. We
have |U | ≥ |D[µ]| ≥ K. By definition of µ, at least K2 blocks must have
been created during U , among which (1 − ε)K2/2 ≥ 2K are (µ + 1)-blocks
which belongs to D[µ + 1] as well. The case µ = ℓ contradicts the maximal-
ity of ℓ, and thus the assumption Π ∈ ω(K log(r)). If µ < ℓ, then we have
D[µ] ∈ Ω(K2 log(r)), and D[µ+ 1] ∈ O(K). Since D[µ] = C[: −χ− k] ↑µ [−2K :
] ∪ C[: −χ − k] ↑µ {D[µ + 1][−K] :} and |C[: −χ − k] ↑µ [−2K :]| = 2K, we
have C[: −χ − k] ↑µ {D[µ + 1][−K] :} ∈ Ω(K2 log(r)). Since D[µ + 1] ∈ O(K),
|D[µ]| ≤ 2K + O(K) which contradicts D[µ] ∈ Ω(K2 log(r)), completing the
proof. ⊓⊔

Theorem 3 (Onlineness). Let Π = CompressK,χ,k(C) generated about an
honest chain C, and let b a block mined on top of C. We have CompressK,χ,k(C ·b)
= CompressK,χ,k(Π · b).

Proof. Recall that given C (resp. Π) and a block b, C · b (resp. Π · b) refers
to the concatenation of b to C (resp. to Π). Given (D, X,Ω, µ) =Compress(C),
D gathers 2K last blocks from ν-blocks of the compressed sub-chain and µ =
maxµ∈NΠ ↑µ ̸= ∅. Let ℓ the level of block b. Obviously, for any level ℓ < ν ≤ µ,
we have (C · b) ↑ν= C ↑ν= Π ↑ν= (Π · b) ↑ν . In addition, for any level 0 < ν ≤ ℓ,
we have Π ↑ν⊆ C ↑ν and thus (Π · b) ↑ν⊆ (C · b) ↑ν . Let us consider a level
0 ≤ ν ≤ ℓ. Recall that i) the Compress() algorithm determine a pivot bνC , the
K-th most recent block at level ν + 1 of a chain C, ii) any block of level ν is
also a block of levels lower than ν. As a consequence, for any level 0 ≤ ν ≤ ℓ,
we have bνC·b = bνΠ·b, and thus (C · b){bνC :} = (Π · b){bνΠ :}. Similarly, for any
level 0 ≤ ν ≤ ℓ, the same argument holds for blocks preceding pivot bνΠ , we have
(Π · b) ↑µ {: bνΠ} ⊆ (C · b) ↑µ {: bνC}, which completes the proof. ⊓⊔

6.4 Dimensioning the security parameter K

All the properties of our NIPoPoW instantiation, namely Security (Theorem 1),
Succinctness (Theorem 2) and Onlineness (Theorem 3) rely on security param-
eters K, χ and k. We dimension k and χ in Section 5.3. Security parameter
K must guarantee that with any high probability a 1/3-adversary cannot ex-
hibit more difficulty in its own K sampled blocks than what the honest parties
can do. This ensures that the CompareK,χ,k() algorithm, when fed with a set
of NIPoPoWs such that among them at least one is an honestly generated one,
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will return the best NIPoPoW, i.e. the NIPoPoW that represents the blockchain
with the largest accumulated difficulty.

We model the protocol as a competition between an honest party and the
adversary. We denote by Π the honest NIPoPoW and by Π ′ the adversarial one.
We assume that the competition takes place within an epoch which means that
the honest target T is constant during the competition. The competition starts
at the first time where both chains fork. We denote by b⋆ the last common block:
b = (Π ∩ Π ′)[−1]. At each step of the competition, a unique block is created,
either by the honest party or the adversary. We assume that the adversary may
potentially mine blocks at a different difficulty from that of the honest parties.
We denote by α = a/b the ratio between honest and adversarial blocks in terms
of difficulty. We refer by n the number of blocks in the honest chain that do
not belong to the adversarial chain, we have n = |Π{b⋆ :}|. We are interested
in determining the earliest step in which the adversarial chain overcomes the
honest one, after n blocks have been appended to the honest chain. We denote
this event by Cα

