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ABSTRACT: Severe ozone (O3) pollution has been a major air quality issue and
affects environmental sustainability in China. Conventional mitigation strategies
focusing on reducing volatile organic compounds and nitrogen oxides (NOx) remain
complex and challenging. Here, through field flux measurements and laboratory
simulations, we observe substantial nitrous acid (HONO) emissions (FHONO)
enhanced by nitrogen fertilizer application at an agricultural site. The observed FHONO
significantly improves model performance in predicting atmospheric HONO and
leads to regional O3 increases by 37%. We also demonstrate the significant potential
of nitrification inhibitors in reducing emissions of reactive nitrogen, including HONO
and NOx, by as much as 90%, as well as greenhouse gases like nitrous oxide by up to
60%. Our findings introduce a feasible concept for mitigating O3 pollution: reducing
soil HONO emissions. Hence, this study has important implications for policy
decisions related to the control of O3 pollution and climate change.
KEYWORDS: O3 pollution, soil HONO emissions, nitrogen fertilizer, nitrification inhibitors

■ INTRODUCTION
Surface ozone (O3), a harmful pollutant, is associated with
many adverse impacts on public health and plant growth,
affecting the development of environmental sustainability.1,2

O3 is produced through chain photochemical reactions
involving two major classes of precursors: volatile organic
compounds (VOCs) and nitrogen oxides (NOx = NO +
NO2).3,4 Its production responds nonlinearly to its precursors,
making it challenging to propose effective mitigation strategies.
In efforts to mitigate O3 pollution, two chemical regimes are
commonly recognized, namely, “NOx-limited” and “VOC-
limited”. The NOx-limited regime refers to conditions where
reducing NOx would be most effective in reducing O3
production, while the VOC-limited regime describes situations
where VOC reductions would be more beneficial. However,
there are still large uncertainties in diagnosing the O3
formation regimes by models due to the incompletion of
chemical mechanisms and uncertainties in the input data, such
as emission information and meteorological predictions,5

constituting challenges in policymaking. Furthermore, achiev-
ing effective O3 mitigation requires a precise reduction ratio
between VOCs and NOx. However, VOCs and NOx are
typically coemitted, leading to challenges in reducing NOx and
VOCs at a specific ratio. Otherwise, the reduction of both at an
improper ratio may lead to an O3 increase. For instance, the
COVID-19 lockdowns lead to significant simultaneous
reductions in NOx and VOCs while O3 shows clear

enhancements on a national scale, suggesting the complexity
and difficulties of mitigating O3 pollution by conventional
strategies through reducing NOx or VOCs.6−8

The chain reaction with O3 production is initiated and
accelerated by primary radical production [P(ROx), including
O3 photolysis and nitrous acid (HONO) photolysis] and
propagated by the following radical cycling.3,4,9 Recent studies
have highlighted the importance of P(ROx) in exacerbating O3
pollution.10−12 In particular, Wang et al.11 reported that O3
formation in Eastern China is sensitive to P(ROx), while Liu et
al.12 demonstrated the significant contribution of primary
radical sources, particularly HONO, to daytime O3 production
in a high-O3 city in the North China Plain (NCP). These two
studies highlight the need to recognize primary radical sources
and indicate the potential role of P(ROx) reduction in
mitigating O3 pollution in addition to conventional strategies.

The NCP is a region with severe O3 pollution,13,14 high
radical levels, and high P(ROx).15−19 Among the primary
radical sources, HONO plays a considerable or even dominant
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role, with a contribution of up to 90%.17,20,21 Our previous
studies have indicated that agricultural fields in the NCP could
be an important HONO source, especially after nitrogen
fertilizer use (NFU).22,23 However, there are still no systematic
studies to quantify NFU-induced HONO emissions, leading to
uncertainties in assessing its impact on daytime radical and
regional O3 production.20,21 Moreover, the lack of field flux
measurements limits the advanced understanding of corre-
sponding mechanisms of soil HONO emissions.24 Therefore, it
is of important significance to conduct field flux measurements.
Furthermore, reducing soil HONO emissions means less
P(ROx), which could be an effective strategy for mitigating O3
pollution. However, to the best of our knowledge, no studies
have been conducted to explore the control measure for
reducing soil HONO emissions.

