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Postintegration transcriptional silencing of HIV-1 leads to the establishment of a 
pool of latently infected cells. In these cells, mechanisms controlling RNA Polymerase 
II (RNAPII) pausing and premature transcription termination (PTT) remain to be 
explored. Here, we found that the cleavage and polyadenylation (CPA) factor PCF11 
represses HIV-1 expression independently of the other subunits of the CPA complex or 
the polyadenylation signal located at the 5′ LTR. We show that PCF11 interacts with 
the RNAPII-binding protein WDR82. Knock-down of PCF11 or WDR82 reactivated 
HIV-1 expression in latently infected cells. To silence HIV-1 transcription, PCF11 and 
WDR82 are specifically recruited at the promoter-proximal region of the provirus in an 
interdependent manner. Codepletion of PCF11 and WDR82 indicated that they act on 
the same pathway to repress HIV expression. These findings reveal PCF11/WDR82 as 
a PTT complex silencing HIV-1 expression in latently infected cells.

HIV-1 | transcription | latency

Despite the successful use of antiretroviral therapy, HIV type 1 infection cannot be erad-
icated as the virus persists in cellular reservoirs such as latently infected CD4+T cells. 
These reservoirs are established early during the course of infection and can persist for an 
extended period of time. HIV-1 latency is operationally defined as the persistence of cells 
harboring replication-competent integrated proviruses that are transcriptionally silent. A 
generally accepted model for the establishment of latency posits that HIV-1 infects acti-
vated CD4+T cells that could then revert to a quiescent memory state leading to a refrac-
tory environment for viral transcription. However, numerous studies have shown that 
HIV-1 latency also arises in activated T-cells, indicating that cellular mechanisms are 
taking place to silence viral transcription rapidly after integration and independently of 
the cellular activation state (1).

In the absence of the viral transactivator Tat, HIV-1 transcription is repressed at the 
promoter-proximal region where paused RNA polymerase II (RNAPII) is associated with 
short nascent transcripts that have been detected in cells from infected individuals showing 
suppression of viremia (2–5). We and others have identified several cellular factors enforcing 
RNAPII pause at the HIV-1 promoter, including negative elongation factor (NELF), 
Integrator, SPT6/IWS1, LEDGF/p75, PAF1C, and BRD4 (6–11). The release of RNAPII 
pause into productive elongation is triggered by the binding of Tat to the transactivation 
response element (TAR), the RNA stem loop present in 5′ of all HIV-1 transcripts, that 
mediates the recruitment of active P-TEFb (positive transcription elongation factor)-containing 
complex (12). However, if the paused RNAPII complex does not shift to productive elon-
gation, it can instead undergo premature transcription termination (PTT). In metazoans, 
PTT is a widespread mechanism that occurs near the TSS (transcriptionstart site) or within 
the gene body and negatively regulates gene expression (13). For HIV-1, it has been shown 
that promoter-linked PTT is mediated by the nuclear endoribonuclease complex 
Microprocessor, together with XRN2 and the RNA/DNA helicase Senataxin (SETX), and 
by nuclear RNA surveillance factors (14, 15).

In addition to the RNAPII promoter-proximal pausing, a subsequent early elongation 
checkpoint that involves promoter-proximal polyadenylation signal (PAS) recognition 
can take place at the first stable nucleosome for cellular genes (16). PAS motifs are present 
in transcribed pre-mRNAs of coding genes and direct the 3′-end cleavage and polyade-
nylation (CPA) reaction via their recognition by the CPA complex (17, 18). As the inte-
grated HIV provirus contains a duplicated long terminal repeat (LTR) at each end of its 
genome, the PAS that regulates the 3′ end processing of viral mRNAs is also located in 
the 5′ LTR and must be occluded during active transcription by a mechanism requiring 
the U1 snRNP binding to the downstream major 5′ splice site (5′ss) D1 (19, 20). However, 
in latent cells, the role of the proximal PAS in repressing HIV transcription in latently 
infected cells remains to be explored. Previous studies have shown that depletion of the 
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CPA complex subunit PCF11 reactivates HIV expression in 
latently infected cells, indicating that it contributes to the repres-
sion of HIV basal transcription (21, 22). Still, little is known about 
the mechanisms involved in this process.