n .
To determine P(Cα

n ), we use the classical gambler’s ruin problem [20] and the
Poisson distribution. The classical gambler’s ruin problem provides us Pruin(M),
the probability that the adversary will catch up, given an initial gap M (M ∈ N)
in the quantity of work between his chain and the honest chain. Following [20],
two cases must be considered. If the initial gap M is less than b, the quantity of
difficulty of an adversarial block, i.e., M < b, the adversary has already caught
up, in which case we have Pruin(M) = 1. On the contrary, if M ≥ b, we have
Pruin(M) < 1. We provide details on the derivation of Pruin in Appendix F.

Consider now the step where the honest party appends its n-th block (pre-
senting a difficulty of a) on its chain. We denote by In the time interval during
which the honest party produces n blocks. Regarding the adversary, he may
have appended i ≥ 0 blocks (each one having b difficulty) on its chain. Fol-
lowing [21], random variable X represents the number of blocks produced by
the adversary. X follows a Poisson distribution with parameter λ, which rep-
resents the average number of blocks the adversary produces during In. The
difference of accumulated difficulties between both chains is t given by na− ib.
Since {X = i;λ}i≥0 is a complete system of events with P(X = i;λ) ̸= 0 for
i ≥ 0 and Pruin(na − ib) = P(Cα

n | {X = i;λ}) for i ≥ 0, we can determine
P(Cα

n ) using the law of total probability:

P(Cα
n ) =

∞∑
i=0

P(X = i;λ) · Pruin(na− ib)

P(Cα
n ) = 1−

⌊nα−1⌋∑
i=0

λie−λ

i!
(1− Pruin(na− ib)) .

Given the expression of P(Cα
n ), and a security parameter ε, we can define

K as follows K = infn≥0P(C
α
n ) < ε. Figure 1a plots the value of K as a

function of α with ε = 10−6. A secure implementation should take the largest
value of K to cope with a variation of α = 1/4, i.e. K = 208. Finally we
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Fig. 1: Parameter K as a function of the choice adversarial target, and chain
compression on Bitcoin Mainnet (865,042 blocks as of 2024-10-11).

have experimentally compressed the current Bitcoin blockchain with the settings
K = 208, χ = 4032, k = 323. Figure 1b shows the obtained NIPoPoW size in the
number of blocks. Its size varies polylogarithmically with the size of Bitcoin’s
blockchain length, which illustrates the succinctness property.

Our code is publicly available here for the calculation of K, and here for the
implementation of our scheme in Python. The Python implementation uses the
Bitcoin blockchain historical data to generate the proofs.

7 Conclusion

We have presented an instantiation of a NIPoPoW that handles variable mining
difficulty. This relies on an original block level definition and a precise dimension-

https://github.com/nderousseaux/imt-internship
https://github.com/loicmiller/variable-mls


16 Authors Suppressed Due to Excessive Length

ing of the security parameter K that defends the system against a 1/3-adversary,
and in particular against low difficulty attacks.

As future works, we intend to extend the solution proposed in [15]. We are
pretty confident that handling block difficulties and weight should improve the
resiliency of our solution to a 1/2-adversary. Our scheme deeply relies on the
stochastic and cryptographic properties of the hash function in the PoW. Given
scalability properties of NIPoPoWs, we intend to study their instantiation to
DAG-based PoW-based blockchains. Another challenging objective is to instan-
tiate them to PoS-based permissionless blockchains (e.g. [22, 23]) by exploiting
the randomness present in blocks.
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A Additional figures

Figure 2 has been plotted from the Bitcoin blockchain data. It shows the number
of blocks that match a given block level (see Definition 1).

Fig. 2: Number of blocks as a function of their level (see Definition 1).