In this study, we conduct systematic field flux measurements,
with coverage of several entire NFU-induced emission periods,
and confirm the substantial HONO emissions induced by
NFU in the NCP. We also quantify the impacts of soil HONO
emissions on atmospheric oxidizing capacity and O3 pollution
using a box model with constraints by comprehensive field
measurements. Besides, we propose a new mechanism for soil
HONO emissions through the combination of field flux
measurements and laboratory simulations. Furthermore, we
explore the potential control measures to reduce HONO
emissions and hence mitigate O3 pollution, and estimate the
impact of NFU-induced HONO emissions as well as their
impacts on a global scale.

■ MATERIALS AND METHODS
Field Measurements. Field flux measurements were

conducted at the Station of Rural Environment, Chinese
Academy of Science (SRE-CAS), which is surrounded by
agricultural fields (38°71′N, 115°15′E) in Wangdu County,
Hebei Province of China. Winter wheat and summer maize
have been cultivated in the field for decades. The soil is
classified as aquic Inceptisol, with a texture of sandy loam.25

Soil organic C and total N are 8.34−9.43 and 1.02−1.09 g
kg−1, respectively. As a typical representative of agricultural
regions, numerous comprehensive field campaigns, including
measurements of greenhouse gas emissions and atmospheric
compositions, have been conducted at this station.20,21,25−27

According to the cultivation habits of the local farmers,
synthetic ferti l izer (e.g. , N(NH4Cl)/P2O5/K2O =
22%:8%:15%) is popularly used for summer maize planting.
The fertilizer application rate in the NCP is from 120 to 729 kg
N ha−1, and about 200−330 kg N ha−1 is typically used for the
fields of nearby villages around the SRE-CAS station. Even
higher fertilizer application rates (e.g., 3000 kg N ha−1 y−1) are
frequently used for vegetable cultivation in the NCP.28

Soil HONO flux was measured by a twin open-top dynamic
chamber (OTC) system, which has been detailed in the
Supporting Information. The main field flux measurement
campaign was conducted during 19 August−6 September 2016
with a typical fertilizer application rate of 247 kg N ha−1

(suggested by local farmers). Several other campaigns were
conducted to reconfirm the NFU-induced soil HONO
emissions and to explore the variations of soil HONO
emissions with fertilizer application rates (Table S2). Other
supporting measurements are described in Section S1 in the
Supporting Information.

Laboratory Experiments. A quartz incubator (inner
diameter: 3 cm, length: 50 cm) with a jacket for circulating

water (Figure S1) was used for laboratory experiments. A glass
tank (length: 40 cm, width: 2 cm, height: 1 cm) that could be
put inside the incubator was used to bear the soil samples
(depth: 1 cm). At the outlet of the flow tube, HONO and NO
were detected by LOPAP30 (or sometimes a stripping coil ion
chromatography system27) and a NO analyzer (Thermo model
42i NO−NO2−NOx analyzer, USA), respectively. The two
HONO instruments showed good agreement in laboratory and
field conditions, as reported in our previous study.27 Synthetic
air (N2/O2 = 4:1) at a flow rate of 3.25 L min−1 was used to
flush the flow tube. Before reaching the flow tube, the carrier
gas passes through a relative humidity controller (RHC, details
in Section S2 in the Supporting Information) to adjust its
relative humidity.

Thanks to this platform, we studied the influencing factors of
soil HONO emissions, including soil temperature, bacteria,
fertilizer type, relative humidity of the flushing gas, and
nitrification inhibitor (see details for each experimental design
in Section S2 in the Supporting Information). For each
experiment, 75 g soil samples collected at the SRE-CAS site29

(Section S2 in the Supporting Information) were filled into a
glass tank with a surface area of 0.08 m2, humidified to 90%
WHC by the water solutions of various fertilizers, and then
incubated at a growth chamber (temperature: 20 °C; relative
humidity: 80%; dark condition) before laboratory flux
experiments.

Model Simulations. A 0-D box model RACM v2 (regional
atmospheric chemistry mechanism v2) was adopted to explore
the influence of HONO emission from the fertilized soil on
atmospheric HONO levels as well as O3 formation rates, as
detailed in the Supporting Information and in previous
studies.31 To explore the regional impacts, such as the
enhancements in AOC and O3, soil HONO emissions were
implemented into the RACM v2 model. Two scenarios were
designed: with and without implementing the averaged diurnal
HONO flux in the model. Comparison between the two
scenarios can deduce the impact of FHONO on O3 production.

