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1. Introduction
In the atmospheric boundary layer, stably stratified conditions generally develop above a surface colder 
than the overlying air. These Stable Boundary Layers (SBLs) often result from the advection of warm air 
over a cold surface or from the cooling of the surface. They are frequently observed over ice or snow surfaces 
(e.g., polar regions, high-latitude continental regions in wintertime) and over land during nighttime. Their 
development and intensity (e.g., the vertical stratification) are also strongly modulated by the atmospheric 
synoptic conditions. Nights with weak or no cloud cover at all also favor SBL occurrence, as such conditions 

Abstract The representation of stable boundary layers (SBLs) still challenges turbulence 
parameterizations implemented in current weather or climate models. The present work assesses whether 
these model deficiencies reflect calibration choices or intrinsic limits in currently-used turbulence 
parameterization formulations and implementations. This question is addressed for the CNRM 
atmospheric model ARPEGE-Climat 6.3 in a single-column model/large-eddy simulation (SCM/LES) 
comparison framework, using the history matching with iterative refocusing statistical approach. The 
GABLS4 case, which samples a nocturnal strong SBL observed at Dome C, Antarctic Plateau, is used. The 
standard calibration of the ARPEGE-Climat 6.3 turbulence parameterization leads to a too deep SBL, a too 
high low-level jet and misses the nocturnal wind rotation. This behavior is found for low and high vertical 
resolution model configurations. The statistical tool then proves that these model deficiencies reflect a 
poor parameterization calibration rather than intrinsic limits of the parameterization formulation itself. 
In particular, the role of two lower bounds that were heuristically introduced during the parameterization 
implementation to increase mixing in the free troposphere and to avoid runaway cooling in snow- or 
ice-covered region is emphasized. The statistical tool identifies the space of the parameterization free 
parameters compatible with the LES reference, accounting for the various sources of uncertainty. This 
space is non-empty, thus proving that the ARPEGE-Climat 6.3 turbulence parameterization contains the 
required physics to capture the GABLS4 SBL. The SCM framework is also used to validate the statistical 
framework and a few guidelines for its use in parameterization development and calibration are discussed.

Plain Language Summary During the night or in snow- or ice-covered region, a stable 
atmospheric boundary layer (SBL) often develops. Their representation still challenges turbulence 
parameterizations implemented in numerical weather or climate models. The present work assesses 
whether the ARPEGE-Climat atmospheric model deficiencies reflect calibration choices or intrinsic 
limits in its turbulence parameterization using a statistical approach from the Uncertainty Quantification 
community. A single-column version of the model is evaluated on the GABLS4 case, a nocturnal strong 
SBL observed at Dome C, Antarctic plateau, and compared to high-resolution simulations. The standard 
calibration of the ARPEGE-Climat 6.3 turbulence parameterization leads to a too deep SBL and an 
incorrect wind pattern and so for different vertical resolutions. The statistical tool proves that these model 
deficiencies are rectified with proper calibration of the turbulence parameterization. In particular, it is 
shown that two lower bounds, introduced to increase turbulent mixing, are key to capture the GABLS4 
SBL. Finally, the potential and relevance of the Uncertainty Quantification approach applied to the single-
column model/large-eddy simulation comparison framework for the calibration of climate models are 
highlighted and few guidelines for its use are proposed.
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enhance the radiative cooling of the surface (Mahrt, 1998). In contrast, the occurrence of strong near-sur-
face wind reduces the SBL stratification, or even inhibits their development, through the maintenance of 
significant mechanical mixing (e.g., Van de Wiel et al., 2012).

SBLs can be classified according to the intensity of their stratification (at first order the vertical gradi-
ent of potential temperature), ranging from weak SBLs in which the turbulence remains significant, to 
strong SBLs, in which the turbulence become intermittent or even disappears (e.g., Acevedo et al., 2016; 
Mahrt, 1998). In the latter conditions, a mechanical decoupling between the atmosphere and the surface 
can occur (Derbyshire, 1999): the temperature inversion close to the surface becomes driven by radiation 
and soil diffusion and the surface turbulent heat flux cannot sustain the surface energy demand enhanced 
by a strong net surface radiative cooling (e.g., Van de Wiel et al., 2012). Such strong SBLs mostly occur under 
clear-sky and weak wind conditions, with a strong increase of the near-surface temperature inversion below 
a critical wind speed (e.g., Vignon, van de Wiel et al., 2017b).

The representation of SBLs in General Circulation Models such as operational climate and weather models 
is a challenge (e.g., Holtslag et al., 2013): the turbulence is particularly weak and sometimes intermittent 
(e.g., Mauritsen & Svensson, 2007), and interacts with other small-scale processes (e.g., gravity waves—
Steeneveld et al.,  2008; Tsiringakis et al.,  2017). Under the umbrella of the global energy and water cy-
cle exchanges (GEWEX) project, the GEWEX atmospheric boundary layer study (GABLS) has initiated 
four model intercomparison projects (Bazile et al., 2015; Bosveld et al., 2014; Cuxart et al., 2006; Svensson 
et al., 2011) to evaluate and improve the SBL representation in weather and climate models. So far, the GA-
BLS intercomparison exercises revealed:

1.  Large-eddy simulations (LES) are able to consistently capture the main properties of stable bounda-
ry layers, at least when their resolution is below a few meters for weak to moderate SBL (e.g., Beare 
et al., 2006) or 1 m for strong SBL (Couvreux, Bazile et al., 2020a). As a result, such LESs provide relevant 
process-level information to evaluate turbulence parameterizations in an LES/Single-Column Model 
(SCM) comparison framework (e.g., Randall et al., 1996, 2003)

2.  State-of-the-art turbulence parameterizations, such as those with a 1.5-order turbulence closure, are 
able to reasonably capture the physics of SBLs for a wide range of forcing (e.g., Baas et al., 2018; Cuxart 
et al., 2006; Vignon, Hourdin et al., 2017a)

3.  Nevertheless, current weather and climate models still simulate SBLs that are too deep, with surface drag 
that is too strong, low-level jets that are too weak and too high and wind veering with height that is too 
weak (e.g., Cuxart et al., 2006; Holtslag et al., 2013)

The apparent contradiction between the two last conclusions results from the calibration of weather or 
climate models which, so far, has required an increased turbulent mixing to reduce the activity of synoptic 
systems, and thereby improve operational scores (e.g., Sandu et al., 2013), or to prevent runaway surface 
cooling through long-term mechanical decoupling with the atmosphere (Derbyshire, 1999). Such a calibra-
tion probably reflects the lack of mixing due to processes that are currently not accounted for in weather 
and climate models (e.g., surface heterogeneities, internal gravity waves, meso-scale variability, impact of 
subgrid orography).

Recently Vignon, Hourdin et al. (2017a); Vignon et al. (2018) and Hourdin, Rio et al. (2020a) showed that 
it is possible to achieve a reasonable representation of SBLs in a climate model (LMDZ), while maintaining 
reasonable large-scale performance. Starting with an SCM framework built on the very stable boundary 
layer of GABLS4 (Bazile et al., 2015), Vignon, Hourdin et al. (2017a) underline the importance of (i) the 
coupling with the surface (snow albedo and thermal inertia) and (ii) the turbulent mixing thresholds usu-
ally used in current operational turbulence parameterizations (e.g., for the mixing length or in stability 
functions). More specifically, the appropriate calibration of surface (snow) properties and the removal of 
those thresholds in the turbulence parameterization allows the LMDZ SCM to capture well the strong tem-
perature gradient close to the surface (in the first 20 meters), observed at Dome C, Antarctica, during an 
austral summer night. Vignon et al. (2018) further compare 3D LMDZ simulations with local observations 
collected at Dome C. On the one hand, the SCM improved results are consistently reported in this 3D con-
figuration, stressing the relevance of the SCM framework for developing and calibrating parameterizations. 
On the other hand, the new version of the LMDZ model adequately reproduces the annual cycle of Dome 

AUDOUIN ET AL.

10.1029/2020MS002269

2 of 31



Journal of Advances in Modeling Earth Systems

C, the two main SBL regimes discussed above, and preserves satisfying large-scale skills. Finally, the vertical 
resolution in the lower part of the boundary layer is also shown to be critical for capturing SBLs that cover 
only a few tens of meters (see also Steeneveld et al., 2006).

Following Vignon, Hourdin et  al.  (2017a) and Vignon et  al.  (2018), the general objective of the present 
work is to document the performance of the CNRM climate atmospheric model, namely ARPEGE-Climat 
6.3 (Roehrig et al., 2020), to represent SBLs. The focus is here on its turbulence parameterization, which 
is based on the work of Cuxart et al. (2000). The parameterization of a given process seeks to represent its 
effects on the large-scale (or resolved) state of the model. It is based on a set of physical theories or empirical 
relationships to numerically describe the subgrid-scale processes and their effects. Parameterizations intro-
duce a number of constants, called free parameters in the following, which are often difficult to constrain 
with observations or other references. A parameterization can thus be seen as a function of the model state 
variables and of these free parameters. Their calibration, or “tuning”, is a critical step in model development 
for weather or climate applications (e.g., Hourdin et al., 2017). In the present paper, we therefore propose 
to address the following specific question: Is it possible to calibrate the ARPEGE-Climat turbulence param-
eterization to achieve a satisfying representation of SBLs, especially those with a strong thermal stratifica-
tion? In other words, does the ARPEGE-Climat turbulence parameterization contain the required physics 
to represent appropriately strong SBLs?

Cuxart et al. (2006) shows that the current turbulence parameterization of ARPEGE-Climat 6.3 is able to 
capture the main properties of the moderate SBL studied during the first GABLS exercise. We seek to ex-
tend this result to the strongly-stratified SBL of the GABLS4 nocturnal phase. We rely on SCM simulations, 
which have been shown relevant for 3D model configuration (Gettelman et al., 2019; Hourdin et al., 2013; 
Neggers, 2015; Vignon et al., 2018). We also make use of GABLS4 LESs as references, as they have been 
shown to capture well the properties of the GABLS4 nocturnal phase (Couvreux, Bazile et al., 2020a). Fol-
lowing Couvreux, Hourdin, et al. (2020b), we use statistical tools developed in the Uncertainty Quantifi-
cation community, in particular the history matching with iterative refocusing proposed by Williamson 
et  al.  (2013) and applied to the SCM/LES comparison. This tool provides the sensitivity analysis of our 
turbulence parameterization to its free parameters and identifies which part of the full free parameter space 
provides SCM simulations consistent with the chosen reference, accounting for the various sources of un-
certainty (Couvreux, Hourdin et al., 2020b; Williamson et al., 2013, 2017). Thus, we do not seek to opti-
mize the ARPEGE-Climat turbulence parameterization over the GABLS4 SBL in the traditional meaning of 
searching for the best set of free parameters to reproduce this SBL. In contrast, our objective is to document 
which sets of free parameters, if such sets exist, provide an appropriate representation of the GABLS4 SBL. 
This information can then be further used in the whole process of the ARPEGE-Climat calibration and 
combined with similar information based on other 1D cases or on the full 3D model configuration. Such an 
approach should ensure that the full model calibration will keep a reasonable process-level behavior for the 
GABLS4 SBL (see Couvreux, Hourdin et al., 2020b; Hourdin, Williamson et al., 2020b, for a more detailed 
discussion).

Section 2 introduces the ARPEGE-Climat 6.3 atmospheric model and its turbulence parameterization. The 
relevant free parameters of the parameterization to be used for calibration are emphasized. Section 3 pre-
sents the case study used for the SCM/LES intercomparison and the LES results that serve as a reference. 
Section 4 describes the statistical framework. Section 5 details the results obtained for two different con-
figurations of the ARPEGE-Climat 6.3 SCM. A third one is rapidly discussed, with more detail provided 
in Appendix A. Section 6 discusses several aspects of the methodology and section 7 finally concludes the 
present study.

2. ARPEGE-Climat 6.3
ARPEGE-Climat is a global atmospheric model developed at CNRM for climate studies. Its latest version 
(6.3, Roehrig et al., 2020) is the atmospheric component of the CNRM ocean-atmosphere climate mod-
el CNRM-CM6-1 (Voldoire et al., 2019), and Earth System model CNRM-ESM2-1 (Séférian et al., 2019). 
The following work uses the single-column model (SCM) version of ARPEGE-Climat (e.g., Abdel-Lathif 
et al., 2018), in the context of the GABLS4 framework (see Section 3.1). The model physical package is fully 
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described in Roehrig et al. (2020) and therefore we only insist hereafter on the model features relevant for 
the present study. ARPEGE-Climat 6.3 standard vertical grid consists of 91 vertical levels, following the pro-
gressive hybrid σ-pressure discretization of Simmons and Burridge (1981). The altitude of the first 5 model 
levels is approximately 8.5, 29, 55, 91, and 132 m. The model timestep is 15 min. A version of ARPEGE-Cli-
mat 6.3 with higher vertical resolution (2 m up to 400 m) is also used in Section 5.1. To prevent instabilities, 
the timestep of this version is reduced to 60 s. Note that the use of this 60-s timestep in the 91-level version 
of ARPEGE-Climat does not impact much the results of the present work. As described in Section 3, the 
SCM configuration is run on a idealized case (stable boundary layer, no moisture, no radiation), in which 
only the turbulence and surface flux parameterizations are activated. These parameterizations are described 
hereafter, in a dry context. Note that in the following, the names of the free parameters of the turbulence 
scheme that will be used for model calibration are written in bold.