Figure 3 reflects the outcome of the compression algorithm run on the first 38
blocks of the Bitcoin blockchain. Compression parameters are K = 2, χ = 9 and
k = 2. Figure 3a depicts the chain according to these parameters. The unstable
sub-chain (in red) gathers the last k = 2 blocks. The uncompressed sub-chain (in
blue) gathers the following χ = 9 blocks. The compressed sub-chain is depicted in
green. Figure 3b depicts the very same chain according to block levels as defined
in Definition 1, and their references to previous block at each level. Finally, Fig-
ure 3c show the result of the compression algorithm on this chain : Level 1 is the
highest level ℓ that contains at least 2K blocks. Note that for readability reasons,
links from each block to the genesis block have been omitted. The NIPoPoW
proof is made of the sequence of blocks = ⟨G, 19, 22, 24, 25, 26, 27, 28, . . . , 36⟩,
where the sequence of blocks ⟨G, 19, 22, 24, 25⟩ represents the block sequence of
level 1, and the sequence ⟨24, 25, 26, 27⟩ the block sequence of level 0.
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(a) Bitcoin before compression.
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(c) The first 38 blocks of Bitcoin after compression.

Fig. 3: Compression scheme on the first 38 blocks of Bitcoin (K = 2, χ = 9 and
k = 2).
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Fig. 4: Bitcoin target variation over time (865,042 blocks as of 2024-10-11). Ver-
tical dashed lines indicate a increase of the target compared to the previous
epoch, and thus a drop in difficulty. The first drop occurred in 2010.
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Fig. 5: Variation of the total difficulty of the proof (logscale) over time, when
applied to Bitcoin (865,042 blocks as of 2024-10-11).
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B Algorithms

Input : C, which is either a regular or a compressed chain
Output: tuple (D, X,Ω, ℓ) where

Ω is the unstable sub-chain of C of size k,
X is the uncompressed sub-chain of C of size χ,
D is the compressed chain,
and ℓ is the highest level of C

1 , function CompressK,χ,k(C):
2 D ← ∅
3 Ω ← C[−k :] // Unstable sub-chain

4 X ← C[−χ− k : −k] // Uncompressed sub-chain

5 C⋆ ← C[: −χ− k] // To be compressed part

6 if |C⋆| ≥ 2K: // The chain is long enough

7 ℓ← max{µ : |C⋆ ↑µ | ≥ 2K} // Get the highest level ℓ

8 D[ℓ]← C⋆ ↑ℓ // Keep all the blocks of level ≥ ℓ
9 for µ← ℓ− 1 down to 0: // For each subsequent level

10 b⋆ ← C⋆ ↑µ+1 [−K] // Determine the pivot block b⋆

11 D[µ]← C⋆ ↑µ [−2K :] ∪ C⋆ ↑µ {b⋆ :} // Keep the 2K most

recent µ-blocks plus all the most recent µ-blocks
starting from b⋆

12 else: // The chain to be compressed is too short

13 ℓ← 0
14 D[0]← C⋆

15 return (D, X,Ω, ℓ)

Algorithm 1: Chain compression algorithm.
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Input : C1, . . . , Cn: either a regular or a compressed chains
Output: tuple (D, X,Ω, ℓ) where

Ω is the unstable sub-chain of the best chain,
X is the uncompressed sub-chain of the best chain,
D is the compressed chain of the best chain,
and ℓ is the highest level of the best chain

1 function CompareK,χ,k(C1, . . . , Cn):
2 (D, X,Ω, ℓ)← ⊥ // Best valid history among C0 . . . Ci
3 i← 0
4 while (D, X,Ω, ℓ) is ⊥ ∧ i ≤ n:
5 if valid(Ci):
6 (D, X,Ω, ℓ)← CompressK,χ,k(Ci)
7 i← i+ 1

8 while ¬((D, X,Ω, ℓ) is ⊥) ∧ i ≤ n:
9 if valid(Ci): // Compare current best valid to the next one

10 (D′, X ′, Ω′, ℓ′)← CompressK,χ,k(Ci)
11 M ← {µ ∈ N | D[µ] ∩ D′[µ] ̸= ∅}
12 if M = ∅:
13 (D, X,Ω, ℓ)← ⊥ // no block in common

14 else:
15 µ← minM
16 b← (D[µ] ∩ D′[µ])[−1] // best ̸= Cj and fork on block b
17 if ∥D′{b :} ·X ′ ·Ω′∥ > ∥D{b :} ·X ·Ω∥:
18 (D, X,Ω, ℓ)← (D′, X ′, Ω′, ℓ′) // updates, up to Cj

19 i← i+ 1

20 if (D, X,Ω, ℓ) is ⊥:
21 beacon← generate beacon()
22 send tx beacon (beacon)

23 else:
24 return (D, X,Ω, ℓ)

Algorithm 2: Compressed chains comparison function algorithm.



