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ABSTRACT
This paper proposes a formal optimisation framework and algorithms for data-aware processmining
with event duplication that relaxes the usual one-event-label-one-process-model-node restriction.
We put forward a hierarchical representation of the event attribute values and event labelling to
achieve the best balance of the complexity and precision of the processmodel. We posit a new qual-
itymeasure, relevance,whichmeasureshowwell andhowprecisely aprocessmodelmatches agiven
event log. The process model optimisation consists of determining (i) the process model with labels
and attribute values for each node and transition functions for each arc and (ii) the event game stip-
ulating how each trace of the event log is played in the process model. This article also proposes a
dynamic programming algorithm for optimising event games, an exact method for optimal setting
of node attributes and arc transition functions, and heuristic algorithms for process model optimi-
sation. Numerical results show the efficiency of the algorithms with respect to relevant benchmarks
and an 18% improvement in the model relevance. Applications on sarcoma care pathways reveal
their dependency on attributes such as surgery quality and tumour size. Our approach clearly shows
how both care event repetition and data impact sarcoma care pathways whereas other data-aware
miners fail.
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1. Introduction

This paper addresses the process mining of an event log
with event attributes and inter-event features. Input data
constitute a set of traces where each trace is a sequence of
events, each event is defined by an event label (referred
to as ‘activity’ in some literature) and a set of attributes
with each defined by a finite domain, and a transition
feature is also associated with two consecutive events.
Acknowledging the importance of event repetition (mul-
tiple occurrences of the same event label in a trace), this
paper seeks to determine the optimal process model (cri-
terion to be discussed) while departing from existing
process mining approaches in three significant ways: (i)
here, a process model is defined as an acyclic graph with
nodes associated with labels with event duplication (i.e.
without the usual one-label-one-node restriction) and
arcs associated with transition features; (ii) the process
model proposed is data-awarewith optimally set attribute
values and transition features for each node and arc; (iii)
and we present a formal optimisation framework of the
process mining problem.

CONTACT Lionel Perrier lionel.perrier@lyon.unicancer.fr Centre Léon Bérard, CNRS, Université Lumière Lyon 2, Université Jean Monnet Saint-Etienne,
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Event duplication relaxes the one-label-one-node
restriction that is in place in previous published research
and significantly extends our process mining approach.
At the same time, however, it increases the complexity of
process mining, which, in turn, depends on how to play
a trace in a given process model, referred to here as an
event game. We also address the problem of the optimal
event game.

The literature on data-aware process mining is quite
limited. Themajority of processmining studies published
to date simply ignore the large amount of data associ-
ated with the event log. Some studies rely on various
preprocessing techniques to define event labels according
to some level of granularity (van der Aalst and Car-
mona 2022). Existing data-aware process mining tech-
niques use exhaustive or heuristic searches to determine
data-dependent conditions of transitions between two
activities (see Section 2 for details). They use the support
and confidence of such local transitions instead of global
process model quality measures. Most importantly, all
such techniques collapse when the one-label-one-node
restriction is relaxed.
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With the exception of our previous studies, to our
knowledge the formal setting of the processmining prob-
lem under consideration has been overlooked to date. It
requires formal definitions of the event log, the process
model, the event game, and the overall quality measure.
The lack of literature on optimal process mining is prob-
ably related to the extreme difficulty that it results in a
huge number of feasible process models, the lack of ana-
lytical expressions of the overall quality measures, and
their highly nonlinear relations with the process models.
The extensions of this papermake the problemevenmore
complex, as extra decisions must be taken on a number
of questions, such as the node attribute values. Neverthe-
less, the optimisation framework allows us to derive per-
formance bounds, heuristic solutions, and metaheuristic
solutions. Below, we will illustrate the benefits of a formal
optimisation framework.

This paper is motivated by the data-driven modelling
of care pathways of sarcoma patients. As outlined in
our previous article (Peng et al. 2024), treatment repeti-
tions such asmultiple sarcoma-MDTB (multidisciplinary
team board) often signal the degradation of the patient’s
health. As a result, grouping all MDTB events in a single
process model node does not permit appropriate mod-
elling of the disease progress,meaning that event duplica-
tion is required. Data-dependency is another important
characteristic of sarcoma care pathways. As the diagno-
sis and treatment of sarcoma both present challenges
to clinicians, it is highly recommended that a sarcoma-
MDTB is held before surgery and that both are con-
ducted in reference centres. The locations of MDTB and
surgery events are crucial factors that have significant
impacts on the evolution of care pathways. For instance,
research has shown that major differences in care path-
ways were found between reference centre patients and
non-expert centre patients (Blay et al. 2019; Gantzer
et al. 2019). Surgery in one of the reference centres of the
French NETSARC network was found to be associated
with a reduction in the risk of local relapse, progression,
and death. Another important factor in treatment is the
patient’s age; and elderly patients tend to be less likely to
undergo surgery (Gingrich et al. 2019).

Although it is motivated by sarcoma care pathway
modelling, our approach has further applications. It
directly applies to the care pathways of other cancers,
which also require data-awareness and event duplica-
tion, and to modelling many other healthcare processes.
The care pathways of emergency department patients,
for example, often involve a second consultation after
initial medical examinations. Whether this second con-
sultation is required depends to a large extent on the dis-
ease and its gravity. Event replication is also common in
semiconductor manufacturing, where certain products

return multiple times to the same machines (see Lu and
Kumar 1991).

We have previously proposed various optimisation
frameworks for process mining. Prodel et al. (2018) for-
mally set out the optimal process mining problem under
the one-label-one-node restriction and propose a tabu
search approach. The one-label-one node restriction is
relaxed by De Oliveira et al. (2020), where a tabu search
approach is proposed with a simple event game of first
possible node. Our research further relaxed the one-
label-one-node restriction and proposed a local optimi-
sation approach based on an optimal event game (Peng
et al. 2024).

The purpose of this paper is to propose an optimi-
sation framework and optimisation algorithms for data-
aware process mining with event duplication. In brief,
the process model allows for the same label in multiple
nodes and data-awareness is handled by joint optimisa-
tion of the process model, attribute values of its nodes,
and the event game of all traces. The proposed approach
is illustrated in Figure 1. This paper makes specific con-
tributions to the field by providing:

• an original representation of traces as sequences of
event labels each associated with a set of attributes
defined on a finite domain and inter-event transition
features which are also defined on a finite domain;

• a hierarchical representation of attribute values to face
the increased complexity of data-awareness and to
allow for the flexible precision level of each attribute
in the process model. More specifically, we intro-
duce the following: macro-attribute values defined on
an attribute tree for each attribute and macro-labels
defined on a label tree;

• an original multi-layer process model built on the
original concepts of macro-labels, macro-attribute
values, and transition functions (see Peng et al. 2024
for justification of the multi-layer model). Each node
in the process model is associated with a macro-label
and a macro-attribute value for all relevant attributes
with possible occurrence of the same label in multiple
nodes. Each arc of the processmodel is associatedwith
a transition function equal to a subset of transition
features;

• a formal processmodel optimisation framework based
on its size constraints and an extended quality mea-
sure, termed ‘relevance’, on the meaningfulness of the
model as well as all model components (see Peng
et al. 2024 for justification of the relevance). The exten-
sion takes into account the precision level of macro-
labels, macro-attributes, and transition functions. It
allows us to achieve the best balance between precision
and the number of events/transitions represented;
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Figure 1. The proposed approach.

• efficient process model optimisation methods. These
are based on a series of new theoretical results, includ-
ing the optimal attributes/transition functions, the
optimal event game that maps traces to process model
for a given process model, and upper bounds of the
optimal model reference. They all rely on an extended
marginal relevance of adding a node.We then propose
a multi-start local optimisation algorithm and an ant
colony algorithm for the solution algorithms;

• an extended numerical experiment based on both
generated instances and a real case study to assess
the performance of the proposed methods, the bene-
fits of introduction attributes, and how the attributes
influence the process models. The introduction of
attributes is shown to improve the model relevance
by about 18%. The case study reveals a number of
relations between the sarcoma care pathways and
attributes, such as surgery location, surgery quality,
and tumour size/depth. We also demonstrate that our
approach can clearly show how both care event rep-
etition and data impact the sarcoma care pathways,
whereas other data-aware miners fail.

The following sections of this article are organised
as follows: following a literature in Sections 2, 3 for-
mally sets out the problem of process mining opti-
misation with event label attributes; Section 4 then
addresses the optimisation of attributes/transition func-
tions and the event game for a given process model,
before Section 5 proposes process model optimisa-
tion algorithms; Sections 6–7 then provide numeri-
cal experiments, before Section 8 concludes the paper.
Detailed algorithm presentations and numerical results
are summarised in the main paper and full details

are available in an electronic companion, found at:
https://emse.fr/∼ xie/ECpapers/ECoptisarc2024.pdf.

2. Literature review

This section provides a brief review of the relevant lit-
erature. It is first worth positioning our paper within
the general process mining framework of van der Aalst
and Carmona (2022). Our objective is to discover a
process model from scratch. Other objectives include
conformance checking, enhancement, and monitoring.
We approach process modelling predominantly from a
control-flow perspective, which focuses on the ordering
of events. Other aspects, such as time, data, resources,
and costs, can also be integrated into processmodels. Our
research keeps data in its sights. To the best of our knowl-
edge, the relaxation of the one-label-one-node restriction
and the optimisation framework have not been consid-
ered in the literature, with the exception of our previous
works, as mentioned in Section 1. We have therefore
limited the scope of our review to the literature on data-
aware processmining and a brief literature review onpro-
cess mining algorithms and care pathwaymodelling. Van
Der Aalst (2016) and van der Aalst and Carmona (2022)
provide general introductions to process mining.

2.1. Data-aware processmining approaches

Table 1 positions our approach with respect to relevant
data-aware process mining studies. Process discovery
methods can be categorised into declarative, procedural,
and hybrid approaches that combine elements of both
paradigms (Augusto et al. 2018). Declarative approaches
specify the rules governing a process, such as transitions

https://emse.fr/~xie/ECpapers/ECoptisarc2024.pdf
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Table 1. Data-aware process mining approaches.