2.1. Turbulence Parameterization

The turbulence scheme used in ARPEGE-Climat 6.3 follows the work of Redelsperger and Sommeria 
(1982, 1986); and Cuxart et al. (2000). It relies on the eddy diffusivity approach, coupled to a prognostic 
equation for the grid-scale-averaged turbulence kinetic energy (TKE) e . Given the standard horizontal res-
olution of ARPEGE-Climat ( (100km) ), only the vertical component of turbulent mixing is parameterized. 
For any variable ψ impacted by turbulent mixing (e.g., wind component u and v, potential temperature θ), 

the associated second-order turbulent flux  w  reads (primes denote fluctuations with respect to the grid-
scale average, noted  ):

   
    

  


; mw K K L e
z

CM (1)

where αψ and CM are free parameters of the parameterization, Lm is the mixing length, and ϕψ is a stability 

function. ϕψ is taken to 1 for momentum and turbulence kinetic energy (    , ,u v e ). For the potential tem-
perature θ, the following formulation is used:












2
1 where is a free parameter.

1 m

C
g LC

e z
 (2)

In Equation 1, CM modulates all turbulent fluxes in the same way. αu and αv are taken to 1, and αθ is the 
inverse Prandtl number in neutral condition (i.e. when ϕθ = 1). In the following, αe and αθ will be referred 
to as AE and AT, respectively. The turbulent fluxes defined by Equation 1 are computed only above the 
surface layer, namely from the first model half level. The surface flux boundary condition is provided by the 

surface flux parameterization (see Section 2.2). Eddy diffusivity coefficients Kψ depend on the intensity of e . 
The time evolution of e  is given by:

 
 

    
             




 


1 ( )e u v g e ee w u w v w w
t z z z L

 (3)

where ρ is the air density, g is the gravity acceleration, and Lϵ the dissipation length. Lϵ is assumed to be 
proportional to the mixing length: Lϵ = CE Lm, with CE a free parameter. The mixing length follows the 
non-local formulation of Bougeault and Lacarrère (1989) and reads

 


  
  
 

3/2
BL89 2/3 2 /3

up down
1 ( ) ( )
2mL L L (4)

where Lup and Ldown are, respectively, the maximum upward and downward displacements a parcel can trav-
el within the ambient thermal stratification, given its turbulence kinetic energy, and accounting only for the 
work of its buoyancy. Close to the surface, the mixing length is supposed to be larger than κz where κ = 0.4 
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is the Von Kármán constant. A minimum mixing length, LMIN, is introduced to maintain a minimum 
vertical mixing in stable boundary layers, such that the mixing length Lm finally reads:

   
BL89max ,min( , )m mL L zLMIN (5)

In case of shallow stable boundary layer, another lower bound, which applies mainly close to the surface, is 
introduced directly on the turbulent fluxes, to avoid runaway cooling of the surface (especially in snow- or 
ice-covered regions):

 
  




   
        


 

Δmax , 1 Δ
Δ

zw K
z

KOZMIN
ZMAX

 (6)

where KOZMIN and ZMAX are two free parameters, and Δ  is the vertical difference of   between two 
consecutive model layers (distant of Δz). Above ZMAX, no lower bound is used. This formulation, through 
Δ  and Δz depends on the vertical discretization of the model (see also Section 5). This empirical formula-

tion is highly questionable, especially in terms of vertical resolution dependence. Nevertheless, we consid-
ered it as it is currently implemented in ARPEGE-Climat 6.3. The present work provides the opportunity to 
discuss its behavior and possible detrimental impacts with respects to stable boundary layers.

The turbulence parameterization thus includes several free parameters that have to be calibrated. Eight pa-
rameters have been identified here. The calibration of the parameterization consists in choosing a value for 
each of them, accounting for both parameterization performance and physical constraints. In the standard 
configuration of ARPEGE-Climat 6.3 (see Roehrig et al., 2020), the parameter values follow the work of 
Cheng et al. (2002) except the parameters LMIN, KOZMIN and ZMAX that were introduced in the course 
of the parameterization implementation in ARPEGE-Climat and set in a more empirical way. Table 1 pro-
vides the values of these parameters as currently used in ARPEGE-Climat 6.3 as well as those initially 
proposed in Cuxart et al. (2000). Note that the parameter C in Equation 2 is set to 0.143. As the model is not 
much sensitive to it, the following work does not consider this parameter.

2.2. Surface Flux Parameterization

The SCM configuration of ARPEGE-Climat will be used in two different configurations with respects to the 
surface boundary conditions, one with prescribed surface sensible heat flux and one with prescribed surface 

temperature. In both, the roughness lengths for momentum (z0) and heat ( 0hz ) are prescribed.

2.2.1. Configuration with Prescribed Surface Sensible Heat Flux

The friction velocity u* is computed following Paulson (1970):
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CM AE AT CE LMIN KOZMIN ZMAX

ARPEGE-Climat 6.3 0.126 2.70 1.13 0.85 10.0 5.10−3 200

Cuxart et al. (2000) 0.0667 6.0 2.5 0.70 10.0 – –

Lower bound 0.05 0.50 0.20 0.33 0.0 0.0 30

Upper bound 0.30 6.00 3.00 5.00 10.0 5.10−3 400

The values in the standard version of ARPEGE-Climat are those from Cheng et al. (2002). Those from the work of Cuxart et al. (2000) are also included. The 
bottom two lines provide the range of values that we explore for each parameter.

Table 1 
Free Parameters of the Turbulence Parameterization.
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where 1U  is the wind intensity (  2 2
1 1 1U u v ) at the first model level of altitude z1, and LMO is the 

Monin-Obukhov length. The similarity function φ is given by Paulson (1970). As LMO depends on u*, the 
computation is done iteratively, initialized from a neutrally-stable state (i.e. LMO = ∞, knowing φ(0) = 0). 
The surface momentum flux is finally given by:

 2
*uF u (8)

2.2.2. Configuration with Prescribed Surface Temperature

In this configuration, the standard version of the ARPEGE-Climat surface scheme is used. The surface 
momentum and heat fluxes are computed based on the formulations of Mascart et al. (1995) involving the 

bulk Richardson number 0Rib:

 

 






0 1 1

2
1 1

( )Ri
1 ( )
2

s
b

s

gz

U
 (9)

where 1 and s are the potential temperature at the first model level and at the surface, respectively. A critical 
Richardson number Ric = 0.1 is used as an upper bound of the bulk Richardson number:  0Ri min(Ri ,Ri )b b c . 
Note this critical Richardson number value is most likely not appropriate in the context of strongly stable 
boundary layers. It may be considered as a free parameter in future work. The exchange coefficients for 
momentum and heat in the case of stable states (Rib > 0) following Mascart et al. (1995) and Noilhan and 
Mahfouf (1996) read:
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and are used to compute the surface fluxes:

     
2

1 1 1and ( )u d s p h sF C U F C C U (12)

where Cp is the heat capacity of air at constant pressure. Note that the present surface flux parameteriza-
tions include internal free parameters (B1 = 10, B2 = 5, B3 = 15), which are not considered in the following 
analysis. They are possibly critical for SBLs (e.g. Vignon, Hourdin et al., 2017a), and will be analyzed in a 
future work.
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3. Experimental Setup and Reference Simulations
3.1. The GABLS4 Framework

The present study is based on the GABLS4 model intercomparison case (Bazile et al., 2014, 2015; Couvreux, 
Bazile et al., 2020a). It focuses on an austral summer diurnal cycle of the boundary layer at Dome C, Ant-
arctic Plateau (123.3° E, 75.1° S, 3,223 m above sea level, local time (LT) = UTC+8 h) as observed from 
December 11, 0800 LT to December 12, 0800 LT. During that day, the boundary layer evolved from a 400-m 
deep convective regime during daytime to a nighttime very stable regime covering a depth shallower than 
30 m (Vignon, Hourdin et al., 2017a).

The GABLS4 model intercomparison encompasses three different stages. The first one is dedicated to the 
intercomparison of SCMs with an interactive snow surface scheme. The second stage prescribes observed 
surface temperature, thus suppressing several feedbacks between the atmosphere and the surface. The third 
stage consists in an idealization of GABLS4 stage 2, in which no moisture, no radiation, no large-scale sub-
sidence and no large-scale advection of temperature are considered.

Couvreux, Bazile et al. (2020a) emphasize that the representation of the full GABLS4 diurnal cycle is a chal-
lenge for LES models as it requires a large domain for the 400-m deep daytime convective boundary layer 
and a very high-resolution for the 30-m deep nocturnal very stable boundary layer. Therefore, Couvreux, 
Bazile et al. (2020a) proposed a complementary setup focused on the GABLS4 nocturnal stable phase, start-
ing at the end of the convective period (1800 LT, i.e. 10 h after the start of the original version of GABLS4 
stages) and covering 11 h (until 0500 LT). This new setup, referred to as GABLS4-Stage3-10 h, corresponds 
to the setup used in the present work.

The initial conditions are obtained from the ensemble mean of three LESs that took part to the GABLS4 
Stage 3 LES intercomparison (Couvreux, Bazile et al., 2020a). GABLS4-Stage3-10 h uses the same large-scale 
forcing as in GABLS4 Stage 3, which thus only includes a large-scale horizontal pressure gradient through 
a prescribed geostrophic wind. This geostrophic wind is constant in time (ug = 1.25 m s−1 and vg = 4.5 m 
s−1) and along height. GABLS4 Stage 3 (and thus GABLS4-Stage3-10 h) assumes a dry atmosphere, with no 
radiation. The surface pressure is held constant to 651 hPa (Dome C is at 3,223 m above sea level), and the 
surface temperature is prescribed and evolves with time, following the observations made at Dome C. For 
the computation of the surface wind stress, the surface roughness length is set to z0 = 10−3 m for momentum 

and  4
0 10hz  m for heat, following Vignon, van de Wiel et al. (2017b) and Couvreux, Bazile et al. (2020a).

3.2. GABLS4 Large-Eddy Simulations

Couvreux, Bazile et al. (2020a) compare seven LES models over GABLS4-Stage3-10 h. Two of them are not 
considered here because of a slightly different setup compared to the other five (slightly coarser resolution 
or different roughness lengths). The five remaining LES models use an isotropic resolution of 1 m over a 
500 × 500 × 150 m3 domain. The LES models compute their surface fluxes (momentum and heat) from the 
prescribed surface temperature and roughness lengths using their own parameterization. In such a setup, 
especially thanks to the high resolution, the spread among the LES ensemble is rather small, except very 
close to the surface. In particular, there are substantial differences for the surface sensible heat flux (e.g., 
−6 to − 13 W m−2 at 2300 LT) or for the friction velocity (0.07–0.11 m s−1 — see Figures 1a and 1d). This 
spread is however much smaller than the spread among the full Stage 3 LES ensemble (Couvreux, Bazile 
et al., 2020a).

Although the setup is idealized compared to the observed situation, observations have been used qualita-
tively to evaluate the simulation behavior. The heights of the stable boundary layer and of the low-level jet 
are overestimated compared to observations but this might be due to the neglect of subsidence in the LESs. 
Otherwise, the jet intensity and the stratification are consistent with observations. The wind turning at 
41 m is also much more realistic in the high-resolution LESs than in the coarse-resolution LESs (Couvreux, 
Bazile et al., 2020a).
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3.3. SCM Configurations

The ARPEGE-Climat single column model is run for two different setups. The first one follows exactly the 
GABLS4-Stage3-10  h setup detailed in Section  3.1. The second one, derived from GABLS4-Stage3-10  h, 
and referred to as GABLS4-Stage3-10hr-shf, prescribes the surface sensible heat flux, instead of the surface 
temperature, and thus further removes the coupling between the surface and the atmosphere. In this latter 
setup, the prescribed surface sensible heat flux corresponds to the ensemble mean of the five LESs.

In both setups, all model parameterizations are deactivated, except those for the atmosphere turbulence and 
the surface fluxes. Note that, in the GABLS4-Stage3-10 h setup, the surface flux parameterization follows 
the work of Mascart et al. (1995, see Section 2.2), while in the GABLS4-Stage3-10hr-shf, it is replaced by the 
simplified version described in Paulson (1970, see also Section 2.2).

We also explore the turbulence parameterization behavior for two different vertical resolutions, namely the 
standard vertical resolution of ARPEGE-Climat 6.3 (91 vertical levels, with about 15 levels below 1,500 m, 
indicated by LR when relevant), and a constant high-vertical resolution of 2 m up to an altitude of about 
400 m and then decreasing as the standard vertical grid up to the model top (indicated by HR when relevant).