24 Authors Suppressed Due to Excessive Length

C Definitions from The Bitcoin backbone protocol with
chains of variable difficulty

We consider a synchronous protocol working in rounds, with a series n = {nr}r∈N
representing the total number of participants of the system, t = {tr}r∈N of
which are adversarial. We have ∀r : tr ≤ (1 − δ)(nr − tr), here with δ ≥ 0.5
since we consider a 1/3 adversary. Each party has ρ queries it can make to the
hash function. Garay et al. call this the dynamic ρ-bounded synchronous setting.
Appendix D contains a summary on variables and their use.

The analysis strongly relies on Garay et al.’s notion of typical executions [19].
A typical execution is an execution of the protocol where variables do not deviate
too much from their expected values. A typical execution must span at least
m/16τf rounds, where m represents the number of blocks mined during an
epoch, f is the probability for honest miners to mine at least one block in a
round, and τ is the dampening filter in Bitcoin target’s recalculation function.
A round r is successful is the honest parties succeed in mining at least one block
during r, and is uniquely successful if the honest parties succeed in mining exactly
one block during r. The quantity Qr is equal to the difficulty of the block mined
during a uniquely successful round. If the honest parties mine several blocks
or no blocks during round r then Qr = 0.

∑
r∈S Qr(E) refers to the difficulty

obtained during the uniquely successful rounds of a set of S rounds. Likewise,∑
r∈S Dr(E) refers to the difficulty obtained during the successful rounds of a set

of S rounds. Quantity
∑

j∈J Aj(E) represents the amount of difficulty obtained
by the adversarial parties over a set of queries J . Considering a set of queries
rather than a set of rounds allows the adversary to specifically target rounds
during which it queries the hash function.

The Bitcoin Backbone model [19] also provides us with some properties that
an execution can have. Intuitively, a (γ, s)-respecting sequence limits the varia-
tion of the number of participants to a factor of γ during s rounds. For example, a
(2, 5)-respecting sequence means the number of participants can at most double
every 5 rounds. We need to limit the variation of the number of parties because
our properties would not hold for arbitrary sequence of parties.

Definition 2 ([19], Definition 1 - (γ, s)-respecting sequence). For γ ∈
R+, we call a sequence (nr)r∈N (γ, s)-respecting if for any set S of at most s
consecutive rounds, maxr∈S nr ≤ γ ·minr∈S nr.

Note that any sequence of parties can be (γ, s)-respecting, but when we say
in the following to consider a (γ, s)-respecting environment, we specifically refer
to the sequence of honest parties (nr − tr)r∈N.

We also define (η, θ)-good executions, which are intuitively a limit on the
amount of “luck” parties have when mining a block. Initial parameters of Bitcoin
are set so that one block is mined every 10 minutes on average, which is modeled
as the block production rate f . An (η, θ)-good execution gives an idea on how
well parties approximate f , as it gives upper and lower bounds for f .
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Definition 3 ([19], Definition 5 - (η, θ)-good execution). Consider an
execution E and constants η ∈ (0, 1] and θ ∈ [1,∞). A target-recalculation
point r in a chain C in E is (η, θ)-good if the new target T satisfies ηf ≤
f(T, nr − tr) ≤ θf . A chain C in E is (η, θ)-good if all its target-recalculation
points are (η, θ)-good. A round r is (η, θ)-good in E if ηf ≤ f(Tmin

r , nr− tr) and
f(Tmax

r , nr − tr) ≤ θf . We say that E is (η, θ)-good if every round in E was
(η, θ)-good.

We define T (r,η) as the minimum target for all honest parties in a (η, θ)-good
round. T (S,η) is then the minimum target for all honest parties in all rounds
r ∈ S. We also define ϕ = ρ/2κ for convenience.

