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Current fluctuations in the symmetric exclusion process
beyond the one-dimensional geometry

Théotim Berlioz, Davide Venturelli, Aurélien Grabsch, and Olivier Bénichou
Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la
Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France

The symmetric simple exclusion process (SEP) is a paradigmatic model of transport, both in and
out-of- equilibrium. In this model, the study of currents and their fluctuations has attracted a lot of
attention. In finite systems of arbitrary dimension, both the integrated current through a bond (or
a fixed surface), and its fluctuations, grow linearly with time. Conversely, for infinite systems, the
integrated current displays different behaviours with time, depending on the geometry of the lattice.
For instance, in 1D the integrated current fluctuations are known to grow sublinearly with time, as√
t. Here we study the fluctuations of the integrated current through a given lattice bond beyond the

1D case by considering a SEP on higher-dimensional lattices, and on a comb lattice which describes
an intermediate situation between 1D and 2D. We show that the different behaviours of the current
originate from qualitatively and quantitatively different current-density correlations in the systems,
which we compute explicitly.
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I. INTRODUCTION

The characterisation of currents and their fluctuations is a key problem in statistical physics, which has been the
focus on many works over the last decades. In this context, the analysis of simple microscopic models plays a central
role, as it allows to obtain explicit results [1–5], which can serve as a basis for the development of more general
macroscopic descriptions, such as the macroscopic fluctuation theory (MFT) [6].

Among such microscopic models, the symmetric exclusion process (SEP) has achieved a paradigmatic status [7, 8],
and has received considerable attention since its introduction by Spitzer in 1970 [9]. It is a model of particles on
a lattice, which randomly hop with unit rate to one of the neighbouring sites, only if the site is empty, to mimick
hard-core interaction. This model has been the object of recent and important advances, especially in the infinite
one-dimensional geometry [10–16]. In this geometry, the full distribution of the integrated current Qt through a given
bond (corresponding to the total number of particles that have crossed this bond in a given direction, minus the
number in the other direction, up to time t) was computed in [4]. In particular, it was shown that at long times all
the cumulants of Qt grow as

√
t. This scaling of the cumulants originates from the fact that the correlations between

the current Qt and the density of particles in the system ρ(x, t) are not stationary. These correlations have recently
been computed explicitly in the long-time limit [13–16].

In higher dimensions or for other lattices, most studies were conducted on finite systems connected to reservoirs,
such as in Refs. [17, 18]. In that case, the fluctuations of the integrated current always grow linearly with time,
regardless of the dimension or the geometry of the lattice. To the best of our knowledge, no results are available on
the impact of the geometry and dimension on current fluctuations in infinite systems.

Here we consider the fluctuations of the integrated current Qt in the SEP through a given bond of an infinite lattice,
initially at equilibrium at density ρ̄. We focus on two examples which illustrate different constraints on the dynamics
of the particles: (i) the comb lattice, first introduced to represent diffusion in critical percolation clusters [19], in
which the particles can bypass each other (unlike in 1D), but cannot loop around a bond, so that each particle can at
most contribute to Qt by ±1; (ii) lattices of dimensions 2 and higher which contain loops, so that a given particle can
give an arbitrarily high contribution to Qt. We first show how these different dynamical constraints lead to different
behaviours of the correlations of Qt with the density of surrounding particles. In turn, these correlations lead to
different behaviours of the current fluctuations, which we quantify explicitly.

The article is organised as follows. We first recall the known results in the one-dimensional case in Section II.
We then turn to the comb lattice in Section III, and provide both a microscopic and a macroscopic derivation of
the current fluctuations — the macroscopic approach presenting the advantage of being applicable to other models
and higher-order cumulants of Qt. In Section IV we finally consider lattices in two dimensions and more, using
two different microscopic approaches giving access to different correlation functions. The physical meaning of these
different correlations is discussed in Section IVB3. We finish with some concluding remarks in Section V.

II. KNOWN RESULTS IN THE 1D CASE

We first review a few known results about the fluctuations of Qt through the bond linking sites 0 and 1 (denoted
0− 1 from now on) for a SEP in a one-dimensional infinite lattice, initially at equilibrium at density ρ̄. By symmetry,
⟨Qt⟩ = 0, and the fluctuations of the current read [4, 20]

〈
Q2
t

〉
1D

≃
t→∞

2ρ̄(1− ρ̄)√
π

√
t . (1)

The current fluctuations are proportional to ρ̄(1 − ρ̄), which is expected due to the particle/hole symmetry of the
SEP [21], and the fact that the current of particles is the opposite of the current of vacancies. The form (1) indicates
that the current vanishes both at low density (no particles) and at high density (all sites are occupied, so no motion
is possible).

Importantly, the
√
t behaviour of the fluctuations (1) yields much smaller fluctuations at large times than does

the linear behaviour in t found for a finite 1D system [3]. The origin of this anomalous scaling can be traced back
to the spatial structure of the correlations between the integrated current Qt and the occupations of the sites ηr(t)
(ηr(t) = 1 if site r is occupied at time t, 0 otherwise) [12, 13],

c(1D)
r (t) ≡ Cov(Qt, ηr(t)) = ⟨Qtηr(t)⟩ − ⟨Qt⟩ ⟨ηr(t)⟩ = ⟨Qtηr(t)⟩ . (2)
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FIG. 1. Left: SEP on a 1D infinite lattice. The particles can jump to an empty neighbouring site with unit rate in each
direction. The integrated current Qt is measured on the bond between sites 0 and 1. Right: correlation profile c1Dx (t) at long
times, as a function of the scaling variable x/

√
t, given by (3).

These correlations have been computed recently [12, 13], and take the following scaling form at long times,

c(1D)
r (t) ≃

t→∞


ρ̄(1− ρ̄)

2
erfc

(
r

2
√
t

)
for r ≥ 1 ,

− ρ̄(1− ρ̄)

2
erfc

(
− r

2
√
t

)
for r ≤ 0 ,

(3)

with erfc the complementary error function (see Fig. 1). This result shows that the correlations are never stationary
and grow with time on a distance that scales with

√
t. This is due to the fact that, in 1D, the integrated current Qt

is strongly correlated with the density of particles around the bond in which the current is measured: a fluctuation
that increases Qt is necessarily due to an increase of particles crossing the bond 0 − 1, leading to an accumulation
of particles on the positive sites (cr(t) ≥ 0), and a depletion on the negative sites (cr(t) ≤ 0). Since this imbalance
cannot be absorbed by reservoirs or periodic boundary conditions, larger fluctuations require more particles to cross
from left to right, pushing more and more particles further on the positive lattice sites due to the exclusion rule.

The fact that the correlations are not stationary in 1D can be at first sight attributed to two factors: (i) the
conservation of the initial order of the particles at all times, due to the exclusion rule which mimics hard core
interaction; and (ii) the tree-like structure of the 1D lattice, which prevents a given particle from giving a large
contribution to Qt. In the following, we investigate the effect of each of these two contributions by considering
different lattices.

III. THE COMB LATTICE

The comb lattice is a 2D infinite lattice in which all the horizontal links have been removed, except on the horizontal
axis y = 0 (see Fig. 2, left), called the backbone. The vertical lines connected to the backbone are called the teeth.

Comb structures have been introduced to represent diffusion in critical percolation clusters: the backbone and teeth
of the comb mimic the quasi-linear structure and the dead ends of percolation clusters [19]. More recently, the comb
model has been used to describe transport in real systems such as spiny dendrites [22], diffusion of cold atoms [23],
and diffusion in crowded media [24]. In the context of interacting particles, exclusion processes on the comb have
been used to study the displacement of a tracer particle [25]. Recently, the statistics of the current of hard core
reflecting Brownian particles on a comb, corresponding to the low-density limit of the SEP studied here, has been
characterised [26].

Here we study the integrated current Qt through the bond (0, 0) − (1, 0) up to time t for a SEP on the comb
lattice, starting initially from an equilibrium measure corresponding to having each site independently occupied with
probability ρ̄. Compared to the 1D case, the noncrossing constraint is lifted as particles on the backbone can bypass
a particle that jumps into a tooth. However, the comb lattice is still a tree, so a given particle cannot cross several
times the bond (0, 0)− (1, 0) consecutively in the same direction.
In the following, we first provide a microscopic derivation of the current fluctuations and the correlation profiles.

We then rederive these results within a purely macroscopic description, which could in principle be used to derive
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higher-order cumulants of Qt, and also applied to other models than the SEP.

A. Microscopic calculation

Our starting point is the following master equation for the SEP on the comb, describing the evolution of the
probability Pt(η) to observe a given configuration η = {ηx,y}x,y∈Z2 at time t:

∂tPt(η) =
∑
x,y

[
P (ηx,y+, t)− P (η, t)

]
+
∑
x

[
P (ηx+,0, t)− P (η, t)

]
, (4)

where we have denoted by ηx,y+ the configuration in which the occupations of sites (x, y) and (x, y + 1) have been

exchanged, and by ηx+,y the configuration in which the occupations of sites (x, y) and (x+1, y) have been exchanged.
Note that the equilibrium distribution reads

P∞(η) =
∏
x,y

pρ̄(ηx,y), (5)

which factorizes over the sites of Z2, and where pρ̄ is the Bernoulli measure{
pρ̄(η = 1) = ρ̄,
pρ̄(η = 0) = 1− ρ̄,

(6)

in which each site is occupied with probability ρ̄ and empty with probability (1− ρ̄). The fluctuations of the integrated
current Qt are described by the cumulant generating function

ψ(λ, t) = ln
(〈
eλQt

〉)
=

+∞∑
n=1

⟨Qnt ⟩c
n!

λn, (7)

where we indicated as ⟨•⟩c the connected correlation function, and where all odd cumulants are null due to the
initial equilibrium measure and the symmetries of the problem. Correlations between the integrated current and
bath particles are encoded in the joint cumulant generating function of (Qt, ηx,y) for any pair (x, y) ∈ Z2, namely
ln
(〈
eλQt+µηx,y

〉)
. Since ηx,y = 0 or 1, this expression simplifies as

ln
(〈
eλQt+µηx,y

〉)
= ln

(〈
eλQt

〉)
+ ln

(
1 + (eµ − 1)

〈
ηx,ye

λQt
〉

⟨eλQt⟩

)
. (8)

From this relation, we see that all the correlations between the occupations and the currents are encoded in the
correlation functions

⟨ηx,yQnt ⟩c ≡ ∂µ∂
n
λ ln

(〈
eλQt+µηx,y

〉)∣∣
µ=0,λ=0

= ∂nλ

〈
ηx,ye

λQt
〉

⟨eλQt⟩

∣∣∣∣∣
λ=0

. (9)

It is thus convenient to introduce the generalized correlation profile [12, 13]

wx,y(λ, t) =

〈
ηx,ye

λQt
〉

⟨eλQt⟩
=

+∞∑
n=0

⟨ηx,yQnt ⟩c
λn

n!
. (10)

In particular, at first order in λ, it gives

c(Comb)
x,y (t) ≡ ⟨ηx,y(t)Qt⟩c = ⟨ηx,y(t)Qt⟩ − ⟨ηx,y(t)⟩ ⟨Qt⟩ . (11)

The first step to get correlations and fluctuations of the current is to write down the evolution equations of those
quantities using the master equation (4). The derivation of the evolution equation for ψ is straightforward, and results
in

∂tψ(λ, t) = (eλ − 1)

〈
η0,0(1− η1,0)e

λQt
〉

⟨eλQt⟩
+ (e−λ − 1)

〈
η1,0(1− η0,0)e

λQt
〉

⟨eλQt⟩
. (12)



5

Let us then consider the evolution equation of wx,y. Particles in the bulk can jump without affecting the current,
whereas the current increases by 1 if a particle located at site (0, 0) jumps to the empty site (1, 0), and decreases by
1 if a particle located at site (1, 0) jumps to the empty site (0, 0). Then, only the configuration η0+,0 can impact
the current. Thus, in the following it is convenient to consider separately the contributions from sites in the bulk
(x, y) ̸= {(0, 0), (1, 0)}, and sites at the boundaries. Using the master equation (4) we get for the bulk

∂twx,y =
∑
µ=±1

∇y
µwx,y + δy,0

∑
µ=±1

∇x
µwx,0

+ (eλ − 1)

[〈
ηx,yη0,0(1− η1,0)e

λQt
〉

⟨eλQt⟩
− wx,y

〈
η0,0(1− η1,0)e

λQt
〉

⟨eλQt⟩

]

+ (e−λ − 1)