To conclude, the present work addresses three SCM configurations of ARPEGE-Climat 6.3: SCM-HR-SHF in 
which the SCM has a high vertical resolution and is forced by surface fluxes, SCM-LR-SHF similar to SCM-
HR-SHF but with the model standard vertical grid, and SCM-LR-TS similar to SCM-LR-SHF but forced by 
the surface temperature. The simulations corresponding to the standard calibration of the turbulence pa-
rameterization (Table 1) are consistently referred to as CM6-HR-SHF, CM6-LR-SHF, and CM6-LR-TS.

AUDOUIN ET AL.

10.1029/2020MS002269

8 of 31

Figure 1. Time evolution of (a) sensible heat flux (W m−2), (b) 8.5-m potential temperature (K), (d) surface friction velocity (m s−1) and (e) 29-m wind rotation, 
and vertical profile of (c) potential temperature at 0300 LT (K) and (f) wind speed at 0100LT (m s−1), for the LESs (solid black lines), the LESs interpolated 
on CM6-LR vertical levels (dashed black lines), and CM6-LR (dashed lines) and CM6-HR (solid lines) simulations. CM6 simulations are either forced by the 
surface temperature (red lines) or by the surface sensible heat flux (blue lines). LES, large-eddy simulation.
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4. Statistical Framework: History Matching with Iterative Refocusing
The calibration of the free parameters of a parameterization is a difficult task due to many degrees of free-
dom (i.e. the number of free parameters) and the computational cost of operational configuration simula-
tions. For example, the turbulence parameterization used here has eight different free parameters and seven 
are kept for the calibration experiments. If one wanted to systematically explore this seven-dimensional 
space, let say with 10 values in each parameter range, this would require 107 simulations. This is clearly 
prohibitive for most model configurations, even in an SCM framework. Therefore, surrogate models, or 
emulators, are required to appropriately explore the full model parameter space, with a virtually negligible 
computational cost. In essence, these surrogate models are mathematical functions that approximate, or 
emulate, SCM outputs, and which are trained on a few tens to hundreds of well-chosen simulations.

In model calibration, one may want to seek for the best or optimal set of model parameters. As discussed in 
Hourdin et al. (2017) and in Williamson et al. (2015), this may lead to overtuning issues. Therefore, as advo-
cated in Couvreux, Hourdin, et al. (2020), we adopt a different point of view for model calibration. Namely, 
we use history matching with iterative refocusing as proposed in Williamson et al. (2013). The main objec-
tive of the statistical approach is thus not to find the optimal set of parameters, but rather to remove regions 
of the parameter space in which the model behavior is inappropriate for a given set of performance metrics. 
The approach thus documents the part of the parameter space which is compatible with the relevant refer-
ences, accounting for the several sources of uncertainty. The algorithm is iterative, in the sense that several 
consecutive waves are considered. Each wave starts with a small number of new simulations performed 
with the full model. These new simulations aim at improving the surrogate model accuracy, but only where 
needed (i.e., within the acceptable range defined from the previous wave). The search for acceptable param-
eter values is thus refocused in a reduced space during the following wave. The iterations (waves) stop when 
convergence is achieved for the space of acceptable parameters.

In the following, history matching with iterative refocusing (or history matching hereafter for the sake of 
brevity) is applied in a SCM/LES comparison framework as detailed in Couvreux, Hourdin et al. (2020b). Its 
different steps are briefly presented below.

1.  Selection of the targeted metrics: These metrics aim at summarizing the model behavior. Reference metric 
values are computed, here using LES results. In the present framework, a metric is a diagnostic that is 
used to quantify how a simulation (or its emulated version) is close to the reference. It is simply a scalar 
function of the model free parameters, such as the temperature or the wind speed at a given altitude and 
at a given time. It may be more sophisticated and include time or vertical integration of a given model 
variable, or be a function of several model variables. They generally do not include reference information 
(e.g., such as scores) as that is included in the implausibility (see hereafter).

2.  Identification of the free parameters: Free parameters of the model parameterizations are selected and 
their possible ranges (generally determined from the modeler expertize) defines the input parameter 
space. In our case, only parameters from the turbulence scheme are selected (see Section 2.1). Their 
ranges are given in Table 1

3.  Experimental design: The first wave experimental design (namely the sets of parameters for which a sim-
ulation is actually performed) is built by sampling the parameter space previously defined. An optimal 
sampling of the input parameter space is ensured using a Latin hypercube method (Williamson, 2015).

4.  Building of the surrogate models: Metrics defined in step 1 are computed from the first wave simulations 
(performed in step 3) and used as a training sample to build a surrogate model for each metric. Each 
surrogate model is a Gaussian-process-based statistical model, a tool well-known in the Uncertainty 
Quantification community, and which has the advantage to predict both the metric and its uncertainty 
(e.g., Salter & Williamson, 2016). A prior mean function is imposed as a linear combination of simple 
functions of the input parameters (monomials, Fourier functions and interaction terms chosen accord-
ing to a predictor selection method—see Williamson et al., 2013). The Gaussian process (GP) assumed 
a stationary squared exponential kernel, fitted using a Hamiltonian Monte Carlo method (Carpenter 
et al., 2017). Further details can be found in Couvreux, Hourdin et al. (2020b) and references therein.

5.  History matching: The parameter space is then systematically explored using the surrogate models built 
during the previous step, and the emulated metrics are compared to their respective reference. The space 
of acceptable parameter values is finally determined by ruling out the parts of the input parameter space 
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which lead to metric values too far from the reference value, accounting for the uncertainty on the ref-
erences, the SCM and the surrogate models. For a given metric f, the following measure If(λ), referred 
to as implausibility, is thus introduced to identify which part of the parameter space has to be ruled out

 




 2 2
, ,

| E[ ( )] |
( )

[ ( )]
f

f
r f d f

r e
I

Var e

λ
λ

λ
 (13)

where λ is a point of the parameter space and e(λ) the metric value predicted by the surrogate model. More 
precisely, E[e(λ)] is the expectation value of the metric Gaussian process, and Var[e(λ)] is its variance. The 
latter is a measure of the surrogate model uncertainty for the set of parameters λ. rf is the reference metric 

value, and, in the present work, the LES ensemble mean of the metric f.  2
,r f  is the reference uncertainty 

and is computed as the LES ensemble variance of the metric f.  2
,d f  is the SCM discrepancy or structural 

error for this metric. This last value is a priori unknown and its estimation could be challenging. Williamson 
et al. (2017) suggests a “tolerance-to-error” approach for model discrepancy. The implausibility If(λ) thus 
measures the distance between the reference and the predicted metric value, normalized by the sum of un-
certainties (supposed to be independent). The implausibility can thus be small either because the predicted 
value is close to the reference, or because the uncertainties are large. From the implausibility, and thus after 
this first iteration through steps 1–5, the Not-Ruled-Out-Yet (NROY) space for the metric f is defined as:

 1NROY { | ( ) }f fI Tλ λ (14)

where T is a given threshold taken here as 3, following the 3-σ rule of Pukelsheim (1994), which states that 
at least 95% of any unimodal distribution lies within its 3-σ range centered around its mean This threshold 
can be reduced once the surrogate model for the metric f is sufficiently accurate. In the case of multiple 
metrics, the full NROY1 space is simply defined as the intersection of the NROY spaces computed for each 
metric:

NROY NROY for all  
1     

f
f fI T f
1

{ | , }  (15)

Note that such an option in combining metrics may lead to multiple testing problems (e.g., Vernon 
et al., 2010; Couvreux, Hourdin et al., 2020b), but the small number of metrics used in this work reduces 
this risk.

As mentioned above, the implausibility If(λ) for a set of parameters λ can be small either because the SCM 
emulated metric is close to its reference, or because the emulator uncertainty at λ is high. Note that σr,f 
and σd,f are input data to the whole history matching strategy, independent of the surrogate models. The 
iterative refocusing thus seeks to reduce this emulator uncertainty and thus provide a better estimate of 
the true space of acceptable sets of parameters. As a result, several iterations (or waves) of the steps 3–5 are 
performed, with an adapted experimental design in step 3. Namely, we only need to improve the emulator 
accuracy within the current NROY space, thus we only resample NROY1 after wave 1, or NROYN after wave 
N. Once the surrogate model uncertainty is sufficiently reduced so that the other uncertainties dominate 
the implausibility, the NROY space is not further shrunk by new waves. The iterative process has thus 
converged and it is not necessary to perform additional waves. The convergence question is discussed in 
section 6.2.

5. Ability of ARPEGE-Climat to Simulate the GABLS4 Stable Boundary Layer
The tool introduced in the previous section is used to assess whether the ARPEGE-Climat turbulence 
scheme is able to capture the main properties of the GABLS4 stable boundary layer. In particular, we de-
termine which part of the space of model free parameter values is compatible with the LES references. The 
vertical resolution is potentially a critical aspect for the scheme and therefore we start with the SCM-HR 
high-resolution configuration of ARPEGE-Climat. We also remove a degree of freedom in the surface-at-
mosphere coupling by prescribing the surface sensible heat flux instead of the surface temperature, to focus 
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only on the turbulence scheme (SCM-HR-SHF configuration). Then, Section 5.2 discusses results with the 
standard vertical resolution of ARPEGE-Climat and with two different surface boundary conditions (SCM-
LR-SHF and SCM-LR-TS configurations).

5.1. High-Resolution SCM Configuration Forced by Surface Sensible Heat Flux (SCM-HR-SHF)

5.1.1. ARPEGE-Climat Standard Calibration

As a starting point of the present work, we evaluate the standard calibration of the ARPEGE-Climat tur-
bulence scheme (parameter values indicated in Table 1), for a high vertical resolution, and when forced 
by the LES ensemble mean surface sensible heat flux (CM6-HR-SHF simulation). Figure 1b presents the 
time evolution of the 8.5-m potential temperature from 1800 to 0700 LT. 8.5 m is approximately the altitude 
of the first level in the standard vertical resolution model (between the third and fourth level in the pres-
ent high resolution configuration). Linear interpolation is used in the high-resolution model configuration 
and in LESs to compute the 8.5-m potential temperature. The LES models (solid gray lines) simulate a 
significant cooling until 0200 LT, from about 277 K to about 264 K. The minimum potential temperature 
is reached around 0300 LT. At that time, the potential temperature vertical gradient between 15 and 29 m 
varies between 0.4 and 0.8 K m−1 among the LESs (Figure 1c). At 0100 LT, a low-level jet is well formed in 
all the LESs (Figure 1f). The altitude of its peak is similar in all LESs, around 22 m, and its intensity ranges 
between 5 and 6 m s−1. The inertial rotation of the wind at 29 m is further emphasized in Figure 1e. It is 
consistent with the theory (e.g., Blackadar, 1957) and representative of the observations collected at Dome 
C (Gallée et al., 2015).

CM6-HR-SHF severely underestimates the 8.5-m potential temperature cooling during the first half of the 
night (Figure 1b, solid blue line). The minimum potential temperature reaches about 273 K at 0200 LT, 
about 8 K warmer than the LES corresponding value. The potential temperature vertical profile at 0300 LT 
(Figure 1c) emphasizes that CM6-HR-SHF simulates a boundary layer, which is too thick and which stabil-
ity is underestimated: the potential temperature vertical gradient is at least six times weaker (0.06 K m−1) 
than in the LESs. Consistently, the CM6-HR-SHF low-level jet is too high, located near 55 m (Figure 1f). Its 
intensity is significantly weaker than in all LESs but one. The wind rotation is also strongly underestimated 
at 29 m (Figure 1e).

In order to assess the model sensitivity to its internal turbulent parameters, we choose to synthesize the 
model behavior with four scalar metrics (step 1 in Section 4). The sensitivity to the choice and number of 
metrics is discussed in Section 6.1. The nocturnal cooling and boundary layer stability are quantified using 
the potential temperatures at 2 m and 8 m (referred to as θ2m and θ8m, respectively); these two CM6-HR ver-
tical levels allow to constrain the θ vertical gradient. These two metrics are computed at 0300 LT, when θ is 
minimum in the LESs. The low-level jet structure is measured using the maximum of the supergeostrophic 
wind speed and the wind speed at 55 m (referred to as wmax and w55m, respectively). The latter altitude corre-
sponds to the level where the wind returns to its geostrophic value in the LESs (it is also the altitude of the 
CM6-LR third level). These two last metrics are taken at 0100 LT when the low-level jet is well established.

5.1.2. Defining the Acceptable Range of the Turbulence Free Parameters

Based on the seven parameters identified in Section 2.1 and their proposed ranges (step 2 of the statistical 
framework described in Section 4), the history matching Wave 1 consists of 70 simulations performed with 
the SCM-HR-SHF configuration. The associated 70 sets of parameters sample the input parameter space 
following the experimental design proposed in step 3, namely a Latin hypercube. The results for these 70 
simulations are shown by the orange lines in Figure 2. Although the majority of these simulations exhibits 
a too weak cooling, some of them capture the LES behavior, with both a correct θ vertical profile at 0300 
LT and a correct overnight evolution of θ at 8.5 m. Concerning the wind, in most simulations, the low-level 
jet at 0100 LT is too high, so that the return to the geostrophic wind occurs above 100 m. The wind rotation 
at 29 m is poorly represented, with a too weak meridional component and a too strong zonal component. 
Reflecting these first conclusions, the metrics computed for each simulation are most of the time fairly far 
from those computed with the LESs (not shown). Nevertheless, there exist a few simulations, thus a few sets 
of parameters, for which the chosen metrics have values close to those computed with the LESs. This sug-
gests that, at least for each individual metric, there exists an appropriate calibration of the ARPEGE-Climat 
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SCM-HR-SHF configuration. Based on this result, and for the sake of simplicity, in the following, we choose 
to explore the model performance considering no structural (or tolerance to) error (i.e. σd,f = 0 in Equa-
tion 13). Such a choice may lead to overtuning (Williamson et al., 2017) and will need to be reconsidered in 
the context of the full model calibration. It will also be discussed in Section 6.2.