Definition 4 ([19], Definition 8 - Typical execution). An execution E is
(ε, η, θ)-typical if the following hold:

(a) If, for any set S of consecutive rounds, ϕT (S,η)
∑

r∈S(nr − tr) ≥ ηm
16τγ , then∑

r∈S

Qr(E) >
∑
r∈S

E[Qr|εr−1 = Er−1]− ε(1− θf)ϕ
∑
r∈S

(nr − tr)

and
∑
r∈S

Dr(E) < (1 + ε)ϕ
∑
r∈S

(nr − tr)
(3)

(b) For any set J indexing a set of consecutive queries of the adversary we have∑
j∈J

Aj(E) < (1 + ε)2−κ|J | (4)

and the blocks with targets less than τT (J) that the adversary acquired are

less than η(1−ε)(1−θ)f
32τ2γ ·m

(c) No insertions, no copies, and no predictions occurred in E.

Remark 1 ([19], Remark 4). Note that if J indexes the queries of the adversary
in a set S of consecutive rounds, then |J | = ρ

∑
r∈S tr and the inequality in

Definition 4(b) reads
∑

j∈J Aj(E) < (1 + ε)ϕ
∑

r∈S tr.

Proposition 1 ([19], Proposition 3). Assume E is a typical execution in a
(γ, s)-respecting environment. For any set S of consecutive rounds with |S| ≥
m

16τf , ∑
r∈S

Dr(E) < (1 + ε)ϕ
∑
r∈S

(nr − tr) (5)

If in addition, E is (η, θ)-good, then∑
r∈S

Qr > (1− ε)(1− θf)ϕ
∑
r∈S

(nr − tr) (6)

and any block computed by an honest party at any round r corresponds to target
at least T (r,η), and so contributes to the random variables Dr and Qr (if the r
was uniquely successful).
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Definition 5 (Q-block [9], Definition 1). A block property is a predicate Q
defined on a hash output h ∈ {0, 1}κ. Given a block property Q, a valid block
with hash h is called a Q-block if Q(h) is true.

Using those definitions, we now prove the security of our protocol. Our proof
closely follows that of Kiayias et al.’s proof of security, but is adapted to the
variable difficulty setting.
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D Variables of interest

This appendix gives the reader a table summarizing variables used in the paper,
their domain of definition and their meaning.

Table 2: Summary of used variables, their domain of definition and their meaning
Domain of definition Description

nr ∀r : nr ∈ N Number of total parties in round r.
tr ∀r : tr ∈ N Number of adversarial parties in round r.
ρ ρ ∈ N Number of queries of each party.
ϕ ϕ ∈ Q≥0 Convenience notation. ϕ = ρ/2κ.
δ δ ∈ (0, 1) Advantage of honest parties, ∀r : tr ≤ (1− δ)(nr − tr).

m m ∈ N Length of an epoch in blocks, m = 2016 for Bitcoin.
f f ∈ (0, 1) Target probability of at least one honest party mining a block in a round.
τ τ ∈ R Dampening filter, τ = 4 for Bitcoin.

(γ, s) γ ∈ R, s ∈ N Bound on variation of the number of parties. See Definition 2.
(η, θ) η ∈ (0, 1], θ ∈ [1,∞) Lower and upper bound on f . See Definition 3.
ε ε ∈ (0, 1) Quality of concentration of random variables in typical executions. See Definition 4.

Qr Qr ∈ R Difficulty of honest block mined in uniquely successful round r.
Dr Dr ∈ R Maximum difficulty among honest blocks mined in round r.
Aj Aj ∈ R Difficulty of adversarial block mined in query j.

κ κ ∈ N Size parameter of the output of the hash function, found as 2κ. κ = 256 for Bitcoin.
k k ∈ N Common Prefix parameter. Length of the unstable sub-chain of the proof.
χ χ ∈ N Length of the uncompressed sub-chain of the proof.
K K ∈ N Security parameter of our protocol.
ℓ ℓ ∈ N Level of a block or a proof.