■ RESULTS AND DISCUSSION
Field Measurements of Soil HONO Flux and Atmos-

pheric Composition. Figure 1 displays diurnal profiles of soil

Figure 1. Diurnal profiles of soil HONO flux (FHONO), ambient
HONO concentrations, solar radiation (Ra), soil temperature (T-
soil), and atmospheric relative humidity (RH) measured in the
summer of 2016. Error bars represent one-quarter of the standard
deviation (±0.25σ).
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HONO flux (FHONO) and associated parameters before and
after fertilization. FHONO remains below 3 ng N m−2 s−1 before
fertilization. Similar levels of FHONO were also observed at this
site in 202132 and other agricultural sites in China.33,34 Song et
al.32 further observed a distinct diel profile of FHONO before
fertilization. In comparison, FHONO increased significantly both
during daytime and nighttime after fertilization and also
exhibited regular peaks at noon. These daily peaks increased
rapidly and reached a maximum of 348 ng N m−2 s−1 on the
third day after fertilization (Figure S2), This level is 2 orders of
magnitude higher than those measured from the same field
before fertilization and >5 times greater than the reported
values from other fields worldwide (<60 ng N m−2 s−1).20

Nevertheless, it is comparable to FHONO from alkaline soils (up
to 258 ng-N m−2 s−1) under laboratory studies, in which the
emission is attributed to the nitrification process.22,35 The
diurnal variation of FHONO is similar to those of soil
temperature (T-soil) and solar radiation (Ra) but opposite
to ambient relative humidity (RH, Figure 1), indicating
potential interactions between FHONO and those parameters.
It is worth noting that strong FHONO is commonly observed
after every NFU event, which can be obtained from our field
flux measurements over multiple years (Table S2).

Before fertilization, a typical U-shape diurnal variation of
ambient HONO has been frequently observed at this site.20,36

However, after fertilization, high FHONO may result in
significant changes in both ambient HONO levels and
variations. Indeed, high unexpected HONO peaks, with an
average of 0.7 ppbv, were observed at noon (Figure 1), in
concert with the FHONO peaks (84 ng m−2 s−1). This finding
implies that the fertilized fields are the most significant daytime
HONO source that reshapes the HONO diurnal variation.
Similarly, during the summer of 2017, HONO enhancements
were again observed after fertilization (Figure S3), revealing
the reproducibility of NFU impacts on ambient HONO
abundances. Additionally, there were notable increases in
ambient O3 and hydrogen peroxide (H2O2) after fertilization
(Figure S3), indicating the amplified role of enhanced HONO
levels in atmospheric oxidizing capacity and O3 pollution.

Insights on the Mechanism Based on Field Measure-
ments. As illustrated in Figure S2, high FHONO values were
always observed during the daytime under a high or moderate
soil water content (SWC). Previous laboratory experiments
reported that the denitrification process could result in high
soil HONO emissions at high SWC.37,38 During our field
measurements, soil nitrate was increasing rapidly (Figure S4)
after fertilization, suggesting an active nitrification process.
This finding aligns with previous studies, in which soil NO and
N2O emissions were attributed to the nitrification process in
the NCP.39

Previous laboratory studies found that high HONO
emissions occurred in the low soil water content range (10−
40% WHC).22,40 However, our field measurements found that
significant HONO emissions were mainly observed at a high
SWC of ∼80% WHC (Figure S2). It is crucial to note that the
measured soil water content represents the average moisture
level of the surface soil down to a depth of 5 cm. However, the
water content of the very surface layer, such as the top 1 mm,
may be significantly lower. Moreover, elevated soil temper-
atures reduce the solubility of HONO and accelerate water
evaporation.3 Additionally, low RH at noon can further hasten
water evaporation. As a result, evaporation from this surface
layer can markedly alter soil surface properties,37,41−43

including microscale pH44 and equilibrium HONO concen-
tration,23,43 leading to an increase in HONO emissions.
Therefore, the combined effect of rising temperatures, coupled
with decreasing air RH, stimulates HONO emissions through
the interaction of reduced HONO solubility and accelerated
water evaporation, which could explain the observed diurnal
variations of FHONO. Together with the below laboratory
results, an advanced mechanism of soil HONO emissions is
proposed.