In mammalian cells, PCF11 interacts with CLP1 to form the 
cleavage factor II (CFIIm) complex (23). Unlike other subunits, 
PCF11 is present at substoichiometric levels in purified CPA com-
plex (17, 24). PCF11 is required for both transcription termina-
tion (22, 24–28) and CPA activities (23, 29). These two functions 
involve separate domains of the protein. PCF11 interacts directly 
with the C-terminal domain (CTD) of the RNAPII via its CTD 
interaction domain (30, 31). This interaction is capable of dis-
mantling the RNAPII elongation complex and causes transcrip-
tion termination in vitro (22, 25, 26). The CTD of PCF11 
contains two zinc fingers that bind RNA in a nonspecific manner 
and contributes to the recognition of 3′ processing substrates (32, 
33). PCF11 also modulates gene expression by regulating alter-
native cleavage and polyadenylation. Interestingly, PCF11 expres-
sion is autoregulated by a PAS-dependent premature termination 
of its own transcription (24, 28).

Amongst the factors regulating PTT, WDR82 was recently 
shown to enforce early termination of long noncoding RNAs 
(lncRNAs) such as eRNAs and PROMPTS in mammalian cells 
(34–37). WDR82 is a WD repeats protein found in both the SET1 
H3K4 methyltransferase complex and the PNUTS protein phos-
phatase 1 complex and was shown to bind to the RNAPII CTD 
phosphorylated on Serine 5 (Ser5P) (34, 36). Swd2, the yeast 
homolog of WDR82, is a component of the RNA 3′-end process-
ing and termination subcomplex associated with Pta1 (APT) that 
is involved in sn/snoRNA transcription and termination (38, 39). 
WDR82 was also found to interact with ZC3H4, the human 
orthologue of Suppressor of sable [Su(s)], a nuclear RNA-binding 
protein that attenuates transcription at protein-coding genes con-
taining inserted transposable elements downstream of their pro-
moter region (40, 41). In human cells, the WDR82/ZC3H4 
complex is recruited to regions with high RNAPII levels and was 
found to repress lncRNAs characterized by inefficient splicing of 
their first exon (35–37, 42, 43).

In this study, we aimed at understanding the mechanisms by 
which PCF11 represses HIV-1 basal transcription. Our results reveal 
that PCF11 forms a complex with the transcription terminator 
WDR82. Loss of PCF11 and WDR82 activates HIV-1 expression 
in latently infected cells, independently of the CPA machinery. 
These two factors interdependently associate with the HIV-1 
promoter-proximal region and repress HIV-1 transcription.

Results

PCF11 Regulates HIV-1 Basal Transcription in a CPA- and PAS-
Independent Manner. To identify whether the CPA machinery 
and PAS motifs play a role in the repression of HIV transcription, 
we first used a HeLa cell line containing a unique integrated copy 
of the Luciferase (Luc) gene under the transcriptional control 
of HIV-1 5′LTR promoter (HIV-1 LTR-Luc) (Fig. 1A). In the 
absence of the viral transactivator Tat, the basal activity of the viral 
promoter in this cell line is low but reactivable upon various stimuli. 
Thus, we analyzed the role of components of the 3′ end processing 
machinery in the repression of the HIV-1 LTR activity. The CPA 
complex is composed of cleavage and polyadenylation specificity 
factor (CPSF), cleavage factors I and II (CFIm and CFIIm), and 
cleavage stimulation factor (CstF). CPSF contains 6 proteins and 
binds directly to the A(A/U)UAAA hexamer within the PAS via 
WDR33 and CPSF4 and the RNA cleavage is accomplished by 
the endonuclease CPSF3 at the cleavage site (CS) often identified 