[〈
ηx,yη1,0(1− η0,0)e

λQt
〉

⟨eλQt⟩
− wx,y

〈
η1,0(1− η0,0)e

λQt
〉

⟨eλQt⟩

]
, (13)

and for the boundaries

∂tw0,0 = e−λ
〈
η1,0(1− η0,0)e

λQt
〉

⟨eλQt⟩
−
〈
η0,0(1− η1,0)e

λQt
〉

⟨eλQt⟩
− w0,0∂tψ(λ, t) +

∑
µ=±1

∇y
µw0,0 + ∇x

−1w0,0, (14)

∂tw1,0 = eλ
〈
η0,0(1− η1,0)e

λQt
〉

⟨eλQt⟩
−
〈
η1,0(1− η0,0)e

λQt
〉

⟨eλQt⟩
− w1,0∂tψ(λ, t) +

∑
µ=±1

∇y
µw1,0 + ∇x

1w1,0, (15)

where we have introduced the discrete gradient acting as

∇y
µF (x, y) = F (x, y + µ)− F (x, y), ∇x

µF (x, y) = F (x+ µ, y)− F (x, y), with µ = ±1, (16)

on a generic function F (x, y) of Z2. The boundary equations (14) and (15) can be further rewritten using the evolution
equation (12) of the generating function ψ as

∂tw0,0 =

[
e−λ − (e−λ − 1)w0,0

]
∂tψ(λ, t)

e−λ − 1
+
∑
µ=±1

∇y
µw0,0 +∇x

−1w0,0, (17)

∂tw1,0 =

[
eλ − (eλ − 1)w1,0

]
∂tψ(λ, t)

eλ − 1
+
∑
µ=±1

∇y
µw1,0 +∇x

1w1,0. (18)

We note that the bulk equation (13) is not closed, since it involves the higher-order correlation functions
⟨η0,0ηx,ye

λQt⟩
⟨eλQt ⟩

and
⟨η1,0ηx,ye

λQt⟩
⟨eλQt ⟩ . However, we will see that it yields a closed equation for the correlations c

(Comb)
x,y (t) (11). Indeed,

expanding wx,y up to first order in λ,

wx,y(λ, t) = ρ̄+ λ c(Comb)
x,y (t) +O(λ2), (19)

and inserting this expansion into the bulk equation (13) leads to:

∂tc
(Comb)
x,y (t) =

∑
µ=±1

∇y
µc

(Comb)
x,y (t)+ δy,0

∑
µ=±1

∇x
µc

(Comb)
x,y (t)+ ⟨ηx,yη0,0⟩− ⟨ηx,y⟩ ⟨η0,0⟩− ⟨ηx,yη1,0⟩+ ⟨ηx,y⟩ ⟨η1,0⟩ . (20)

The latter simplifies as

∂tc
(Comb)
x,y (t) =

∑
µ=±1

∇y
µc

(Comb)
x,y (t) + δy,0

∑
µ=±1

∇x
µc

(Comb)
x,y (t) (21)

upon noting that ⟨ηx,yηx′,y′⟩ = ρ̄2, as it follows from inspecting the stationary distribution P∞ in Eq. (5). Similarly,
the boundary equations (17) and (18) give at leading order in λ

∂tc
(Comb)
0,0 (t) = −

∂t
〈
Q2
t

〉
2

+
∑
µ=±1

∇y
µc

(Comb)
0,0 (t) +∇x

−1c
(Comb)
0,0 (t), (22)

∂tc
(Comb)
1,0 (t) =

∂t
〈
Q2
t

〉
2

+
∑
µ=±1

∇y
µc

(Comb)
1,0 (t) +∇x

1c
(Comb)
1,0 (t). (23)
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Note that, contrary to Eq. (21) for the bulk, which is exact only at equilibrium, the equations verified by c
(Comb)
0,0 (t)

and c
(Comb)
1,0 (t) remain valid also out of equilibrium — for instance, if we start initially from a step of density ρ+ for

x > 0 and ρ− for x < 0.
To get the current fluctuations, we expand the evolution equation of the generating function (12) up to second

order in λ, finding

∂t
〈
Q2
t

〉
2

= c
(Comb)
0,0 (t)− c

(Comb)
1,0 (t) + ρ̄(1− ρ̄). (24)

Equations (21) to (24) now form a closed set which can be solved exactly by introducing the Laplace transform of the
variance

κ(u) =

∫ +∞

0

e−ut
〈
Q2
t

〉
c
dt, (25)

and the Fourier-Laplace transform of the correlations:

c̃k,q(u) =
∑
x,y

∫ +∞

0

e−uteikx+iqyc(Comb)
x,y (t) dt . (26)

Applying the Laplace transform to Eq. (24) we obtain

uκ(u)

2
=
ρ̄(1− ρ̄)

u
+ c

(Comb)
0,0 (u)− c

(Comb)
1,0 (u), (27)

while by Fourier-Laplace transforming the correlation equations (21) to (23) we get

u c̃k,q(u) = 2(cos q − 1)c̃k,q(u) + 2(cos k − 1)c̃k,y=0(u) +
ρ̄(1− ρ̄)

u
(eik − 1), (28)

where we have denoted as

c̃k,y=0(u) =
∑
x

∫ +∞

0

e−uteikxc
(Comb)
x,0 (t) dt (29)

the Fourier-Laplace transform performed only along the horizontal axis x at y = 0. The procedure to obtain an exact

expression of c
(Comb)
x,y (t) is to derive first the correlations along the backbone (y = 0), and then to deduce from the

bulk equation (21) the correlations for all y, in the Laplace domain, which we denote from now on as c
(Comb)
x,y (u). To

this end, we first isolate c̃k,y=0(u) in equation (28), and take the inverse Fourier transform along the vertical axis y as

c̃k,y(u) =
1

2π

∫ π

−π
e−iqy c̃k,q(u) dq , (30)

finding

c̃k,y=0(u) =

∫ π

−π

dq

2π

{
2(cos k − 1)c̃k,y=0(u)

u+ 2(1− cos q)
+

ρ̄(1− ρ̄)

u[u+ 2(1− cos q)]
(eik − 1)

}
=

2(cos k − 1)√
4u+ u2

c̃k,y=0(u) +
ρ̄(1− ρ̄)(eik − 1)

u
√
4u+ u2

. (31)

By taking the inverse Fourier transform along k we then obtain the Laplace transform of the correlations along the
backbone

c
(Comb)
x,y=0 (u) =

ρ̄(1− ρ̄)

u

∫ π

−π

dk

2π

(eik − 1)e−ikx√
4u+ u2 + 2(1− cos k)

. (32)

By symmetry of the problem, it is sufficient to calculate c
(Comb)
x,y=0 (u) for x ≤ 0, and use

c
(Comb)
x,y=0 (u) = −c(Comb)

−x+1,y=0(u) (33)
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to get the other branch x > 0. In fact, the integral in Eq. (32) can be calculated explicitly, yielding for x ≤ 0

c
(Comb)
x,y=0 (u) =

ρ̄(1− ρ̄)

2u

(√
u(4 + u)−

√
u2 + 4[u+

√
u(4 + u)]

)
√
u2 + 4[u+

√
u(4 + u)]

1 +

√
u(4 + u)

2
−

√
u2 + 4[u+

√
u(4 + u)]

2

−x

.

(34)
For y ̸= 0 one can either use the expression of c̃k,y=0(u), implicitly given in Eq. (31), into the evolution equation (28)

of the correlations in the Fourier-Laplace domain, or more simply solve the recurrence relation in real space{
0 = c

(Comb)
x,y+1 (u)− (u+ 2)c

(Comb)
x,y (u) + c

(Comb)
x,y−1 (u), for y ̸= 0,

c
(Comb)
x,0 (u), given by Eq. (34),

(35)

which is obtained by Laplace transforming the bulk equation (21) for y ̸= 0. Again, it is enough to calculate c
(Comb)
x,y (u)

for y > 0 and use the symmetry c
(Comb)
x,y (u) = c

(Comb)
x,−y (u) to obtain the correlations in the region y < 0. Solving the

linear recurrence equation and keeping the solution that does not diverge as y → +∞ we obtain

c(Comb)
x,y (u) = c

(Comb)
x,0 (u)

[
1 +

u

2
−
√
u(4 + u)

2

]|y|
. (36)

Finally, the fluctuations of the current can be calculated by inserting the expressions of c
(Comb)
0,0 (u) and c

(Comb)
1,0 (u),

given by Eqs. (33) and (34), into the evolution equation (27) of the second cumulant κ(u) in the Laplace domain,
leading to

uκ(u)

2
=
ρ̄(1− ρ̄)

u

√
u(4 + u)

u2 + 4[u+
√
u(4 + u)]

.

This expression gives the full time dependence of the fluctuations, up to a Laplace inversion. In particular, the
long-time behaviour is obtained from

uκ(u)

2
≃

u→0+

ρ̄(1− ρ̄)√
2u3/4

, (37)

which using Tauberian theorems [27] gives

〈
Q2
t

〉
(Comb)

≃
t→∞

ρ̄(1− ρ̄)

√
2

Γ(7/4)
t3/4 . (38)

Remarkably, the current fluctuations behave as t3/4 on the comb. This was already observed for reflecting Brownian
particles in [26], which corresponds to the low-density limit of (38). The prefactor of (38) also matches the one found
in the low-density limit [26]. Here, we obtained the full dependence of the prefactor on the density ρ̄, which displays
the same functional form ρ̄(1 − ρ̄) as in the 1D case (1). The t3/4 scaling shows that the fluctuations are larger on
the comb than in the 1D geometry (where they scale as ∼ t1/2, see Eq. (1)), but do not grow linearly with time.

This anomalous behavior can be traced back to the correlations c
(Comb)
x,y which we have determined at all times in

the Laplace domain, see Eq. (36). Its long-time behaviour is encoded in the limit u→ 0 at fixed xu1/4 and yu1/2,

c(Comb)
x,y (u) ≃

u→0+
sign (x)

ρ̄(1− ρ̄)

2u
e−

√
2|x|u1/4−|y|u1/2

. (39)

Taking the inverse Laplace transform yields

c(Comb)
x,y (t) ≃

t→∞
ρ̄(1− ρ̄) C(Comb)

(
x

t1/4
,
y√
t

)
, (40)

where we introduced the scaling function

C(Comb)(x, y) = L−1

[
sign (x)

e−
√
2|x|u1/4−|y|u1/2

2u

]
(t = 1) , (41)
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FIG. 2. Left: SEP on the comb lattice. On each site, a particle can jump to any neighbouring site (2 neighbours on a tooth, 4
on the backbone) with unit rate. The integrated current Qt is measured on a link between two sites on the backbone. Right:

scaling form of the correlation profile c
(Comb)

r⃗=(x,y)(t)/[ρ̄(1− ρ̄)] for large t, obtained from (40).

defined by the inverse Laplace transform of (39), evaluated at t = 1 (due to the absorption of the t dependence in the
scaling variables). This scaling function is shown in the right panel of Fig. 2. Similarly to the 1D case (see Eq. (3)),

c
(Comb)
x,y generically displays a dipolar structure, i.e. it assumes positive values in front of the (0, 0)–(1, 0) bond and
negative values behind. This is again consistent with the interpretation that higher (lower) currents are correlated
with an accumulation (depletion) of particles. Moreover, correlations spread along y on distances that scale as

√
t,

as they do in 1D, meaning that the dynamics within the teeth is essentially the same as in the one-dimensional case.
Conversely, correlations spread along the backbone as t1/4, which is slower than in 1D; heuristically, this is because
particles can get trapped in the teeth, and thus take more time to move along x. In this sense, the comb lattice
represents an intermediate situation between 1D and 2D lattices.

Finally, these results show that lifting the noncrossing constraint that was imposed in 1D on the dynamics of the
particles yields an increase of the current fluctuations, but is not sufficient for the system to reach the linear behaviour
observed in finite systems [17, 18].

B. An alternative macroscopic derivation

Before leaving treelike lattices and moving to 2D and higher dimensions, we first show how the current fluctua-
tions (38) and the correlation profile (40) can be alternatively derived from a macroscopic description, which could
be applicable to study other models than the SEP, and higher-order cumulants of Qt.

1. Macroscopic fluctuation theory on the comb

The macroscopic fluctuation theory (MFT) provides a general framework to analyse the large scales (long times and
large distances) of diffusive systems [6], which has permitted to obtain explicit results for various models [5, 15, 28–32].
In the specific case of the SEP, MFT has given exact results both in 1D [3, 5, 13–16, 33–36] and in 2D [17, 18, 37].
Since we have seen that the current-density correlation functions are not stationary on the comb, but instead display
a scaling behaviour (40) indicating that at long times the correlations vary slowly on the scale of the lattice spacing,
it is natural to seek a macroscopic description. To the best of our knowledge, the MFT has never been applied to the
comb lattice. Therefore we need to adapt the formalism of [6] to this geometry.

