

SiC plasma etching technology processes for power and optoelectronic devices

Mihai Lazar^{a,b,*}, Nour Beydoun^a, Frédéric Marty^b, Elise Usureau^a, Enora Vuillermet^a, Sergei Kostcheev^a, Thomas Tillocher^c, Rémi Dussart^c

 ^a Light, nanomaterials, nanotechnologies (L2n), UMR CNRS 7076, Université de Technologie de Troyes, 12 rue Marie Curie, 10004 Troyes, France
 ^b ESYCOM, UMR CNRS 9007, ESIEE Paris - Université Gustave Eiffel, 2 boulevard Blaise Pascal, 93162 Noisy-le-Grand, France
 ^c GREMI, UMR CNRS 7344, Université d'Orléans, 14 rue d'Issoudun, 45067 Orléans, France

*mihai.lazar@cnrs.fr

SiC – one of the most technologically advanced wide bandgap semiconductor

6H

	Eg (eV)	ε _r	μ_n (cm ² .V ⁻¹ .s ⁻¹)	μ_{p} (cm ² .V ⁻¹ .s ⁻¹)	E _c (MV.cm ⁻¹)	v_{sat} (10 ⁷ cm.s ⁻¹)	λ (W.cm ⁻¹ .K ⁻¹)	Electronic fields: High temperature High power
Si	1,1	11,8	1450	500	0,2-0,8	1	1,5	Compact systems Low switching losses
2H-GaN	3,39	9	900	350	3,3	2,5	1,3	High-frequency
GaAs	1,42	12,9	8000	400	0,4-0,9	0,7	0,46	Harsh environnement
3C-SiC	2,2	9,6	900	45	1,2	2	4,5	Strong interatomic
6H-SiC	3	9,7	370	90	2,4	2	4,5	bonding Uich chomical inorthe
4H-SiC	3,26	10	600	115	2	2	4,5	Good bio-compatibilit
Diamond	5,45	5,5	1900	3800	5,6	2,7	20	

Crystal structure: more than 200 polytypes:

Hardness (Mohs scale)

High chemical inertness Good bio-compatibility

Particular and complex processes for the growth and technology

Transport SigC Si Source Source

"ingot growth" SiC~2000°C (without liquid phase)

Considerable « cost »

M.A. Fraga et al, " Silicon Carbide in Microsystem Technology - Thin Film Versus Bulk Material", 2015, INTECH Ed

But remarkable industrial investments in power electronics over the last decades:

- continuous progress in reduction of defect densities,
- increase of wafer size
- and lowering of wafers costs.

Power discrete SiC devices already commercialized (Farnell...)

SiC etching

- mainly dry methods to etch SiC (ICP, RIE)
- fluorinated plasma (SF₆) preferred to chlorides (Ar/Cl₂)
- wet etching does not work except by electrochemical process

SiC plasma etching

- mainly dry methods to etch SiC (ICP, RIE)
- fluorinated plasma (SF₆) preferred to chlorides (Ar/Cl₂)
- wet etching does not work except by electrochemical process

N. Beydoun, M. Lazar et al., Rom. J. Inf. Sci. Technol. vol 26 (2) 2023 p. 238-246

Power electronics :

- to eliminate high electric field areas (mesa), insulation via, to transfer back side contacts in surface

~10 to 100µm minimum

Color centers in SiC

- localize NIR luminescent defects in photonic nanocavities or $\boldsymbol{\mu}$ nano-pillars

~1 à 10µm very different AR (<1µm width)

M. Radulaski IEEE Lasers and Electro-Optics (CLEO), 2017 D. Bracher Nano Lett., 2015, 15 (9), pp 6202

Sensors/ Detectors or LEDs

- surface nano-structuration to increase active areas/ light emission

*A. Argyraki et al., Optical Materials Express (2013) Vol. 3, No. 8 1119

*Haiyan Ou et al., Eur. Phys. J. B (2014) 87

SiC plasma etching – former results

Process optimized in Lyon (NanoLyon platform - INL) on several RIE

Nextral NE110

- **RIE NE 110 parameters:**
 - SF₆ O₂/ 25 6.7 sccm
 - 250 W / 60 mTorr
 - Hard mask : Si/Ni

Corial 200S

Oxford NGP80

- without trenching (on NE110)
- without micromasking
- slight anisotropy tilted sides (chemical mecanisms)

M. Lazar, H. Vang, P. Brosselard, C. Raynaud, P. Cremilleu, J-L. Leclercq et al., Superlattices and Microstructures 40 n°4-6 (2006) 388;

M. Lazar et al., Materials Science Forum Vols. 679-680 (2011) 477

SiC plasma etching – technological transfer

Implementation of 100/150 mm SiC technological fabrication line (from 2019): Nano'Mat/L2n (UTT Troyes) and ESYCOM (ESIEE Paris) clean room

- access to more performants ICP/RIE equipments
- adapted to actual SiC wafer sizes (100 mm minimum)

- the possibility to increase etching thicknesses, etching rates and various shapes

SiC plasma etching – technological transfer

Implementation of 100/150 mm SiC technological fabrication line (from 2019): Nano'Mat/L2n (UTT Troyes) and ESYCOM (ESIEE Paris) clean room

- access to more performants ICP/RIE equipments
- adapted to actual SiC wafer sizes (100 mm minimum)

- the possibility to increase etching thicknesses, etching rates and various shapes

Plassys MUP400 :

Alcatel A601E :

SiC plasma etching – technological transfer

Parameters adapted for the process on ICP/RIE equipments:

- SF₆ or SF₆/O₂ (10 à 20%)

- Lower ICP power compared to Si process – etch rate increases up to a maximum and after decreases

- need physical mechanism (ion erosion) as chemical ones (and even more)

- High bias is necessary (several 100V)

- Pressure down to the limit of the throttle-valve control

-Not too low in order to keep good mask selectivity (Ni, Cr)

- Micromasking: improve the volatility of the etch by-products (by adding Si or C, avoiding quartz or Al support...)