by the CA dinucleotide. CFIIm, containing PCF11 and CLP1, 
interacts transiently with the CPA complex (Fig.  1B) (18). 
Interestingly, CPA factors including PCF11 are also detected on 
nascent transcripts near the TSS suggesting that the CPA complex 
is not only implicated in 3′-end termination but also in promoter-
associated premature termination (13, 24, 44). To analyze the role 
of components of the 3′ end processing machinery in the repression 
of the HIV-1 LTR activity, we depleted subunits of CFIm (CPSF6), 
CPSF (CPSF2, CPSF3, CPSF4, WDR33 and FIP1), CFIIm 
(PCF11, CLP1), CstF (CSTF2) as well as the scaffold protein 
SYMP using specific siRNAs. We observed that knockdown of CPA 
subunits affected expression of the others (Fig. 1C). In particular, 
knockdown of CPSF subunits was associated with an increased 
expression of PCF11, reflecting an auto-inhibition mechanism 
involving premature CPA and termination of its own transcript (24, 
28) (SI Appendix, Fig. S1A). Knockdown of PCF11 resulted in a 
robust and significant increase of abundance of LTR-driven mRNA, 
whereas loss of the other CFIIm subunit CLP1 had almost no effect 
(Fig. 1D). In addition, individual depletions of CPSF6, subunits 
of the CPSF complex, CSTF2 or SYMP had little to no effect on 
LTR-driven mRNA expression. Notably, simultaneous depletion of 
CPSF2, CPSF3, and CPSF6 or CPSF4, WDR33, and FIP1 showed 
no additional effect on the LTR-driven mRNA levels, suggesting 
that there is no redundancy or compensatory effect between CPA 
subunits in the control of HIV-1 basal transcription (SI Appendix, 
Fig.  S1B). To assess whether the effect of PCF11 depletion on 
the activation of LTR-driven expression was PAS-dependent, we 
introduced a single-point mutation to the PAS hexamer sequence 
(AAUAAA->AAGAAA: PASmut) that abolishes its interaction 
with the CPSF complex (45). We also tested a second construct 
containing a mutation eliminating the downstream CS (CA->GA: 
CSmut) (Fig. 1E). Of note, the WT, PASmut, and CSmut LTR-Luc 
constructs are inserted at the same locus in a parental HeLa Flp-IN 
cell line to avoid integration site position effect. LTR-driven nascent 
transcripts from the WT and PASmut constructs were quantified 
by nuclear run-on assay (NRO). We detected high levels of short 
nascent transcripts extending beyond the PAS motif and showed 
that transcription is progressively attenuated along the 5′ LTR. 
Furthermore, mutation of the PAS hexamer does not affect HIV-
1 nascent transcripts profile, suggesting that the 5′ LTR PAS has 
very little effect on RNAPII processivity (SI Appendix, Fig. S1C). 
Depletion of PCF11 leads to a similar reactivation of LTR-driven 
expression in all three cell lines, indicating that the PAS motif and 
the CS are not required for PCF11-mediated repression of the HIV-
1 promoter (Fig. 1 F and G). Taken together, our results suggest 
that amongst the subunits of the 3′ end processing complex, only 
PCF11 plays a significant role in the repression of LTR-driven 
expression activity. This PCF11-mediated repression occurs for the 
most part independently of the PAS motif and the CPA activity.

PCF11 Interacts with WDR82 in an RNA-Independent Manner. 
Having shown that the effect of PCF11 depletion on LTR-driven 
expression is both CPA- and PAS-independent, we sought to 
determine whether PCF11 could interact with other factors involved 
in transcriptional termination. First, we performed glycerol gradient 
sedimentation of HEK293T cell nuclear extracts to determine 
whether PCF11 exists in one or several complexes. Western blotting 
analysis of the collected fractions shows that PCF11 and CLP1 
peak in fractions of lower molecular weight than the peak of CPSF 
subunits (Fig. 2A). In addition, RNAPII was found in fractions 
of similar molecular weight to CPSF subunits. Interestingly, we 
observed that WDR82 displays a sedimentation profile similar to 
that of CFIIm (Fig. 2A). WDR82 is the human orthologue of the 
yeast Swd2, a subunit of the APT complex with phosphatase activity 
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that associates with the core CPF complex (38, 46). Because yeast 
Pcf11 was shown to interact directly with Swd2 in vitro (47, 48), we 
next investigated whether this interaction was conserved in human 
cells. We performed immunoprecipitation (IP) of endogenous 
PCF11 from the nuclear fraction of HEK293T cells and the 
presence of cofactors was assessed by western blotting. We found that 
PCF11 interacts robustly with its CFIIm cofactor CLP1, whereas 
association with CPSF subunits CPSF2, CPSF3, and WDR33 was 
weaker. In sharp contrast, we observed a strong enrichment for 