Our starting point is the microscopic equation for the time evolution of the mean occupation of a given site r⃗,
deduced from the microscopic bulk equation (13) evaluated at λ = 0, and which reads

∂t ⟨ηr⃗(t)⟩ = δy,0∆x ⟨ηr⃗(t)⟩+∆y ⟨ηr⃗(t)⟩ , for r⃗ = (x, y) , (42)

where we have denoted ∆ν the discrete Laplace operator in the direction ν = x, y, i.e. ∆νf(r⃗) = f(r⃗ + e⃗ν)− 2f(r⃗) +
f(r⃗− e⃗ν), with e⃗ν the unit vector in direction ν. The first term with the Kroenecker delta function δy,0 enforces that
particles can jump horizontally only on the backbone. To derive the macroscopic version of (42), which should hold
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at long times and large distances, we introduce a large parameter T to rescale the time t. Due to the scaling form of
the correlations (40), we expect that x scales as T 1/4 and y as

√
T . Hence, we introduce the macroscopic density ρ as

⟨ηr⃗(t)⟩ ≃ ρ

(
x

T 1/4
,
y√
T
,
t

T

)
. (43)

Inserting this scaling form into the evolution equation (42), we get

∂tρ(x, y, t) =
√
Tδy

√
T ,0∂

2
xρ(x, y, t) + ∂2yρ(x, y, t) . (44)

Finally, since
√
Tδy

√
T ,0 −→

T→∞
δ(y), with δ(y) the Dirac delta function, we obtain the macroscopic equation for the

average density of particles on the comb,

∂tρ = δ(y)∂2xρ+ ∂2yρ , (45)

in agreement with e.g. Eq. (6) in [38]. We can rewrite this equation as a conservation equation with a current j⃗(x, y, t),
as

∂tρ+ ∇⃗ · j⃗ = 0 , with j⃗ = −D∇⃗ρ , D =

(
δ(y) 0
0 1

)
. (46)

By construction, the macroscopic equations (46) are deterministic, so they cannot be used to study the fluctuations
of density, and subsequently the fluctuations of the integrated current Qt. The idea of the MFT is to postulate a
stochastic form for the current in (46), as

j⃗ = −D∇⃗ρ+ ζ⃗ , (47)

with ζ⃗ a Gaussian white noise, with correlations

⟨ζi(x, y, t)ζj(x′, y′, t′)⟩ = Σi,j(ρ(x, y, t))δ(x− x′)δ(y − y′)δ(t− t′) , (48)

and with a correlation matrix Σ depending on the (now stochastic) density ρ(x, y, t). For the 1D SEP, it has been
shown that the form (47) indeed holds [39], with Σ(ρ) = 2ρ(1−ρ). In two dimensions, the same relation is expected to
hold [6], with Σ(ρ) = 2ρ(1− ρ)12, with 12 the identity matrix. On the comb, we also expect the stochastic form (47)
of the current to hold, but with the additional constraint that the noise cannot create current fluctuations that make
particles jump between teeth, except on the backbone. Therefore, we guess that

Σ(ρ) = 2ρ(1− ρ)

(
δ(y) 0
0 1

)
. (49)

We show below that this assumption gives the correct result for the full distribution of Qt on the comb in the low-
density limit, by retrieving the recent result of [26]. But before that, let us write the MFT equations to study the
integrated current Qt.

For this, we follow the general formalism of MFT [6], which we briefly summarise here. The first step is to write

an action for the fields ρ and j⃗, using that ζ⃗ in (47) is a Gaussian white noise with correlations (48), so that its
distribution can be formally written as

P[ζ⃗] = exp

[
−1

2

∫ ∞

0

dt

∫ ∞

−∞
dx

∫ ∞

−∞
dy ζ⃗ ·

(
Σ−1(ρ)ζ⃗

)]
. (50)

Note that, for the matrix (49), the inverse of Σ is singular due to the presence of the delta function. However, this
is not a problem since in the final equations we will derive below, only Σ appears and not its inverse. Inserting the
relation between the noise and the current (47), and the conservation relation (46), into the distribution (50), we

obtain the joint distribution of ρ and j⃗,

P [ρ, j⃗] = exp

[
−1

2

∫ ∞

0

dt

∫ ∞

−∞
dx

∫ ∞

−∞
dy (⃗j +D∇⃗ρ) ·

(
Σ−1(ρ)(⃗j +D∇⃗ρ)

)]
δ(∂tρ+ ∇⃗ · j⃗) . (51)

Writing the delta function as an integral over an auxiliary field H, and performing the Gaussian integral over the
current j⃗, we obtain

P [ρ] =

∫
DH e−S[ρ,H] , (52)
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with the MFT action [6],

S[ρ,H] =

∫ ∞

0

dt

∫ +∞

−∞
dx

∫ ∞

−∞
dy

[
H∂tρ+ (D∇⃗ρ) · ∇⃗H − 1

2
(Σ(ρ)∇⃗H) · ∇⃗H

]
. (53)

We have left aside up to now for simplicity a key element of MFT, which is the dependence of the amplitude of
the noise in (48) on the scaling parameter T . When coarse-graining on a large scale, the fluctuations caused by the
stochastic microscopic dynamics self-average, so that their amplitude decreases with T . In d-dimensional systems,
the variance of the noise decreases as T−d/2 [6]. To identify the scaling on the comb, it is instructive to look at the

action (53) and rescale the variables as in (43), i.e. x→ x/T 1/4, y → y/
√
T , t→ t/T . This gives

S[ρ,H] → T 3/4 S[ρ,H] , (54)

indicating that the variance of the macroscopic noise ζ⃗ decreases as T−3/4 on the comb. Finally, the correct form of
the distribution of the macroscopic density reads

P [ρ] =

∫
DH e−T

3/4 S[ρ,H] , with ρ(x, y, t) ≃ η(xT 1/4,y
√
T )(tT ) . (55)

This provides a macroscopic description of the stochastic density of particles for the SEP on the comb, in the framework
of MFT. The last ingredient needed is the initial distribution of particles. As discussed above, we start from an
equilibrium distribution, which for the comb corresponds to populating each site independently, with probability ρ̄,
as shown in Eq. (5). This is identical to the equilibrium measure for the SEP in 2D, which at the macroscopic level
becomes [40]

P [ρ(x, y, 0)] = e−T
3/4 F [ρ(x,y,0)] , F [ρ(x, y, 0)] =

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ρ(x,y,0)

ρ̄

ρ(x, y, 0)− z

z(1− z)
dz . (56)

We can now apply this MFT formalism to the study of the integrated current.

2. Application to the integrated current

Since the comb lattice has a tree structure, the integrated current through the bond (0, 0)− (1, 0) up to time T is
equal to the variation of the number of particles in the domain x > 0, which thus reads

QT =
∑
x>0

∑
y∈Z

[η(x,y)(T )− η(x,y)(0)] ≃ T 3/4

∫ ∞

0

dx

∫ ∞

−∞
dy [ρ(x, y, 1)− ρ(x, y, 0)] , (57)

where we used the scaling form (55). Having expressed QT in terms of the macroscopic density ρ, we can follow the
same approach as in 1D [5] and write the moment generating function of QT as

〈
eλQT

〉
≃
∫

DρDH exp

[
−T 3/4

(
S[ρ,H] + F [ρ(x, y, 0)]− λ

∫ ∞

0

dx

∫ ∞

−∞
dy [ρ(x, y, 1)− ρ(x, y, 0)]

)]
. (58)

Evaluating this integral in the long-time limit T → ∞ by the saddle-point method, we get〈
eλQT

〉
≃

T→∞
eT

3/4ψ̂(λ) , ψ̂(λ) = λ

∫ ∞

0

dx

∫ ∞

−∞
dy [q(x, y, 1)− q(x, y, 0)]− S[q, p]− F [q(x, y, 0)] , (59)

where we have denoted (q, p) the saddle point for (ρ,H), which obeys the saddle-point equations:

∂tq = δ(y)∂2xq + ∂2yq − δ(y)∂x[2q(1− q)∂xp]− ∂y[2q(1− q)∂yp] , (60)

∂tp = −δ(y)∂2xp− ∂2yp− (1− 2q)(δ(y)(∂xp)
2 + (∂yp)

2) , (61)

with the boundary conditions

p(x, y, 0) = λΘ(x) +

∫ q(x,y,0)

ρ̄

dz

z(1− z)
, p(x, y, 1) = λΘ(x) , (62)
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and where Θ(x) is the Heaviside theta function. Note that (59) implies that the cumulant generating function
ln
〈
eλQT

〉
scales as T 3/4. In particular, at order 2 in λ, we recover the correct scaling of the variance (38).

From the solution of the MFT equations (60) to (62), the cumulants of QT are then obtained by expanding the

cumulant generating function ψ̂ (59) in powers of λ. In practice, it is actually simpler to compute them through the
derivative

dψ̂

dλ
=

∫ ∞

0

dx

∫ ∞

−∞
dy[q(x, y, 1)− q(x, y, 0)] , (63)

since (q, p) is the saddle point of S + F − λQT .
Furthermore, this MFT approach also gives access to the correlations between the integrated current QT and the

density of particles ρ(x, y, t), which are encoded in the correlation profiles (10), which can be computed in MFT as [12]〈
ηr⃗=(x,y)(T )e

λQT
〉

⟨eλQT ⟩
≃
∫
DρDH ρ(x, y, 1) e−T

3/4(S[ρ,H]+F [ρ(x,y,0)]−λ
∫ ∞
0

dx
∫ ∞
−∞ dy[ρ(x,y,1)−ρ(x,y,0)])∫

DρDH e−T
3/4(S[ρ,H]+F [ρ(x,y,0)]−λ

∫ ∞
0

dx
∫ ∞
−∞ dy[ρ(x,y,1)−ρ(x,y,0)])

≃
T→∞

q(x, y, 1) . (64)

The correlation profiles thus coincide with the solution of the MFT equations (60-62) at final time t = 1. In turn,
expanding this solution in powers of λ gives the long-time behaviour of the correlations, for instance

q(x, y, 1) ≃
T→∞

⟨ηr⃗(T )⟩+ λ
(
⟨ηr⃗(T )QT ⟩ − ⟨ηr⃗(T )⟩ ⟨QT ⟩

)
+O(λ2) . (65)

Thus, we only need to compute the first order in λ of q to deduce the correlation profile c
(Comb)
r⃗ (T ) and the current

fluctuations
〈
Q2
T

〉
(Comb)

. But first we show that the MFT equations, derived from the guess on the stochastic

current (47,49), reproduce known results in the low-density limit [26], which thus validates them.

3. Solution for the full distribution in the low-density limit

In 1D, the SEP at low density reduces to a system of independent Brownian particles [10]. This system has recently
been studied on the comb [26], and provides a benchmark for the MFT equations (60-62). Keeping only the leading
order in q, Eqs. (60-62) reduce to

∂tq = δ(y)∂2xq + ∂2yq − δ(y)∂x[2q∂xp]− ∂y[2q∂yp] , (66)

∂tp = −δ(y)∂2xp− ∂2yp− δ(y)(∂xp)
2 − (∂yp)

2 , (67)

with the boundary conditions

p(x, y, 0) = λΘ(x) + ln

(
q(x, y, 0)

ρ̄

)
, p(x, y, 1) = λΘ(x) . (68)

These equations can be solved, for arbitrary λ, by the same Cole-Hopf transform as in the 1D case [5]. We first
introduce

Q = qe−p , P = ep . (69)

Inserting this change of functions into (66-68), we obtain that Q and P satisfy simple diffusion and anti-diffusion
equations on the comb,

∂tQ = δ(y)∂2xQ+ ∂2yQ , ∂tP = −δ(y)∂2xP − ∂2yP , (70)

with the boundary conditions

Q(x, y, 0) = ρ̄ e−λΘ(x) , P (x, y, 1) = eλΘ(x) . (71)

The solution of these equations can be expressed in terms of the Green’s function of the diffusion equation on the
comb, Gt(x, y|x′, y′), given explicitly in the Laplace domain by (see Appendix A)∫ ∞

0

e−stGt(x, y|x′, y′)dt =
1

2
√
2 s1/4

e−
√
2s1/4|x−x′|−√

s(|y|+|y′|)+ 1

2
√
s
δ(x−x′)Θ(yy′)

(
e−

√
s|y−y′| − e−

√
s|y+y′|

)
. (72)
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Such solution reads,

Q(x, y, t) = ρ̄

∫ ∞

−∞
dx′dy′Gt(x, y|x′, y′)e−λΘ(x′) , P (x, y, t) =

∫ ∞

−∞
dx′dy′G1−t(x, y|x′, y′)eλΘ(x′) . (73)

Going back using (69) to the solution q giving the correlation profiles (64), we finally get

q(x, y, 1) = ρ̄ eλΘ(x)

∫ ∞

−∞
dx′dy′G1(x, y|x′, y′)e−λΘ(x′) , (74)

which coincides with the result of Ref. [26], thus validating our MFT approach on the comb.