Key Factors Driving Soil HONO Emissions. To explore
the key factors driving soil HONO emissions, we conduct a
series of incubator experiments by incubating the agricultural
soil samples. Simultaneous measurements of NO emissions
(FNO) are also conducted, as they are known to generally
coexist with FHONO.22,40 Figure 2 exhibits FHONO and FNO

under different treatments. FHONO and FNO from NH4Cl-
treated soil samples substantially increase and reach their
maximums on the fourth day after fertilization, similar to field
measurements which show peak emissions on the third day
after fertilization (Figure S2). In contrast, much smaller FHONO
and FNO are observed for the sterile + NH4Cl- and KNO3-
treated soil samples, which is consistent with the observed
FHONO that does not increase with soil nitrate concentration in
the field measurements (Figures S2 and S4). Consequently, an
inference that HONO emissions are primarily derived from
ammonium fertilizer as opposed to nitrate can be drawn. This
inference can be also supported by the results of parallel
NH4Cl treatment experiments with and without the addition
of nitrification inhibitors to block the ammonia oxidation (via
NH4

+ → NO2
−) process, e.g., more than 90% reduction of

HONO and NO emissions from the ammonium treatment
with the presence of DCD (dicyandiamide, a nitrification
inhibitor).

Temperature dependence is also explored. Both FHONO and
FNO increase by a factor of ∼3 at the soil temperature of 35 °C
as against 18 °C (Figure 2), resulting from the accelerated
nitrification process22 and surface water evaporation (see the
Results and Discussion section). It is worth noting that the
temperature dependence experiments also suggest the impact
of SWC changes. As shown in Figure S6, each time the
experimental temperature is switched from 18 to 35 °C, FHONO
rapidly increases. However, FHONO does not return to a similar
level when the temperature is switched back, indicating the
additional impact of SWC changes in soil HONO emissions.

Figure 2. Emissions of HONO (FHONO) and NO (FNO) at 18 [panels
(a,b)] and 35 °C [panels (c,d)]. Soil samples were in parallel treated
by sterilization + NH4Cl (sterile), KNO3 (nitrate), and NH4Cl
(ammonium).
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Figure S7a illustrates the impact of air humidity on soil
HONO emissions. When the fertilized soil sample is flushed by
humidified air, FHONO stabilizes in 30 min. Surprisingly, when
switching the flushing gas to dry air, FHONO rapidly shows a
pulse peak, followed by a fallback and then a slight increase
during the drying process. On average, FHONO increases by a
factor of 3 during the dry air flushing period compared to the
humidified air flushing period, indicating the significant effect
of the surface drying process on soil HONO emissions. This
result highlights the importance of water exchange between the
soil surface and atmosphere in regulating HONO emissions.
We, therefore, conduct quantitative investigations of the
relationship between the surface drying process and HONO
emissions under different RH conditions. The time series of
FHONO during this experiment is shown in Figure S8. In the RH
range of 60−100%, FHONO increases as RH decreases and can
reach a generally stable level for each RH gradient. However, if
RH continues to reduce, FHONO still increases but cannot reach
a stable level. This is due to relatively larger SWC changes
under lower RH conditions. Despite that, very high
correlations (R2 = 0.98, Figure S7b) are still found between
FHONO and soil water loss rate (Ewater), indicating the
remarkable impact of surface water exchange on soil HONO
emissions.

At high temperatures, HONO solubility is lower according
to Henry’s law, the nitrification process is more active22,37 to
produce NO2

−, and surface water evaporation is more rapid
than at low temperatures. Hence, higher emissions are
expected at higher temperatures, which could explain the
significant increase in emissions when increasing soil temper-
ature from 18 to 35 °C (Figure 2). The syngeneic effect of
ambient RH and T-soil governs the diurnal variations of
HONO solubility, nitrification activities, and surface drying
process, which collectively explain the observed diurnal
variations of FHONO (Figures 1 and S2).