Study Object-centric Discovery Conformance Checking Enhancement Monitoring Declarative Procedural Integration

Rozinat and van der
Aalst (2006)

� �

Maggi et al. (2013) � � �
De Leoni and van der
Aalst (2013b)

� �

De Leoni and van der
Aalst (2013a)

� �

Taghiabadi et al. (2014) � �
Borrego and
Barba (2014)

� �

Batoulis et al. (2015) � �
Burattin, Maggi, and
Sperduti (2016)

� �

Schönig et al. (2016) � � �
Mannhardt et al. (2016) � �
Mannhardt et al. (2017) � � �
Li, de Carvalho, and
van der Aalst (2017)

� � � �

Leno et al. (2020) � � �
Bergami et al. (2021) � �
Felli et al. (2021) � �
Bano et al. (2021) � �
Fahland (2022) � � � �
Alman et al. (2022) � � �
Mannhardt et al. (2023) � � � �
Our � � �
Note: The column ‘Integration’ concerns the full integration of data perspective within the control-flow perspective for discovery approaches, meaning that data
influence the control-flow structure.

between two events and their activation conditions. Pro-
cedural approaches, also called imperative approaches,
specify the flows admitted by a process. As a result, the
output of the former is a collection of rules whereas it
is a complete process model (Petri net model or simple
automata graphs) for the latter.

Procedural or imperative methods focus on the
continuous evolution of the process objects (Fahland
et al. 2009). Rozinat and van der Aalst (2006) were the
first to incorporate a data perspective into process mod-
els by applying a classification algorithm, specifically
decision trees, to determine whether decision points in
Petri nets are influenced by data. De Leoni and van der
Aalst (2013b) proposed an enhancement of this work,
addressing 181 invisible transitions and multiple transi-
tions in Petri nets, by defining a Petri net structure that
integrates data. Batoulis et al. (2015) then introduced a
semi-automatic method for identifying decision logic in
BPMN (Business Process Model and Notation) models.

Mannhardt et al. (2017) were the first to propose an
imperative method where data attributes directly impact
the construction of the control-flow, rather than merely
adding data attributes to an existing process model as
previous approaches did. Their method can reveal infre-
quent paths depending on specific data attribute values
using classifiers. Mannhardt et al. (2023) extended the
data-aware perspective to stochastic Petri nets, which are
an advanced form of Petri nets that explicitly encode the
occurrence probabilities of transitions.

Declarative methods, however, focus on the logic that
governs the overall interplay of actions and objects in a
process (Fahland et al. 2009). The most commonly used
declarative modelling language is Declare, introduced
by Pesic, Schonenberg, and van der Aalst (2007). Maggi
et al. (2013) were the first to incorporate data condi-
tions into the semantics of the Declare language by
means of First Order Linear Temporal Logic rules. Start-
ing with an initial control-flow Declare constraint, this
method uses classification techniques, such as decision
trees, to discover conditions on data attributes that can
differentiate between constraint fulfilment and violation.

Burattin, Maggi, and Sperduti (2016) introduce a for-
malmulti-perspective version ofDeclare (MP-Declare).
Schönig et al. (2016) present an implementation of MP-
Declare, which relies on RXES, a standardised architec-
ture for storing event log data. Conditional constraints
can be easily discovered through standard SQL queries
on the event data, although these SQL queries must be
formulated.

Leno et al. (2020) propose two alternative approaches
to discover MP-Declare constraints. The first approach
uses clustering to identify groups in the target and acti-
vation payloads (representing both sides of the Declare
constraint) combined with a rule mining technique. The
second approach employs a redescription mining tech-
nique, which is an unsupervised knowledge discovery
method. Experiments demonstrate the high effective-
ness of the clustering-based approach in rediscovering
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constraints artificially injected into a log, compared to the
second approach.

Anewprocess specification thatmoves beyond a ‘case-
centric’ approach is currently emerging. These so-called
‘object-centric’ process specifications apply constraints to
multiple objects and their interactions (see Di Ciccio and
Montali 2022). Although still in its early stages, several
studies adopt this richer representation, which accounts
for event data (Fahland 2022; Li, de Carvalho, and van
der Aalst 2017).

The approach of Leno et al. (2020) begins with the
Declare constraints as outlined byMaggi, Bose, and van
der Aalst (2012). These constraints are then refined with
data-aware conditions through the following steps: (i)
extracting fulfilment and violation feature vectors using
the target and activation payloads of the constraints; (ii)
applying the K-medoids clustering algorithm to identify
groups with similar target payloads; and (iii) employ-
ing the RIPPER rule-based classification algorithm to
describe the clusters. In an alternative approach, steps (ii)
and (iii) are replaced by applying redescription mining
algorithms to the features of both the activation and tar-
get payloads. Apart from the differences in paradigms,
the key distinction between our approach and that of
Leno et al. (2020) lies in the local/global consideration
of data perspective. In Leno et al. (2020), the initial
Declare constraints condition the subsequent attribute
considerations, whereas in our approach attribute values
are integrated at each step of the optimisation algorithm.

2.2. Processmining algorithms

Algorithms used in process discovery are often domain-
specific, starting with the Alpha Miner (van der Aalst,
Weijters, and Maruster 2004). This algorithm identifies
specific patterns within the event log sequences and out-
puts in a Petri net. Although its runtime scales linearly
with the size of the event log, the algorithm is highly sen-
sitive to noise and incompleteness (van der Aalst 2011).
Heuristics miners address this issue by considering both
the order and frequency of events, making them themost
widely used algorithms in practice (Gomes, de Lacerda,
and da Silva Fialho 2022). The Inductive Miner (Boga-
rínVega,Menéndez, and Romero 2018) further enhances
the results of both Alpha and Heuristics miners, offer-
ing better handling of infrequent behaviours and large
event logs. Other miners include the Fuzzy Miner (Gün-
ther 2009), which is more effective for processes that
lack clear structure and behaviour, and Directly Follows
Graphs, a method that relies on statistical analysis of how
frequently one event follows another. Digging deeper into
the relevant algorithms, it becomes clear that, with the
exception of our previous work, none relies on a formal

setting of the optimal process mining problem. Some
algorithms, such as genetic miners (de Medeiros, Wei-
jters, and van der Aalst 2007) do indeed use certain
ingredients of metaheuristics but they do not rely on a
formal optimisation problem setting. As a result, they do
not fully explore the potential of optimisation algorithms
and cannot evaluate the optimality gapwith respect to the
true optimum.

2.3. Processmining in healthcare

The majority of healthcare process mining applications
are devoted to business process analysis for work flow
analysis (see Chapter 14 in van der Aalst and Car-
mona 2022) and data flow (see Liu et al. 2021, 2023).
None of these, however, is data-aware. From the litera-
ture review provided by Kusuma et al. (2021), we can
see that there are even fewer applications of process
mining in care pathway or disease trajectory modelling.
Jensen et al. (2014) use a clustering approach to group
the disease trajectories of 6.2 million patients into pat-
terns centred on a small number of key diagnoses, such
as chronic obstructive pulmonary disease (COPD) and
gout. Mannhardt et al. (2017)’s approach was applied by
Kusuma et al. (2020) to the disease trajectories of ICU
patients and by Pang et al. (2021) to acute care in criti-
cal illness scenarios. As they are built on existing process
mining approaches, however, these healthcare studies all
suffer adhering to a one-label-one-node restriction and,
in the majority of cases, they lack data awareness.

2.4. Summary

With respect to the goal of this paper, the existing pro-
cess mining approaches all need the one-label-one-node
restriction and none formally sets out the optimal process
mining problem.While some data-aware process mining
approaches do indeed exist, they all rely on local pat-
terns regarding the next immediate events of any given
one instead of the global performance of the process
model. Our approach to process mining is, however,
data-aware without adhering to the one-label-one-node
restriction, based on a formal optimisation framework
and algorithms for optimisation of global performances.

3. Problem setting

This section formally describes the problem with for-
mal definitions of the input event log, the output process
model, the event game stipulating how a trace traverses
a process model, the goodness measure, and, finally, the
process model optimisation formulation. A toy example
is given in the electronic companion.
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3.1. Event log

This subsection provides formal definitions of the key
input data used for the process mining, which comprise
an event log consisting of a set of traces. Each trace is an
order sequence of labels and a transition feature between
any two consecutive labels. Transition features are often
referred to as transitions for the sake of brevity. Formally
speaking, the event log is built upon two alphabet sets:

• B: a finite set of event labels;
• S: a finite set of transition features.

In order to take into account complex event logs, we
associate with each label some attributes defined on a
finite domain. More specifically,

• H: a finite set of label attributes or attributes for short;
• Hb ∈ H: the set of attributes of label b ∈ B;
• Dh: the finite domain of attribute h ∈ H.

Definition 3.1 (Event): An event denoted e is a label
together with a feasible value for each of its attributes.
Let E be the set of events, i.e. E = {(b, a) : b ∈ B, a ∈∏

h∈Hb Dh}.

Definition 3.2 (Trace): A trace denoted t is defined by
its length m ∈ N, a sequence of events {e1, . . . , em} with
ei ∈ E and a transition feature si ∈ S associated with any
two consecutive events ei and ei+1. The notation t =
e1(s1)e2(s2) . . . em will also be used. To each trace are
associated the following notation and functions:

• ‖t‖: the number of events in trace t, i.e. its lengthm;
• π(t, e): the position of event e in trace t, i.e.π(t, ei) = i;
• ε(t, i): the label of ith event of trace t, i.e. ei. It will be

called the label function;
• ϕ(t, i, h): the attribute h of the ith event of trace t. It

will be called attribute function and by convention
ϕ(t, i, h) is undefined if h /∈ Hε(t,i);

• σ(t, i, i+ 1): the feature associated with transition
(ei, ei+1), i.e. si. It will be called the transition func-
tion. The transition function will also be extended to
nonconsecutive events with σ(t, i, j) = {si, . . . , sj−1}.