4. Solution for the fluctuations at arbitrary density

We now turn to the determination of the fluctuations of QT and the associated correlations for the SEP, at arbitrary
density. Expanding the saddle-point solution (q, p) in powers of λ,

q = ρ̄+ λq1 +O(λ2) , p = λp1 +O(λ2) , (75)

we obtain the MFT equations at first order,

∂tq1 = δ(y)∂2xq1 + ∂2yq1 − 2ρ̄(1− ρ̄)
[
δ(y)∂2xp+ ∂2yp

]
, (76)

∂tp1 = −δ(y)∂2xp1 − ∂2yp1 , (77)

with the boundary conditions

p1(x, y, 0) = Θ(x) +
q1(x, y, 1)

ρ̄(1− ρ̄)
, p1(x, y, 1) = Θ(x) . (78)

The equation for p1 can be solved explicitly using the Green’s function (72),

p1(x, y, t) =

∫ ∞

0

dx′
∫ ∞

−∞
dy′G1−t(x, y|x′, y′) . (79)

Using the expression of the propagator in the Laplace domain (72), p1 can be written as an inverse Laplace transform,

p1(x, y, t) = Θ(x)− L−1

[
1

2s
sign (x) e−

√
2s1/4|x|−

√
s|y|
]
(1− t) . (80)

The equation for q1 can be solved similarly by noticing that the change of functions

q1 = ρ̄(1− ρ̄)p1 + q̃1 (81)

yields an equation for q̃1,

∂tq̃1 = δ(y)∂2xq̃1 + ∂2y q̃1 , q̃1(x, y, 0) = −ρ̄(1− ρ̄)Θ(x) , (82)

which is identical to the equation for p1, up to rescaling by −ρ̄(1− ρ̄) and changing t→ 1− t. Therefore, the solution
for q1 reads

q1(x, y, t) = ρ̄(1− ρ̄) [p1(x, y, t)− p1(x, y, 1− t)] . (83)

In particular, at final time t = 1, this gives the correlation profile

c
(Comb)

r⃗=(xT 1/4,y
√
T )
(T ) = Cov(QT , ηr⃗(T )) ≃

T→∞
q1(x, y, 1) = ρ̄(1− ρ̄) [Θ(x)− p1(x, y, 0)] . (84)

Using the expression of p1 (80) yields

c
(Comb)

r⃗=(xT 1/4,y
√
T )
(T ) ≃

T→∞
ρ̄(1− ρ̄)L−1

[
1

2s
sign (x) e−

√
2s1/4|x|−

√
s|y|
]
(t = 1) , (85)
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which coincides with the expression (40) obtained from microscopic calculations. This further supports the validity
of the MFT description of the SEP on the comb.

The fluctuations of QT can then by deduced using (63) at order 1 in λ, which together with (83) yields

〈
Q2
T

〉
(Comb)

≃
T→∞

T 3/4 2ρ̄(1− ρ̄)

∫ ∞

0

dx

∫ ∞

−∞
dy [1− p1(x, y, 0)] . (86)

Using the expression of p1 (80), the fluctuations can be computed explicitly, and read

〈
Q2
T

〉
(Comb)

≃
T→∞

ρ̄(1− ρ̄)

√
2

Γ( 74 )
T 3/4 , (87)

reproducing again the microscopic result (38).
Unlike the microscopic formalism which does not yield closed equations for higher-order cumulants of QT and the

associated correlation profiles, the MFT equations (60) to (62) obtained here are closed, and open the way to obtaining
the full distribution of QT for the SEP on the comb. This method could also be applied to other models than the
SEP on the comb, as it was done for the usual MFT in 1D or higher dimensions [6].

IV. 2D AND HIGHER-DIMENSIONAL LATTICES

As we have seen by considering the comb lattice, lifting the noncrossing condition is not sufficient for the correlations
to reach a steady state at long times, and thus yield a linear behaviour for the fluctuations ofQt. We now lift the second
dynamical constraint by considering looped lattices. A single particle can now give an arbitrarily high contribution
to Qt by looping several times through the bond (0, 0)− (1, 0).

As for the comb, we first derive the correlation profiles using a microscopic approach based on the master equation
of the process, from which we deduce the current fluctuations. We then pinpoint the key role played by the looped
structure of the lattice by showing that the main contribution to Qt comes from particles that circulate repeatedly
through the bond (0, 0)− (1, 0), thus giving rise to vortices in the current profile.

A. Fluctuations and correlation profiles in D = 2

In 2D, the microscopic derivation of the current fluctuations and the correlation profiles follows a similar procedure
to the one we adopted for the comb in Section IIIA. In the 2D case the master equation is given by

∂tPt(η) =
∑
x,y

[
P (ηx,y+, t)− P (η, t)

]
+
∑
x,y

[
P (ηx+,y, t)− P (η, t)

]
, (88)

where we kept the same notations as in Section IIIA. One can see that the uniform distribution in Eq. (5) also
represents the equilibrium state in 2D. Using the master equation (88) we first obtain the evolution equation verified
by ψ introduced in Eq. (7), namely

∂tψ(λ, t) = (eλ − 1)

〈
η0,0(1− η1,0)e

λQt
〉

⟨eλQt⟩
+ (e−λ − 1)

〈
η1,0(1− η0,0)e

λQt
〉

⟨eλQt⟩
. (89)

Let us now consider the evolution of wx,y introduced in Eq. (10). As for the comb, only an exchange of occupations
between sites (0, 0) and (1, 0) can affect the current, and thus it is convenient to consider separately those sites from
the sites in the bulk. Using the master equation (88) we get for the bulk, i.e. for (x, y) ̸= {(0, 0), (1, 0)},

∂twx,y =
∑
µ=±1

∇y
µwx,y +

∑
µ=±1

∇x
µwx,0

+ (eλ − 1)

[〈
ηx,yη0,0(1− η1,0)e

λQt
〉

⟨eλQt⟩
− wx,y

〈
η0,0(1− η1,0)e

λQt
〉

⟨eλQt⟩

]

+ (e−λ − 1)

[〈
ηx,yη1,0(1− η0,0)e

λQt
〉

⟨eλQt⟩
− wx,y

〈
η1,0(1− η0,1)e

λQt
〉

⟨eλQt⟩

]
, (90)
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and for the boundaries

∂tw0,0 =

[
e−λ − (e−λ − 1)w0,0

]
∂tψ(λ, t)

e−λ − 1
+
∑
µ=±1

∇y
µw0,0 +∇x

−1w0,0, (91)

∂tw1,0 =

[
eλ − (eλ − 1)w1,0

]
∂tψ(λ, t)

eλ − 1
+
∑
µ=±1

∇y
µw1,0 +∇x

1w1,0, (92)

where we have used Eq. (89). Expanding the evolution equation of the generating function (89) up to order 2 in λ
we find

∂t
〈
Q2
t

〉
2

= c
(2D)
0,0 (t)− c

(2D)
1,0 (t) + ρ̄(1− ρ̄), (93)

where, analogously to Eq. (11), we have defined

c
(2D)
r⃗=(x,y)(t) ≡ ⟨ηr⃗Qt⟩c = ⟨ηr⃗Qt⟩ (94)

(indeed, ⟨Qt⟩ = 0). At equilibrium, correlations between sites vanish up to order 1 in λ, so that at leading order we
get from Eqs. (90) to (92)

∂tc
(2D)
r⃗ (t) =

∑
µ=±1

∇y
µc

(2D)
r⃗ (t) +

∑
µ=±1

∇x
µc

(2D)
r⃗ (t), (95)

∂tc
(2D)
0,0 (t) = −

∂t
〈
Q2
t

〉
2

+
∑
µ=±1

∇y
µc

(2D)
0,0 (t) +∇x

−1c
(2D)
0,0 (t), (96)

∂tc
(2D)
1,0 (t) =

∂t
〈
Q2
t

〉
2

+
∑
µ=±1

∇y
µc

(2D)
1,0 (t) +∇x

1c
(2D)
1,0 (t). (97)

Equations (93) and (95) to (97) now form a closed set, which can be solved in the Fourier-Laplace domain by
introducing

c̃k,q(u) =
∑
x,y

∫ +∞

0

e−uteikx+iqyc
(2D)
r⃗=(x,y)(t) dt . (98)

Applying the Laplace transform to Eq. (93) and the Fourier-Laplace transform to Eqs. (95) to (97) we now obtain

u
κ(u)

2
=
ρ̄(1− ρ̄)

u
+ c0,0(u)− c1,0(u), (99)

u c̃k,q(u) = 2(cos q − 1)c̃k,q(u) + 2(cos k − 1)c̃k,q(u) +
ρ̄(1− ρ̄)

u
(eik − 1). (100)

In contrast to the case of the comb, the relation (100) verified by c̃k,q(u) does not involve other unknown quantities,
and then we can deduce directly the correlations in real space (but still in the Laplace domain) by inverse Fourier
transform:

c
(2D)
r⃗=(x,y)(u) =

ρ̄(1− ρ̄)

u

∫∫ π

−π

dk

2π

dq

2π

(eik − 1)e−ikx−iqy

u+ 2(1− cos q) + 2(1− cos k)
. (101)

This expression holds for all u, and thus at all times t by inverse Laplace transform. Contrary to the case of the

comb, in which c
(Comb)
r⃗=(x,y)(u) assumes the scaling form (39), here c

(2D)
r⃗=(x,y)(u) converges to a finite value, indicating that

the correlations in the time domain converge to

c
(2D)
r⃗=(x,y)(t) ≃

t→∞

ρ̄(1− ρ̄)

2

∫∫ π

−π

dk

2π

dq

2π

(eik − 1)e−ikx−iqy

(1− cos q) + (1− cos k)
. (102)

This correlation profile is shown in Fig. 3. It still displays a dipolar structure, with positive correlations for x ≥ 1
and negative correlations for x ≤ 0, indicating that a fluctuation that increases Qt corresponds to an increase of the
density on the right of the bond (0, 0)− (1, 0), and a decrease on its left. However, unlike the cases of 1D (3) or comb
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FIG. 3. Left: SEP on a 2D lattice. The integrated current Qt is measured on the bond between the sites (0, 0) and (1, 0).

Right: correlation profile c
(2D)

r⃗=(x,y)(t)/[ρ̄(1− ρ̄)] for large t, obtained from (102).

geometry (40) (in which the correlations spread with time and thus vary slowly at the scale of the lattice spacing),
the correlations (102) in 2D are stationary and display important variations between neighbouring lattice sites. Such
structure cannot be captured by macroscopic approaches like MFT.

Finally, the fact that the correlations (102) are stationary yields that the fluctuations of the integrated current Qt,
which can be deduced from Eq. (93) as〈

Q2
t

〉
(2D)

≃
t→∞

2ρ̄(1− ρ̄)

[
1 +

1

2

∫∫ π

−π

dk

2π

dq

2π

(eik − 1)(1− e−ik)

2(1− cos q) + 2(1− cos k)

]
t = ρ̄(1− ρ̄)t , (103)

grow linearly with time as in the case of finite systems.
To show that the looped structure of the lattice plays a central role in the fact that the correlations in this infinite

system reach a steady state, we now turn to an alternative formalism. This will give additional insight on the behavior
of the currents in higher dimensions.

B. Microscopic calculation in higher dimensions

To identify the physical origin of the stationary correlation profile (102), we now analyse the current-current
correlations. Since the correlation profile (102) is stationary, there is no natural large length scale in the long-time
limit that can be used to build a continuous description like the MFT to analyse these currents, which forces us to
keep a discrete formalism. A similar approach was used in [41, 42] for the 1D SEP.

1. Constructing a microscopic action formalism

We start by breaking the total measurement time T into M steps of duration dt. Here and henceforth, we will call
by convention ν⃗ each one of the basis vectors of the lattice {e⃗1, . . . , e⃗D}, while µ⃗ ∈ {±e⃗1, . . . ,±e⃗D}. We then write
the microscopic conservation relation on each site r⃗,

ηr⃗(t+ dt)− ηr⃗(t) = dt
∑
ν⃗

[⃗
jr⃗−ν⃗(t)− j⃗r⃗(t)

]
· ν⃗ , (104)

where j⃗r⃗(t) is the current from site r⃗ at time t, so that j⃗r⃗(t) · ν⃗dt is the number of particles that have left the site in
direction ν⃗ during dt. The current through each bond can be described as

j⃗r⃗(t)dt =
∑
ν⃗

[ηr⃗(1− ηr⃗+ν⃗)ξr⃗,ν⃗(t)− ηr⃗+ν⃗(1− ηr⃗)ξr⃗+ν⃗,−ν⃗(t)] ν⃗ , (105)

where ξr⃗,µ⃗(t) is a Poissonian random variable determining whether a particle located at r⃗ at time t jumps in direction
µ⃗ in [t, t+ dt], namely

ξr⃗,µ⃗(t) =

{
1 with probability γdt ,
0 with probability 1− γdt .