The metric values, computed for each simulation of this Wave 1, are used as a training sample to build a 
surrogate model for each of the four metrics (step 4—see Section 4 and references therein for their build-
ing). These surrogate models then allow us to explore the parameter space more exhaustively by estimating 
the value of each metric at as many new points as desired. In practice, the complete parameter space is 
resampled using a new Latin hypercube of 6(10 )  points and the surrogate models provide estimate (and 
uncertainty) of the four metrics for all these new points. As explained in Section 4, the following step con-
sists of history matching (step 5): for each point sampled in the parameter space, the implausibility with 
respect to each metric is calculated, and the maximum implausibility over the four metrics (i.e., the most 
discriminating metric) is used to characterize NROY1. Sampled points with an implausibility greater than 
a threshold set to three are ruled out. After this first wave, the remaining space is 3.0% of the initial space, 
so a large part of the input parameter space is rejected. The NROY space obtained at this stage (not shown) 
shows that AE, KOZMIN and ZMAX have a negligible influence on the results after this first iteration. 
The model behavior as a function of the other four parameters indicates a preference for values that signif-
icantly reduce the turbulent mixing. Table 2 details for each metric the performance of the 70 simulations 
performed for this wave 1 and for each of the following waves. For the first wave, all the metrics are very 
discriminating (more than two thirds of the simulations are incompatible with the LES reference values) 
except the one representing the jet intensity.

We then iterate several times over steps 3–5 described in Section 4. 70 points are randomly sampled in 
NROY1 and the corresponding simulations are carried out. These new simulations feed the wave 2. Steps 
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Figure 2. Same as Figure 1 but for the history matching applied to the SCM-HR-SHF configuration. The standard calibration simulation CM6-HR-SHF is 
indicated with the red line, the Wave 1 70 SCM simulations with the orange lines and the Wave 9 70 SCM simulations with the blue lines. Note that since it is 
prescribed, the sensible heat flux is not shown. LES, large-eddy simulation; SCM, single-column model.
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4 and 5 then provide updated surrogate models in NROY1 and a new estimate of the NROY space, namely 
NROY2. A third wave can then start. The process is repeated until it is no longer possible to reduce the 
NROY space (i.e., NROYN ∼NROYN+1 if N is the number of a wave). Table 2 indicates no clear further re-
duction of the NROY space from Wave 6, that is the 70 simulations performed at the beginning of Wave 6 
are for most of them still in the NROY space estimated at the end of Wave 6 (NROY6). This thus suggests 
convergence of the results and that we can stop the iterations. From Wave 4, wmax, w55m and θ8m metrics 
are no longer discriminating, that is, for these metrics, almost no more part of the parameter space is ruled 
out. For θ2m, the process evolves more slowly. At Wave 5, 10 simulations are still ruled out because of this 
metric. From Wave 6 onwards, the number of rejected simulations varies between 2 and 4. The difference 
between two consecutive waves is then only due to sampling effects of the remaining space. Note that at a 
given wave N, the current tool version has the limitation to not use the simulations performed during the 
previous waves k < N to build the wave N emulators. We stopped after 9 waves.

Figure 2 compares the vertical profiles and time series of temperature and wind between the simulations of 
Wave 1 (orange lines), those of Wave 9 (blue lines), and the reference LESs (black lines). The 70 simulations 
performed in Wave 9 belongs to NROY8. Given the chosen metrics and the LES uncertainty, it is not possi-
ble to discriminate them (except for 2 of them as indicated in Table 2). Figure 2b shows that the θ vertical 
profile at 0300 LT (time used to compute θ-related metrics) is very close to that of the LESs. However, it 
seems that there is still room for improvement close to the surface but performing an additional iteration 
does not reduce the near-surface spread of the SCM simulations. Pushing the calibration exercise further 
would require more simulations but the results obtained are already qualitatively satisfying. Looking at 
the time series of θ at 8.5 m (Figure 2a), there is also a very clear improvement in the results all along the 
simulation although we only use the metric at one given time (0300 LT). The results for the wind are good 
also. The Wave 9 simulations capture well the wind vertical profile at 0100 LT and the 29-m wind veering, 
falling within the LES spread (Figures 2d and 2e). Note that the four instantaneous constraints put on the 
SCM simulations are sufficient to achieve model calibrations that perform well over the entire GABLS4 
stable boundary layer, thus illustrating the consistency of the ARPEGE-Climat turbulence scheme physics.

Figure 3 provides a visualization of the seven-dimensional NROY space, obtained after 9 waves, namely 
NROY9. This half matrix tentatively synthesizes the space containing the optimal sets of parameters. Each 
panel of the half-matrix is a “projection” of NROY9 in the two-dimensional space defined by solely two 
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θ2m θ8m wmax w55m

Wave Spread I > 3 Spread I > 3 Spread I > 3 Spread I > 3

1 260.3–277.9 58 266.3–276.5 64 4.8–5.7 2 4.1–5.3 46

2 252–269.4 10 263.2–270.7 3 4.7–5.8 2 4.1–5.6 31

3 255.2–265.2 10 262.3–268.7 5 5.0–5.9 0 4.1–4.5 6

4 259.1–266.1 7 264.4–267.7 4 5.0–5.5 0 4.1–4.3 0

5 258.9–266.5 10 264.4–267.3 0 5.0–5.4 0 4.1–4.5 1

6 261–265.1 4 264.7–267.4 0 5.0–5.4 0 4.1–4.3 2

7 261.5–264.9 3 264.9–267.4 2 5.0–5.5 0 4.1–4.3 2

8 261.7–264.8 4 265.4–266.9 0 5.0–5.4 0 4.1–4.3 0

9 261.7–265 2 265.7–267 0 5.1–5.3 0 4.1–4.3 0

LESs 263.4 ± 0.43 – 265.0 ± 1.91 – 5.6 ± 0.68 – 4.2 ± 0.06 –

For each metric, the first column indicates the spread (minimum–maximum) of the metric value computed for the 70 
simulations performed at the beginning of Wave N = 1, …, 9. For the LESs in the last row, the LES ensemble mean ± 
3σr,f is indicated. The second column (Implausibility I > 3) gives the number of these simulations that do not belong 
to the NROY space estimated at the end of Wave N (namely NROYN). LES, large-eddy simulations; NROY, not-ruled-
out-yet; SCM, single-column model.

Table 2 
Evolution of the Different Metrics (Columns) Over the Successive Waves (Rows) for the History Matching Applied to the 
SCM-HR-SHF Configuration.
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parameters, the names of which are given in the diagonal. For instance, the X-axis of the upper-right panel 
corresponds to ZMAX, varying between its minimum and maximum values provided in Table 1 and indi-
cated in the upper part of its diagonal box (30 and 200 m, respectively) and its Y-axis corresponds to CM, 
varying between 0.05 and 0.3 (see the right part of its diagonal box). To numerically characterize NROY9 in 
this two-dimensional parameter space, each panel consists of 15 × 15 pixels, which values quantify the frac-
tion of the full input space in the other 5 directions that belongs to NROY9. This value is estimated thanks 
to the implausibilities computed over 106 sets of parameters which sample the input parameter space (Latin 
hypercube). The NROY9 fraction of this input space (also equal to the sum of the 15 × 15 pixel values of 
each panel) is indicated as text in the upper-right part of the figure (0.0959% in the present case). Gray color 
of a pixel indicates that the fraction is zero given the input space sampling, meaning that there is mostly no 
way to fit the reference by varying the other 5 parameters when the 2 panel parameters are fixed at the pixel 
corresponding values. Dark blue to yellow colors indicate that the combination of the 2 panel parameters is 
the most likely to provide satisfying results.

As shown in Figure 3, the history matching method selects parameter values that reduce turbulent mixing. 
The exchange coefficients are significantly reduced (mainly through the high probability of low CM and 
LMIN values, see the panels on the first and third rows and on the third column of the half matrix). The 
calibration also leads to small values of CE (panels on the second row and the second column of the half 
matrix), which controls the dissipation length scale: the TKE dissipation is increased and thus the TKE and 
the turbulent mixing are reduced. These results are consistent with previous works that generally indicate a 
too strong turbulent mixing in numerical weather and climate models (e.g., Beljaars & Viterbo, 1998; Sandu 
et al., 2013). The case of LMIN is also consistent with the work of Vignon, Hourdin et al. (2017) which 
showed the importance of removing most of the bounds in the turbulence parameterization used in global 
models to better represent stable boundary layers. The whole framework highlights the high sensitivity of 
the model results to this parameter (Figure 3), and illustrates the difficulty to calibrate the model for stable 
boundary layers with LMIN values greater than about 4–5 m. The influence of AT, which controls the tur-
bulent flux of θ, is significant but not as decisive as that of the three previous parameters. The value current-
ly used in ARPEGE-Climat (black squares on Figure 3) is appropriate. The results are not sensitive to AE, 
so that there is a priori no need to change its current value. This parameter influences the vertical diffusion 
of TKE. It therefore appears that this term is negligible compared to the other terms in the TKE equation 
(Equation 3) in the case of the GABLS4 very stable boundary layer (not shown). Finally, KOZMIN and 
ZMAX which directly limit the turbulent fluxes, are not relevant to adjust this high-resolution SCM config-
uration. This is expected given the bound formulation (Equation 6) which tends to zero as the vertical grid 
spacing goes to zero. These parameters are more critical for the model standard resolution (see Section 5.2).

As a preliminary conclusion, the history matching approach demonstrates that the ARPEGE-Climat tur-
bulence scheme contains the required physics to represent the GABLS4 strongly-stable boundary layer, at 
least for vertical resolution of (1m) . Besides, if the ARPEGE-Climat standard calibration is not appropriate 
(i.e. the free parameter standard values are not retained in the NROY space), the standard values of CM 
and CE are reasonable (i.e. very close or within the NROY space). It is rather the lower bound LMIN on the 
mixing length that is the most discriminating, a conclusion similar to the one obtained by Vignon, Hourdin 
et al. (2017a).

5.2. Standard-Resolution SCM Configuration Forced by Surface Sensible Heat Flux 
(SCM-LR-SHF)

The behavior of the standard-resolution standard-calibration SCM configuration, forced by the LES en-
semble-mean surface sensible heat flux (CM6-LR-SHF), is summarized in Figure 1 (dashed blue line). In 
order to compare the low-resolution SCM results with those of the LESs, the latter are regridded onto the 
vertical grid of CM6-LR. The CM6-LR-SHF overnight cooling is weak, and slightly weaker than in CM6-
HR-SHF, thereby indicating sensitivity of the model results to vertical resolution. The minimum potential 
temperature is reached earlier than in the LESs (as for CM6-HR-SHF) and is 8 K warmer. The low-level jet 
is weakly marked. The altitude of the maximum wind speed is too high (55 m) and the wind speed remains 
too strong above 55 m, where it should be geostrophic. The wind rotation is slightly better represented than 
in CM6-HR-SHF but still too weak. The CM6-LR-SHF behavior is thus broadly similar to its high-resolution 
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Figure 3. NROY half matrix for Wave 9 of the SCM-HR-SHF history matching (NROY9). Each panel displays the fraction of the input space with implausibility 
lower than the chosen threshold (i.e. NROY9, see Section 4) as “projected” in a two-dimensional parameter space, the name of the 2 parameters being given in 
the diagonal of the half matrix. In the diagonal, each parameter box provides the minimum and maximum values to be used for the X-axis of the panels above 
the box (numbers in the upper part of the box) and the Y-axis of the panels to the right of the box (numbers to the right in the box). The black square on each 
panel locates the parameter values of the ARPEGE-Climat CM6-HR standard calibration. See text for further details. NROY, not-ruled-out-yet; SCM, single-
column model.
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counterpart, and consistent with an overestimated turbulent mixing. We now investigate whether this be-
havior is intrinsic to the parameterization (for this standard resolution), or results from a poor calibration 
for stable boundary layers. Similar scalar metrics to those used in Section 5.1 for SCM-HR-SHF are chosen 
to constrain the θ vertical gradient and the low-level jet structure. The associated altitudes are slightly adapt-
ed to be consistent with the SCM standard vertical resolution. The θ gradient is characterized by θ at the first 
and third model levels at 0300 LT, namely 8.5 m (θ8.5m) and 55 m (θ55m). Because of the rather large uncer-
tainty of θ at the second SCM level (29 m) in the LESs (about 5 K), choosing this metric would have been 
less efficient in reducing the free parameter space. As in the high-resolution experiment, the jet structure is 
summarized by the wind speed at 29 m (second SCM-LR level and altitude of the wind maximum—w29m) 
and at 55 m (third SCM-LR level—w55m).