Definition 3.3 (Event log): An event log L is a set of
traces L = {t1, . . . , tcard(L)}. It consists of the first part of
input data of our process mining problem.

Example: In our sarcoma application, the set of event
labels is B = OD = original diagnosis, rcp = MTDB,
chir = surgery,. . . , the set of transition features is S =
pro = disease progression, np = no progression, the set
of attributes isH = loc = location, type, sev = severity,
MD = surgeon, qlt = quality,. . . , attributes of label chir
areHchir = loc, MD, qlt, the attribute loc takes value over
all French oncology services. Figure 2 is a trace of three
events.

3.2. Processmodel representation

This subsection describes the solution (output) of our
process mining problem. In approximate terms, it is a
multi-layer network model in which each node is asso-
ciated with a subset of labels and related attributes, arcs
connect lower-layer nodes to higher-layer nodes, and
each arc is associated with a subset of transition fea-
tures. Data-awareness is represented by the attribute val-
ues of the nodes and transition features and two nodes
can share the same event label. The introduction of
label attributes makes it difficult to generate compact yet
meaningful process models. In order to overcome this
difficulty, we propose a hierarchical representation based
on macro-labels, macro-events, event classes, label trees,
and attribute trees.

Definition 3.4 (Macro-label): A macro-label n is a
nonempty set of labels, i.e. b̂ ∈ 2B\∅. Its attribute set Hb̂

is naturally defined as the union of attribute sets of all its
labels.

Definition 3.5 (Label tree): An label tree denoted B̂ is a
set of macro-labels, i.e. B̂ ⊆ 2B such that (1) B ⊆ B̂; (2)
∀ b̂, b̂′ ∈ B̂, either b̂ ∩ b̂′ = ∅ or (̂b ⊂ b̂′ or b̂′ ⊂ b̂).

Definition 3.6 (Attribute tree): An attribute tree of
attribute h is a set D̂h ⊆ 2D

h\∅ such that (1)Dh ⊆ D̂h, (2)
∀ x, x′ ∈ D̂h, either n ∩ x′ = ∅ or (x ⊂ x′ or x′ ⊂ x), 3)
Dh ∈ D̂h. We also call entities of the attribute tree macro-
attribute. x = Dh is called the root macro-attribute.

Figure 2. A trace.
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Figure 3. Attribute tree of attribute type.

Definition 3.7 (Macro-event): A macro-event is a
macro-label together with a value on the attribute tree
for each attribute. Let Ê be the set of macro-events, i.e.
Ê = {(̂b, a) : b̂ ∈ B̂, a ∈∏

h∈Hb̂ D̂h}.
Figure 3, for example, presents the attribute tree of

attribute type of sarcoma. It is a four-level tree that
gives the macro-value, precision weight, and number of
immediate descendants for each node. It divides sarcoma
patients into four groups: soft tissue and visceral (soft-
visceral); bone; gynecology; and unknown. Each group is
further decomposed. The precision weight to be defined
later serves to represent the process mining perspective
the decision maker focuses on.

Remark 3.1: The tree structure allow a compact process
model showing events in different precision level auto-
matically. When designing the tree structure, it should
be defined in a way which the clusters have a medical
meaning.

Definition 3.8 (Process model): A process model
denoted by PsM is an acyclic graph where each node is a
macro-event and each arc a subset of transition features.
More specifically, it is a five-uplet (N,A, ε, ϕ, σ) where:

• N = N1,N2, . . . ,NK with K being the number of lay-
ers and Nk ⊂ Ê being nodes of layer k. The notation
Nk is extended to N[[k,k′]] to indicate nodes of layers k
to k′ > k;

• ε(PsM, n) ∈ B̂ returns macro-label of node n and ε is
called the label function of nodes;

• ϕ(PsM, n, h) ∈ D̂h returns value of attribute h for node
n and ϕ is called the attribute function of nodes;

• ς(PsM, n) ∈ Ê associate an event class to each node n
and ε(PsM, n) 
= ε(PsM, n′) = ∅,∀ n, n′ ∈ Nk;

• σ(PsM, n, n′) ⊂ S associates to each arc (n, n′) ∈ A a
set of transition features and σ is called the transition
function.

Figure 1 gives an example of the process model with
five nodes of label RCP. Note that the same notation is
used for event (transition) function for both the traces
and the process model. It will create no confusion and
allows clear link between the process model and the
traces.

3.3. Event game of a trace in a processmodel

The fundamental assumption of this paper is that all
traces in an event log cannot be completely and exactly
captured by any process model of interest. As a result, we
need to determine which events and states of a trace can
be represented by a given process model.

We introduce the concept of event game to represent
how traces are represented in a given process model.
Event games are subject to the following obvious con-
straints:

• each event can only be represented by a node of a
macro-label containing the event label;

• events of a trace are represented by nodes in increasing
order of layers.

Definition 3.9 (Event game): An event game denoted by
γ is a mapping from events of traces t to nodes of the
process model such that, for the ith event of t, either its
nodemapping γ (t, i) ∈ N or γ (t, i) is undefined denoted
as γ (t, i) ↑. Further, for all well-defined mapping γ (t, i)
and γ (t, j) such that i< j, γ (t, j) belongs to higher layer
than γ (t, i).

Definition 3.10 (Footprint and image): The set of event
positions of a trace t represented by an event game in
a process model is called its footprint and denoted as
{[1], [2], . . . , [‖γ (t)‖]} where ‖γ (t)‖ is the number of
events represented and [k] is the kth position of trace t
represented, i.e. γ (t, [k]) ∈ N. The image of t denoted by
IM(γ , t) is the set of corresponding nodes, i.e. IM(γ , t) =
{γ (t, [1]), γ (t, [2]), . . .}.

3.4. Goodnessmeasures of a processmodel and an
event game

This subsection proposes goodness measures of a pro-
cess model controlled by an event game, referred to here
as relevance. A trace generates a node relevance score at
the nodes it visits and an arc relevance for arcs traversed.
The model relevance is the sum of the total node and arc
relevance.

More precisely, visiting a node n by a trace t generates,
for node n, a label relevance, an attribute relevance and
their linear combination called node relevance. Attribute
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relevance depends on how well the node attribute values
match those of the trace. Both label and attribute rele-
vance scores depend on the precision weights gprecisB̂ and

gprecisD̂h of the node label and attributes. Similarly, travers-
ing an arc (n, n′) by a trace t generates a cross relevance,
a transition relevance and their linear combination called
arc relevancewith transition relevance depending onhow
well the arc transition feature matches that of the trace.

The followings are formal definitions of the rele-
vance scores. Both local relevance with respect to a given
trace and relevance with respect to the whole event log
are considered. Besides the model-wide goodness mea-
sures, we also measure the importance of each compo-
nent of the model, i.e. nodes, arcs and states associated
to arcs.

3.4.1. Relevance with respect to a given trace
Definition 3.11: For a given process model PsM =
(N,A, ε, ϕ, σ), an event game γ and a trace t =
e1(s1)e2(s2) . . . em, let {n1, . . . nJ} be the image of t and
e[1], . . . , e[J] be the corresponding events of t. The local
relevance with respect to trace t is defined as follows:

• f label(γ , t, n) local label relevance of a node n with
f label(γ , t, n) = gprecisB̂ (ε(PsM, n)) if n belongs to the
image of t and 0 otherwise;

• f attribute(γ , t, n, h) local attribute relevance of an
attribute h associate with a node n with f attribute(γ , t,
n, h) = gprecisD̂h (ϕ(PsM, n, h)) if n belongs to the image
of t, h an attribute of the corresponding event ei and
its attribute value ϕ(t, i, h) ∈ ϕ(PsM, n, h) and 0 oth-
erwise;

• f node(γ , t, n) local node relevance of a node n with
f node(γ , t, n) = (1− λ1)f label(γ , t, n)+ λ1‖Hn‖−1∑

h∈Hn f attribute(γ , t, n, h) if n belongs to the image
of t and 0 otherwise. By convention, f node(γ , t, n) =
f label(γ , t, n) if node n has no attribute;

• f cross(γ , t, n, n′) local cross relevance of an arc (n, n′)
equal to 1 if n = nj and n′ = nj+1 for some j and 0
otherwise;

• f trans(γ , t, n, n′) local transition relevance of (n, n′)
with f trans(γ , t, n, n′) = ([j+ 1]− [j])−1 ‖σ(t, [j], [j+
1]) ∩ σ(PsM, n, n′)‖ if n = nj and n′ = nj+1 for
some j and 0 otherwise, i.e. the ratio of transitions
between e[i] and e[i+1] having transition features in
σ(PsM, n, n′);

• f arc(γ , t, n, n′) local arc relevance of arc (n, n′) with
f arc(γ , t, n, n′)= (1− λ2)f cross(γ , t, n, n′)+ λ2 ∗ gprecisS
(σ (PsM, n, n′))f trans(γ , t, n, n′);

• f model(γ , t) =∑
n∈N f node

(γ , t, n)+ α
∑

(n,n′)∈A f arc(γ , t, n, n′) local model rel-
evance.

where λ1, λ2 ∈ [0,1) is the relative weight of attribute,
transitionwith respect to node, arc,α > 0 is the weight of
arcs with respect to nodes, gprecisB̂ (̂b) ≤ 1 is the precision

score of a macro-label b̂ equal to 1 if b̂ ∈ B, gprecisD̂h (x) ≤ 1
is the precision score of a macro-attribute x with x ⊂ x′
implying gprecisD̂h (x) ≥ gprecisD̂h (x′), gprecisS (σ ) ≤ 1 is the pre-
cision score of transition feature subset σ associated with
an arc equal to 1 if σ is a singleton. In this paper, gprecisS (σ )

equal to some nonincrceasing function of ‖σ‖ will be
used.

For example, in the attribute tree of Figure 3, the root
node all has the least precision weight 0.1, the second
level macro-attribute bone higher precision weight 0.3,
the third level macro-attribute Leiosarcoma weight 0.6.