(106)
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These stochastic equations fully determine the dynamics of the system, and are the microscopic equivalent of (46,47).
Note that, unlike what is usually done in the SEP, here the exponential “clocks” are not assumed to be in corre-
spondence of the particles, but rather on each bond of the lattice. The rate γ can be related to the jump rate of the
particles as follows: if a particle jumps with probability dt/τ⋆ in any of the 2D directions, it means that it jumps
in a given direction with probability dt/(2Dτ⋆), and therefore the rate γ = 1/(2Dτ⋆). (In the previous sections, we
have considered γ = 1.) It is simple to check that Eqs. (104) to (106) lead to the standard master equation for the
occupations in SEP, i.e.

Pt+dt[η] = Pt[η] + γ dt
∑
r⃗

∑
µ⃗

(
ηr⃗+µ⃗(1− ηr⃗)Pt

[
ηr⃗,µ⃗

]
− ηr⃗(1− ηr⃗+µ⃗)Pt[η]

)
, (107)

where we have denoted as ηr⃗,µ⃗ the configuration in which the occupations of the sites at positions r⃗ and r⃗ + e⃗µ have
been exchanged.

Next, Eqs. (104) to (106) can be used to build an action formalism, at the microscopic level, as follows. First, the
knowledge of the joint distribution of all ξr⃗,µ⃗(t) allows to write the joint distribution of the full history of η as

P [η, j⃗] =

〈∏
r⃗,t

δηr⃗(t+dt)−ηr⃗(t),dt
∑

ν⃗ (⃗jr⃗−ν⃗(t)−j⃗r⃗(t))·ν⃗ × δ⃗jr⃗(t)dt,
∑

ν⃗ ν⃗[ηr⃗(1−ηr⃗+ν⃗)ξr⃗,ν⃗(t)−ηr⃗+ν⃗(1−ηr⃗)ξr⃗+ν⃗,−ν⃗(t)]

〉
ξ

=
∏
r⃗,t

δηr⃗(t+dt)−ηr⃗(t),dt
∑

ν⃗ (⃗jr⃗−ν⃗(t)−j⃗r⃗(t))·ν⃗ ×
〈
δ⃗jr⃗(t)dt,

∑
ν⃗ ν⃗[ηr⃗(1−ηr⃗+ν⃗)ξr⃗,ν⃗(t)−ηr⃗+ν⃗(1−ηr⃗)ξr⃗+ν⃗,−ν⃗(t)]

〉
ξ
, (108)

where in the second line we used the fact that all the variables ξµ⃗,t are independent. We then rewrite each Kroenecker
delta using its integral representation as

δηr⃗(t+dt)−ηr⃗(t),dt
∑

ν⃗ (⃗jr⃗−ν⃗(t)−j⃗r⃗(t))·ν⃗ =

∫ π

−π

dθr(t)

2π
exp

[
iθr(t)

(
ηr⃗(t+ dt)− ηr⃗(t)− dt

∑
ν⃗

(⃗
jr⃗−ν⃗(t)− j⃗r⃗(t)

)
· ν⃗

)]
,

(109)

and similarly

δ⃗jr⃗(t)dt,
∑

ν⃗ ν⃗[ηr⃗(1−ηr⃗+ν⃗)ξr⃗,ν⃗(t)−ηr⃗+ν⃗(1−ηr⃗)ξr⃗+ν⃗,−ν⃗(t)]

=

∫ π

−π

dφ⃗r⃗(t)

(2π)D
exp

[
iφ⃗r⃗(t) ·

(
j⃗r⃗(t)dt

∑
ν⃗

ν⃗[ηr⃗(1− ηr⃗+ν⃗)ξr⃗,ν⃗(t)− ηr⃗+ν⃗(1− ηr⃗)ξr⃗+ν⃗,−ν⃗(t)]

)]
. (110)

We can now easily compute the average over ξ that appears in Eq. (108) by using its distribution given in Eq. (106),
finding〈

δ⃗jr⃗(t)dt,
∑

ν⃗ ν⃗[ηr⃗(1−ηr⃗+ν⃗)ξr⃗,ν⃗(t)−ηr⃗+ν⃗(1−ηr⃗)ξr⃗+ν⃗,−ν⃗(t)]

〉
ξ

=

∫ π

−π

dφ⃗r⃗(t)

(2π)D
eiφ⃗r⃗(t)·⃗jr⃗(t)dt

∏
ν⃗

〈
e−iφ⃗r⃗(t)·ν⃗ηr⃗(1−ηr⃗+ν⃗)ξr⃗,ν⃗(t)eiφ⃗r⃗(t)·ν⃗ηr⃗+ν⃗(1−ηr⃗)ξr⃗+ν⃗,−ν⃗(t)

〉
ξ

=

∫ π

−π

dφ⃗r⃗(t)

(2π)D
eiφ⃗r⃗(t)·⃗jr⃗(t)dt

∏
ν⃗

[
1 + ηr⃗(1− ηr⃗+ν⃗)γdt

(
e−iφ⃗r⃗(t)·ν⃗ − 1

)] [
1 + ηr⃗+ν⃗(1− ηr⃗)γdt

(
eiφ⃗r⃗(t)·ν⃗ − 1

)]
. (111)

Up to first order in dt we can exponentiate〈
δ⃗jr⃗(t)dt,

∑
ν⃗ ν⃗[ηr⃗(1−ηr⃗+ν⃗)ξr⃗,ν⃗(t)−ηr⃗+ν⃗(1−ηr⃗)ξr⃗+ν⃗,−ν⃗(t)]

〉
ξ

=

∫ π

−π

dφ⃗r⃗(t)

(2π)D
exp

{
iφ⃗r⃗(t) · j⃗r⃗(t)dt+ γdt

∑
ν⃗

[
ηr⃗(1− ηr⃗+ν⃗)(e

−iφ⃗r⃗(t)·ν⃗ − 1) + ηr⃗+ν⃗(1− ηr⃗)(e
iφ⃗r⃗(t)·ν⃗ − 1)

]}
, (112)

which together with Eq. (109) allows to rewrite the probability distribution in Eq. (108) as

P [η, j⃗] =

∫ π

−π

∏
r⃗,t

dφ⃗r⃗(t)

(2π)D
dθr⃗(t)

2π
exp

{
T∑
t=0

∑
r⃗

[
iφ⃗r⃗(t) · j⃗r⃗(t)dt− iθr(t)

(
ηr⃗(t+ dt)− ηr⃗(t)− dt

∑
ν⃗

(⃗
jr⃗−ν⃗(t)− j⃗r⃗(t)

)
· ν⃗

)

+ γdt
∑
ν⃗

(
ηr⃗(1− ηr⃗+ν⃗)(e

−iφ⃗r⃗(t)·ν⃗ − 1) + ηr⃗+ν⃗(1− ηr⃗)(e
iφ⃗r⃗(t)·ν⃗ − 1)

)]}
.

(113)
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Taking the limit dt→ 0 (i.e. M → ∞ with T fixed) finally yields

P [η, j⃗] =

∫ π

−π

∏
r⃗,t

dφ⃗r⃗(t)

(2π)D
dθr⃗(t)

2π
exp

{∫ T

0

dt
∑
r⃗

[
iφ⃗r⃗ · j⃗r⃗(t)− iθr

(
d

dt
ηr⃗ −

∑
ν⃗

(⃗
jr⃗−ν⃗(t)− j⃗r⃗(t)

)
· ν⃗

)

+ γ
∑
ν⃗

(
ηr⃗(1− ηr⃗+ν⃗)(e

−iφ⃗r⃗·ν⃗ − 1) + ηr⃗+ν⃗(1− ηr⃗)(e
iφ⃗r⃗·ν⃗ − 1)

)]}
. (114)

In the following, it will prove convenient to Wick-rotate the two Lagrange multipliers as iθ 7→ θ and iφ⃗ 7→ φ⃗, which
gives the real action

S =

∫ T

0

dtL =

∫ T

0

dt
∑
r⃗

Lr⃗[{η, j⃗, θ, φ⃗}], (115)

Lr⃗ ≡ −φ⃗r⃗ · j⃗r⃗ + θr⃗

[
η̇r⃗ −

∑
ν⃗

(⃗
jr⃗−ν⃗ − j⃗r⃗

)
· ν⃗

]
− γ

∑
ν⃗

[
ηr⃗ (1− ηr⃗+ν⃗)

(
e−ν⃗·φ⃗r⃗ − 1

)
+ ηr⃗+ν⃗ (1− ηr⃗)

(
eν⃗·φ⃗r⃗ − 1

)]
, (116)

where again the sum over r⃗ runs over all the sites of a D-dimensional cubic lattice, while ν⃗ ∈ {e⃗1, e⃗2, . . . , e⃗D}. Note
that in this final expression we have omitted everywhere the time dependence, so as to lighten the notation. The joint
probability distribution of the occupations ηr⃗(t) and currents j⃗r⃗(t) then reads

P [η, j⃗] =

∫ iπ

−iπ

∏
r⃗,t

dφ⃗r⃗(t)

(2π)D
dθr⃗(t)

2π
e−S . (117)

2. Application to the integrated current

To tackle the current fluctuations at the origin r⃗ = 0⃗, we first introduce the generating functional

Z[λ⃗] ≡

〈
exp

(
λ⃗ ·
∫ T

0

dt j⃗0⃗(t)

)〉
, (118)

where the average is intended over P [η, j⃗] given in Eq. (117). We then minimize the quantity [S − λ⃗ ·
∫ T
0
dt j⃗0⃗(t)]

with respect to the fields ηr⃗(t), j⃗r⃗(t), and to the Lagrange multipliers θr⃗(t), φ⃗r⃗(t), as detailed in Appendix B. Such
minimizing procedure renders the following saddle-point equations.

Occupations: grouping all terms proportional to δθr⃗(t), we find

η̇r⃗ =
∑
ν⃗

ν⃗ ·
(⃗
jr⃗−ν⃗ − j⃗r⃗

)
. (119)

Currents: from the terms proportional to δφ⃗r⃗(t),(⃗
jr⃗

)
ν
= γ

[
ηr⃗(1− ηr⃗+ν⃗)e

−ν⃗·φ⃗r⃗ − ηr⃗+ν⃗(1− ηr⃗)e
ν⃗·φ⃗r⃗

]
. (120)

Lagrange multipliers: from the terms proportional to δj⃗r⃗(t) and δηr⃗(t), respectively,

(φ⃗r⃗)ν = θr⃗ − θr⃗+ν⃗ − δr⃗,⃗0λν , (121)

θ̇r⃗ = −γ
∑
ν⃗

[
(1− ηr⃗+ν⃗)

(
e−ν⃗·φ⃗r⃗ − 1

)
− ηr⃗+ν⃗

(
eν⃗·φ⃗r⃗ − 1

)
+ (1− ηr⃗−ν⃗)

(
eν⃗·φ⃗r⃗−ν⃗ − 1

)
− ηr⃗−ν⃗

(
e−ν⃗·φ⃗r⃗−ν⃗ − 1

)]
, (122)

with the constraint

θr⃗(t = T ) = 0. (123)

In all these equations, the subscript ν indicates the ν−th component of a given (vectorial) quantity. In the following,

we will choose without loss of generality λ⃗ = λ e⃗1, and study the fluctuations of the first component of the current j⃗0⃗.
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Crucially, note that by taking variations as δηr⃗(t) (see Appendix B) we are seemingly disregarding the discrete
nature of the occupations ηr⃗(t). In principle, this is automatically taken into account by having enforced the con-
servation relations (104) to (106), for a suitable choice of the initial conditions [41]. Still, we envision that a more
careful treatment may be necessary in order to correctly capture the correlations between neighbouring sites, which
is especially relevant in finite 1D systems — see the discussion in Appendix C. Since these correlations vanish in infi-
nite systems at equilibrium (see e.g. Section IVA), this point is however immaterial for what concerns the following
discussion, which is restricted to regular lattices in D ≥ 2.
Note that, at this stage, all the fields that appear in Eqs. (119) to (122) are to be considered time dependent. If a

stationary solution exists, however, one expects to be able to write at long times T

S =

∫ T

0

dtL(t) ≃ TL∗, (124)

where L∗ is the Lagrangian of Eqs. (115) and (116) computed in correspondence of the stationary fields. Focusing on
the stationary solution has been sometimes justified a priori, in D = 1 (and unless dynamical phase transitions are
expected [6]), on the basis of an additivity principle conjectured in [3]. In the following, however, we will not assume
time independence, but we will rather determine that the time-independent solution of Eqs. (119) to (122) indeed
provides the dominant contribution at long times.