α α ∈ [ 1
4
, 4] Ratio between the difficulty reward of the honest parties a and the adversary b. α = a/b.

p p ∈ [0, 1] Fraction of honest computing power. p+ q = 1, and p = 2
3
in our setting.

q q ∈ [0, 1] Fraction of adversarial computing power. p+ q = 1, and q = 1
3
in our setting.
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E Proofs

Proofs for the technical lemmas of Section 6.

Lemma 5 (Pairing). Consider a execution with an honest party, an adversary
and two chains C, C′. For any pair of distinct blocks C[i] and C′[i′] such that
∃d ∈ R+, d ∈ C[i] and d ∈ C′[i′], if C[i] was computed by an honest party in a
uniquely successful round, then C′[i′] was computed by the adversary.

Proof. Let r be the uniquely successful round where C[i] was computed, and
d ∈ C[i] and d ∈ C′[i′]. We show that no honest party would have computed C′[i′].
Due to the synchronous setting, every block computed in a round is received
during that round. Consider r′ > r. Since parties are aware of C[i] and by
definition of d, ∥C′[: i′]∥ ≤ d < ∥C[: i+1]∥, no honest party would have computed
C′[i′] at r′. Similarly, if an honest party computed C′[i′] at some round r′ < r,
then no honest party would have extended C[i−1] at round r. Since r is uniquely
successful, C′[i′] cannot have been computed by an honest party at round r. ⊓⊔

Lemma 6 (Suppression). If r is a uniquely successful round and the corre-
sponding block b does not belong to the chain of an honest party at a later round,
then there is a set of consecutive rounds S and a set J of adversarial queries in
S such that r ∈ S and

∑
r∈S Qr ≤

∑
j∈J Aj.

Proof. Let us consider an execution in which an honest party maintains C, and
let b ∈ C a uniquely successful block mined at round r. Let C[u0] = C′[u0]
be the last honest block on the common prefix of C and C′, and r0 be the
round at which the honest party created C[u0] (if C[u0] is the genesis block,
then we r0 = 0). Consider r1 > r the first round after r in which an honest
party adopts C′ such that b /∈ C′. We build a sequence S of consecutive rounds
S = {r′ : r0 < r′ < r1} and we show that the set of adversarial queries J exhibit
more difficulty than the ones of the honest party during S. From Lemma 1,
we have that any uniquely successful contribution on C (resp. C′) of the honest
parties between r0+1 and r1−1 is matched by an equal adversarial contribution
on C′ (resp. C). If the adversary did not match difficulty contributions between
r and r1 − 1, an honest party mining on C would not have adopted C′ at r1,
which contradicts the initial assumption. Likewise, if the adversary did not match
difficulty contributions between r0+1 and r−1, block b would have been included
in C′. Thus,

∑
r∈S Qr ≤

∑
j∈J Aj .

Lemma 7 (Unsuppressibility). Given a typical execution with an honest
party and an adversary, every set of consecutive rounds U has a subset S of
uniquely successful rounds, such that the following conditions hold:

1.
∑

r∈S Qr ≥
∑

r∈U Qr − 2
∑

j∈U Aj − (1 + ε)ϕ
∑

r∈2 m
16τf

tr,

2. after the last round in S the blocks corresponding to S belong to the chain of
every honest party.
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Proof. Let U ′ be the set of consecutive rounds that contains U and also the m
16τf

rounds that come before and after U . By Lemma 2, we may take S to contain
all those uniquely successful rounds r ∈ U such that for any set of consecutive
rounds S′ ⊆ U ′ containing r,

∑
r∈S Qr >

∑
j∈J Aj . Note that, in a (η, θ)-good

typical execution in a (γ, s)-respecting environment, no such S′ may contain
elements outside U ′.

We need to prove this statement:
∑

r∈U Qr −
∑

r∈S Qr ≤ 2
∑

j∈U Aj + (1 +
ε)ϕ

∑
r∈2 m

16τf
tr. Let us focus on the uniquely successful rounds not in S. Con-

sider a collection T of sets of consecutive rounds with the following properties.

– ∀T ∈ T ,
∑

r∈T Qr ≤
∑

j∈T Aj .
– ∀r ∈ U \ S, there is a T ∈ T that contains r.
– |T | is minimum among all collections with the above properties.