WDR82 with immunoprecipitated PCF11. The binding of PCF11 
to CLP1 and WDR82 was not affected by RNAse A treatment, 
whereas its association with CPSF2, CPSF3, and WDR33 sharply 
decreased, indicating that PCF11 strongly associates with WDR82 
through protein–protein interaction (Fig. 2B). Interestingly, IP of 
endogenous WDR82, revealed a robust association with CPSF2, 
CPSF3, CPSF4, and PCF11, indicating that WDR82 can also 
engage with the CPSF complex (Fig. 2C). To further characterize 
whether PCF11, WDR82, and the CPSFs can interact within the 
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Fig. 1. PCF11 depletion stimulates HIV-1 LTR-driven RNA levels. (A) Schematic of the HIV-1 LTR Luc construct (HIV-1 LTR-Luc) integrated in the HeLa-LTR-Luc cell 
line, indicating TAR region, AATAAA hexamer, and CA dinucleotide site of cleavage from the 5′ PAS and the Luc coding region. Of note, HIV-1 mRNAs transcribed 
from the 5′ LTR are devoid of the UGUA sequence as the +1 TSS is positioned 3 nucleotides downstream of the corresponding TGTA motif. (B) Schematic of the 
mammalian 3′ end processing machinery, including CPA subcomplexes and cis-elements contributing to 3′ end processing. (C) HeLa-LTR-Luc cells were transfected 
with indicated siRNAs directed against CPA subunits or a control siRNA (CTRL). Cells were harvested at 72 h posttransfection and analyzed by western blotting 
using the indicated antibodies (* indicates nonspecific signal). (D) Cells described in (C) were analyzed for LTR-driven Luc RNA levels were measured by RT-qPCR 
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(Luc dist) region of the Luc gene. Results are presented as fold increase over siRNA control condition (siCTRL). Data represent mean ± SEM obtained from 3 
independent experiments (n = 3). P values were calculated using student’s one-sample t test. (E) Schematic of the LTR mutations introduced in the AATAAA 
hexamer (AATAAA->AAGAAA; PASmut) or CA dinucleotide site of cleavage (CA->GA; CSmut). Each of the HIV-1 LTR-Luc constructs (WT, PASmut and CSmut) was 
integrated at the same genomic location in the HeLa Flp-IN parental cell line, therefore avoiding position-effect differences of expression between the different 
HIV LTR-Luc constructs. (F) Western blotting showing the depletion of PCF11 in HeLa LTR-Luc cell lines 72 h after siRNA transfection. (G) LTR-driven Luc RNA 
levels were quantified by RT-qPCR after knockdown of PCF11 in HeLa LTR-Luc WT, PASmut, or CSmut. Data represent mean ± SEM obtained from 4 independent 
experiments (n = 4). P values were calculated using multiple unpaired t test.
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same complex, Flag-WDR82 was overexpressed in HEK293T cells, 
immunoprecipitated using an anti-Flag antibody and subjected to 
reciprocal IP using an anti-PCF11 antibody. Flag-WDR82 and 
CPSF3 were found to belong to the same complex, together with 
the RNAPII, whereas the CFIm subunit CPSF6 was not present 
(Fig. 2D). These results indicate that WDR82 and PCF11 associate 
within the same complex that also engages with CPSF subunits.

PCF11 and WDR82 Knockdown Increases HIV-1 Reactivation  
from Latently Infected Cells. To further address the role of  
PCF11, WDR82, and the CPA complex in HIV-1 latent provirus 
silencing, we first depleted CPSF (CPSF2, CPSF3, and FIP1) subunits, 
CFIIm (PCF11, CLP1) subunits, SYMP or WDR82 with specific 
shRNAs in the JLat A1 cell line containing a single integrated copy of 
LTR-Tat-GFP-LTR HIV minigenome (Fig. 3A) (49). We measured 
transcriptional reactivation from latency by monitoring the percentage 
of cells reexpressing GFP at day 6 and day 9 posttransduction (d.p.t.). 
Flow cytometry analysis revealed that depletion of CPSF subunits 
had no significant effect on basal HIV-1 expression. In contrast, we 
observed a strong reactivation of HIV-1 expression upon depletion 
of PCF11 and WDR82, and SYMP to a lesser extent (Fig. 3 B and 
C). Similar reactivation of HIV expression was observed when JLat 
A1 cells were transduced with a second shRNA targeting PCF11 
(SI Appendix, Fig. S2A), or with a sgRNA against WDR82 using the 
CRISPR-Cas9 system (SI Appendix, Fig. S2B). We further confirmed 
that depletion of PCF11 and WDR82 significantly reactivates HIV 
expression in two other models of latency, JLat A2 cells that also 
contain a single integrated copy of the HIV minigenome, and JLat 
10.6 cells that contain a nearly complete latent provirus (Fig. 3E) (49). 
Thus, we found that WDR82 and PCF11 are both involved in the 
repression of HIV-1 expression from different integration sites in 
latently infected cells.