The Wave 1 simulations present a large spread, with only a few simulations getting close to the LES results 
(Figure 4, orange lines). Note here that before introducing the parameters KOZMIN and ZMAX in the 
history matching process, this variety of behaviors was not observed and none of the simulations performed 
well (not shown). Indeed, with the default setting, this minimum bound for the mixing coefficients was 
systematically reached and any modifications of the other parameters had very little effect as hidden by the 
minimum bound. The consideration of KOZMIN and ZMAX in the history matching was crucial in the 
standard resolution configuration. Table 3 shows the evolution of the metrics for nine waves. From Wave 
3, the results are already satisfying for most of the metrics. Only θ55m needs a few more waves to achieve 
reasonable values. The Wave 9 NROY space, namely NROY9, is finally slightly less than 0.1% of the input 
parameter space (Figure 5).

The θ vertical profiles at 0300 LT of all the Wave 9 simulations are very close to the LESs (Figure 4b, blue 
lines). The time evolution of the 8.5-m potential temperature still presents some dispersion, which is con-
sistent with the LES uncertainty. Wave 9 simulations also capture well the sharpened wind speed vertical 
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Figure 4. Same as Figure 2 but for the history matching applied to the SCM-LR-SHF configuration. The standard calibration simulation is CM6-LR-SHF (red 
line). LES, large-eddy simulation; SCM, single-column model.

(a)

(c) (d) (e)

(b)
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structure at 0100 LT, and much better than CM6-LR (red line). There is still some significant spread in the 
jet intensity, but again, it reflects the LES discrepancies (Figure 4e). All the simulations reproduce well the 
29-m wind rotation (Figure 4d).

The half-matrix of Figure 5 presents the remaining space after nine waves, that is, NROY9. In contrast with 
the SCM-HR version, the KOZMIN parameter appears critical. The history matching thus shows that the 
SCM can only behave well over the GABLS4 case for very low values of KOZMIN. Given that this parame-
ter is used to maintain significant turbulent fluxes within the first levels of the model, it was rather expect-
ed. For the other parameters, the results are similar to those obtained with the SCM-HR-SHF configuration: 
parameter values that allow weak turbulent mixing are found the most suitable for adjusting the turbulence 
parameterization. Note that the CM6 values (black square) of KOZMIN and LMIN are well beyond their 
acceptable range (already eliminated at Wave 1). As for the high-resolution configuration, the SCM behav-
ior is also significantly sensitive to CE and CM with acceptable values leading to decrease of the turbulent 
mixing but the CM6 default values are not ruled out. AE and AT have no significant impact. To summarize, 
the ARPEGE-Climat turbulence parameterization is able to capture the GABLS4 stable boundary layer as 
described by the reference LESs, even with the standard-resolution SCM-LR configuration. Such an accept-
able behavior requires to almost remove the two bounds on the turbulent mixing induced by LMIN and 
KOZMIN, while the other free parameters of the parameterization can be kept close to their original values, 
similar to those proposed in Cuxart et al. (2000) and Cheng et al. (2002). The existence of the LMIN and 
KOZMIN in the model is thus strongly questioned by the present results. At least only small values of these 
parameters are compatible with the representation of strongly-stable boundary layers, which suggests that 
the associated formulations need to be revised.

The history matching approach was also applied to a configuration in which the surface boundary condi-
tion is provided by the surface temperature (SCM-LR-TS configuration), similarly to the LES setup, but also 
similarly to a more operational use of the model. In this case, the surface fluxes for momentum and heat 
follow the formulation described in Section 2.2.2. The results are mostly similar to those obtained with the 
SCM-LR-SHF configuration used here above and therefore are only reported in Appendix A.

6. Discussion
In this section, we discuss in more detail two features of the calibration statistical approach that are rather 
subjective. The selection of metrics is first emphasized as a key step that deserves some caution. We dis-
cuss the selection we made in Section 2 and analyze the respective role of each selected metrics. Second, 
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θ8.5m θ55m w29m w55m

WAVE Spread I > 3 Spread I > 3 Spread I > 3 Spread I > 3

1 267.9–275.7 67 275.3–277.2 65 4.6–5.5 4 4.4–5.4 59

2 263.4–271.5 8 276.5–277.9 24 4.7–6.0 1 4.1–4.7 9

3 262.9–269.0 1 277.4–277.8 2 4.8–5.3 0 4.1–4.6 3

4 263.2–267.8 0 277.4–277.8 4 4.8–5.4 0 4.1–4.6 1

5 263.2–268.8 1 277.4–277.8 7 4.8–5.5 0 4.1–4.3 0

6 263.9–267.5 0 277.5–277.8 2 4.7–5.8 1 4.1–4.3 0

7 264.4–268.4 0 277.5–277.8 0 4.8–5.7 1 4.1–4.4 1

8 263.6–268.0 0 277.5–277.8 4 4.8–5.5 0 4.1–4.3 0

9 264.2–267.3 0 277.6–277.7 0 4.8–5.6 0 4.1–4.4 3

LESs 265.6 ± 2.3 – 277.6 ± 0.32 – 5.2 ± 0.39 – 4.3 ± 0.19 –

Note that the LES metric values might be slightly different from those in Table 2, as they are computed here using LES 
data interpolated onto the SCM-LR vertical grid. LES, large-eddy simulations; SCM, single-column model.

Table 3 
Same as Table 2, but for the History Matching Applied to the SCM-LR-SHF configuration.
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Figure 5. Same as Figure 3, but for the history matching applied to the SCM-LR-SHF configuration (NROY space obtained at Wave 9). NROY, not-ruled-out-
yet; SCM, single column model.
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we investigate more in depth the convergence criteria, and how we have 
tackled it. Finally, the SCM computationally cheap approach provides the 
opportunity to perform a large simulation ensemble, which can serve as a 
basis for the evaluation of the full statistical framework.

6.1. Choice of Metrics

The choice of metrics in this type of framework is crucial, yet it is diffi-
cult to draw up a definitive list in advance. In this section, we illustrate 
the metric selection procedure in the case of the SCM-LR-SHF history 
matching and give some guidelines. It might be tempting to choose a 
large number of metrics to precisely control the model. But for efficien-
cy, especially for the analysis of the results of each wave, the number 
of metrics should be limited. In particular, redundant metrics should be 
avoided. Note also that if, in the course of the framework, biases that were 
not accounted for emerge, new metrics can be added “on the fly” at the 
beginning of a wave.

The first step consists in conducting an evaluation of the model behavior 
in order to identify the main model biases (and especially those we care 
about) and then to design the appropriate metrics to quantify them. We 
have already seen in Section 5.2 that the two main identified biases are a 
weak nocturnal cooling and an insufficiently marked low-level jet struc-
ture. Analysis of the potential temperature profile at 0300 LT (Figure 4b), 
the time at which the minimum of θ at 8.5 m, the first CM6-LR level, is 
reached in the LES (Figure 4a), shows that the θ vertical gradient in the 
nocturnal boundary layer is too weak, with a warm bias (+8 K) at the first 
model level and a cold bias (about −2 K) at the third model level. The 

values of θ at these two levels (respectively θ8.5m and θ55m) are therefore used as metrics to control the model 
thermodynamics. Concerning the low-level jet structure at 0100 LT (the time at which it is the sharpest 
in the LESs, Figure 4e), the main features to be considered are the altitude and the intensity of the wind 
maximum (which are respectively too high and too weak in CM6-LR), and the thickness of the jet, which 
can be represented by the altitude of the wind return to its geostrophic value. The first two features can be 
summarized by a single metric, namely the wind intensity at the second model level (w29m), which corre-
sponds to the wind maximum in the regridded LESs. The third feature can be captured by the wind intensity 
at the third model level (w55m). Wind intensity at the fourth level could also be chosen and this choice leads 
to similar results (not shown).

As explained before, the framework used here takes into account the different sources of uncertainty 
through the notion of implausibility. Note that the lower the uncertainty on the reference metrics the more 
constraining the metric: particular attention was devoted to the associated reference uncertainty, and met-
rics with weak reference uncertainty were preferred. When it is significant, at least compared to the Wave 1 
simulation errors, it may rapidly dominate the implausibility and the framework will only weakly constrain 
the model behavior. For the four metrics defined on the basis of model biases, the uncertainty of the LESs 
regarding these metrics is low in front of the biases of Wave 1 simulations (for θ8.5m and w29m) or almost 
negligible (for θ55m and w55m).

To understand how each of the selected metrics constrains the model, four history matching experiments 
are carried out, considering only one of the four metrics at a time. For each metric, the evolution of the 
remaining space throughout the different iterations is presented in Table 4. The w29m metric is much less 
discriminating than the other three. 18% of the input parameter space is compatible with the references 
after 9 waves, as opposed to around 0.5%–1% for the other metrics. The rather large LES uncertainty for 
this metric explains part of this result. The importance of the reference uncertainty relative to the bias 
may be quantified as the ratio between the two quantities (Table 4), but consideration of this ratio is not 
sufficient to presuppose the importance of each metric. The results of these experiments are presented in 
Figure 6. The θ-related and 55-m wind speed metrics rule out around 99% of the input parameter space. 
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Experiment θ8.5m θ55m w29m w55m

CM6-LR-SHF 273.5 275.5 4.7 4.7

LESs 265.7 277.7 5.2 4.2

LES std 0.83 0.027 0.14 0.035

NROY1 2.6 % 2.8 % 25.4 % 6.0 %

NROY2 1.9 % 0.7 % 22.4 % 0.5 %

NROY3 1.8 % 0.6 % 21.2 % 0.4 %

NROY4 1.6 % 0.5 % 20.8 % 0.3 %

NROY5 1.4 % 0.5 % 19.2 % 0.3 %

NROY6 1.4 % 0.4 % 19.1 % 0.3 %

NROY7 1.4 % 0.4 % 18.7 % 0.3 %

NROY8 1.4 % 0.4 % 18.2 % 0.3 %

NROY9 1.3 % 0.4 % 18.0 % 0.3 %

The first line gives the value of each metric computed with CM6-LR-
SHF, the second line gives the value of each reference metric computed 
as the LES ensemble mean and the third line gives the LES uncertainty 
computed as the LES ensemble standard deviation. The following lines 
give the evolution of the NROY space fraction (with respects to the input 
parameter space) over 9 waves. LES, large-eddy simulation; NROY, 
not-ruled-out-yet.

Table 4 
Results of the History Matching Applied to the SCM-LR-SHF 
Configuration, Considering Only One Metric at a Time.
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History matching with only one θ-related metrics (either θ8.5m or θ55m) lead to simulations with a proper 
nocturnal cooling (a little more pronounced when considering only θ55m—compare the red shading with 
the gray shading in Figures 6d and 6h). They also show a low-level jet significantly better than CM6-LR 
with a wind maximum at the right altitude (Figures 6a and 6e). However, the return to geostrophic wind is 
weakly constrained and for many simulations it occurs at a too high altitude, especially for those resulting 
from the history matching based on θ8.5m only (Figure 6a). The history matching based on w55m only leads to 
a jet with a structure at 0100 LT very close to the LESs (Figure 6m), but with a too weak nocturnal cooling 
for many Wave 9 simulations (Figure 6p), even if the improvement compared to CM6-LR is still significant. 
These different metrics reduce the space of the parameters differently (Figure 7). If high values for LMIN 
and KOZMIN are systematically eliminated for each of these three metrics (Figures 7a, 7b, and 7d), they 
differ for the history matching results for CM, CE, and AT. w55m (Figure 7d) strongly constrains the sum 
of CM and CE but has no influence on AT, whereas thermodynamic metrics (Figures 7a and 7b) have a 
less marked sensitivity to CM and CE but significantly constrain AT by eliminating the highest values. The 
weaker sensitivity of θ8.5m and θ55m to CM is explained as the turbulent heat flux depends on the product of 
CM by AT (see Section 2.1). The w29m metric poorly constrains the nocturnal cooling and the altitude of the 
return to geostrophic wind (Figures 6i and 6l). The usefulness of this particular metric may be questioned. 
An experiment conducted without w29m however slightly degrades the low-level jet structure (not shown) 
and leads to a slower reduction of the parameter space.

In this study, we use simple scalar metrics at given times. The time at which the metrics are calculated is 
chosen according to the maximum intensity of the phenomena they capture. Thus the wind-related metrics 
are computed at 0100 LT which is the time when the jet is the sharpest. The θ-related metrics are computed 
at the time of the strongest cooling (0300 LT). More complex (vector) metrics could be used, such as vertical 
profiles or time series (e.g., Salter et al., 2019; Williamson et al., 2017), but the results presented in Section 5 
emphasize that these very simple metrics are sufficient to constrain significantly the model behavior over 
the entire duration of the simulation.