Still, as they stand, Eqs. (119) to (122) cannot be readily solved because they are nonlinear in φ⃗r⃗. To make progress,
one can expand all the fields in powers of λ, e.g.

ηr⃗ = η
(0)
r⃗ + λη

(1)
r⃗ + λ2η

(2)
r⃗ + . . . , (125)

and collect terms proportional to equal powers of λ. Note, however, that the saddle-point equations would remain

nonlinear unless the leading-order term φ⃗
(0)
r⃗ vanishes identically. Under the assumption that φ⃗

(0)
r⃗ ≡ 0⃗, which we adopt

henceforth, the saddle-point equations become linear and can in principle be solved to any desired order in λ, thus
giving access to the various cumulants. We will justify this assumption a posteriori, by comparing our final result
both to numerical simulations, and to the fluctuations of the integrated current predicted in Eq. (103) starting from
the master equation, finding in both cases an excellent agreement.

Solution at O
(
λ0
)
. — We first search for a solution of the saddle-point Eqs. (119) to (122) with φ⃗

(0)
r⃗ ≡ 0⃗, up to

their leading order in λ. By inspecting Eq. (122), which rules the evolution of θr⃗(t), the assumption above implies

θ̇
(0)
r⃗ = 0, (126)

while Eq. (121) gives

θ
(0)
r⃗ = θ

(0)
r⃗+ν⃗ . (127)

Using the final condition θr⃗(t = T ) = 0 in Eq. (123), we then deduce that θ
(0)
r⃗ (t) ≡ 0 identically for all r⃗ and t. There

remains to solve Eqs. (119) and (120) for the occupations and the currents, which simplify as

η̇
(0)
r⃗ =

∑
ν⃗

ν⃗ ·
(⃗
j
(0)
r⃗−ν⃗ − j⃗

(0)
r⃗

)
, (128)

and (⃗
j
(0)
r⃗

)
ν
= γ

(
η
(0)
r⃗ − η

(0)
r⃗+ν⃗

)
, (129)

respectively. Note that j⃗
(0)
r⃗ can be easily eliminated from Eq. (128) by using Eq. (129), which gives

∂tη
(0)
r⃗ =

∑
ν⃗

(
η
(0)
r⃗+ν⃗ + η

(0)
r⃗−ν⃗ − 2η

(0)
r⃗

)
≡ ∆η

(0)
r⃗ , (130)

where in the last step we recognized the discrete Laplace operator. This equation being dissipative, its solutions decay
toward a spatially homogeneous constant after an initial temporal transient. At long times, the contribution of this
transient solution is not extensive in T , which is why we discard it and focus instead on the stationary solution. Here

η
(0)
r⃗ ≡ ρ̄, (131)
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where we identified the constant value assumed everywhere by η
(0)
r⃗ as the average density ρ̄ of the system, and finally

from Eq. (129) we obtain trivially

j⃗
(0)
r⃗ = 0⃗. (132)

Solution at O(λ). — We now collect terms of O(λ) in the saddle-point Eqs. (119) to (122), assume again φ⃗
(0)
r⃗ ≡ 0⃗,

and insert η
(0)
r⃗ ≡ ρ̄ from Eq. (131). This renders the following relations for the occupations,

η̇
(1)
r⃗ =

∑
ν⃗

ν⃗ ·
(⃗
j
(1)
r⃗−ν⃗ − j⃗

(1)
r⃗

)
, (133)

for the currents, (⃗
j
(1)
r⃗

)
ν
= γ

[
η
(1)
r⃗ − η

(1)
r⃗+ν⃗ − 2ρ̄(1− ρ̄)

(
φ⃗
(1)
r⃗

)
ν

]
, (134)

and finally for the Lagrange multipliers, (
φ⃗
(1)
r⃗

)
ν
= θ

(1)
r⃗ − θ

(1)
r⃗+ν⃗ − δr⃗,⃗0 δν,1, (135)

θ̇r⃗ = −γ
∑
ν⃗

ν⃗ ·
(
φ⃗
(1)
r⃗−ν⃗ − φ⃗

(1)
r⃗

)
, (136)

with the constraint θ
(1)
r⃗ (t = T ) = 0.

We note from the onset that φ⃗
(1)
r⃗ = 0 is no longer a valid solution. However, φ⃗

(1)
r⃗ can be promptly eliminated from

Eq. (136) by using Eq. (135), which gives

∂tθ
(1)
r⃗ = −γ

∑
ν⃗

(
θ
(1)
r⃗+ν⃗ + θ

(1)
r⃗−ν⃗ − 2θ

(1)
r⃗

)
+ γ

(
δr⃗,e⃗1 − δr⃗,⃗0

)
= −γ∆θ(1)r⃗ + γ

(
δr⃗,e⃗1 − δr⃗,⃗0

)
. (137)

This anti-diffusion equation can in principle be solved for any time t by introducing the inverted time variable τ = T−t,
so that θ

(1)
r⃗ (t = T ) = 0 becomes an initial condition. However, note that Eq. (137) this way becomes a bona fide

discrete diffusion equation in τ , hence we expect it to eventually reach a stationary solution for sufficiently large T .
This stationary solution dominates the saddle-point integral, in agreement with the expectations spelled out under
Eq. (124). We are thus left with

∆θ
(1)
r⃗ =

(
δr⃗,e⃗1 − δr⃗,⃗0

)
, (138)

which can be easily solved in Fourier space by introducing

θ
(1)
r⃗ =

∫
BZ

dDq

(2π)D
e−iq⃗·r⃗θ

(1)
q⃗ ↔ θ

(1)
q⃗ =

∑
r⃗

eiq⃗·r⃗θ
(1)
r⃗ , (139)

where each of the D integrals is intended over the Brillouin zone qj ∈ [−π, π]. Fourier transforming Eq. (138) gives

2 θ
(1)
q⃗

D∑
ν=1

[cos(qν)− 1] = eiq1 − 1, (140)

and thus

θ
(1)
r⃗ =

∫
BZ

dDq

(2π)D
e−iq⃗·r⃗

eiq1 − 1

2
∑D
ν=1 [cos(qν)− 1]

. (141)

One can check that this function is real, and has a maximum at r⃗ = 0⃗, where θ
(1)

0⃗
= 1

2D . Note that the defining

integral (117) for P [η, j⃗] was intended along the imaginary axis, while the stationary field θr⃗ found in Eq. (141) is
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real; this requires a deformation of the complex integration contour that we assume to be legit, the integrand function
exp(−S) being analytic.

The stationary solution for φ⃗
(1)
r⃗ is then found immediately, using its saddle-point equation (135), in terms of θ

(1)
r⃗

given in Eq. (141). This can be used to reconstruct the stationary currents j⃗
(1)
r⃗ given in Eq. (134), provided that η

(1)
r⃗

is known first. We then focus on η
(1)
r⃗ , which can be found from its saddle-point equation (133) by eliminating j⃗

(1)
r⃗

using Eq. (134). This gives

η̇
(1)
r⃗ = γ∆η

(1)
r⃗ + 2ρ̄(1− ρ̄)γ

∑
ν⃗

ν⃗ ·
(
φ⃗
(1)
r⃗ − φ⃗

(1)
r⃗−ν⃗

)
= γ∆η

(1)
r⃗ + 2ρ̄(1− ρ̄)γ

[
−∆θ

(1)
r⃗ +

(
δr⃗,e⃗1 − δr⃗,⃗0

)]
, (142)

where in the second step we replaced φ
(1)
r⃗ using Eq. (135). As we commented above, the dominant contribution comes

from enforcing ∂tθ
(1)
r⃗ = 0, and hence the stationarity condition for θ

(1)
r⃗ in Eq. (138) simplifies Eq. (142) as

η̇
(1)
r⃗ = γ∆η

(1)
r⃗ . (143)

This simple diffusion equation for η
(1)
r⃗ admits a spatially uniform solution at long times. To find it, we note that at

large distance it must be ηr⃗ → ρ̄, and thus in particular η
(1)
r⃗ → 0. This fixes the stationary solution

η
(1)
r⃗ ≡ 0. (144)

We can finally use Eq. (134) to find the currents j⃗
(1)
r⃗ as(⃗

j
(1)
r⃗

)
ν
= −2γρ̄(1− ρ̄)

(
φ⃗
(1)
r⃗

)
ν

= −2γρ̄(1− ρ̄)
[
θ
(1)
r⃗ − θ

(1)
r⃗+ν⃗ − δr⃗,⃗0 δν,1

]
= 2γρ̄(1− ρ̄)

[
δr⃗,⃗0 δν,1 +

∫
BZ

dDq

(2π)D
e−iq⃗·r⃗

(e−iqν − 1)(eiq1 − 1)

2
∑D
µ=1 [cos(qµ)− 1]

]
, (145)

where in the second and third step we used Eqs. (135) and (141), respectively.

Solution for the fluctuations of the integrated current. — Equation (145) can be used to estimate the fluctuations
of the integrated current QT through the bond (0, 0)–(0, 1), when T is large. Indeed, in Eq. (118) we introduced its
generating functional

Z[λ⃗] =

∫
D[η, j⃗, θ, φ⃗] exp

[
−S + λ⃗ ·

∫ T

0

dt j⃗0⃗(t)

]
∝ exp

[
−S∗ + λ⃗ ·

∫ T

0

dt j⃗∗
0⃗
(t)

]
, (146)

where we indicated by S∗ the action in Eq. (115) computed in correspondence of the saddle-point fields, and similarly

j⃗∗
0⃗
(t) is the saddle-point current. In our case λ⃗ = λe⃗1 and the saddle-point current is stationary, whence

Z[λ] ∝ exp
[
−S∗ + λT

(⃗
j∗
0⃗

)
1

]
, (147)

where j⃗∗
0⃗
= j⃗

(0)

0⃗
+ λ⃗j

(1)

0⃗
+O

(
λ2
)
is the solution we evaluated in this Section, see Eqs. (132) and (145). Using that the

action S is stationary by construction at the saddle point, we can finally compute

〈
Q2
T

〉
=

1

2

d2 logZ[λ]

dλ2
≃ T

(⃗
j
(1)

r⃗=0⃗

)
1
= 2γρ̄(1− ρ̄)

(
1− 1

D

)
T, (148)

where we have identified QT =
∫ T
0
dt
(⃗
jr⃗=0⃗(t)

)
1
. This coincides, upon setting D = 2 and γ = 1, with the exact result

found in Eq. (103) using the master equation. Together with the results of the numerical simulations discussed in
the next Section, this puts the assumptions underlying the derivation presented in this Section on firmer grounds.
Besides, the microscopic approach presented here allows in principle to access higher-order moments of QT simply by
refining the solution for j⃗r⃗ toward higher orders in λ.
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FIG. 4. Plot of the solution j⃗
(1)
r⃗ given in Eq. (145) for D = 2, corresponding to a rare realization of the dynamics in which a

given particle circulates repeatedly through the horizontal bond at r⃗ = 0⃗, thus producing two specular vortices. In the plot

j⃗
(1)
r⃗ is rescaled by the prefactor 2γρ̄(1− ρ̄) that appears in Eq. (145).

3. Discussion and current-current correlation profile

We now discuss the physical interpretation of the quantities computed in Section IVB2 from the microscopic action
formalism. Following the ideas developed in Section III B 2 in the MFT formalism, we can show that

〈
ηr⃗(t) e

λQT
〉

⟨eλQT ⟩
=

∫
D[η, j⃗, θ, φ⃗] ηr⃗(t) exp

[
−S + λ⃗ ·

∫ T

0

dt j⃗0⃗(t)

]
∫

D[η, j⃗, θ, φ⃗] exp

[
−S + λ⃗ ·

∫ T

0

dt j⃗0⃗(t)

] ≃
T→∞

η∗r⃗ (t) , (149)

because the saddle point is identical in the numerator and the denominator. In particular, at first order in λ, this
yields

⟨ηr⃗(t)QT ⟩ = η
(1)
r⃗ = 0 , (150)

from (144). This result is apparently in net contrast with the correlations ⟨ηr⃗(T )QT ⟩ computed in Section IVA, which
do not vanish. But in fact, there is no contradiction since ⟨ηr⃗(T )QT ⟩ = Cov(ηr⃗(T ), QT ) measures the correlations
between the integrated current and the occupation at the same time T , while ⟨ηr⃗(t)QT ⟩ = Cov(ηr⃗(t), QT ) measures
these correlations at different times 1 ≪ t≪ T . Note that both are stationary: ⟨ηr⃗(T )QT ⟩ does not depend on T for
T → ∞; while, for a given large T , ⟨ηr⃗(t)QT ⟩ is independent of t. A similar discussion can be found in [43, 44].