Note that we do not impose gprecisD̂h (x) equal to 1 if x ∈
Dh in order to account for imbalance of attribute trees.
For example, in our case study, the attribute ‘location’ has
two macro-value ‘inside’ and ‘outside’ and more precise
location is given for ‘inside’ but not for ‘outside’. ‘Outside’
is then considered as a basic attribute value but does not
have the same precision as the other basic values.

3.4.2. Relevance with respect to an event log
Definition 3.12: For a given process model PsM =
(N,A, ε, σ), an event game γ and an event log L, the
relevance is defined as follows:

• Flabel(γ , n) =∑
t∈L f label(γ , t, n) label relevance of

node n;
• Fattribute(γ , n, h) =∑

t∈L f attribute(γ , t, n, h) attribute
relevance of attribute h at node n;

• Fnode(γ , n) =∑
t∈L f node(γ , t, n) node relevance of

node n;
• Fcross(γ , n, n′) =∑

t∈L f cross(γ , t, n, n′) cross relevance
of arc (n, n′);

• Ftrans(γ , n, n′) =∑
t∈L f trans(γ , t, n, n′) transition rel-

evance of arc (n, n′);
• Farc(γ , n, n′) =∑

t∈L f arc(γ , t, n, n′) arc relevance of
arc (n, n′);

• Fmodel(γ ) = ‖L‖−1 ∑
t∈L f model(γ , t)model relevance.

Note that the model relevance is normalised to the size of
the event log. By definition, we also have:

Fmodel(γ ) = ‖L‖−1
∑
n∈N

Fnode(γ , n)+ α‖L‖−1

×
∑

(n,n)∈A
Farc(γ , n, n′) (1)

Fnode(γ , n) = (1− λ1)Flabel(γ , n)+ λ1‖Hn‖−1

×
∑
h∈Hn

Fattribute(γ , n, h) (2)
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Farc(γ , n, n′) = (1− λ2)Fcross(γ , n, n′)+ λ2

∗ gprecisS (σ (PsM, n, n′))Ftrans(γ , n, n′)
(3)

3.4.3. Upper bounds of themodel relevance
Assuming the perfect representation of all events and
transitions leads to the node relevance ‖t‖ and arc rel-
evance ‖t‖ − 1 for each trace t and the following upper
bound:

Fmodel(γ ) ≤ Bound1 = ‖L‖−1
∑
t∈L

(‖t‖ + α(‖t‖ − 1))

(4)

We further derive a better bound for the case without
macro-label, i.e. B̂ = B. Assuming perfect representation
of each event if played and the perfect representation of
transition between played events of the same trace, each
trace t has ‖γ (t)‖ events played andwehave the following
bound:

Fmodel(γ ) ≤ ‖L‖−1
∑

t∈L:‖γ (t)‖>0

(‖γ (t)‖ + α(‖γ (t)‖ − 1))

(5)

and hence

Fmodel(γ ) ≤ ‖L‖−1
(

(1+ α)
∑
t∈L
‖γ (t)‖

−α
∑
t∈L

1(‖γ (t)‖ > 0)

)
(6)

where
∑

t∈L ‖γ (t)‖ is the total number of events played
and

∑
t∈L 1(‖γ (t)‖ > 0) the total number of traces

played. The number of events played is bounded by:

∑
t∈L
‖γ (t)‖ ≤ Z =

UBnode∑
i=1
‖L(b[i],j[i])‖ (7)

where L(b,j) with j ≥ 1 is the set of traces contain-
ing at least j events of label b and sorted as follows:
‖L(b[1],j[1])‖ ≥ ‖L(b[2],j[2])‖ ≥ . . .. The notation L(b,j) is
used to take into account nodes of same label at different
layers. Further,∑

t∈L
1(‖γ (t)‖ > 0) ≥ K(L,Z) (8)

where K(L,Z) = inf{K : ‖t[1]‖ + · · · + ‖t[K]‖ ≥ Z}
with the traces of event log L being sorted as ‖t[1]‖ ≥
‖t[2]‖ ≥ . . .. To summarise:

Fmodel(γ ) ≤ Bound2 = (1+ α)‖L‖−1Z
− α‖L‖−1K(L,Z) (9)

3.5. Processmodel optimisation formulation

This subsection gives the formal definition of the process
model optimisation problem. It consists of determining a
process model and an event game in order to maximise
the model relevance subject to model size constraints.
Note that constraints are needed to avoid the generation
of a spaghetti-like, messy, and over-complicated model.

Formally speaking, the process model optimisation
problem is as follows:

max
PsM,γ

Fmodel(γ ) = ‖L‖−1
∑
n∈N

Fnode(γ , n)

+ α‖L‖−1
∑

(n,n′)∈A
Farc(γ , n, n′) (10)

subject to:

PsM = (N,A, ε, σ) (11)

N = N1 ∪ · · · ∪ NK , with Nk ⊆ Ê (12)

ς(PsM, n) ∈ Ê, ∀ n ∈ N (13)

ε(PsM, n) 
= ε(PsM, n′), ∀ n, n′ ∈ Nk (14)

σ(PsM, n, n′) 
= ∅, ∀ (n, n′) ∈ A (15)

‖N‖ ≤ UBnode (16)

‖A‖ ≤ UBarc (17)

where constraint (12) defines the maximum number
of layers, (13) associates event node with a macro-
event, (14) imposes different macro-labels for the same
layer, (15) restricts to arcs of nonempty transition feature
sets, (16)–(17) are size constraints of nodes and arcs.

Note that constraint (15) can be removed as gprecisS (s) =
1 for all singleton s implies the existence of nonempty
optimal transition function for all arcs. Further an
alternative process mining problem can be defined by
replacing the size constraints (16)–(17) minimal rele-
vances LBnode, LBarc, LBtrans of nodes, arcs and transition
features.

4. Optimization of attribute/transition
functions and event game

This section addresses the optimisation of the event
game and attribute/transition functions for a given
process model. We consider first the optimisation of
attribute/transition functions with all others being given,
then the optimisation of the event game with a sim-
ilar dynamic programming algorithm of our previous
paper (Peng et al. 2024). Finally, we explore the joint
optimisation of the event game and attribute/transition
functions.
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4.1. Optimal attribute/transition functions

This subsection considers the optimisation of attributes
and transition functions for any given process model and
the event game. In this case, the images and footprints
of all traces are given. Each node then has a given set of
events represented by it and each arc has a given set of
traces traversing it. Under such conditions, the attribute
functions and the transition functions can be determined
independently. Furthermore, the attribute functions can
be determined separately for different nodes and differ-
ent attributes. Similarly, the transition functions can be
determined separately for different arcs.

Consider first the attribute function optimisation. The
value of attribute h of node n only affects the attribute
relevance Fattribute(γ , n, h). Let x = ϕ(PsM, n, h) be the
macro-value of attribute h at node n, by definition,

Fattribute(γ , n, h) = gprecisD̂h (x)Ph(n, x) (18)

where Ph(n, x) is the frequency of triplet (n, h, x), i.e.
the total number of traces visiting node n with value of
attribute h belonging to x. For each macro-value x,

Ph(n, x) =
∑

x′∈x∩Dh

Ph(n, x′) (19)

The above provides a simple way to determine the opti-
mal value of h for node n. We first determine the basic
attribute value frequencies Ph(n, x), use them for sim-
ple computation of the attribute relevance for all possible
values and then determine the optimal attribute value.

Consider now the transition function optimisation.
Let s = σ(PsM, n, n′) be the feature set of arc (n, n′). It
only affects the transition relevance gprecisS (s)Ftrans(γ , t, n,
n′) denoted by V(s, n, n′). If s is a singleton, then
V(s, n, n′) = Ftrans(γ , t, n, n′). For other transition func-
tion value,

V(s, n, n′) = gprecisS (s)
∑
s′∈s

V(s′, n, n′) (20)

Since this paper focuses on precision function of the
form gprecisS (s) = g(‖s‖), the optimal transition function
value can be determined by the maximum among the
following:

max{g(1)V(s1, n, n′), g(2)(V(s1, n, n′)
+ V(s2, n, n′)), . . .} (21)

where V(s, n, n′) for all s ∈ S are sorted in nondecreas-
ing order V(si, n, n′) ≥ V(si+1, n, n′). This provides the
algorithm for optimisation of the transition function. By
scanning the images of all traces, we can first compute
all basic singleton transition function V(s). These values

are then sorted in nondecreasing order and then used
for determined the optimal transition function as in the
above.

We now address the efficient computation of Ph(n, x)
for basic attribute value x ∈ Dh and V(s, n, n′) for single-
ton s. To start, we set to 0 all these values. For all traces
t = e1(s1)e2(s2) . . . em, let {n1, . . . nJ} be the image of t
and e[1], . . . , e[J] be the corresponding events of t. For
each node ni and all attribute h ∈ Hε(t,[i]), Ph(n, x)←
Ph(n, x)+ 1 with x = ϕ(t, [i], h). For all (ni, ni+1) being
an arc of PsM, V(sj, ni, ni+1)← V(sj, ni, ni+1)+ ([i+
1]− [i])−1 for all transition feature sj between event e[i]
and e[i+1].

Algorithm 1: Attribute and transition function
optimisation
Step 1. Ph(n, x)← 0,V(s, n, n′)← 0 for all base
attribute value s and transition feature s

Step 2. Play all traces t, Ph(n, x)← Ph(n, x)+ 1 for
each node visit n with attribute (h, x),
V(s, n, n′)← V(s, n, n′)+ 1/m for each transition s if
t crosses (n, n′) inm transitions

Step 3. For each node n and attribute h, determine
attribute relevance by (18)- -(19) for all macro-value
x and select the optimal macro-value;

Step 4. For each arc (n, n′), determine the optimal
transition function s by (21).