We would like to finally stress here that the choices made in Section 5 result from a trial-and-error empirical 
approach, which we advocate for. To help to analyze the results, a small number of metrics were selected 
from a much larger list of potential metrics. It is certainly possible to use a greater number of metrics, in 
practice all those that the modeler finds relevant. Nevertheless, we emphasize hereafter a few guidelines on 
this process of metric selection:

1.  The analysis of the default configuration but also of the first wave simulations is an important step, 
which helps to identify model biases or appropriately simulated features and build metrics to quantify 
them

2.  As the method takes into account the different sources of uncertainty, particular attention should be 
paid to the uncertainty in the LESs and to ensure that it does not dominate the biases identified above. 
Besides, the first wave spread might also give indications about the discriminatory ability of a given 
metric

3.  Metrics do not need to be taken all at once starting at Wave 1 and sometimes it is preferable to start with 
few discriminant metrics (with priority metrics being defined by the modeler expertize) in order to ease 
the construction of the emulators during the following waves as over a smaller parameter space. This is 
ensured by the tool flexibility, as the modeler can add new metrics from a given wave

4.  A preference is given to the use of simple metrics, easier to compute and interpret

6.2. Iterative Refocusing Convergence and Its Link with the Sources of Uncertainty

Deciding when to stop the iterations is not trivial. For the different experiments carried out in this study, 
we decided to stop the iterations when the size of the NROY space no longer decreases as we perform more 
waves (e.g., Table 5). Using the SCM-LR-SHF experiment, we illustrate here the NROY convergence and 
analyze the evolution of the different uncertainty sources that we need to take into account to monitor this 
convergence.

In the SCM-LR-SHF experiment, the NROY space size has converged from about the fourth wave (Table 5). 
The NROY space estimated at the end of Wave N is defined using the implausibility which depends on the 
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Figure 6. Results of the SCM-LR-SHF history matching experiment, but considering only (a to d) the θ8.5m metric, (e to h) the θ55m metric, (i to l) the w29m 
metric and (m to p) the w55m metric. The first column corresponds to the wind speed profile at 0100 LT (m s−1), the second column to the wind speed time 
evolution at 55 m (m s−1), the third column to the potential temperature profile at 0300 LT (K) and the fourth column to the 8.5-m potential temperature time 
evolution (K). On each panel, the blue line indicates the CM6-LR-SHF simulation, the black line the LES ensemble mean with plus or minus one standard 
deviation as the gray shading and the red shading the Wave 9 simulation envelope. LES, large-eddy simulation; SCM, single-column model.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)
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Figure 7. Same as Figure 5, but for the history matching applied to the SCM-LR-SHF configuration considering only (a) the θ8.5m metric, (b) the θ55m metric, (c) 
the w29m metric, and (d) the w55m metric. On each panel, the NROY space is displayed after 9 waves. NROY, not-ruled-out-yet; SCM, single-column model.
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metric value estimated using the surrogate model, the different sources 
of uncertainty and the chosen threshold. Figure 8 presents the evolution 
through the different waves of the implausibility distribution (third row), 
computed for each of the four metrics considered here, as well as the 
different quantities involved in its computation. For Wave N, the implau-
sibility is computed using the points in the Wave N−1 NROY space. From 
Wave 3, and for each metric, almost all points in the NROY space have an 
implausibility lower than 3 (the chosen cutoff, cf. Section 4) despite the 
reduced emulator uncertainty within the NROY space compared to the 
previous wave.

As the NROY space fraction reduces during the successive waves, the 70 
SCM runs sample a much smaller space, thus leading to improved sur-
rogate models within the NROY space, with reduced uncertainty. This is 
particularly the case for the θ55m and w55m metrics, for which from Waves 
2–3, the surrogate model uncertainty (or variance) falls mostly below or 
is of the same order of magnitude as the reference uncertainty (Figures 8f 
and 8h). For θ8.5m, the surrogate model uncertainty is also reduced after 
Wave 1 (Figure 8e), but there is not a strong decrease of it. It is already 
significantly lower than the reference uncertainty and thus does not play 

much in the implausibility for this metrics. Besides, as the NROY space does not anymore reduce dramati-
cally from Wave 2 onwards, the new SCM runs mostly sample the same space and thus no surrogate model 
improvement is expected.

The different metrics estimated by the emulators also converge rapidly and from Wave 3 (Wave 5 for w55m) 
onwards (Figures 8a–8d), only a few outliers fall outside the range of 3 standard deviations around the ref-
erence. In other words, from Wave 5 onwards, the simulations are consistent with the LESs given our four 
metrics, and taking into account the LES uncertainty. To go further in the calibration process, the threshold 
initially taken to three could be changed to a lower value, especially because the emulator uncertainty is not 
anymore the dominating uncertainty.

The analysis of the metric convergence also emphasizes the question of discrepancy. If for θ8.5m, θ55m, and 
w55m, the SCM simulations converge to the mean reference, this is not the case for w29m. For this metric, the 
LES ensemble mean is about 5.2 m s−1, while the SCMs struggle to exceed 5.0 m s−1. If a non-null discrep-
ancy is not necessary to avoid an empty space, the latter point advocates for taking a structural error of the 
model at least equal to 0.2 m s−1. Our choice for no tolerance to error seems reasonable for exploring a single 
case study and only a few metrics. It is however not recommended in a more comprehensive calibration of 
the full model as it is likely to end up with overtuning (Williamson et al., 2017). When no information can 
help in suggesting or quantifying this discrepancy, tests during the first wave (when computing the implau-
sibilities and identifying the NROY space) are likely to provide some upper bound on it. The following waves 
will possibly help to reduce it as the modeler gains a better quantification of his model behavior and can 
further confront what he wants and what the model can really do.

Finally, we want to stress here the importance of analyzing the comparative importance of the different 
sources of uncertainty when the procedure seems to converge (i.e. when the space of the parameters no 
longer reduces significantly from one wave to the next) before reducing the threshold for example.

6.3. Evaluation of the Statistical Framework: Comparison with a 100% SCM Approach

As SCM low-resolution simulations are computationally cheap, it is possible to perform an independent 
large ensemble of simulations to assess the overall framework used in Section 4, in particular, the quality of 
the GP-based surrogate models. In the present section, we focus on the SCM-SHF-LR setup for which 104 
simulations are performed. The parameters are sampled according to a conventional Latin hypercube of the 
input space. The implausibility of each of these 104 simulations is evaluated. As there is no emulator used 
in this experience, Equation 13 reduces to
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Experiment SCM-HR-SHF SCM-LR-SHF

NROY1 3.0% 0.59%

NROY2 0.97% 0.17%

NROY3 0.52% 0.14%

NROY4 0.39% 0.12%

NROY5 0.27% 0.11%

NROY6 0.21% 0.10%

NROY7 0.16% 0.09%

NROY8 0.14% 0.08%

NROY9 0.12% 0.08%

NROY, not-ruled-out-yet; SCM, single-column model.

Table 5 
Evolution of the NROY Space Fraction (With Respects to the Input 
parameter Space) for the History Matching Experiments Applied to the 
SCM-HR-SHF and SCM-LR-SHF Configurations
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Figure 8. Evolution across the SCM-LR-SHF 9 waves of the distribution of various variables involved in the implausibility computation: (a to d) metrics values 
with the LES ensemble mean (orange solid line) and plus or minus three standard deviation (dashed orange lines), (e to h) surrogate model variance with the 
LES ensemble variance (orange solid line), (i to l) implausibility with the cutoff of 3 (orange solid line), and (m to p) the GP-based emulator bias with respect to 
the SCM ensemble mean of the corresponding wave. The first column corresponds to the θ8.5m metric, the second column to the θ55m metric, the third column 
to the w29m metric and the fourth column to the w55m metric. The distributions are computed using points sampling the NROY space obtained at the end of the 
previous wave (input space for Wave 1). LES, large-eddy simulation; NROY, not-ruled-out-yet; SCM, single-column model.
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where f(λ) is the value of the metric f for the set of parameters λ, directly computed from the SCM sim-
ulations. As in the previous history matching experiment and in order to compare results, the structural 
error  2

,d f  is taken to zero. This formulation is used to estimate the NROY space, directly from the 104 SCM 
ensemble. Note that to appropriately characterize the NROY space, it is necessary that it contains enough 
points, at least a few hundreds. The NROY space obtained using the four metrics in Section 5.2 is about 0.1% 
of the input space. It has been numerically evaluated using the implausibility computed over 106 points, so 
that it contains in the end around 103 points. With only 104 points in the input space, only an order of 10 
points is expected to remain, which is clearly not sufficient to fully characterize the NROY space and makes 
its estimate much sensitive to the input space sampling. This further emphasizes the relevance of using sur-
rogate models, even in this SCM framework. Therefore, the statistical framework is evaluated using only the 
w29m metric, as it a priori keeps a sufficient fraction of the initial space, namely about 18% using emulators 
(thus about 1,800 points). In parallel, a NROY space is estimated using the emulators built in Section 5.2 on 
the same 104 points in the parameter space. The use of the same points for both estimates avoids sampling 
effects in the comparison. In experiments using emulators, the threshold for implausibility is set at 3. This 
choice is deliberately conservative and reduces the risk of ruling out a set of parameters that would in fact 
leads to results consistent with the reference. The threshold of 3 follows the 3-σ rule of Pukelsheim (1994) 
which states that 95% of any unimodal distribution lies in the range of ± 3σ, σ being the standard deviation 
of this distribution. To compare the two methods, keeping this threshold of 3 for the direct approach is not 
relevant, as in our full SCM approach, there is only one source of uncertainty. Assuming a Gaussian distri-
bution for the reference, 95% of the distribution is in the range of ± 1.96σ around the mean. We thus reduce 
the threshold to 1.96 in the full SCM approach when ruling out parameter values as this provides a more 
consistent comparison with the GP-based framework.

Figure 9 compares the NROY spaces for the w29m metric, obtained either directly from the 104 SCM sim-
ulations (NROYSCM) or with Wave 9 emulator ( 9

GPNROY ). NROYSCM is significantly smaller than 9
GPNROY  

(9.8% against 18.0%), but the two NROY spaces are highly consistent. This comparison clearly validates the 
statistical framework used in Section 5 and the quality of the surrogate models in predicting the metric and 
its uncertainty.

7. Conclusion
Stable boundary layers are still critical features for weather and climate models. In the present work, we seek 
to assess whether these model deficiencies reflect calibration choices, or whether they are more deeply root-
ed in the formulations and implementations of the turbulence parameterization themselves. In the latter 
case, this would clearly point to intrinsic limits of current parameterizations and possibly to missing process-
es key for stable boundary layers. To address this question, we took the example of the CNRM atmospheric 
model, namely ARPEGE-Climat 6.3, which implements the Cuxart et al. (2000) 1.5-order turbulence param-
eterization, with a few bounds that were historically and empirically added to prevent undesirable model be-
havior under certain circumstances (e.g., runaway cooling over Antarctica). At this stage, our example solely 
makes use of a single-column model framework, based on the very stable boundary layer regime of GABLS4 
(Bazile et al., 2015). The Large-Eddy Simulation (LES) ensemble analyzed by Couvreux, Bazile et al. (2020a) 
serves as reference for evaluating and constraining the model behavior. A statistical approach, based on his-
tory matching and Gaussian-Process-based surrogate models, is then used to identify whether there exists or 
not some calibration of the free parameters of the turbulence parameterization, which can provide satisfying 
results on this GABLS4 case. More precisely, our framework follows the process-based tuning advocated by 
Couvreux, Hourdin et al. (2020b) to characterize the part of the free parameter space, which leads to SCM 
simulations compatible with the LES references, given the various sources of uncertainty.

We have addressed this experience using two vertical resolutions, namely the standard ARPEGE-Climat 6.3 
vertical resolution and a LES-type vertical resolution (2 m), and using two configurations for the interaction 
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with the surface (prescribed surface fluxes and prescribed surface temperatures). Using four metrics (two 
characterizing the temperature profile, and two characterizing the wind profile), sampled at a given time of 
the GABLS4 nighttime stable boundary-layer regime, we proved that for each SCM configurations, there ex-
ist calibrations of the Cuxart et al. (2000) turbulence parameterization, as implemented in ARPEGE-Climat 
6.3, which provide results consistent with the LES references. This indicates in an unambiguous manner 
that this turbulence parameterization contains sufficient physics to capture strongly-stable boundary layers. 
As expected, such acceptable model behavior requires calibration that allows to weaken turbulent mixing. 
This is mostly achieved when strongly reducing the impact of lower bounds historically introduced for 
maintaining a minimum turbulent mixing (mixing length and minimum flux close to the surface). In con-
trast, and even though it can be revisited, the calibration of other turbulent parameters can broadly remain 
consistent with the previous proposals of Cuxart et al. (2000) and Cheng et al. (2002). This importance of 
lower bounds in the turbulence parameterization clearly echoes similar results obtained by Vignon, Hour-
din et al. (2017a) for the climate model LMDZ.