We now observe that the minimality condition on T implies that no round r
with Ar > 0 belongs to more than two sets of T . If that was the case, then there
would be three sets T1, T2, T3 in T with T1 ∩ T2 ∩ T3 ̸= ∅. But then, we could
keep the two sets with the leftmost and rightmost endpoints, contradicting the
minimality of T . No round in U ′ \ U belongs to more than one set of T . Thus,∑
r∈U

Qr −
∑
r∈S

Qr =
∑

r∈U\S

Qr ≤
∑
T∈T

∑
r∈T

Qr ≤
∑
T∈T

∑
j∈T

Aj ≤ 2
∑
j∈U

Aj +
∑

j∈U ′\U

Aj

The third inequality holds because every round in which the adversary was
successful is counted at most twice inside U and at most once outside U (by
the discussion above the inequalities). Finally, using |U ′ \ U | ≤ 2m/16τf and∑

j∈J Aj < (1 + ε)ϕ
∑

r∈S tr we obtain the stated bound. ⊓⊔
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F Dimensioning parameter K

All the properties of our NIPoPoW instantiation, namely Security (Theorem 1),
Succinctness (Theorem 2) and Onlineness (Theorem 3) rely on security param-
eters K, χ and k. We dimension k and χ in Section 5.3. Security parameter
K must guarantee that with any high probability a 1/3-adversary cannot ex-
hibit more difficulty in its own K sampled blocks than what the honest parties
can do. This ensures that the CompareK,χ,k() algorithm, when fed with a set
of NIPoPoWs such that among them at least one is an honestly generated one,
will return the best NIPoPoW, i.e. the NIPoPoW that represents the blockchain
with the largest accumulated difficulty.

We model the protocol as a competition between an honest party and the
adversary. We denote by Π the honest NIPoPoW and by Π ′ the adversarial one.
We assume that the competition takes place within an epoch which means that
the honest target T is constant during the competition. The competition starts
at the first time where both chains fork. We denote by b⋆ the last common block:
b = (Π ∩ Π ′)[−1]. At each step of the competition, a unique block is created,
either by the honest party or the adversary. We assume that the adversary may
potentially mine blocks at a different difficulty from that of the honest parties.
We denote by α = a/b the ratio between honest and adversarial blocks in terms
of difficulty.

We refer by n the number of blocks in the honest chain that do not belong to
the adversarial chain, we have n = |Π{b⋆ :}|. We are interested in determining
the earliest step in which the adversarial chain overcomes the honest one, after
n blocks have been appended to the honest chain. We denote this event by Cα

n .

To derive our formula for P(Cα
n ) we will use the classical Gambler’s ruin

problem [20] and the Poisson distribution. The classical Gambler’s ruin provides
the probability, denoted Pruin(M), for the adversary to catch up with the honest
chain given an initial gap M between his chain and the honest one. By combining
this with the Poisson distribution, we will ultimately obtain P(Cα

n ).

F.1 Gambler’s ruin application

We consider the classical Gambler’s ruin problem [20]. We model the evolution
of the gambler’s payoff along games by an homogeneous discrete-time Markov
chain X = {Xk, k ≥ 0}, where M ∈ N is the initial wealth of the gambler
(X0 = M) with

P(Xk = j) = pj , −ν ≤ j < ∞

where ν is the maximal possible loss with the assumption that p−ν ̸= 0. The
gambler must stop playing when his wealth is less than ν, in which case he is
ruined. We want to find Pruin(M), the probability of ruin which depends on
the payoff distribution {pj}−ν≤0<∞ and on the initial wealth M . We know that
Pruin(M) = 1 if the expected value of X is non positive, so we assume:
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E(X) =

∞∑
k=−ν

kpk > 0 (7)

Another assumption made in [20] is that M ≥ ν, otherwise the gambler is
already ruined and ∀M < ν,Pruin(M) = 1. We also need to define the generating
function:

p(z) =

∞∑
k=−ν

pkz
k (8)