PCF11 and WDR82 Are Required for HIV-1 Post-Integrative 
Transcriptional Silencing. To further assess the role of PCF11 
and WDR82 on HIV latency in infected CD4+ cells, we used the 
dual-labeled HIV-GKO virus containing an LTR-driven GFP and 
expressing the mKO2 fluorescent protein under the constitutive EF1a 
promoter (50). Infection with HIV-GKO allows the quantification 
of both productively (GFP+ mKO2+) and latently (GFP− mKO2+) 
infected cells (Fig. 4A). Jurkat cells were first infected with HIV-
GKO, then transduced with shRNAs targeting either PCF11 or 
WDR82 at 7 d post-infection, and analyzed by western blotting 
(Fig. 4B) and flow-cytometry 6 d posttransduction (Fig. 4 C and 
D). The total percentage of mKO2 expressing cells (sum of the 
percentages of GFP+ mKO2+ and GFP− mKO2+cells) upon 
PCF11 or WDR82 depletion was comparable to control conditions, 
indicating that their depletion does not impact the proportion of cells 
containing an integrated provirus (Fig. 4C). Amongst infected cells, 
PCF11 KD significantly increased the number of productive cells 
(48.5% GFP+ cells in shPCF11, compared to 29.0% for shCTRL), 
which correlated with a decrease in the proportion of latent cells. 
WDR82 KD also resulted in a significant increase of the percentage 
of productive cells (37.2% GFP+ cells in shWDR82) (Fig. 4D). 
To further quantify the proportion of latent cells reactivated after 
PCF11 or WDR82 KD, cells were infected with HIV-GKO for 4 d 
before sorting the latent population (GFP− mKO2+). These latently 
infected cells were then transduced with shRNA targeting PCF11 
or WDR82 and HIV reactivation was monitored by measuring 
the percentage of GFP+ cells by FACS. Knocking down PCF11 or 
WDR82 lead to an increase of the percentage of GFP+ expressing 
cells (from 1.9% in shCTRL to 10.1 % and 4.8% in shPCF11 and 
shWDR82, respectively), indicating that both factors are involved 
in the maintenance of HIV-1 latency (Fig. 4 E and F). Of note, 
knocking down PCF11 in primary CD4+T cells resulted in high 
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levels of cell toxicity which prevented us from further studying 
its role in silencing HIV expression in this model. Thus, our 
results show that both PCF11 and WDR82 depletion reactivates 
latent proviruses expression from heterogeneous integration sites, 
suggesting that these 2 factors are involved in the maintenance of 
post-integration HIV-1 latency.

PCF11 and WDR82 Associate with the Silent Provirus and  
Repress Its Transcription. To assess whether PCF11 and WDR82 
are directly implicated in the repression of the integrated latent 
provirus, we performed chromatin IP (ChIP) experiments in 
JLat A1 cells using specific primers (Fig. 5A). As expected, paused 
RNAPII was found to accumulate at the TSS and promoter-proximal 
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(Prox) regions of the HIV-1 promoter in latent cells (TSS and Prox, 
Fig. 5 B, Upper). PCF11 displayed a similar profile to the RNAPII 
while WDR82 specifically accumulated at the promoter-proximal 
region (Fig. 5 B, Middle and Lower). Thus, our results indicate that 
PCF11 and WDR82 are recruited at the promoter-proximal region 
in latent cells. Given that PCF11 and WDR82 were previously 
shown to regulate PTT at cellular genes and extragenic regions 
(24, 51), we performed 4-thiouridine (4sU) metabolic labelling 

of newly synthesized transcripts to determine the effect of their 
depletion on LTR-driven transcription in JLat A1 cells. Upon PCF11 
and WDR82 depletion, we observed a robust increase in levels of 
nascent transcripts that was similar to the increase in levels of steady-
state mRNAs, indicating that PCF11 and WDR82 act mainly as 
transcriptional repressors of the HIV-1 promoter (Fig. 5C).

We next analyzed the interdependence between PCF11 and 
WDR82 recruitment at the integrated latent provirus. Of note, 

****
****

****
**

**
****

ns

ns

NT
150K

100K

50K

0
103 104 105

2.41%
GFP+ cells 

102101

CTRL
150K

100K

50K

0

103 104 105

2.49%
GFP+ cells 

102101

PCF11
150K

100K

50K

0
103 104 105

11.7%
GFP+ cells 

102101

150K

100K

50K

0

103 104 105102101

4.98%
GFP+ cells 

WDR82

GFP-A

SS
C

-A

NI

0 10
3

10
4

10
5

NT

0 10
3

10
4

10
5

CTRL

0 10
3

10
4

10
5

PCF11

0 10
3

10
4

10
5

WDR82

0

0 10
3

10
4

10
5

10
3

10
4

10
2

mKO2-A

G
FP

-A

8.56%

3.19%0.23%

9.09%

3.37%0.23%

7.48%

6.51%0.5%

7.64%

4.22%0.31%

100%

HIV-GKO provirus
LTR5’