The present work is also the opportunity to gather and formalize our experience with the statistical tools 
used here and borrowed from the Uncertainty Quantification community (history matching, GP-based sur-
rogate models). As such, we attempt to provide guidance for their use in the context of parameterization 
and atmospheric model calibration. The importance of the different sources of uncertainty is emphasized. 
The choice of metrics is an important step that is case-dependent: if the analysis of the standard-calibration 
model simulation is important by highlighting its main biases, the analysis of the model behavior over the 
first wave simulations is equally important. It allows to explore, to some extent, what the model can do and 
where the uncertainties lie. We also illustrate how to understand and tackle the question of the framework 
convergence by comparing the emulator uncertainties to the other sources of uncertainty.

The present work is a first step in the full calibration of the ARPEGE-Climat atmospheric model. It will be 
first complemented with the addition of new 1D cases that explore a wide variety of atmospheric regimes. 
For instance, preliminary new waves that follow the 9 waves performed with the SCM-LR-TS configuration, 
and which include additional metrics from the first GABLS case (GABLS1, Cuxart et al., 2006), seem to 
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Figure 9. NROY spaces (a) computed from the 104 SCM-LR-SHF simulations and (b) computed from the Wave 9 history matching framework applied to SCM-
LR-SHF, considering only the w29m metric. See text for details. NROY, not-ruled-out-yet; SCM, single-column model.
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indicate that the moderately-stable boundary layer of GABLS1 requires a minimum mixing. This clearly 
contrasts with what we obtained here with GABLS4, thus emphasizing the benefit of using a large diversity 
of SCM cases (see also Couvreux, Hourdin et al., 2020b). Then, when the calibration performed in the SCM/
LES framework has shrunk the space of acceptable parameters, it can continue within this Not-Ruled-Out-
Yet space with 3D model configurations. Working in this NROY space constrained with 1D cases ensures 
that the model behavior at the process-level remains acceptable, while it dramatically reduces the param-
eter space to be explored with the more expensive 3D configurations. Hourdin, Williamson et al. (2020b) 
recently provided a first proof of concept of this whole framework, in the context of boundary-layer clouds.

Appendix A: Standard-resolution SCM configuration forced by surface 
temperature (SCM-LR-TS)
Similar to Section 5.2, this appendix briefly documents the history matching results in the case where the 
ARPEGE-Climat SCM is forced by the surface temperature (SCM-LR-TS configuration) rather than by the 
surface sensible heat flux.

The standard calibration SCM version (CM6-LR-TS) behaves similar to CM6-LR-SHF with an underesti-
mated cooling of the atmospheric low levels and a too weak low-level jet (Figures 1 and A1). A notable 
difference is that the model continues to cool for a longer period (until around 0600 LT). The wind rotation 
at 29 m remains weakly captured, as in CM6-LR-SHF.

History matching is applied as for SCM-LR-SHF, using the same metrics as in Section 5.2. Nine waves are 
performed with a similar convergence as for the SCM-LR-SHF configuration (not shown). The Wave 9 SCM 
simulations are shown with blue lines in Figure A1. Overall, the associated sets of free parameters provide 
improved and satisfying results over the GABLS4 stable boundary layer, with only a systematic warm bias 
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Figure A1. Same as Figure 2 but for history matching applied to the SCM-LR-TS configuration. The standard-calibration simulation CM6-LR-TS is shown with 
the red line. LES, large-eddy simulation; SCM, single-column model.
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Figure A2. Same as Figure 5, but for the history matching applied to the SCM-LR-TS configuration (NROY space obtained at Wave 9). NROY, not-ruled-out-
yet; SCM, single-column model.
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at 8.5 m at 0300 LT (1.1–1.3 K), mainly because of a 2-h delay in the SBL cooling. Regarding the wind, the 
Wave 9 simulations capture well its vertical structure and rotation, within the LES uncertainty (Figures A1e 
and A1).

Finally, Figure A2 presents the NROY space after the 9 waves for this SCM-LR-TS configuration. The con-
clusions are similar to those made with the SCM-LR-SHF configuration, with a critical role of KOZMIN, 
LMIN, CM, and CE. For these parameters, values leading to low turbulent mixing are required.

Data Availability Statement
The High-Tune Explorer (htexplo) tool used here for history matching with iterative refocusing is available 
through the open source version control system “subversion” (svn) at https://svn.lmd.jussieu.fr/HighTune. 
A snapshot version of the tool used here is also available at http://doi.org/10.14768/70efa07b-afe3-43a4-
8334-050354f9deac. LES and SCM data is available at https://doi.org/10.5281/zenodo.4350522.

References
Abdel-Lathif, A. Y., Roehrig, R., Beau, I., & Douville, H. (2018). Single-column modeling of convection during the CINDY2011/DYNAMO 

field campaign with the CNRM climate model version 6. Journal of Advances in Modeling Earth Systems, 10(3), 578–602. https://doi.
org/10.1002/2017MS001077

Acevedo, O. C., Mahrt, L., Puhales, F. S., Costa, F. D., Medeiros, L. E., & Degrazia, G. A. (2016). Contrasting structures between the decou-
pled and coupled states of the stable boundary layer. Quarterly Journal of the Royal Meteorological Society, 142(695), 693–702. https://
doi.org/10.1002/qj.2693

Baas, P., van De Wiel, B., van der Linden, S., & Bosveld, F. (2018). From near-neutral to strongly stratified: Adequately modelling the 
clear-sky nocturnal boundary layer at Cabauw. Boundary-Layer Meteorology, 166, 217–238. https://doi.org/10.1007/s10546-017-0304-8

Bazile, E., Couvreux, F., Le Moigne, P., & Genthon, C. (2015). First workshop on the GABLS-4 intercomparison. Global Energy and Water 
Exchanges News. 25(3).

Bazile, E., Couvreux, F., Le Moigne, P., Genthon, C., Holtslag, A. A. M., & Svensson (2014). GABLS4: An intercomparison case to study the 
stable boundary layer over the Antarctic Plateau. Global Energy and Water Exchanges News, 24(4).

Beare, R. J., Macvean, M. K., Holtslag, A. A. M., Cuxart, J., Esau, I., Golaz, J.-C., et al. (2006). An intercomparison of large-eddy simulations 
of the stable boundary layer. Boundary-Layer Meteorology, 118(2), 247–272. https://doi.org/10.1007/s10546-004-2820-6

Beljaars, A., & Viterbo, P. (1998). Role of the boundary layer in a numerical weather prediction model. In A. Holtslag & P. Duynkerke (Eds.) 
Clear and Cloudy Boundary Layers, p. 372. Amsterdam: Royal Netherlands Academy of Arts and Sciences.

Blackadar, A. K. (1957). Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bulletin of the Ameri-
can Meteorological Society, 38(5), 283–290. https://doi.org/10.1175/1520-0477-38.5.283

Bosveld, F. C., Baas, P., Steeneveld, G.-J., Holtslag, A. A. M., Angevine, W. M., Bazile, E., et al. (2014). The third GABLS intercomparison 
case for evaluation studies of boundary-layer models. Part B: Results and process understanding. Boundary-Layer Meteorology, 152(2), 
157–187. https://doi.org/10.1007/s10546-014-9919-1

Bougeault, P., & Lacarrère, P. (1989). Parameterization of orography-induced turbulence in a mesobeta–scale model. Monthly Weather 
Review, 117(8), 1872–1890. https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., et al. (2017). Stan: A probabilistic programming lan-
guage. Journal of Statistical Software, Articles, 76(1), 1–32. https://doi.org/10.18637/jss.v076.i01

Cheng, Y., Canuto, V., & Howard, A. (2002). An improved model for the turbulent PBL. Journal of the Atmospheric Sciences, 59(9), 1550–
1565. https://doi.org/10.1175/1520-0469(2002)059<1550

Couvreux, F., Bazile, E., Rodier, Q., Maronga, B., Matheou, G., Chinita, M. J., et al. (2020a). Intercomparison of large-eddy simulations 
of the Antarctic boundary layer for very stable stratification. Boundary-Layer Meteorology, 176(3), 369–400. https://doi.org/10.1007/
s10546-020-00539-4

Couvreux, F., Hourdin, F., Williamson, D., Roehrig, R., Volodina, V., Villefranque, N., et al. (2020b). Process-based climate model devel-
opment harnessing machine learning: I. A calibration tool for parameterization improvement. Journal of Advances in Modeling Earth 
Systems, e2020MS002217. https://doi.org/10.1029/2020MS002217

Cuxart, J., Bougeault, P., & Redelsperger, J.-L. (2000). A turbulence scheme allowing for mesoscale and large-eddy simulations. Quarterly 
Journal of the Royal Meteorological Society, 126(562), 1–30. https://doi.org/10.1002/qj.49712656202

Cuxart, J., Holtslag, A. A. M., Beare, R. J., Bazile, E., Beljaars, A., Cheng, A., et al. (2006). Single-column model intercomparison for a 
stably stratified atmospheric boundary layer. Boundary-Layer Meteorology, 118(2), 273–303. https://doi.org/10.1007/s10546-005-3780-1

Derbyshire, S. H. (1999). Boundary-layer decoupling over cold surfaces as a physical boundary-instability. Boundary-Layer Meteorology, 
90(2), 297–325. https://doi.org/10.1023/A:1001710014316

Gallée, H., Barral, H., Vignon, E., & Genthon, C. (2015). A case study of a low-level jet during OPALE. Atmospheric Chemistry and Physics, 
15(11), 6237–6246. https://doi.org/10.5194/acp-15-6237-2015

Gettelman, A., Truesdale, J. E., Bacmeister, J. T., Caldwell, P. M., Neale, R. B., Bogenschutz, P. A., & Simpson, I. R. (2019). The single 
column atmosphere model version 6 (SCAM6): Not a scam but a tool for model evaluation and development. Journal of Advances in 
Modeling Earth Systems, 11(5), 1381–1401. https://doi.org/10.1029/2018MS001578

Holtslag, A. A. M., Svensson, G., Baas, P., Basu, S., Beare, B., Beljaars, A. C. M., et al. (2013). Stable atmospheric boundary layers and 
diurnal cycles: Challenges for weather and climate models. Bulletin of the American Meteorological Society, 94(11), 1691–1706. https://
doi.org/10.1175/BAMS-D-11-00187.1

Hourdin, F., Grandpeix, J.-Y., Rio, C., Bony, S., Jam, A., Cheruy, F., et al. (2013). LMDZ5B: The atmospheric component of the IPSL cli-
mate model with revisited parameterizations for clouds and convection. Climate Dynamics, 40(9), 2193–2222. https://doi.org/10.1007/
s00382-012-1343-y

AUDOUIN ET AL.

10.1029/2020MS002269

29 of 31

Acknowledgments
The authors are grateful for helpful 
comments and suggestions from two 
anonymous reviewers and from the 
associate editor T. Mauritsen. This work 
received funding from grant HIGH-
TUNE ANR-16-CE01-0010. It was sup-
ported by the DEPHY2 project, funded 
by the French national program LEFE/
INSU and the GDR-DEPHY. Daniel 
Williamson was funded by NERC 
grant: NE/N018486/1 and by the Alan 
Turing Institute project “Uncertainty 
Quantification of multi-scale and mult-
iphysics computer models: applications 
to hazard and climate models” as part 
of the grant EP/N510129/1 made to the 
Alan Turing Institute by EPSRC. The 
LESs of the GABLS4-stage3-10 h have 
been kindly provided by G. Matheou, 
B. Maronga, C. Van Heerwaarden, and 
J. Edwards.

https://svn.lmd.jussieu.fr/HighTune
http://doi.org/10.14768/70efa07b-afe3-43a4-8334-050354f9deac
http://doi.org/10.14768/70efa07b-afe3-43a4-8334-050354f9deac
https://doi.org/10.5281/zenodo.4350522
https://doi.org/10.1002/2017MS001077
https://doi.org/10.1002/2017MS001077
https://doi.org/10.1002/qj.2693
https://doi.org/10.1002/qj.2693
https://doi.org/10.1007/s10546-017-0304-8
https://doi.org/10.1007/s10546-004-2820-6
https://doi.org/10.1175/1520-0477-38.5.283
https://doi.org/10.1007/s10546-014-9919-1
https://doi.org/10.1175/1520-0493(1989)117%3C1872:POOITI%3E2.0.CO;2
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1175/1520-0469(2002)059%3C1550
https://doi.org/10.1007/s10546-020-00539-4
https://doi.org/10.1007/s10546-020-00539-4
https://doi.org/10.1029/2020MS002217
https://doi.org/10.1002/qj.49712656202
https://doi.org/10.1007/s10546-005-3780-1
https://doi.org/10.1023/A:1001710014316
https://doi.org/10.5194/acp-15-6237-2015
https://doi.org/10.1029/2018MS001578
https://doi.org/10.1175/BAMS-D-11-00187.1
https://doi.org/10.1175/BAMS-D-11-00187.1
https://doi.org/10.1007/s00382-012-1343-y
https://doi.org/10.1007/s00382-012-1343-y


Journal of Advances in Modeling Earth Systems

Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q., et al. (2017). The art and science of climate model tuning. 
Bulletin of the American Meteorological Society, 98(3), 589–602. https://doi.org/10.1175/BAMS-D-15-00135.1