We can now draw an analogy between the blockchain and the Gambler’s ruin
problem in the following way. First, we take M as an initial gap between the
honest chain and the adversary’s chain in terms of quantity of work. Recall that
by assumption, these two proofs share a least one block and are thus comparable.
Recall also that we are only looking at the cases when exactly one block is
created, either by the adversary or by the honest party. Thus, we have at each
iteration k,Xk = a with P (Xk = a) = pa and the gap increases by a, orXk = −b
with P (Xk = −b) = p−b and the gap is reduced by b. We now have that ν = b
and Relation (8) becomes

p(z) = paz
a + p−bz

−b (9)

Let p be the mining power of the honest and q the mining power of the
adversary such that p + q = 1. When the adversary mines with the target αT ,
we define pa and p−b to be the probabilities that the next block is mined by the
adversary and the honest miners, respectively. We consider a time interval during
which z blocks mined with target T (i.e., when α = 1) are created. Among the z
blocks, qz of them have been created by the adversary and pz one by the honest
party. Now if the adversary mines with target αT , the adversary will mine αqz
blocks during the very same interval so that the total number of blocks during
the time interval will no longer be z but αqz + pz with αqz being the number
of blocks belonging to the adversary and pz to the honest party. Finally, finding
the expressions for pa and p−b comes down to determining the proportion of
blocks belonging to the adversary and to the honest party among the αqz + pz
blocks mined in total during the considered time interval.
We obtain:

pa =
αqz

pz + αqz
=

qα

p+ qα
p−b =

pz

pz + αqz
=

p

p+ qα

For integers n > 0, r ≥ 0, the complete symmetric polynomial of order r
in the variables z1, . . . , zn is defined as the sum of all products of the variables
z1, . . . , zn of degree r, that is:

Φn,r(z1, . . . , zn) =
∑
ij≥0,

i1+···+in=r

n∏
j=1

z
ij
j . (10)
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We can now give Theorem 4 from [20] which provides a formula for Pruin

the probability of ruin. Since M is in our case the initial gap between the two
chains, Pruin(M) corresponds to the probability for the adversary to catch up
with the honest chain given an initial gap M .

Theorem 4. The equation p(z) = 1 has ν solutions (counting multiplicities) in
the unit disk |z| < 1 of the complex plane, which we denote as ηj (for 1 ≤ j ≤ ν).
The probability of ruin is given by

Pruin(M) =

ν∑
n=1

Φn,M−n+1(η1, . . . , ηn)

n−1∏
j=1

(1− ηj).

When the roots η1, . . . , ην are distinct, we can use the following alternative ex-
pression:

Pruin(M) =

ν∑
j=1

ηMj

ν∏
i=1
i ̸=j

1− ηi
ηj − ηi

.

F.2 Combining Gambler’s ruin problem with the Poisson
distribution

Inspired by [21] we derive the general formula for P(Cα
n ) combining the gambler’s

ruin problem with the Poisson distribution. The gap we use for Pruin is (na− ib)
for i ≥ 0 which corresponds to all the possible gaps between the two chains.

Let X be a random variable representing the number of blocks produced by
the adversary, and let λ denote the Poisson parameter, which corresponds to the
average number of blocks produced by the adversary during the time interval
In, where In is the period in which the honest party produces n blocks. The
Poisson distribution gives us P({X = i;λ}), the probability that the adversary
produces i blocks during In. Since {{X = i;λ}; i ≥ 0} is a complete system of
events with P({X = i;λ}) ̸= 0 and Pruin(na− ib) = P(Cα

n | {X = i;λ}), we can
determine P(Cα

n ) using the law of total probability:

P(Cα
n ) =

∞∑
i=0

P(X = i;λ) · P(C | {X = i;λ}) =
∞∑
i=0

P(X = i;λ) · Pruin(na− ib)

=

⌊nα−1⌋∑
i=0

λie−λ

i!
Pruin(na− ib) +

∞∑
k=⌈nα−1⌉

λke−λ

i!

= 1− (1−
⌊nα−1⌋∑

i=0

λie−λ

i!
Pruin(na− ib)− (e−λ

∞∑
i=0

λi

i!
−

⌊nα−1⌋∑
i=0

λie−λ

i!
))

= 1−
⌊nα−1⌋∑

i=0

λke−λ

i!
(1− (Pruin(na− ib))
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