TSS 
LTR3’

R 5U3U R 5U U3
gag

pol
vif

vpr tat
rev

vpu
env nef

GFP EF1α mKO2

C

D

A

B

E F

CTRL
PCF11

WDR82
shRNA: NT

PCF11

WDR82

TUBULIN

0

20

40

60

80

NT
CTRL

PCF11

WDR82

%
 G

FP
-c

el
ls

 a
m

on
g 

m
KO

2+
 c

el
ls

Latent 

%
 G

FP
+

ce
lls

 a
m

on
g 

m
KO

2+
 c

el
ls

NT
CTRL

PCF11

WDR82
0

20

40

60

80

Productive

%
m

KO
2+

ce
lls

Infected

0

5

10

15

20

NT
CTRL

PCF11

WDR82

0

10
3

10
4

10
2

0

10
3

10
4

10
2

0

10
3

10
4

10
2

0

10
3

10
4

10
2

0

2

4

6
8

10
12

NT
CTRL

PCF11

WDR82

%
 G

FP
+

ce
lls

 a
m

on
g 

m
KO

2+
 c

el
ls

shRNA:

HIV-GKO latently infected
Jurkat cells

CTRL
PCF11

WDR82

PCF11

WDR82

TUBULIN

shRNA:

Fig. 4. PCF11 and WDR82 are involved in the maintenance of HIV-1 latency. (A) Schematic representation of HIV-GKO reporter virus. (B) Jurkat cells were infected 
with HIV-GKO and cultured for 7 d. Infected cells were then transduced with lentivectors expressing the indicated shRNAs, harvested at 6 d posttransduction 
and analyzed by western blotting using the indicated antibodies. (C) Cells from (B) were analyzed by FACS at 6 d posttransduction. Quantifications are shown 
as mean ± SEM obtained from 4 independent experiments (n = 4). P values were calculated using unpaired t test. (D) Representative FACS histograms and 
quantification of productively (GFP+ mKO2+) and latently (GFP− mKO2+) infected cells. (E) Jurkat cells were infected with HIV-GKO virus. At 4 d postinfection, the 
population of latently infected cells was sorted, maintained in culture for 6 wk to stabilize the latent population and transduced with lentivectors expressing 
shRNAs targeting PCF11 or WDR82, or a control shRNA (CTRL). The percentage of latent cells reactivated by the KD of PCF11 or WDR82 was quantified by FACS. 
Data represent mean ± SEM obtained from 4 independent experiments (n = 4). P values were calculated using unpaired t test. (F) Representative FACS histograms 
and quantification of reactivated cells (GFP+).

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726



 
 

PNAS  2023  Vol. 120  No. 0  e2313356120� https://doi.org/10.1073/pnas.2313356120   7 of 10

because the HIV-1-based lentivector shares the same LTR U5 
sequence as the integrated HIV-1 minigenome, the TSS primers 
within this region cannot be used for the ChIP-qPCR assay. ChIP 

analysis showed that PCF11 and WDR82 occupancy significantly 
decreases at the promoter-proximal region upon the KD of each 
other, suggesting that both factors are required for the recruitment 
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of the PCF11/WDR82 complex (Fig. 5D). Next, WDR82 was 
KD in JLat A1 cells using WDR82-targeting sgRNA:Cas9 ribo-
nucleotide complex. We show that partial loss of WDR82 specif-
ically reduced PCF11 occupancy at the promoter-proximal 
region, without affecting its recruitment at the TSS. Remarkably, 
RNAPII recruitment to the promoter-proximal region was signif-
icantly increased while its level at the TSS was unaffected 
(SI Appendix, Fig. S3A). To further determine whether PCF11 
and WDR82 are involved in the same pathway to repress HIV-1 
expression or whether they act separately, we simultaneously 
knocked down the expression of both proteins in JLat A1 cells. 
In cells depleted for WDR82 expression, silencing PCF11 using 
shRNA increased HIV-1 expression by less than twofold compared 
to the control (Fig. 5E). This limited increase is below the level 
expected for an additive effect, suggesting that PCF11-mediated 
repression of HIV transcription requires, at least partially, the 
presence of WDR82. Taken together, these findings suggest that 
PCF11 and WDR82 cooperate at the promoter-proximal region 
downstream of the TSS to repress HIV-1 transcription in latently 
infected cells (SI Appendix, Fig. S3B).