- Trenching ?

- Etching rate increased x 2 - 3 (= $< 1 \mu m/min$)

• Similar process on other WBG semiconductors (as GaN: Julien Ladroue phd thesis 2011 GREMI Orléans)

SF₆ - ICP Plassys MU400 equipment from L2n – NanoMat UTT:

35 to 80 µm mesa and vias

10 to 15 µm to contact substrate

Etching isotropy (of Si)

• Mask: Ni ~1μm

 Mask: ZnO ~1μm (MUZ process) • SiC/Si substrate substrate

SF_6/O_2 - ICP Alcatel A601E equipement from ESIEE:

Black-SiC:

Orange peel texture :

-Trenches etched in SiC $> 20\mu m$ (power devices)

- Nanostructuration in surface controlled by initial Ni distribution at the SiC surface (?)
- Control plasma energy, mask sputtering, Ni/SiC reaction
- Different structures on Si or C face (micromasking initial step).

antireflective structures (ARS) for LEDs with color centers in complement with high temperature annealing methods

SiC power electronics – exemple of high voltage devices **10 kV Photo-transistors – BJT structures**

Process-flow HV-Photo SW: 11 mask levels, about one hundred steps

- SiC dry etching (emitter, base)
- Al ion implantation (JTE, base)
- Ohmic contacts (n and p-type)
- Mask and passivation (SiO₂, Si_3N_4), opened by dry etching
- Surmetallisation

5 mm x 5 mm electrical BJT

100 mm processed SiC wafer

10 kV BJT Photo-transistors

Breakdown voltage: 11kV (the goal was 10kV)

Reverse IV characteristics - open emitter blocking

Electroluminescence at high voltage

SiC dry etching – limits of current equipments

Plassys MUP400 :

major breakdown (6 months) PLASSYS intervention
repeated 3 months later ...
μ-crack in a cooling Al holder
finally found and fixed it (Thanks Sergei!)

SiC dry etching – limits of current equipments

Alcatel A601E :

- No more Ni masks . Ni forbiden due to other process contamination.
- No more deep SiC etching

• Quite old and tired set-ups or utilized with standard processes which not support contaminations

SiC dry etching – limits of current equipments

Process transferred to more recent equipments – in order to duplicate the present ones - purchases in progress

- CORIAL 200 IL GREMI Orléans (process optimized)
- OXFORD Plasmalab ICB Dijon (process adapted)
- SENTECH SI500 INL NanoLyon ECL Ecully (process adapted)
- CORIAL 210 IL (Plasma-Therm) ESIEE Paris (process adapted)

- Trenching is not eliminated completely
- Even by using masks with lower selectivity (SiO₂) on Corial 210 IL Plasma-Therm

SiC dry etching – trenching

- SENTECH SiC etching (Lyon)
- Ni seed layer- sputtering (ESIEE Paris)
- Ni Electroplating and FIB (LAAS Toulouse)

anr[®] MUS²iC

- The trenching were well eliminated only on two set-ups
 - Nextral NE110 (RIE)
 - PLASSYS MU400 (ICP/RIE)

SiC dry etching – trenching

μ Nano-pillars fabrication in SiC to enhance light collection from color centers

(in) Corial 200 S

AL ATEM - INL INSA Lyon (Phd thesis 2018)

E. VUILLERMET – L2n UTT (Phd thesis in progress)

SiC dry etching – lateral etching

 $\boldsymbol{\mu}$ Nano-pillars fabrication in SiC to enhance light collection from color centers

Lan 10 day 12 amerika day 41 matrix day		L2n 10 (kV 13 2mm x? 000/18 1um GE(U) 425/2024
Lan 5 Gay 16 Jimm x80 Jan 4 Lum SE(U) 577/2024	Län 5 CkV 14 ämm x80 GVI 5 Deum SE(U) 5/7/2024 ***********************************	Län 5 GAV 14 Jinni 160 GAVI 5 Gun SE(U) 57/2004

Diameters (nm)								
	D_{th}	D _B	D _T	S ₂₄₅	S ₃₃₅	S ₅₄₀	S ₉₄₅	S ₅₀₀₀
	700	700	550	550	530	500	470	410
	650	650	500			490	410	
	600	600	450			450	350	
	550	550	400			390	260	

SiC dry etching – etching rates

Etching rate limit: ~ 1µm/min

- Integration of vertical power devoices needs insolation through the entire substrate - $350 \mu m$

- Ni or Cr mask consumed
- Duration limited to 20-30 min

anr[®] MUS²iC

Wet electrochemical etching (KOH)

Solution today:

• Combine alternatively plasma and wet electrochemical etching

Thank you for your attention