Therefore, our results provide valuable insights into the
complex process driving HONO emissions from soil surfaces
(Figure 3). On the one hand, the application of nitrogen
fertilizers stimulates the microbial process such as the
ammonium oxidation process with the production of nitrite.
This accumulation of soil nitrite serves as a crucial precursor
for HONO emissions. It is important to note that microbial

processes can be influenced by various factors, including soil
pH, temperature, soil water content, etc. Understanding these
factors is essential for accurately predicting HONO emissions
under different environmental conditions. Additionally, genetic
analysis will benefit the understanding of the role of various
microbial processes in soil HONO emissions. On the other
hand, soil temperature and ambient RH play key roles in
modulating the surface drying process, affecting soil surface
properties at a microscale. Higher temperatures and lower
relative humidity levels promote faster soil surface drying,
potentially leading to enhanced HONO emissions. This
relationship underscores the importance of considering
meteorological conditions when assessing HONO fluxes
from soil surfaces.

Several laboratory studies, such as those conducted by Wang
et al.45 and Song et al.,46 have collected different types of soil
samples in different regions across China and observed
significant HONO and NOx emissions from those soil samples.
Notably, Song et al. also found that ammonium fertilizer could
largely increase emissions through enhancing the nitrification
process. Field flux measurements are needed to quantify these
emissions on a national scale. We particularly emphasize the
link between water exchange at the soil−air interface and the
release of soil nitrification-originated nitrite as HONO, as this
may also apply to other water-soluble gas emissions, such as
ammonia (NH3). The released HONO maintains a high
daytime HONO level, which acts as a strong OH source to
accelerate daytime photochemistry, resulting in the formation
of secondary pollutants, such as O3 pollution.

Impact on O3 Pollution. Figure S9 demonstrates the
impact of FHONO on the HONO budget. The default
mechanism, which only considers NO + OH as the HONO
source, predicts a HONO concentration of only 0.07 ppbv,
more than 1 order of magnitude lower than the observations
(1.21 ppbv). The inclusion of FHONO significantly improves the
model’s performance, as the predicted HONO level of 1.28
ppbv and variation are very similar to observations, suggesting
the dominant role of FHONO in the HONO budget. This is in
agreement with our ambient HONO measurements, i.e.,
unexpectedly noontime HONO peaks (0.7−1.7 ppbv) were
observed at this site during the summers of 2016 and 2017
after fertilization (Figures 1 and S3).

The high level of ambient HONO maintained by FHONO
leads to increased OH production and a stronger atmospheric
oxidizing capacity, resulting in the formation of secondary
pollutants such as O3. Figure 4a demonstrates that the
inclusion of FHONO leads to a substantial increase in the O3
production rate (P(O3)), which can reach up to 8.5 ppbv h−1

at noon. Additionally, the average daily accumulated O3
production increases by 37% (47.2 ppbv), highlighting the
significant impact of FHONO on O3 production. Furthermore,
significant O3 enhancements caused by NFU were observed at
this agricultural site (Figure S3), as well as other sites in the
NCP.20 This emphasizes the substantial impact of FHONO on
regional O3 pollution, which has been largely overlooked.

■ ATMOSPHERIC IMPLICATIONS
Reactive Nitrogen Budget and Greenhouse Gas

Emissions. This study provides systematic continuous flux
measurements after NFU events, enabling the estimation of
nitrogen loss via HONO emissions (EF(HONO)). Based on
our measurements, about 0.21% of applied nitrogen is lost via
HONO emissions within 17 days after fertilization. We note

Figure 3. Schematic plot of soil HONO emission mechanism, impacts
on O3 pollution, and control measures. Conventional O3 mitigation
mainly focuses on VOC control or NOx control and here, we propose
a feasible concept of controlling primary radical sources [P(ROx), e.g.,
HONO].
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that the EF(HONO) of 0.21% represents a minimum due to
the limitations of the measurement period. Further flux
measurements covering the entire growing season are needed
to determine a precise EF(HONO). The obtained EF-
(HONO) is at a similar magnitude to other nitrogen gases
(e.g., NO and N2O: ∼1.0%),47−51 and hence, the estimation of
global NFU-induced HONO emission is crucial, as its
photolysis can produce both OH and NOx, perturbing the
atmospheric self-cleaning capacity and affecting regional air
pollution.