4.2. Optimal event game

This subsection addresses the optimal event game of a
given trace for a given process model with given attribute
and transition functions. LetPsM = (N,A, ε, ϕ, σ) be the
process model and t = e1(s1)e2(s2) . . . em be the trace.
Deriving an optimal event game consists in optimising
the local model relevance of t, that is

f model(γ ∗, t) = max
γ

f model(γ , t) (22)

We propose a dynamic programming algorithm. Let
Gi(n) be the optimal local model relevance of the partial
trace ti = e1(s1)e2(s2) . . . ei with event ei being repre-
sented by node n. By this definition, Gi(n) = 0 for all
n /∈ N(ei), where N(ei) = {n ∈ N : ε(t, i) ∈ ε(PsM, n)}
denotes the set of nodes having the same label of event
ei. Hence, we focus on nodes n ∈ N(ei). The recursive
Bellman equation can be written as,

Gi(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
lnode(n, i), if PRE(i, n) = ∅

max
(i′,n′)∈PRE(i,n)

lnode(n, i)

+αlarc(n′, n, i′, i)
+Gi′(n′), otherwise,

(23)
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for all n ∈ N(ei), where PRE(i, n) is the set of couples
(i′, n′) indicating a preceding event i′ < i can be played
by a node n′ on lower layers 1, . . . , layer(n)− 1, lnode(n, i)
is the local node relevance of playing event ei at node n,
and larc(n′, n, i′, i) is the local relevance of arc (n′, n) by
playing event ei′ at node n′ and ei at node n.

The optimal event game of trace t can then be deter-
mined by the following:

f model(γ ∗, t) =
⎧⎨⎩0 if N(t) = ∅

max
i∈[[1,m]],n∈N(ei)

Gi(n) otherwise

(24)

Algorithm 2: Optimal event game of a trace t =
e1(s1)e2(s2) . . . em
Step 1. For i = 1 tom, apply (23) to compute the
partial trace relevances Gi(n) for all nodes n

Step 2. Apply (24) to determine the optimal local
relevance, the last played event i∗ and the node n∗

Step 3. Backtraking Gi∗(n∗) by (23) to determine the
other played events and their nodes.

4.3. Joint optimisation of event game and
attribute/transition functions

This subsection addresses the joint optimisation of the
event game and attribute/transition functions. The exact
optimisation is too complex and we propose an iterative
local improvement procedure for the joint optimisation.
Consider first the case of a given event game. Section 4.1
applies to optimisation of the attribute/transition func-
tions. With the new attribute/transition functions, the
event game can further be optimised by the dynamic pro-
gramming algorithm of Section 4.2. The above procedure
then repeats until convergence is achieved. Similar local
improvement can be performed by starting from given
attribute/transition functions.

5. Process model optimisation

This section presents algorithms for process model
optimisation. We first introduce two preliminaries: an
extended concept of marginal model relevance intro-
duced in our previous paper (Peng et al. 2024) and
the solution repair. We then propose two solution algo-
rithms: amulti-start local optimisation algorithm; and an
ant colony algorithm.

5.1. Marginal relevance of a new node

This subsection evaluates the benefit of adding a new
node n of macro-label b̂ to layer k. More specifically, we

determine


(̂b, k)

the optimal node relevance of the new node n without
alternating the event game γ for all other existing nodes
with the convention 
(̂b, k) = 0 if node (̂b, k) exists in
the current process model. Let L(̂b, k) be the set of traces
t for which a new event can be represented by the new
node n, i.e. there exists an event ei of t that is not repre-
sented and ε(t, i) ∈ b̂, all preceding events are either not
represented or played at lower layers, all following events
are either not represented or played in higher layers. Let
ε(t, b̂, k) be the label of the first such event ei. As a result,
each trace t of the set L(̂b, k) can be played by the new
node n with event label ε(t, b̂, k).

If the attribute functions of node n are given, then

(̂b, k) can be determined as for Fnode(γ , n). Other-
wise, its attribute functions can be easily optimised as
in Section 4.1. To summarise, the marginal relevance

(̂b, k) not only provides the benefit of adding a new
node but also its attribute functions ε(̂b, k, h).

5.2. Solution repair

This subsection addresses the repair of an infeasible pro-
cess model PsM, i.e. with the violation of the maximal
numbers of nodes or arcs. By construction, all process
models of this paper meet the node size constraint and
hence we limit ourselves to the repair of the arc con-
straint. The basic idea is to derive a feasible process
model PsM′ by removing max(‖A‖ − UBarc, 0) arcs of
the least arc relevance. More specifically, we first deter-
mine the arc relevances of PsM, then sort the arcs in
ascending order of their arc relevance, and then remove
the first max(‖A‖ − UBarc, 0) arcs. The resulting pro-
cess model PsM′ is feasible and is our repaired process
model. We then update the event game of the new pro-
cess model PsM′ by the algorithm of Section 4.1. Note
that the attribute/transition functions are not updated for
the sake of computational burden.

5.3. Amulti-start local optimisation heuristic

This subsection proposes a multi-start local optimisa-
tion heuristic denoted LocalOpt. It starts with a ran-
domly generated initial solution PsM, improves PsM by
adding nodes of positive marginal relevance and solution
repair, and restarts when the current solution cannot be
improved.

LocalOpt starts with the random generation of an ini-
tial process model. It first generates randomly the nodes
by scanning all combinations of macro-label and layer
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Algorithm 3: LocalOpt-A multi-start local opti-
misation heuristic
Step 1. Random generation of an initial process
model PsM
Step 2. Determine the maximal marginal
relevance 
(̂b∗, k∗). Note that the computation
of 
(̂b∗, k∗) comes with its optimal attribute
value
Step 3. Add a node of macro-label b̂∗ at layer k∗
and connect it to all existing nodes;
Step 4. Apply Algorithm 1 to update the event
game and Algorithm 2 to update the
attribute/transition functions;
Step 5. Repair the solution;
Step 6. Repeat 2- -5 till UBnode is reached;
Step 7. Repeat 1- -6 till a given computation time
budget is reached.

(̂b, k)with each being selected with some given probabil-
ity prand as soon as the node size UBnode is not reached.
This step repeats as soon the set of selected nodes is
empty. It then adds an arc between any two nodes of dif-
ferent layers. For any node, each attribute h is assigned its
root macro-attribute Dh. Each arc is associated with the
transition function S. The random generation terminates
with the event game optimisation of the resulting process
model by the algorithm of Section 4.1 and the solution
repair if needed.

LocalOpt then iteratively improves the process model
by adding new nodes. At each iteration, it first evalu-
ates the marginal relevance 
(̂b, k). Let 
(̂b∗, k∗) be the
largest marginal relevance and ε(̂b∗, k∗, h) its attribute
value. If 
(̂b∗, k∗) = 0, the process stops. Otherwise, a
node node n∗ = (̂b∗, k∗)with attribute values ε(̂b∗, k∗, h)
is added. An arc with transition function S is then added
between n∗ and any other nodes of different layers. The
event game is updated by the algorithm of Section 4.1.
The algorithm of Section 4.2 is used to update the tran-
sition functions. The event game is then updated again.
LocalOpt continues adding new nodes as above as soon
as the node size is not reached.

LocalOpt is a multi-start local optimisation heuristic.
It restarts from a new initial solution as soon as the termi-
nation condition is not reached. The joint optimisation of
Section 4.3 is applied to further improve the final process
model.

5.4. Ant colony optimisation

This section presents an ACO (Ant colony optimisation)
algorithm for process model optimisation (see Dorigo,

Maniezzo, and Colorni 1996; Mohan and Baskaran 2012
for more details). Our ACO is a population-based meta-
heuristic withm ants.

Algorithm 4: ACO algorithm
Step 1. Initialization of the pheromone pher(n, n′)
for all arcs (n, n′) of the macro-label-layer
network Gaco of nodes (̂b, k)

Step 2. Each ant randomly traverses the network
Gaco and construct a process model

Step 3. Update the pheromones;
Step 4. Repeat 1- -3 till a given computation time
budget is reached.

At each iteration, ants move on a network Gaco com-
posed of K‖̂B‖ nodes (̂b, k) plus a starting node at layer
0 with arcs from the starting node to all other nodes and
from any node of layer k>0 to any other node of a differ-
ent layer k′ > 0. Each ant moves randomly on Gaco along
a random route of UBnode nodes, constructs a feasible
process model composed of the same nodes and leaves
pheromone trail on arcs of Gaco traversed by the ant.

The pheromones pher(n, n′) of the arcs of Gaco equal
to a given constant τ initially is updated at the end of
each iteration as follows. Each ant i generating a process
model PsMi leaves a pheromone equal to the model rele-
vance of the PsMi on each arc (n, n′) ofGaco traversed. Let
deltapher(n, n′) be the total pheromone leaved by all m
ants in the current iteration. The pheromones pher(n, n′)
is updated according to the usual rule:

pher(n, n′)← (1− ρaco)pher(n, n′)
+ ρaco × qaco × deltapher(n, n′) (25)

where ρaco ∈ [0, 1] and ρaco are parameters of the ACO.
qaco is determined according to one the four rules IB-
update, BC-update, MMAS and Hyper-cube (HC) given
in the electronic companion EC1 and suggested by the
ACO literature.

We now address the construction of the process
model. For each ant, the process model is built pro-
gressively by adding the new node reached by the ant
and the construction terminates when a process model
with UBnode is built or no improvement is achieved
in iterant consecutive iterations. Let PsMcurrent be the
current process model with the nodes and ncurrent =
(̂bcurrent , kcurrent) the current node. We first evaluate

(̂b, k) themarginal relevance for all nodes not traversed
by the ant. We then select randomly a new node n =
(̂b, k) with the following probability

C × (pher(ncurrent , n))αaco ×
(̂b, k)βaco (26)
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where C is a normalising constant, αaco > 0 and
βaco > 0 are ACO parameters. A new process model
PsMcandidate is obtained by adding the new node n
with attribute values related to its marginal relevance
and connecting it to all nodes of different layers.
The new model is evaluated by first updating its
event game, updating its transition functions and then
repairing if needed. If the new model is strictly bet-
ter, i.e. Fmodel(PsMcandidate) > Fmodel(PsMcurrent), then
(i) the ant moves to the new node n with process
model PsMcandidate and (ii) if Fmodel(PsMcandidate) >

padjFmodel(PsMbest) where PsMbest is the current best
of the ACO, then the joint optimisation of the event
game and attribute/transition function is performed and
PsMbest is updated as needed. If the new model is not
strictly better, the ant stays at the current node.