Discussion

As for cellular promoters, RNAPII proximal pausing near TSS at 
the HIV 5′ LTR promoter is a rate-limiting regulatory checkpoint 
that can lead to PTT if paused RNAPII complexes do not shift to 
productive elongation and therefore contributes to HIV latency. 
Here, we present evidence that PCF11 and WDR82 interact at the 
promoter-proximal region downstream of the TSS on HIV-1 pro-
virus to enforce transcriptional silencing in latently infected cells, 
independently of the CPA machinery. This model is based on the 
following observations: i) PCF11-mediated repression of HIV-1 
transcription does not require the CPA complex nor the PAS motif 
present at the 5′ LTR. ii) PCF11 interacts with the termination 
factor WDR82. iii) PCF11 and WDR82 are involved in the repres-
sion of HIV-1 expression in different models of latently infected 
cells. iv) PCF11 and WDR82 control the maintenance of HIV 
latency during de novo infection in CD4+T lymphocytes. v) 
PCF11 and WDR82 associate with the promoter-proximal region 
of the latent provirus in an interdependent manner. vi) Knocking 
down PCF11 or WDR82 derepresses HIV-1 nascent transcription 
in latently infected cells. vii) PCF11 and WDR82 act on the same 
pathway to silence HIV-1 expression.

Although termination factors have been reported to attenuate 
levels of promoter-associated RNAs via the recognition of cryptic 
PAS (16, 44, 52, 53), our results highlight a role for PCF11 in 
silencing transcription independently of other subunits of the CPA 
complex, further supporting a noncanonical role for PCF11 in 
regulating PTT at the HIV-1 promoter. In human cells, the bind-
ing profile of PCF11 at protein-coding genes shows an enrichment 
at both TSSs and 3′ends (24). This is consistent with observations 
showing that, in addition to its role in 3′ end transcription ter-
mination and CPA efficiency at protein coding genes, PCF11 is 
also involved in repressing TSS-associated noncoding transcription 
(24, 54). Interestingly, PCF11 also autoregulates its own expres-
sion by a premature termination mechanism. However, this effect 
requires PAS motifs within its first intron and is regulated by the 
CPA complex (24, 28). In sharp contrast, we found that repression 
of HIV-1 transcription by PCF11 involves a different mode of 
action as it is independent of the AATAAA poly(A) signal and CS.

Here, we show that PCF11 interacts with WDR82, a RNAPII 
CTD-binding factor shared by several protein complexes, includ-
ing PNUTS, Restrictor, and SET1 H3K4 methyltransferases (34, 
35, 37, 41, 55). In latently infected cells, PCF11 occupancy profile 

at the provirus indicates that it likely interacts with the promoter- 
proximal associated RNAPII complex that contains high levels of 
phosphorylated Ser5P CTD. However, as a subunit of the CPA 
complex that functions at 3′ end of genes, PCF11 was shown to 
bind preferentially to the CTD of the RNAPII phosphorylated 
on Serine 2 (Ser2P) that marks the latter stages of transcription 
elongation and termination (30, 31, 56). WDR82 is structured as 
a circular beta-propeller composed of seven WD40 repeats and 
binds directly to Ser5P-CTD (36, 57, 58). We propose that 
WDR82 directly participates in the recruitment of PCF11 to 
paused RNAPII at the HIV-1 promoter-proximal region. We 
observed that occupancy of PCF11 and WDR82 is co-dependent 
of the other suggesting that the interaction between PCF11 and 
WDR82 is important for their recruitment to the CTD of RNAPII 
at the promoter-proximal region. This might reflect previous 
observations showing that WDR82 alone binds poorly to the 
Ser5P-CTD RNAPII CTD, but this interaction is strongly 
enhanced when it is engaged within the SET1 or the ZWC com-
plex (36, 57, 58).

Our results support previous observations showing that, in 
addition to a major pause site at the TAR region, RNAPII also 
accumulates at additional downstream sites on the latent HIV-1 
LTR (7). Together with DSIF, NELF binds to the paused RNAPII 
and repressed HIV-1 transcription in latent cells (6–8). Part of 
this effect depends on the ability of NELF to facilitate PCF11 
recruitment at the TSS on HIV-1 LTR and repress its expression 
(21). However, it has been shown that NELF does not affect 
RNAPII occupancy at additional downstream pause sites at the 
HIV-1 promoter, suggesting that the downstream transcriptional 
block does not depend on NELF (7). Similar to cellular genes, 
NELF function could regulate an early LTR TSS-associated step 
that is distinct from RNAPII pause–release mediated by P-TEFb 
(59). Instead, our work shows that depletion of WDR82 alleviates 
a PCF11-dependent transcription block downstream of the TSS, 
at the promoter-proximal region, suggesting a role at a step distinct 
from that regulated by NELF. Thus, our results indicate that 
PCF11 is recruited to the latent provirus by two distinct mecha-
nisms: i) independently of WDR82 at the TSS, likely via its inter-
action with NELF as suggested by Natarajan et al. (21) and ii) via 
WDR82 at the promoter-proximal region (SI Appendix, Fig. S3B).