Hourdin, F., Rio, C., Grandpeix, J.-Y., Madeleine, J.-B., Cheruy, F., Rochetin, N., et al. (2020a). LMDZ6A: The Atmospheric component of 
the IPSL climate model with improved and better tuned physics. Journal of Advances in Modeling Earth Systems, 12(7), e2019MS001892. 
https://doi.org/10.1029/2019MS001892

Hourdin, F., Williamson, D., Rio, C., Couvreux, F., Roehrig, R., Villefranque, N., et al. (2020b). Process-based climate model develop-
ment harnessing machine learning: II. Model calibration from single column to global. Journal of Advances in Modeling Earth Systems, 
e2020MS002225. https://doi.org/10.1029/2020MS002225

Mahrt, L. (1998). Stratified atmospheric boundary layers and breakdown of models. Theoretical and Computational Fluid Dynamics, 11(3), 
263–279. https://doi.org/10.1007/S001620050093

Mascart, P., Noilhan, J., & Giordani, H. (1995). A modified parameterization of flux-profile relationships in the surface layer using different 
roughness length values for heat and momentum. Boundary-Layer Meteorology, 72(4), 331–344. https://doi.org/10.1007/BF00708998

Mauritsen, T., & Svensson, G. (2007). Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson 
numbers. Journal of the Atmospheric Sciences, 64(2), 645–655. https://doi.org/10.1175/JAS3856.1

Neggers, R. A. J. (2015). Exploring bin-macrophysics models for moist convective transport and clouds. Journal of Advances in Modeling 
Earth Systems, 7(4), 2079–2104. https://doi.org/10.1002/2015MS000502

Noilhan, J., & Mahfouf, J.-F. (1996). The ISBA land surface parameterisation scheme. Global and Planetary Change, 13(1), 145–159. https://
doi.org/10.1016/0921-8181(95)00043-7

Paulson, C. A. (1970). The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. 
Journal of Applied Meteorology, 9(6), 857–861. https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2

Pukelsheim, F. (1994). The three sigma rule. The American Statistician, 48(2), 88–91. 10.1080/00031305.1994.10476030
Randall, D., Krueger, S., Bretherton, C., Curry, J., Duynkerke, P., Moncrieff, M., et al. (2003). Confronting models with data: The GEWEX 

cloud systems study. Bulletin of the American Meteorological Society, 84(4), 455–470. https://doi.org/10.1175/BAMS-84-4-455
Randall, D., Xu, K.-M., Somerville, R. J., & Iacobellis, S. (1996). Single-column models and cloud ensemble models as links between obser-

vations and climate models. Journal of Climate, 9(8), 1683–1697. https://doi.org/10.1175/1520-0442(1996)009<1683:SCMACE>2.0.CO;2
Redelsperger, J.-L., & Sommeria, G. (1982). Method of representing the turbulence associated with precipitations in a three-dimensional 

model of cloud convection. Boundary-Layer Meteorology, 24(2), 231–252. https://doi.org/10.1007/BF00121669
Redelsperger, J.-L., & Sommeria, G. (1986). Three-dimensional simulation of a convective storm: Sensitivity studies on subgrid parame-

terization and spatial resolution. Journal of the Atmospheric Sciences, 43(22), 2619–2635. https://doi.org/10.1175/1520-0469(1986)043<
2619:TDSOAC>2.0.CO;2

Roehrig, R., Beau, I., Saint-Martin, D., Alias, A., Decharme, B., Guérémy, J.-F., et al. (2020). The CNRM global atmosphere model AR-
PEGE-Climat 6.3: Description and evaluation. Journal of Advances in Modeling Earth Systems, 12(7), e2020MS002075. https://doi.
org/10.1029/2020MS002075

Salter, J. M., & Williamson, D. (2016). A comparison of statistical emulation methodologies for multi-wave calibration of environmental 
models. Environmetrics, 27(8), 507–523. https://doi.org/10.1002/env.2405

Salter, J. M., Williamson, D., Scinocca, J., & Kharin, V. (2019). Uncertainty quantification for computer models with spatial output using 
calibration-optimal bases. Journal of the American Statistical Association, 114(528), 1800–1814. https://doi.org/10.1080/01621459.201
8.1514306

Sandu, I., Beljaars, A., Bechtold, P., Mauritsen, T., & Balsamo, G. (2013). Why is it so difficult to represent stably stratified conditions in 
numerical weather prediction (NWP) models?. Journal of Advances in Modeling Earth Systems, 5(2), 117–133. https://doi.org/10.1002/
jame.20013

Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin, J., et al. (2019). Evaluation of CNRM Earth system model, CN-
RM-ESM2-1: Role of Earth system processes in present-day and future climate. Journal of Advances in Modeling Earth Systems, 11(12), 
4182–4227. https://doi.org/10.1029/2019MS001791

Simmons, A. J., & Burridge, D. M. (1981). An energy and angular-momentum conserving vertical finite-difference scheme and hybrid 
vertical coordinates. Monthly Weather Review, 109(4), 758–766. https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2

Steeneveld, G.-J., Holtslag, A., Nappo, C., Van de Wiel, B., & Mahrt, L. (2008). Exploring the possible role of small-scale terrain drag on stable 
boundary layers over land. Journal of applied meteorology and climatology, 47(10), 2518–2530. https://doi.org/10.1175/2008JAMC1816.1

Steeneveld, G.-J., Van de Wiel, B., & Holtslag, A. (2006). Modeling the evolution of the atmospheric boundary layer coupled to the land sur-
face for three contrasting nights in CASES-99. Journal of the Atmospheric Sciences, 63(3), 920–935. https://doi.org/10.1175/JAS3654.1

Svensson, G., Holtslag, A. A. M., Kumar, V., Mauritsen, T., Steeneveld, G. J., Angevine, W. M., et al. (2011). Evaluation of the diurnal cycle 
in the atmospheric boundary layer over land as represented by a variety of single-column models: The second GABLS experiment. 
Boundary-Layer Meteorology, 140(2), 177–206. https://doi.org/10.1007/s10546-011-9611-7

Tsiringakis, A., Steeneveld, G. J., & Holtslag, A. A. M. (2017). Small-scale orographic gravity wave drag in stable boundary layers and its 
impact on synoptic systems and near-surface meteorology. Quarterly Journal of the Royal Meteorological Society, 143(704), 1504–1516. 
https://doi.org/10.1002/qj.3021

Van de Wiel, B. J., Moene, A., & Jonker, H. (2012). The cessation of continuous turbulence as precursor of the very stable nocturnal bound-
ary layer. Journal of the Atmospheric Sciences, 69(11), 3097–3115. https://doi.org/10.1175/JAS-D-12-064.1

Vernon, I., Goldstein, M., & Bower, R. G. (2010). Galaxy formation: A Bayesian uncertainty analysis. Bayesian Analysis, 5(4), 619–669. 
https://doi.org/10.1214/10-BA524

Vignon, E., Hourdin, F., Genthon, C., Gallee, H., Bazile, E., Lefebvre, M.-P., et al. (2017a). Antarctic boundary-layer parametrization in 
a general circulation model: 1D simulations facing summer observations at Dome C. Journal of Geophysical Research: Atmosphere, 
122(13), 6818–6843. https://doi.org/10.1002/2017JD026802

Vignon, E., Hourdin, F., Genthon, C., Van de Wiel, B. J. H., Gallée, H., Madeleine, J.-B., & Beaumet, J. (2018a). Modeling the dynamics 
of the atmospheric boundary layer over the Antarctic plateau with a general circulation model. Journal of Advances in Modeling Earth 
Systems, 10(1), 98–125. https://doi.org/10.1002/2017MS001184

Vignon, E., van de Wiel, B. J. H., van Hooijdonk, I. G. S., Genthon, C., van der Linden, S. J. A., van Hooft, J. A., et al. (2017b). Stable bound-
ary-layer regimes at Dome C, Antarctica: Observation and analysis. Quarterly Journal of the Royal Meteorological Society, 143(704), 
1241–1253. https://doi.org/10.1002/qj.2998

Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., et al. (2019). Evaluation of CMIP6 DECK experiments 
with CNRM-CM6-1. Journal of Advances in Modeling Earth Systems, 11(7), 2177–2213. https://doi.org/10.1029/2019MS001683

AUDOUIN ET AL.

10.1029/2020MS002269

30 of 31

https://doi.org/10.1175/BAMS-D-15-00135.1
https://doi.org/10.1029/2019MS001892
https://doi.org/10.1029/2020MS002225
https://doi.org/10.1007/S001620050093
https://doi.org/10.1007/BF00708998
https://doi.org/10.1175/JAS3856.1
https://doi.org/10.1002/2015MS000502
https://doi.org/10.1016/0921-8181(95)00043-7
https://doi.org/10.1016/0921-8181(95)00043-7
https://doi.org/10.1175/1520-0450(1970)009%3C0857:TMROWS%3E2.0.CO;2
https://doi.org/10.1080/00031305.1994.10476030
https://doi.org/10.1175/BAMS-84-4-455
https://doi.org/10.1175/1520-0442(1996)009%3C1683:SCMACE%3E2.0.CO;2
https://doi.org/10.1007/BF00121669
https://doi.org/10.1175/1520-0469(1986)043%3C2619:TDSOAC%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1986)043%3C2619:TDSOAC%3E2.0.CO;2
https://doi.org/10.1029/2020MS002075
https://doi.org/10.1029/2020MS002075
https://doi.org/10.1002/env.2405
https://doi.org/10.1080/01621459.2018.1514306
https://doi.org/10.1080/01621459.2018.1514306
https://doi.org/10.1002/jame.20013
https://doi.org/10.1002/jame.20013
https://doi.org/10.1029/2019MS001791
https://doi.org/10.1175/1520-0493(1981)109%3C0758:AEAAMC%3E2.0.CO;2
https://doi.org/10.1175/2008JAMC1816.1
https://doi.org/10.1175/JAS3654.1
https://doi.org/10.1007/s10546-011-9611-7
https://doi.org/10.1002/qj.3021
https://doi.org/10.1175/JAS-D-12-064.1
https://doi.org/10.1214/10-BA524
https://doi.org/10.1002/2017JD026802
https://doi.org/10.1002/2017MS001184
https://doi.org/10.1002/qj.2998
https://doi.org/10.1029/2019MS001683


Journal of Advances in Modeling Earth Systems

Williamson, D. (2015). Exploratory ensemble designs for environmental models using k-extended Latin Hypercubes. Environmetrics, 26(4), 
268–283. https://doi.org/10.1002/env.2335

Williamson, D., Blaker, A., Hampton, C., & Salter, J. (2015). Identifying and removing structural biases in climate models with history 
matching. Climate Dynamics, 45(5), 1299–1324. http://dx.doi.org/10.1007/s00382-014-2378-z

Williamson, D., Blaker, A. T., & Sinha, B. (2017). Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean 
model. Geoscientific Model Development, 10(4), 1789–1816. https://doi.org/10.5194/gmd-10-1789-2017

Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P., Jackson, L., & Yamazaki, K. (2013, 10). History matching for explor-
ing and reducing climate model parameter space using observations and a large perturbed physics ensemble. Climate Dynamics, 41, 
1703–1729. https://doi.org/10.1007/s00382-013-1896-4

AUDOUIN ET AL.

10.1029/2020MS002269

31 of 31

https://doi.org/10.1002/env.2335
http://dx.doi.org/10.1007/s00382-014-2378-z
https://doi.org/10.5194/gmd-10-1789-2017
https://doi.org/10.1007/s00382-013-1896-4

	Modeling the GABLS4 Strongly-Stable Boundary Layer With a GCM Turbulence Parameterization: Parametric Sensitivity or Intrinsic Limits?
	Abstract
	Plain Language Summary
	1. Introduction
	2. ARPEGE-Climat 6.3
	2.1. Turbulence Parameterization
	2.2. Surface Flux Parameterization
	2.2.1. Configuration with Prescribed Surface Sensible Heat Flux
	2.2.2. Configuration with Prescribed Surface Temperature


	3. Experimental Setup and Reference Simulations
	3.1. The GABLS4 Framework
	3.2. GABLS4 Large-Eddy Simulations
	3.3. SCM Configurations

	4. Statistical Framework: History Matching with Iterative Refocusing
	5. Ability of ARPEGE-Climat to Simulate the GABLS4 Stable Boundary Layer
	5.1. High-Resolution SCM Configuration Forced by Surface Sensible Heat Flux (SCM-HR-SHF)
	5.1.1. ARPEGE-Climat Standard Calibration
	5.1.2. Defining the Acceptable Range of the Turbulence Free Parameters

	5.2. Standard-Resolution SCM Configuration Forced by Surface Sensible Heat Flux (SCM-LR-SHF)

	6. Discussion
	6.1. Choice of Metrics
	6.2. Iterative Refocusing Convergence and Its Link with the Sources of Uncertainty
	6.3. Evaluation of the Statistical Framework: Comparison with a 100% SCM Approach

	7. Conclusion
	Appendix A: Standard-resolution SCM configuration forced by surface temperature (SCM-LR-TS)
	Data Availability Statement
	References