6. Numerical results

This section presents numerical results on randomly
generating instances for two purposes: (i) to assess the
performances of our proposed LocalOpt and ACO algo-
rithms against benchmark values; and (ii) to numerically
evaluate the benefits of introducing attributes.

6.1. Experimental settings

This subsection provides a brief presentation of the set-
ting of the numerical experiment, the details of which are
given in the electronic companion. All test instances are
available upon request.

Random instance generation: In order to generate
instances that are realistic enough, test instances are gen-
erated from process models of LocalOpt for the real
case study. 12 process models are derived for 3 model
sizesUBnode ∈ {10, 15, 20} andUBarc = 2× UBnode for 4
groups of patients following strategy str 0, 1, 2, and 3 (see
Section 7.1 for definitions of strategies).

All test instances share the same labels, attributes,
transition features, label tree, attribute trees, precision
weights as for the real case. Each instance str-UBnode cor-
responds to an event log of N = 2000 traces generated
from the corresponding process model as follows. For
each trace t, the starting event is generated by repeating
the uniform sampling of a node n and random accep-
tance with probability pstart = 0.9× 0.2k−1 where k is the
layer of n. n is the terminating event with probability
pstop = 0.9× 0.2K−k or if n has no successors. Otherwise,
it randomlymoves to one of its successors with transition
feature randomly selected from that of the arc. For each
event e, its label and attributes are derived from that of its
corresponding noden. The label of e is randomly sampled
from the whole label set with probability pmut = 0.05 and

otherwise from the macro-label of n. For each attribute h
of e, if h is an attribute of n, with probability 1− pmut ,
its value is randomly sampled from the macro-value of
the node. Otherwise, the value of h is randomly sampled
from its entire domain.

Alternative algorithms: Our proposed LocalOpt and
ACO algorithms are compared against the benchmark-
ing ones including Random, RG, Reinsert, and Relabeling
(see Appendix 1). For all algorithms starting with ran-
dom initial solution, prand = 0.05 is used for selection of
a given macro-label.

Algorithm parameter tuning: We use the following
default parameters K = 10 layers, attribute weight λ1 =
0.4 transition functionweightλ2 = 0.4, and arc relevance
weight α = 0.8. Each algorithm runs independently 10
times with a default computation time of 15 minutes,
which is large enough time for the algorithms to con-
verge, as shown in electronic companion EC2. ACO
algorithm parameters are tuned in electronic companion
EC1.

The justifications of the model parameters are as fol-
lows and sensitivity analysis will be performed for other
settings. K = 10 as the length of longest event trace of
the original dataset is 10. UBnode and UBarc are selected
in the ranges of the starting models used for instance
generation. λ1, λ2 and α are set based on the following
desires of the practitioners: matching nodes 4 timesmore
important than matching arcs with α = 0.8, matching
label (arc) slightlymore important than attributes (transi-
tion features) with λ1 = 0.4 (λ2 = 0.4), precision weight
varying linearly from 0.1 for root node to 1 for leaves.

Performance indicators: For each algorithm and each
instance, we compute the best, the worst and the average
model relevance Fmodel. We also determine a normalised
quality measure denoted by ir and called information
ratio and defined as follows:

ir = Fmodel/Bound1 (27)

where Bound1 is the model reference if all traces were
perfectly played and hence can be considered as the total
amount of information of the event log and ir represents
then the percentage of the event log information captured
by the process model. For a precise spaghetti-like pro-
cessmodel, we achieve faithful representation of all traces
with ir = 1.

6.2. Comparison of algorithms

This subsection compares our proposed LocalOpt and
ACO algorithms against benchmarking algorithms with
10 runs for each. Table 2 gives the best run information
ratio. Detailed results are given in electronic companion
EC3, including the model relevances of worst, best, and
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Table 2. Best run information ratio of all algorithms.

ins LocalOpt ACO Rand RG Reinsert Relabel

0–10 0.90 0.91 0.82 0.74 0.85 0.89
0.92 0.93 0.87 0.83 0.90 0.92
0.93 0.93 0.90 0.87 0.88 0.93

0–15 0.89 0.89 0.76 0.76 0.86 0.87
0.92 0.92 0.88 0.81 0.88 0.91
0.93 0.92 0.88 0.87 0.89 0.92

0–20 0.79 0.79 0.74 0.69 0.75 0.77
0.90 0.90 0.80 0.76 0.85 0.87
0.92 0.93 0.82 0.78 0.83 0.91

1–10 0.90 0.91 0.81 0.75 0.87 0.89
0.91 0.91 0.87 0.82 0.91 0.91
0.92 0.92 0.89 0.85 0.90 0.91

1–15 0.86 0.87 0.82 0.77 0.83 0.86
0.91 0.91 0.86 0.82 0.87 0.90
0.92 0.92 0.89 0.89 0.88 0.91

1–20 0.81 0.81 0.75 0.72 0.80 0.81
0.87 0.87 0.82 0.77 0.84 0.85
0.90 0.90 0.85 0.81 0.85 0.88

2–10 0.92 0.93 0.82 0.77 0.86 0.90
0.93 0.94 0.89 0.87 0.91 0.93
0.94 0.94 0.90 0.91 0.90 0.93

2–15 0.81 0.83 0.74 0.69 0.79 0.81
0.91 0.92 0.79 0.77 0.86 0.88
0.92 0.93 0.84 0.80 0.81 0.90

2–20 0.80 0.81 0.74 0.72 0.79 0.79
0.89 0.88 0.80 0.77 0.86 0.87
0.93 0.93 0.86 0.85 0.86 0.90

3–10 0.92 0.92 0.84 0.81 0.87 0.91
0.93 0.93 0.89 0.84 0.89 0.93
0.93 0.93 0.90 0.90 0.91 0.93

3–15 0.90 0.91 0.81 0.78 0.86 0.89
0.92 0.93 0.88 0.81 0.88 0.92
0.93 0.93 0.90 0.86 0.90 0.92

3–20 0.85 0.85 0.78 0.77 0.85 0.85
0.89 0.90 0.85 0.81 0.88 0.89
0.91 0.91 0.88 0.86 0.88 0.90

avg ir 0.898 0.902 0.837 0.803 0.861 0.888
% best 41.67 77.78 0 0 0 2.78

average run model plus the best information ratio for all
algorithms, and a figure on model relevance ranges for
LocalOpt and ACO for three instances str-20 generated
from a model of size 20.

• The overall ranking from the best to the worst is:
ACO-LocalOpt, Relabeling, Reinsert, Random, RG.
Except for ins-3-20where Relabeling generates a slight
better best run for size 10, all other best results are
achieved by either ACO or LocalOpt. The superior
performance of Relabeling/Reinsert over Random/RG
is achieved thanks to the use of certain theoretical
results arising from this paper.

• The average best-run information ratio is as follows:
ACO (90,2%), LocalOpt (89.8%), Relabeling (88.8%),
Reinsert (86.1%), Random (83.7%), RG (80.3%). ACO
captures 10% more information of the event log than
RG.

• ACO is slightly better andmore robust than LocalOpt.
ACO produces more best best-runs, 77.78% ver-
sus 41.67%. The better robustness is shown by the
88.99% best worst runs for ACO and 16.67% for

LocalOpt. The slight superiority and better robustness
of ACO is further supported by the model relevance
distribution.

6.3. Benefits of attributes

The goal of this subsection is to measure quantitatively
the benefits of introducing attributes in process mining.
All results of this subsection are obtained by ACO for
three runs of 8h to insure against any bias thatmight arise
as a result of algorithm convergence. Results for LocalOpt
are similar and omitted.

To measure the benefits of attributes, we consider the
following four models:

• PsMold is the process model given by ACO without
taking into account attributes and without macro-
labels. Themodel relevance is evaluated with the same
event game and with the root value for each attribute.
Note that PsMold corresponds to the model of our
previous paper Peng et al. (2024);

• PsMatt is the process model PsMold but with the final
event game and attributes/transition functions jointly
optimised;

• PsMnew is the process model determined by ACO of
this paper;

• PsMExp is the process model determined by ACO of
a modified event log without attributes and macro-
labels. The initial event log is modified by associating
each properly valued label an expanded label, i.e. two
expanded labels differ either by label or by at least one
attribute value.

The conversion to expanded labels in PsMExp allows
direct application of our previous methods as described
in Peng et al. (2024). The price to pay is the huge num-
ber of event labels, and hence the impossibility of a
process model of reasonable size being able to capture
enough events. As a result, the resulting model relevance
is likely to be small. For this reason, our LocalOpt and
ACO algorithms do not apply due to the huge number of
event labels and instead PsMExp is evaluated by the upper
bound Bound2 defined in Section 3.4.2.

We also determine the following gaps:

• Gapatt = PsMatt/PsMold − 1 to measure the benefits
of introducing attributes without modifying the pro-
cess model structure;

• Gapnew = PsMnew/PsMold − 1 to measure the bene-
fits of process model optimisation taking into account
attributes;

• GapExp = Bound2Exp/PsMold − 1 to measure the
effects of expanded labels;
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Table 3. Model relevance of different attribute models with ir in
parentheses.

PsMold PsMatt PsMatt_bis PsMnew PsMExp

avg 4.78 (0.64) 6.12 (0.82) 6.11 (0.82) 6.19 (0.83) 2.40 (0.32)
% best 0 22.22 16.67 97.22 0

• Gapatt,new = PsMnew/PsMatt − 1 tomeasure the addi-
tional benefits of process model structure optimisa-
tion taking into account attributes.