Interestingly, a direct in vitro interaction has been reported in 
yeast between Pcf11 and the WDR82 homolog Swd2 (47, 48). 
Swd2 is part of the APT subcomplex involved in the transcription 
termination of snoRNAs that are mostly encoded by independent 
transcription units in yeast (38, 39, 60–63). Mature snoRNAs are 
not polyadenylated and therefore do not require subunits of the 
core cleavage and polyadenylation factor (CPF) complex for their 
biogenesis. Instead, Pcf11 cooperates with both APT and the 
ncRNA Ndr1–Nab3–Sen1 (NNS) complex at 3′ ends of snoRNA 
to stimulate RNAPII termination (39, 62, 63). While the NNS 
complex is specific to yeast and not present in human cells, a role 
of PCF11/WDR82 in HIV-1 promoter-proximal transcription 
termination may share some similarity to the Pcf11/APT/NNS 
pathway involved in yeast snoRNAs termination (64).

Importantly, by using NRO approaches, we report that levels 
of short nascent transcripts that accumulate at the 5′ end of the 
viral gene progressively decrease along the 5′ LTR region, reflecting 
transcription attenuation rather than site-specific PAS-dependent 
cleavage. These results show that a mechanism of PTT takes place 
at the HIV promoter and occurs independently of the PAS, sug-
gesting that these nascent viral RNAs are nonadenylated at their 
3′ end. In addition, our study shows that PCF11 represses HIV 
expression at the transcriptional level and independently of other 
CPA subunits. However, we cannot rule out that other mechanisms 
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involving the cleavage of nascent transcripts could cooperate with 
PCF11/WDR82 to promote RNAPII termination at the HIV-1 
promoter. The Microprocessor complex, composed of Drosha and 
DGCR8, cleaves HIV-1 TAR and recruits the 5′-3′ RNA exonu-
clease XRN2, the RNA/DNA helicase SETX, and the nuclear 
exosome subunit RRP6 to induce PTT at the 5′ LTR (14). In 
yeast, Pcf11 binding to Ser2P CTD-RNAPII facilitates the subse-
quent recruitment of SETX homolog Sen1 to the RNAPII. Sen1 
then translocates along the nascent transcript and unwinds the 
RNA:DNA hybrid to promote RNAPII release (62). Similarly, 
under basal conditions, PCF11 could facilitate SETX occupancy 
at the HIV-1 promoter and further stimulate RNAPII removal 
from DNA to terminate transcription.

While PAS-dependent cleavage of nascent viral transcripts by the 
CPA complex is not required to repress HIV-1 transcription, our 
results show that WDR82/PCF11 can also interact with other CPA 
subunits. Recent studies have highlighted a role of WDR82 in tran-
scription termination through its cooperation with nuclear exosome 
targeting complexes (43, 65). Interestingly, WDR82 was also found 
to cooperate with CPSF and human silencing hub complex to favor 
3′-end transcription termination (66). As PCF11 is a master regulator 
of transcription termination, the identification of a novel complex 
containing PCF11 and WDR82 suggests an unsuspected relationship 
between subunits of the CPA pathway and WDR82-mediated pre-
mature termination. Further studies will determine whether PCF11/
WDR82 could be involved in CPA-dependent termination at 
protein-coding and noncoding genes.

Materials and Methods

For detailed protocols on cell culture, transfection of small interfering RNAs in 
adherent cells, production and transduction of pseudotyped viruses, nucleofec-
tion of sgRNA:Cas9 and siRNA in nonadherent cells, glycerol gradient sedimen-
tation, nuclear proteins IPs, Western blot analysis, total RNA extraction, reverse 
transcription and quantitative PCR analysis, NRO assay, 4sU labelling of newly 
synthesized RNAs, ChIP, flow cytometry analysis and cell sorting, and statistical 
analysis, see SI Appendix, Materials and Methods.

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix.
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