These results stress the importance of the choice of correlations to consider: ⟨ηr⃗(T )QT ⟩ contains enough information
to compute

〈
Q2
T

〉
(see Section IVA), but ⟨ηr⃗(t)QT ⟩ does not, since it vanishes. As we have seen above, in the stationary

regime 1 ≪ t ≪ T , the relevant information is encoded in the saddle-point currents j⃗∗r⃗ (t), from which
〈
Q2
T

〉
is given

in Eq. (148). These quantities have the meaning of a current-current correlation profile, similarly given by

〈⃗
jr⃗(t) e

λQT

〉
⟨eλQT ⟩

=

∫
D[η, j⃗, θ, φ⃗] j⃗r⃗(t) exp

[
−S + λ⃗ ·

∫ T

0

dt j⃗0⃗(t)

]
∫

D[η, j⃗, θ, φ⃗] exp

[
−S + λ⃗ ·

∫ T

0

dt j⃗0⃗(t)

] ≃
T→∞

j⃗∗r⃗ (t) . (151)
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FIG. 5. Current-current correlation profile j⃗
(1)
r⃗ = ⟨⃗jr⃗(t) QT ⟩ in d = 2, projected along the two components e⃗x and e⃗y, as a

function of r⃗ = (x, y). The dashes correspond to the analytical solution (145), while the points are obtained from numerical

simulations of the SEP in 2D. Numerically, we computed these correlations as 1
T

∫ T

0
⟨⃗jr⃗(t)QT ⟩dt to improve the convergence by

using the stationarity of j⃗
(1)
r⃗ for 1 ≪ t ≪ T . The simulations are performed for a finite system of 100× 100 sites with periodic

boundary conditions, up to T = 500, and averaged over 400000 realisations.

Expanding at first order in λ yields that the saddle-point solution (145) corresponds to

j⃗
(1)
r⃗ (t) =

〈⃗
jr⃗(t)QT

〉
−
〈⃗
jr⃗(t)

〉
⟨QT ⟩ ≡ Cov(⃗jr⃗(t), QT ) . (152)

This current-current correlation profile is shown in Fig. 4 for the case D = 2. Interestingly, it shows that an increase
of QT is correlated with a dynamics in which particles circulate repeatedly through the bond (0, 0) − (1, 0). This
induces two specular vortices around this bond. For the SEP in dimension D > 1, vortices have indeed been previously
indicated to play a major role in determining the current fluctuations [17]. In particular, in Ref. [17] the particle
current through an extended 2D slit of length l was analyzed within the macroscopic framework of MFT for a large but
finite system of size L≫ l, and vortices localized at the slit edges were shown to dominate the local current fluctuations
at long times. However, these results being obtained from a macroscopic description, the vortices appeared in [17] as
singularities in the current field, leaving their microscopic structure out of reach. Here, thanks to a fully microscopic
computation, we have characterised the microscopic structure of the vortex configuration that fully determines the
long-time current fluctuations through a single bond. We expect that a similar microscopic structure is present at
the edges of an extended slit, even if the length of the slit is macroscopic. Crucially, the existence of these vortex
configurations is permitted by the looped structure of the lattice, which thus plays a central role in the existence of
a stationary state for the correlations in infinite systems.

Finally, relation (152) allowed us to compare our results (145) to numerical simulations performed on a 2D system.
The comparison is shown in Fig. 5 and displays excellent agreement at various points on the lattice, and along both
the horizontal and vertical directions.
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V. CONCLUSION

We have studied the fluctuations of the integrated current Qt through a given bond of the lattice, for the SEP
on different infinite lattices. We have shown that on the comb the current-density correlation profiles ⟨ηr⃗(t)Qt⟩ are
not stationary (see Eq. (40)), leading to a sublinear growth of the integrated current fluctuations

〈
Q2
t

〉
with time

(see Eq. (38)). In contrast, we have shown that on hypercubic lattices in dimensions D ≥ 2 the current-density
correlation profiles are stationary and display a dipolar microscopic structure, leading to a linear scaling with time
of
〈
Q2
t

〉
— see Eqs. (102) and (103) for the case D = 2, and Eq. (148) for generic D ≥ 2. We have identified the

origin of these features in the looped structure of the lattice. Indeed, we have shown that the fluctuations of Qt are
dominated by particles looping around the bond on which Qt is measured, thus leading to the emergence of vortices
in the current-current correlation profile (see Fig. 4).

Our work opens several interesting directions for future investigation. First, the MFT equations (60) to (62) derived
here form a closed set that, if solved, would give access to the full distribution of the integrated current Qt on the comb
lattice. This formalism could also be applied to general diffusive systems on the comb beyond the SEP. Similarly,
the microscopic action formalism we built in Section IVB in principle provides a constructive method to compute
arbitrarily high moments of Qt, for regular lattices in dimension D ≥ 2. Finally, singling out a tracer particle and
studying the statistics of its displacement would allow to extend towards higher dimensions several interesting results
that are already available in 1D [10, 11, 13, 34, 36], or solely in the dense regime for other geometries [25, 45–48].

Appendix A: Green’s function for the diffusion equation on the comb

In this Appendix, we aim to show that the expression (72) is indeed the Green’s function of the diffusion equation
on the comb, i.e. that it is solution of

∂tGt = δ(y)∂2xGt + ∂2yGt , with Gt=0(x, y|x′, y′) = δ(x− x′)δ(y − y′) . (A.1)

For this, we take the Laplace transform of (A.1), which gives

s Ĝs(x, y|x′, y′)− δ(x− x′)δ(y − y′) = [δ(y)∂2x + ∂2y ]Ĝs(x, y|x′, y′), (A.2)

where we have introduced

Ĝs(x, y|x′, y′) =
∫ ∞

0

e−stGt(x, y|x′, y′)dt . (A.3)

Starting from the expression of Ĝs (72), i.e.

Ĝs(x, y|x′, y′) =
1

2
√
2 s1/4

e−
√
2s1/4|x−x′|−√

s(|y|+|y′|) + 1

2
√
s
δ(x− x′)Θ(yy′)

(
e−

√
s|y−y′| − e−

√
s|y+y′|

)
, (A.4)

we can compute the derivatives

∂2yGs(x, y|x′, y′) =
1

2
√
2
e−

√
2s1/4|x−x′|−√

s(|y|+|y′|)
[
s3/4 − 2s1/4δ(y)

]
− 1

2
δ(x− x′)y′δ(yy′)

(
sign (y − y′) e−

√
s|y−y′| − sign (y + y′) e−

√
s|y+y′|

)
− 1

2
δ(x− x′)Θ(yy′)

(
2δ(y − y′)− 2δ(y + y′)−

√
s e−

√
s|y−y′| +

√
s e−

√
s|y+y′|

)
, (A.5)

and

∂2xĜs(x, y|x′, y′) =
1

2
√
2 s1/4

e−
√
2s1/4|x−x′|−√

s(|y|+|y′|)
[
2
√
s− 2

√
2s1/4δ(x− x′)

]
+

1

2
√
s
δ′′(x− x′)Θ(yy′)

(
e−

√
s|y−y′| − e−

√
s|y+y′|

)
. (A.6)

Inserting these expressions into the r.h.s. of (A.2), and using that y′δ(yy′) = δ(y)/sign (y′), we obtain that Ĝs is
solution of (A.2), and therefore that Gt is the Green’s function of the diffusion equation on the comb (A.1).
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A similar expression of Ĝs was obtained in [26] (although with different factors due to different jump rates considered
in this article) by taking the continuous limit of the propagator of a random walk on the comb lattice computed in [49].

The Green’s function Gt as defined by Eq. (A.1) can be used to write the solution of the diffusion equation with
an initial condition,

∂tρ = δ(y)∂2xρ+ ∂2yρ , with ρ(x, y; t = 0) = ρ0(x, y) , (A.7)

as

ρ(x, y; t) =

∫
dx′dy′Gt(x, y|x′, y′)ρ0(x′, y′) , (A.8)

by linearity of the equation. Importantly, it can also be used to obtain the solution of the equation with a source
term,

∂tρ = δ(y)∂2xρ+ ∂2yρ+ f , with ρ(x, y; t = 0) = 0 , (A.9)

since by defining Kt = Θ(t− 0+)Gt, we can easily show that Kt obeys

∂tKt(x, y|x′, t′) = [δ(y)∂2x + ∂2y ]Kt(x, y|x′, y′) + δ(t)δ(x− x′)δ(y − y′) . (A.10)

The solution of (A.9) can thus be written as

ρ(x, y; t) =

∫ t

0

dt′
∫

dx′dy′Gt−t′(x, y|x′, y′)f(x′, y′; t) , (A.11)

again by linearity of the equation.

Appendix B: Details of the minimization of the D-dimensional microscopic action

To obtain the saddle-point equations reported in Section IVB2, we compute the variation of each individual term
that appears in the dynamical action given in Eqs. (115) and (116). For instance, the first term reads simply

δ

∫ T

0

dt
∑
r⃗

φ⃗r⃗(t) · j⃗r⃗(t) =
∫ T

0

dt
∑
r⃗

[
φ⃗r⃗(t) · δj⃗r⃗(t) + j⃗r⃗(t) · δφ⃗r⃗(t)

]
. (B.1)

The second term gives, upon integrating by parts,

δ

∫ T

0

dt
∑
r⃗

θr⃗(t)

[
η̇r⃗(t)−

∑
ν⃗

(⃗
jr⃗−ν⃗(t)− j⃗r⃗(t)

)
· ν⃗

]

=

∫ T

0

dt
∑
r⃗

{[
η̇r⃗(t)−

∑
ν⃗

(⃗
jr⃗−ν⃗(t)− j⃗r⃗(t)

)
· ν⃗

]
δθr⃗(t) + θr⃗(t)

∑
ν⃗

ν⃗ ·
[
δj⃗r⃗(t)− δj⃗r⃗−ν⃗(t)

]
− θ̇r⃗(t)δηr⃗(t)

}
+
∑
r⃗

[θr⃗(T )δηr⃗(T )− θr⃗(0)δηr⃗(0)] . (B.2)

The term δηr⃗(0) requires some discussion: indeed, one may in principle consider either fixed or fluctuating initial
occupations ηr⃗(0), corresponding respectively to a quenched or annealed initial condition (see e.g. Ref. [36]). In the
former case, ηr⃗(0) is given a priori, and thus δηr⃗(0) = 0 by construction. In the latter case, the action should be
additionally endowed with some free-energy functional F [ηr⃗(0)] that describes the fluctuations of ηr⃗(0) in the initial
state (see e.g. Eq. (56)). Since no such term appears in the action given in Eqs. (115) and (116), we interpret our
average as quenched, and the term proportional to δηr⃗(0) thus gives no information. Note that this choice of the
initial condition entails no major loss of generality in the calculation of Section IVB2, because (at odds with SEP in
D = 1 or on the comb) a stationary state is eventually attained by the system, in spite of the infinite-lattice geometry.