Table 3 gives the average model relevance, informa-
tion ratio and percentage of the best runs for all instances
with λ1 = 0.8 and Figure 4 gives the corresponding gaps.
Detailed results for both best runs and average runs for
both λ1 = 0.8 and λ1 = 0.4 are given in electronic com-
panion EC4. Results for the best runs and for other val-
ues of λ are similar and hence omitted. The following
observations are made:

• Gapatt shows that introduction of attributes signifi-
cantly improves the process model and the informa-
tion ratio ir shows 18% more event log information
captured. For the test instances, optimising attributes
alone without alternating the event games PsMatt_bis

brings nearly the same improvement and alternating
the event games PsMatt brings further but moderate
improvement. The latter is likely to be due to the real
case-derived test instances for which many features
have unique dominating value (feature ‘age’ is equal to
‘adult’ for over 95% of traces). For general event logs
without dominating values for features, we conjecture
that the introduction of attributes significantly alters

Figure 4. Percentage improvement thanks to event attributes.

how traces traverse the process model and joint opti-
misation of attributes. The event game is needed to full
explore the benefits of the attributes;

• Gapnew and Gapatt,new show further improvement
of jointly optimising the process model structure.
PsMnew achieves 97% of the best best runs in contrast
to the 22% for PsMatt . The moderate 1.1% improve-
ment of PsMnew over PsMatt is likely related to the
dominating values of many features. Note that PsMnew

achieves 100% of the best average runs;
• GapExp is inadequate, confirming our conjecture that

expanding the event labels to account for attributes
is not a good solution due to the huge number of
expanded event labels. An average information ratio
of only 32% is achieved thanks to two event labels
without attributes appearing in most traces; and the
amount of event log information captured by truly
expanded event labels is very small.

7. Application to cancer care pathways

In this section, the ACO solution algorithm is applied
to discovering care pathway models from a dataset of
sarcoma patients. We first present the dataset, the label
tree and attribute trees, and finally the numerical find-
ings with a special focus on the benefits of attributes on
care pathway discovery. It is worth noting that a recent
literature review by Kusuma et al. (2021) identified only
four direct applications of process mining to disease tra-
jectory modelling and highlighted a lack of awareness of
these methods.

Sarcomas are a large family of rare tumours that affect
men andwomen at all ages.We extracted all data from the
French databaseNETSARC regarding patients diagnosed
with sarcoma in 2013 who underwent surgery for their
primary tumour. The total of 2203 patients were treated
according to four care management strategies: (1) com-
plete initial management in the network with a sarcoma
MDTB before/after the initial surgery (n = 1068); (2)
outside initialmanagementwith a sarcomaMDTBbefore
the initial surgery (n = 108); (3) similar to 2 but with a
sarcoma MDTB after the initial surgery (n = 750); and
(4) outside initial management and no sarcoma MDTB
(n = 277). Strategy 0 denotes all patients.While both the
quality of the data and missing data present significant
challenges to any real case studies, these are only minor
concerns in our methodology-oriented paper. Data qual-
ity is not an issue as the dataset has been used and cor-
rected in multiple clinical studies (e.g. Blay et al. 2019).
Missing data are assigned a specific value (−) in this
paper. Fortunately, they donot appear in all of our process
models, implying that their impact on the care pathways
is only minor.
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Table 4. Attributes and labels of the case study.

7.1. Label and attribute representation

This subsection presents the formal representation of
the sarcoma care pathways and related weight for pro-
cess mining. They are based on discussions with medical
experts.

In this study, sarcoma care pathways are characterised
by

• Transition features: S = progression (pro), no pro-
gression (np) corresponding to the cancer progression
state;

• Event labels: original diagnosis of sarcoma (OD), sar-
coma multidisciplinary tumour boards (RCP), biopsy
before surgery (Bio), surgery (Chir), second surgical
excision/Re-excision (RChir), neoadjuvant/adjuvant
treatment (TTT), last contact (Last);

• Label attributes: histological subtypes (type), age,
tumour size (size), tumour depth (depth), tumour
location (site), surgery quality (quality), location for
RCP or Chir (location), requestingcentre for RCP (see
Appendix 2 for explanations). Attributes associated
with labels are in Table 4. For event label, only
attributes that can explain the occurrence of the event
are considered;

• Label tree: the label tree with a single macro-label
‘all’ is given in Figure 5. The precision weight is 0.1
for all and 1 for others;

• Attribute trees: attribute trees are given in Figure 3 for
type and in Table 5 for other attributes with for each
node macro-value, precision weight, and number of
immediate descendants and with detailed leaf nodes
in the electronic companion. The tree can be unbal-
anced with different numbers of levels due to missing
detailed data or no need of further decomposition of
nodes;

From the statistics given in electronic companion
EC5, liposarcomas accounted for 17% of histological sub-
types, followed by leiomyosarcomas (14%). The mean

Table 5. Attribute trees.

Attribute Root Level-1

loc RCP all/0.1/2 inside/0.3/71
outside/0.3/0

loc Chir all/0.1/3 inside/0.3/32
outside/0.3/0

–/0.3/0
req centre all/0.1/3 inside/0.3/44

outside/0.3/138
–/0.3/0

age all/0.1/3 child/1/0
adult/1/0
–/1/0

depth all/0.1/4 superficial/1/0
deep/1/0

deep+superficial/1/0
–/1/0

quality all/0.1/4 R0/1/0
R1/1/0
R2/1/0
–/1/0

size all/0.1/4 small/1/0
median/1/0
large/1/0
–/1/0

site all/0.1/4 superior/0.3/16
inferior/0.3/14
trunk/0.3/15
others/0.3/45

tumour size was 91.85mm (SD 76.11). Three quarters
of tumours were deep-seated, with soft tissue the most
common site (80%). 42% of resections had R0 negative
histological margins (57% in strategy 1 versus 18% in
strategy 3). For ease of reading, attribute location and
requesting centre have three macro-values (all, inside,
outside) for inside/outside the NETSARC network; and
surgery quality has three base values (R0, R1, andR2 from
best to worst). The other attribute values are straightfor-
ward (Figure 5).

7.2. Numerical findings

This subsection describes relevant care pathway features
discovered by our new process mining approach with
event label attributes. More specifically, the following
issues will be addressed: (i) benefits of attributes; and (ii)



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 17

Figure 5. The label tree of the case study.

Figure 6. Percentage relevance improvement versus model size.

impact of model size, attribute weight λ1, and attribute
precision weight. Only partial numerical results are given
in themain paper to show the key numerical findings and
the complete numerical results are given in a companion
online document. Note that this subsection aims to pro-
vide evidence of the usefulness of label attributes and we
do not provide a complete sensitivity analysis. Further,
the clinical study using the proposed approach is beyond
the scope of this paper.

Model relevance improvement: Figure 6 compares
model relevance of process model PsMold without
attributes and process model PsMnew with attributes. As
in Section 6, the introduction of attributes improves the
model relevance by 4–6% for small attribute weight λ1 =
0.4 and by 12–16% for large attribute weight λ1 = 0.8.

Process models with attributes vs without attributes:
Figure 7 gives the process models with attributes for
UBnode = 10 nodes and the corresponding models with-
out attributes are given in electronic companion EC7.
The following observations could be observed:

• Impact on the process model: the introduction of
attributes has a more significant impact on the arcs
than on the nodes of the process model. For exam-
ple, withUBnode = 10 nodes, all strategies except str-2
have the same nodes. For str-2, a node of macro-label
all, which is forbidden without attributes, is used in
the processmodel with attributes to capture the highly
diverse care pathways. For all process models with
or without attributes, cancer progression highlighted
in red appears on the right and increases as the care
pathways advance from left to the right;

• Value of attributes: (i) confirmation of the strategywith
surgery Chir done inside in str-1 and outside in str-2

and 3; (ii) new information of potential clinical values:
TTT treatment by far for deep tumour, second event
TTT in str-0 (TTT2 named rightward) significantly
due to lower surgery quality R1, important second
surgery RChir in str-3 (250/741) by far for lower qual-
ity R1 surgery, longer post-Chir pathways in str-1 for
larger tumour size (TTT2) than smaller tumour size
(TTT1).

Increasing model size (Figure 7 versus Figure 8): (i)
more care events including less frequent RChir and Bio
events and duplicated Chir events to better represent dif-
ferent sub-populations/strategies; (ii) less under macro-
label (all in str-2 now split); (iii) richer value of attributes:
Bio in str-1 and 2 for large and deep tumours, second
surgery RChir in both str-2 and 3 due to lower surgery
quality R1 and with similar ratio of RChir/Chir (ratio
significantly lower in str-1).

Impact of increasing attribute weight λ1: using the sen-
sitivity results and process models provided in electronic
companion EC9, increasing λ1 makes the attribute value
matching more important, leading to decreasing model
relevance and increasing usage ofmacro-labels (all in this
case) to improve the number of attribute value matching
for the corresponding nodes.

Impact of attribute precision weight with sensitivity
results and process models in electronic companion EC10:
(i) decreasing the weight of layer-2 macro-value inside
and outside from 0.3 to 0.1 for all location attributes,
location value gives less precise all macro-label and
the model relevance decreases slightly; (ii) increasing
the weight of layer-3 macro-values for Leiosarcoma,
etc., from 0.6 to 1 for attribute type, type value goes
from level-2 value softvisceral to more precise level-3
value other softvisceral and the model relevance slightly
increases.

7.3. Comparisonwith data-aware processminers

In this section, we compare our approach with two
prominent process miners that incorporate the data
perspective: the declarative method developed by Leno
et al. (2020), known for its strong ability to dis-
cover attribute-dependent constraints; and the proce-
dural approach of Mannhardt et al. (2017), which is
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Figure 7. Process models of 10 nodes of the case study for strategies 1–3.

implemented in the interactive Data-aware Heuristics
Miner (iDHM) (Mannhardt, De Leoni, andReijers 2017).

The three methods differ in their nature, semantics,
and representation of process models. However, of the
methods presented in the literature, the selected bench-
mark methods are the closest to ours in terms of inte-
grating the event log data attributes in constructing the
control-flow perspective of process models. All process
model miners are tested on the event log of strategy 1
patients in our sarcoma case study.