Currently, NFU is commonly conducted for agricultural
activities worldwide to increase crop yields and has shown an
increasing trend since the invention of ammonia synthesis in
the 1910s,52 constituting an important reactive nitrogen source
on a global scale. In the NCP, NFU events occur regularly (>4
times per year for agricultural fields) with a higher application
rate of 290 kg N ha−1 (data source: China Statistical Yearbook
2019) compared to a world average of 75 kg N ha−1. In
vegetable-planting areas near megacities, even much higher
fertilizer application rates (e.g., ∼3000 kg N ha−1) are used
with a higher application frequency.28 The high application
rate and the large NFU in China (24 Tg, around one-quarter
of world fertilizer consumption of 108 Tg, data source:
Statista) suggest considerable NFU-induced impacts on
atmospheric composition. Assuming a lower limit of EF-
(HONO) of 0.21% for all types of N fertilizers, NFU-induced
HONO emissions are estimated to be 0.05 and 0.23 Tg N for
China and the globe, respectively. By far, emission inventories
only potentially consider soil NOx emissions but not HONO
emissions. Such amounts of NFU-induced HONO emissions
correspond to 6.5 and 10% of agricultural NOx emissions in
China (0.77 Tg N53) and the globe (2.26 Tg N54), indicating
the overlooked role of soil HONO emissions in exacerbating
regional air quality and the urgency of exploring corresponding
emission control measures. One should also bear in mind that
here the rough estimation of total NFU-induced HONO
emissions needs to be further updated with more field
constraints on the EFs. Many influencing factors on the EF,
such as soil types, climatic conditions, fertilizer type, and
application rate are still poorly understood. Further studies are
still needed to address the uncertainties in EFs, the influencing
factors, and the reactive nitrogen budget.

Emission Reduction Measures. As demonstrated above,
nitrification is the major source of soil nitrite, the precursor of
HONO. Applying nitrate-based fertilizers may indeed reduce
reactive nitrogen emissions, as suggested by our laboratory

results. However, it is important to note that nitrate-based
fertilizers have been reported to cause other problems such as
groundwater pollution and safety concerns. Nitrification
inhibitors, such as DCD (C2H4N4) can suppress nitrification
activity by blocking the formation of hydroxylamine
(NH2OH), the precursor for soil NO2

−. It has been suggested
to reduce N2O emissions55 and HONO and NO emissions as
well.

Figure S10 shows the results of DCD impacts on HONO
emissions. HONO concentrations in the incubator rapidly
increase with incubation days after fertilization and reach their
peak of about 100 ppbv on the third day after fertilization.
Similar NO variations are observed, but at a lower level (peak
on the second day after fertilization; maximum concentration:
60 ppbv). In contrast, fertilized soil samples with additional
treatment of 5 or 10% DCD (relative to applied nitrogen)
show considerable HONO and NO emissions only on the
second and third days after fertilization. Maximums of HONO
and NO emissions are >6 times lower with an additional 10%
DCD treatment. On average, with 5% DCD accompanied by
nitrogen fertilizer application, the reduction efficiencies in
HONO and NO emissions are 78 and 70%, respectively. The
reduction efficiencies increase to 90 and 86% for HONO and
NO, respectively, for 10% DCD treatments. Additionally, our
previous study observed DCD-induced N2O reduction by 66%
in the NCP region.47 Moreover, nitrification inhibitors play a
role in alleviating soil acidification by reducing nitrification
processes, which are significant drivers of soil acidification in
Chinese croplands.56 Furthermore, a reduced nitrification
process improves the nitrogen use efficiency, resulting in
benefits for the crop yields.57 Thus, the control strategies
proposed in this study can reduce soil HONO and N2O
emissions synergistically, which would be beneficial for
environmentally sustainable development and lead to
cobenefits of air quality, public health, soil health, crop yields,
and global climate. However, the use of nitrification inhibitors
poses the risk of increasing ammonia emissions from
agricultural soil, as they maintain high ammonium concen-
trations in the soil, which could lead to increased ammonia
volatilization.58,59 We note that further worldwide assessments
are needed to fully comprehend the impacts of nitrification
inhibitors on soil−atmosphere exchanges, soil properties, and
global implications for air quality and climate.

Taken together, this study proposes a feasible concept of
reducing primary radical sources (e.g., soil-emitted HONO) to
mitigate O3 pollution (Figure 3). We also demonstrate the

Figure 4. Impact of soil HONO emissions on the O3 production rate [P(O3), panel (a)] and average daily accumulated O3 production [Acc. O3,
panel (b)].
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great potential of nitrification inhibitors in reducing emissions
of reactive nitrogen (HONO and NOx) and greenhouse gases
(N2O) and thus mitigating both regional air pollution and
global climate.
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