Next, before computing the variation of the third term in Eq. (116), it is useful to rewrite it as∑
r⃗

∑
ν⃗

[
ηr⃗ (1− ηr⃗+ν⃗)

(
e−ν⃗·φ⃗r⃗ − 1

)
+ ηr⃗+ν⃗ (1− ηr⃗)

(
eν⃗·φ⃗r⃗ − 1

)]
=
∑
r⃗,s⃗

∑
ν⃗

δs⃗,r⃗+ν⃗
[
ηr⃗ (1− ηs⃗)

(
e−ν⃗·φ⃗r⃗ − 1

)
+ ηs⃗ (1− ηr⃗)

(
eν⃗·φ⃗r⃗ − 1

)]
, (B.3)
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where we omitted the t-dependence so as not to clutter the notation. As the system is infinite, the boundaries of
these sums pose no particular complications, and varying Eq. (B.3) renders after some algebra

δ
∑
r⃗,s⃗

∑
ν⃗

δs⃗,r⃗+ν⃗
[
ηr⃗ (1− ηs⃗)

(
e−ν⃗·φ⃗r⃗ − 1

)
+ ηs⃗ (1− ηr⃗)

(
eν⃗·φ⃗r⃗ − 1

)]
=
∑
r⃗

∑
ν⃗

[
(1− ηr⃗+ν⃗)

(
e−ν⃗·φ⃗r⃗ − 1

)
− ηr⃗+ν⃗

(
eν⃗·φ⃗r⃗ − 1

)
+ (1− ηr⃗−ν⃗)

(
eν⃗·φ⃗r⃗−ν⃗ − 1

)
− ηr⃗−ν⃗

(
e−ν⃗·φ⃗r⃗−ν⃗ − 1

)]
δηr⃗

−
∑
r⃗

∑
ν⃗

[
ηr⃗(1− ηr⃗+ν⃗)e

−ν⃗·φ⃗r⃗ − ηr⃗+ν⃗(1− ηr⃗)e
ν⃗·φ⃗r⃗

]
ν⃗ · δφ⃗r⃗. (B.4)

Finally, from Eq. (118) we get

δ

(
λ⃗ ·
∫ T

0

dt j⃗0⃗(t)

)
= λ⃗ ·

∫ T

0

dt δj⃗0⃗(t). (B.5)

Since the individual variations given in Eqs. (B.1), (B.2), (B.4) and (B.5) must vanish independently, collecting
their prefactors and equating them to zero finally renders the saddle-point equations reported in Section IVB2, see
Eqs. (119) to (122).

Appendix C: Current fluctuations from the microscopic action in 1D

Since exact results are available for finite systems in 1D [21], here we use this setting as a benchmark for the
approach we used in Section IVA for the 2D SEP.

We consider a finite 1D system of L sites, with occupations {η1(t), . . . , ηL(t)}, between two reservoirs. The reservoir
on the left can inject particles on site 1 with rate α and absorb them with rate β, while the reservoir on the right can
inject particles on site L with rate γ and absorb them with rate δ. We denote jr(t) the current from site r to r + 1
at time t. We use the convention that j0 is the current from the left reservoir, and jL the current towards the right
reservoir.

1. Known results in finite 1D systems

We consider the integrated current QT corresponding to the number of particles exchanged between the left reservoir
and the system up to time T ,

QT =

∫ T

0

j0(t)dt . (C.1)

Note that we choose to consider the current injected to site 0, but we could have equivalently chosen the current
through any bond in the system, since in the long-time limit they will have the same leading behaviour [21].

Using microscopic calculations, the mean and average of QT have been computed in [21] as

⟨QT ⟩ =
ρL − ρR

L+ a+ b− 1
T , (C.2)

〈
Q2
T

〉
− ⟨QT ⟩2

T
=
ρL + ρR − 2ρLρR

N
+
a(a− 1)(2a− 1) + b(b− 1)(2b− 1)−N(N − 1)(2N − 1)

3N3(N − 1)
(ρL − ρR)

2 , (C.3)

where

a =
1

α+ β
, b =

1

γ + δ
, ρL =

α

α+ β
, ρR =

γ

γ + δ
, N = L+ a+ b− 1 . (C.4)

Our goal will be to reproduce these results using a microscopic action formalism, as the one used in Section IVA.
The average occupations and their correlations have also been computed, and read [21]

⟨ηi⟩ =
ρL(L+ b− i) + ρR(i− 1 + a)

L+ a+ b− 1
, (C.5)
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⟨ηiηj⟩ − ⟨ηi⟩ ⟨ηj⟩ = −(ρL − ρR)
2 (a+ i− 1)(b+ L− j)

(L+ a+ b− 1)2(L+ a+ b− 2)
, for i < j . (C.6)

Remarkably, combining the two expressions above, the two point correlations can be written in terms of the means
in a simple form,

⟨ηiηj⟩ = ⟨ηi⟩ ⟨ηj⟩+
(⟨ηi⟩ − ρL)(⟨ηj⟩ − ρR)

L+ a+ b− 2
, for i < j . (C.7)

This expression will be useful below.

2. Microscopic action formalism

The formalism of Section IVA can also be applied to describe this situation, similarly to what was done in [41, 42].
As before, we can write for each site 1 ≤ r ≤ L a microscopic conservation equation,

ηr(t+ dt)− ηr(t) = (jr−1(t)− jr(t))dt , (C.8)

with the convention that the current jr counts positively particles leaving site r for site r+1. The stochastic dynamics
is fully encoded in the currents, which in the bulk take the form,

jr(t)dt = ηr(1− ηr+1)ξr,+(t)− ηr+1(1− ηr)ξr+1,−(t) , 1 ≤ r ≤ L− 1 , (C.9)

with ξr,± being random variables, with distribution

ξr,±(t) =

{
1 with probability dt ,
0 with probability 1− dt .

(C.10)

These are completed by boundary equations implementing the exchanges with the reservoirs,

j0(t)dt = (1− η1)ζ0,i − η1ζ0,a , jL(t)dt = ηLζL,a − (1− ηL)ζL,i , (C.11)

where the random variables ζ describe the injection or absorption of particles, and are distributed according to

ζ0,i(t) =

{
1 prob. αdt
0 prob. 1− αdt

, ζ0,a(t) =

{
1 prob. βdt
0 prob. 1− βdt

, (C.12)

ζL,i(t) =

{
1 prob. γdt
0 prob. 1− γdt

, ζL,a(t) =

{
1 prob. δdt
0 prob. 1− δdt

. (C.13)

Following the same approach as in Section IVA, we can write the probability to observe a trajectory {ηr(t), jr(t)} of
the occupations and currents up to a time T as

P [η, j] =

∫ ∏
r,t

dφr(t)

(2π)D
dθr(t)

2π
exp

{∫ T

0

dt

[
i

L∑
r=0

φrjr −
L∑
r=1

iθr

(
d

dt
ηr − (jr−1 − jr)

)

+

L−1∑
r=1

(
ηr(1− ηr+1)(e

−iφr − 1) + ηr+1(1− ηr)(e
iφr − 1)

)

+ α(1− η1)(e
−iφ0 − 1) + βη1(e

iφ0 − 1) + γ(1− ηL)(e
iφL − 1) + δηL(e

−iφL − 1)

]}
. (C.14)

The moment generating function of QT (C.1) therefore takes the form,

〈
eλQT

〉
=

∫ ∏
r,t

dηr(t)djr(t)
dφr(t)

(2π)D
dθr(t)

2π
exp

{∫ T

0

dt

[
i

L∑
r=0

φrjr −
L∑
r=1

iθr

(
d

dt
ηr − (jr−1 − jr)

)

+

L−1∑
r=1

(
ηr(1− ηr+1)(e

−iφr − 1) + ηr+1(1− ηr)(e
iφr − 1)

)

+ α(1− η1)(e
−iφ0 − 1) + βη1(e

iφ0 − 1) + γ(1− ηL)(e
iφL − 1) + δηL(e

−iφL − 1) + λj0

]}
. (C.15)
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In this finite 1D system, the occupations and currents are known to be stationary [21, 43, 44], hence we would like to
write an action in terms of their time averaged values only,

η̄r ≡
1

T

∫ T

0

ηr(t)dt , j̄r ≡
1

T

∫ T

0

jr(t)dt , (C.16)

and similarly for θr and φr. Note that we did not follow the same approach in Section IVB2, where we kept instead the
time dependence of the fields, and found that the saddle-point solutions relax to time-independent values, which must
correspond to (C.16). Replacing the fields with their time averages would allow us to write the moment generating
function of QT as 〈

eλQT
〉
=

∫ ∏
r

dη̄rdj̄rdφ̄rdθ̄r exp
[
T S[{η̄r, j̄r, φ̄r, θ̄r}]

]
, (C.17)

with an effective action S to be determined. Such a representation would be extremely convenient, since for large T
the integral can be computed by a simple saddle point, and thus yield the cumulant generating function of QT as

ln
〈
eλQT

〉
≃

T→∞
T S[{η̄⋆r , j̄⋆r , φ̄⋆r , θ̄⋆r}] , (C.18)

where we have denoted {η̄⋆r , j̄⋆r , φ̄⋆r , θ̄⋆r} the saddle point. In particular, this implies that the cumulants of QT can be
easily computed as

d

dλ
ln
〈
eλQT

〉
≃

T→∞
T j̄⋆0 . (C.19)

In the following, we will drop the ⋆ to lighten the notations. The main remaining difficulty is to obtain the effective
action S.
If we naively replace ηr and jr in the generating function (C.15) by their time averages η̄r and j̄r, and do the same

for θr and φr, we get a naive action

Snaive[{η̄r, j̄r, φ̄r, θ̄r}] = i

L∑
r=0

φ̄r j̄r +

L∑
r=1

iθ̄r (j̄r−1 − j̄r) +

L−1∑
r=1

(
η̄r(1− η̄r+1)(e

−iφ̄r − 1) + η̄r+1(1− η̄r)(e
iφ̄r − 1)

)
+ α(1− η̄1)(e

−iφ̄0 − 1) + βη̄1(e
iφ̄0 − 1) + γ(1− η̄L)(e

iφ̄L − 1) + δη̄L(e
−iφL − 1) + λj̄0 . (C.20)

In this form, we can optimise this effective action to obtain equations satisfied by {η̄r, j̄r, φ̄r, θ̄r}. These equations are
rather cumbersome and cannot be solved analytically, so we do not reproduce them here. However, for λ = 0 they
can be solved, and give φ̄r = 0, θ̄r = 0, η̄r = ⟨ηr⟩ given by (C.5), and j̄r = ⟨QT ⟩ /T given by (C.2). This shows that
the naive action in (C.20) properly reproduces the known results for the average quantities. To investigate whether
this is also true for the fluctuations, we expand the optimisation equations at first order in λ, using

η̄r = η̄(0)r + λη̄(1)r +O(λ2) , j̄r = j̄(0)r + λj̄(1)r +O(λ2) , φ̄r = λφ̄(1)
r +O(λ2) , θ̄r = λθ̄(1)r +O(λ2) , (C.21)

and solve the equations at first order in λ. In light of (C.18), j̄
(1)
0 is the variance ofQT , and should thus reproduce (C.3).

Since the equations are cumbersome, we implement this procedure with Mathematica and solve them numerically for
different system sizes L. The result is shown in Fig. 6. We observe a discrepancy between the values predicted from
this naive action and the exact result (C.3). One possible explanation is that, when replacing the value ηr(t) by its
temporal average η̄r, we have lost track of the correlations between the sites, which are important since the original
action (C.15) involves products ηr(t)ηr+1(t), whose temporal average is not η̄rη̄r+1.

To improve the naive action (C.20), we can try to add “by hand” the missing two-point correlations between
different sites (C.7), i.e. by making into the moment generating function (C.15) the substitution

ηr(t)ηr+1(t) −→ η̄rη̄r+1 +
(η̄r − ρL)(η̄r+1 − ρR)

L+ a+ b− 2
, (C.22)

with a, b, ρL and ρR defined in (C.4). This leads us to write an improved guess for the action,

Simproved[{η̄r, j̄r, φ̄r, θ̄r}] = i

L∑
r=0

φ̄r j̄r +

L∑
r=1

iθ̄r (j̄r−1 − j̄r) +

L−1∑
r=1

(
η̄r(1− η̄r+1)(e

−iφ̄r − 1) + η̄r+1(1− η̄r)(e
iφ̄r − 1)

)

+

L−1∑
r=1

2(1− cos φ̄r)
(η̄r − ρL)(η̄r+1 − ρR)

L+ a+ b− 2

+ α(1− η̄1)(e
−iφ̄0 − 1) + βη̄1(e

iφ̄0 − 1) + γ(1− η̄L)(e
iφ̄L − 1) + δη̄L(e

−iφL − 1) + λj̄0 . (C.23)
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FIG. 6. Left: predictions for the fluctuations of the current
⟨Q2

T ⟩−⟨QT ⟩2

T
, obtained numerically by optimising the naive ac-

tion (C.20) and the improved action (C.23), compared to the exact value (C.3), for different system sizes. Right: difference
between the values of the fluctuations of QT obtained from the actions (C.20) and (C.23) and the exact one (C.3). The plots
are for α = 5, β = 1, γ = 1 and δ = 10.

Following the same procedure as for Snaive, we check that this action still gives the correct average values for the
currents (C.2) and occupations (C.5). In addition, we compute numerically the current fluctuations from this new
action, which is again shown in Fig. 6. Remarkably, the new action (C.23) properly reproduces the fluctuations of QT
for any system size. We expect that this feature will hold in any dimension. Since for infinite systems at equilibrium
the correlations between two sites vanish (see [21] or Eq. (5) above for the infinite comb), the naive action (C.20)
(and its generalisation to higher dimensional systems) is expected to yield the correct fluctuations of Qt for infinite
systems at equilibrium.
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