We begin by running the iDHM method, which
requires four thresholds (θobs, θdep, θbin, θcond) (refer to
Mannhardt et al. 2017 for more details). We set θobs =
1 and θcond = 0 to favour the discovery of conditional
dependency relations over standard ones. In the plugin
options, we select all event log attributes, check the ‘all
tasks connected’ option, and choose the algorithms Flexi-
bleHeuristicMiner, C4.5 (Cohen’s Kappa), andC4.5 (F1-
score) for dependency, conditional, and decision heuris-
tics, respectively. By setting θdep = 0.75 and θbin = 0.1,
we obtain the causal net shown in Figure 9(a). Three
conditional relations are discovered, highlighted in red,

and listed in the subsequent table. This result represents
the maximum number of conditional relations achieved
through fine-tuning the thresholds.

We then apply the declarative method with response
input rules (A, B, Cond) implying that if A occurs
and Cond holds, B must occur afterward. We use the
K-Medoids + RIPPER (clustering activation + tar-
get payloads) version with K = 2 as we find in Leno
et al. (2020)’s algorithm to derive the conditions.

To ensure a fair comparison, the declarative method
focuses on rules corresponding to transitions in Figure
9(a), i.e. conditions of (RCP, Bio), (RCP, Last), etc. We
run our method by setting UBarc = 9, UBnode = 7, and
K = 6. Results are given in Figure 9(b,c), respectively.
The following observations can be made:

• Procedural vs declarative: comparing iDHM and our
approachwithMP-Declare, proceduremethods (espe-
cially ours) offer a better understanding of the care
pathways, i.e. the evolution over time of the patient’s
care. MP-Declare, however, sheds only scant light on
the same question;
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Figure 8. Process models of 15 nodes of the case study for strategies 1–3.

• Benefit of event duplication: grouping all RCP events
in the same node makes the iDHM model poorly
informative of the sarcoma care pathways. Conversely,
our method clearly explains the hidden care pathway:
all start by OD, Chir event follows OD or OD-RCP,
TTT follows ether Chir or RCP, cancer progress (pro)
correlated with the length of care pathway, dominant
care pathway OD-RCP-Chir-TTT-RCP-Last;

• Benefit of data-awareness: while the three conditional
relations of iDHM do not provide much informa-
tion, the attribute values of our model provide signif-
icant details, such as: (i) Chir and RCP nearly all with
location = inside; and (ii) TTT events with dominant
attributes depth = deep, quality = R0, size = large.
While (i) demonstrates the compliance with recom-
mendation of strategy 1, (ii) reveals interesting clinical
information. The benefit of the data-awareness cen-
tral to our approach in comparison with iDHM can

be attributed to event duplication and our optimisa-
tion framework. When compared with our approach,
MP-Declare allows more general conditions, such as
quality! = R2, and provides both support and confi-
dence. By contrast, our approach provides only one
macro-attribute value and support. Unfortunately,
MP-Declare’s potential is limited by the one-label-
one-node restriction.

In summary, our approach allows us to show how
care event repetition and data impact the sarcoma care
pathways that other data-aware miners fail.

8. Conclusion

This paper proposes a novel formal optimisation frame-
work for process mining with two specific features: event
duplication and data-awareness, both of which are vitally
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Figure 9. Comparison of data-aware process miners on strategy 1 event log. (a) iDHM. (b) MP-Declare and (c) Our.

important in cancer care pathway modelling and yet
barely addressed by the existing literature. Hierarchical
representation of event attribute values allows us to limit
the additional complexity of data-awareness and to set

the process model node data at the appropriate preci-
sion level. Event duplication is addressed by a dynamic
programming algorithm for optimal replay of any event
trace. The optimisation framework allows the optimal
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attribute value setting of process model nodes and upper
bounds of overall quality measures. We propose a multi-
start local optimisation algorithm and an ant colony
optimisation algorithm (ACO) as means to optimise our
process model.

From numerical results on randomly generated
instances, we can see that data-awareness leads to an
increase of 18% of represented information. When
applied to a sarcoma care pathway case study, this model
demonstrates that data-awareness adds rich information
concerning clinical values and confirms the strategies
used to generate the event logs. We also show that our
approach clearly illustrates the impact of care event rep-
etition and data on the pathways.

The practical implication of this methodology-
oriented paper will be explored in follow-up clinical
studies of sarcoma care pathways. The process min-
ing approach outlined in this paper will be applied in
companion clinical papers to show the impacts on the
care pathways of various attributes (soft tissue vs bone,
adult vs elderly, R0 vs other surgery quality, tumour
size/depth, etc.). The clinical studies should be designed
and results consolidated by medical experts. Further-
more, a decision-aid tool is needed to help practitioners
with setting the parameters of relevant perspectives of the
process models.

Future research can be pursue in multiple directions:

(1) General data representation in process models: one
limitation of our approach is the selection of one
value per attribute for each node whereas MP-
Declare allows for a more general condition, such
as quality! = R2.Multiple extensions are possible: (i)
multiple values per attribute; (ii) a logical constraint
in terms of attributes per node and per arc. Both
significantly increase the solution space, meaning
that the approach outlined in this paper would not
apply. Combining combinatorial optimisation and
machine learning techniquesmay, however, limit the
solution space;

(2) Alternative quality measures: another limitation is
that our relevance score relies purely on positive
experience of a trace, i.e. whether it passes a node
and whether its attribute values match those of
the node. It is reasonable to include negative qual-
ity measures to account for the relevant nodes not
visited and attribute value mismatches. Classical
machine learningmeasures of false positive and false
negative could be explored;

(3) Near-optimal event game: whereas the exact event
game optimisation by dynamic programming is
reasonable for relatively small event logs, it does
not scale up for large event logs. Combination
with machine-learning methods could also provide

means to swiftly estimate the event game and related
relevance measures;

(4) Process model optimisation for large event logs: pro-
cess model optimisation with general data represen-
tation and general quality measures for large event
logs faces the challenges of a combinatorially larger
solution space and longer evaluation time for each.
Novel optimisation algorithms are needed;

(5) Process model optimisation with missing data: despite
the quality dataset of this paper, missing data are not
uncommon in practical datasets, especially health-
care datasets. The application of our approach
requires innovative techniques for event game opti-
misation and relevance score evaluation.
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Appendices

Appendix 1. Benchmarking heuristics

For the sake of drawing comparisons, we include a number of
random-based and local search-based heuristics. The following
offers descriptions of these heuristics.

• Random algorithm: this algorithm randomly generates a
large number of initial solutions similar to the initial
solution generation of LocalOpt and chooses the best.
Attribute/transition function optimisation is applied to each
solution. The number of solutions generated depends on the
maximum allowable computational time.

• RG algorithm: this is an iterative RandomGrowth algorithm
starting from an empty process model. At each iteration, it
randomly selects a new node, adds the new node with root
macro-attributes to the current process model, connects the
new node to/from all existing nodes by arcs with transi-
tion function equal to S, updates the event game, repairs the
resulting process mode and updates the attribute/transition
functions. The resulting model is set as the current model if
it is better.

• Reinsert algorithm: this is a multi-start local optimisation
algorithm. It starts from an initial solution of LocalOpt. At
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each iteration, it determines the node (̂b, k) of the lowest rel-
evance andmoves it to another layer (̂b, k′). Each local move
from (̂b, k) to (̂b, k′) is evaluated by the model relevance of
the complete process model with an arc connecting any two
nodes and the transition function equal to S. The local move
with the highest model relevance is selected and the corre-
sponding complete model is repaired and then improved by
optimisation of attribute/transition functions. The resulting
feasible model is set as the current model if it is better than
the current solution. Otherwise, the algorithm restarts from
another new initial solution.

• Relabeling algorithm: this is similar to theReinsert algorithm
but with local move defined by relabelling the least relevant
node (̂b, k) as (̂b′, k), i.e. replacing the current macrolabel b̂
by b̂′.

As for LocalOpt and ACO, all these algorithms end with the
joint optimisation of the event game and attribute/transition
function.

Appendix 2. Introduction to sarcoma care
pathways

Sarcomas are a large family of rare tumours that affect men
and women at all ages. The estimated incidence is 70.7 per
million inhabitants (about 4700 patients per year) in France
(De Pinieux et al. 2021) with a similar incidence in England
(Bacon et al. 2023). Given their rarity and the heterogeneity,
sarcoma management is complex, and this sometimes results
in sub-optimal management (Blay et al. 2019; Crago and Bren-
nan 2015). We consider the following characteristics of the
patient, disease, and healthcare organisation to have a signif-
icant impact on care pathways:

• Histological subtypes: these are key factors to consider when
choosing a chemotherapy agent available for use in sarcoma
patients. For example, angiosarcoma is highly sensitive to
taxanes, which can be a treatment option in this histologi-
cal type, whereas trabectedin has proven effective in treating
advanced liposarcoma (Gronchi et al. 2021).

• Tumor size: radiation therapy can be considered for lesions
> 5 cm in size (Gamboa, Gronchi, and Cardona 2020),
and patients with extremity soft tissue sarcoma lesions
(the majority of patients with soft tissue sarcoma) greater
than 10 cm in size have a disease-specific survival rate that
is significantly lower than those with lesions ≤5 cm (less
than 40% vs. around 80% at 15 years, p< 0.001) (Brennan
et al. 2014).

• Tumor depth: 75% of the patients with deep high-grade
tumours treated with wide surgery alone developed distant
metastases and expected to benefit from radiation ther-
apy (Lemma et al. 2023). Neoadjuvant chemoradiotherapy,
which is given prior to the primary treatment, may facil-
itate resection of large deep-seated tumours (Oberoi et al.
2023).

• Age: in Ewin’s sarcoma, for example, children may have
more cycles of first-line chemotherapy than adults, regard-
less of the stage of their cancer (Wytiaz et al. 2024).

• Treatment location: multidisciplinary management by refer-
ence centres is recommended (Blay et al. 2019; Strönisch,
Märdian, and Flörcken 2023). The French network NET-
SARC includes 26 reference centres. Gantzer et al. (2019)
observed a higher rate of quality resection surgeries (R0 and
R1) in reference centres, 48.6% versus 32%. Initial sarcoma
management in reference centres was shown to improve
the overall survival and local relapse-free survival rate (Blay
et al. 2019).
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