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HOMOGENIZATION OF
HAMILTON-JACOBI EQUATIONS WITH DEFECTS

LEADING TO STRATIFIED PROBLEMS

YVES ACHDOU˚ AND CLAUDE LE BRIS:

Abstract. We study homogenization of a class of bidimensional stationary Hamilton-Jacobi
equations where the Hamiltonian is obtained by perturbing near a half-line of the state space a
Hamiltonian that either does not have fast variations with respect to the state variable, or depends
on the latter in a periodic manner. We prove that the limiting problem belongs to the class of
stratified problems introduced by A. Bressan and Y. Hong and later studied by G. Barles and E.
Chasseigne. The related Whitney stratification is made of a submanifold of dimension zero, namely
the endpoint of the half-line, a submanifold of dimension one, the open half-line, and the complement
of the latter two sets which is a submanifold of dimension two. The limiting problem involves effective
Hamiltonians that are associated to the above mentioned three submanifolds and keep track of the
perturbation. Another example in which the Hamiltonian is perturbed in a tubular neighborhood of
a line is studied.

1. Introduction. Recently, there has a been a growing research effort on Hamil-
-ton-Jacobi equations with discontinuous Hamiltonians and optimal control problems
with discontinuities in the cost or the dynamics. In particular, important progress
have been made when the discontinuities are located on submanifolds of codimension
one, see the first part of the book of G. Barles and E. Chasseigne, [8], and the refer-
ences therein. The case when the locus of the discontinuities may be locally of any
codimension is more complex. In such situations, a complete theory has been devel-
oped under the important geometric assumption that the problem is stratified, i.e.
that the discontinuities lie on a union of submanifolds that form a Whitney stratifica-
tion of Rd. A Whitney stratification is a partition of Rd into a family pMkqk“0,...,d of
disjoint submanifolds with specific properties (in particular, Mk is of dimension k if it
is not empty). Since the stratifications that will arise in the present work are simple,
we do not thoroughly write the rather long definition of Whitney stratifications and
refer the reader to [8, Definition 2.2]. Besides, the stratifications that will appear
below are flat Whitney stratifications, which means that the connected components
of Mk locally coincide with affine subspaces of dimension k, see [8, Definition 2.3].
Stratified problems have been introduced by A. Bressan and Y. Hong, see [12] and
later studied by G. Barles and E. Chasseigne, see [8]. In particular, these authors
have proved comparison principles for viscosity sub/supersolutions of stratified prob-
lems. These results are of course crucial because they imply uniqueness of viscosity
solutions. Note that in the theory of stratified viscosity solutions, the convexity of
the Hamiltonian with respect to the momentum is a key assumption.

In the present work, we aim at giving examples of situations in which the homog-
enization of a continuous problem leads to a stratified problem.

In that respect, this work can be seen as the continuation of [1], where the au-
thors studied homogenization of a class of stationary Hamilton-Jacobi equations with
a Hamiltonian obtained by perturbing a periodic Hamiltonian in a bounded neigh-
borhood of the origin. In [1], such a perturbation was termed a local defect. The
main result of [1] is that the limiting problem consists of a Hamilton-Jacobi equation
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outside the origin, with the same effective Hamiltonian as in periodic homogenization,
supplemented at the origin with an effective Dirichlet condition that keeps track of
the perturbation. Note that the codimension of the origin is d and that the Dirichlet
problems in Rdzt0u may have several viscosity solutions in the sense of H. Ishii, see
e.g. [6, chapter V, section 4]. However, it was shown in [1] that the effective prob-
lem is a stratified problem in the sense of [8], for which uniqueness holds. In other
words, the formulation of the effective Dirichlet problem found in [1] is more precise
than the formulation of H. Ishii. Besides, according to the effective Dirichlet data,
the solution of the effective problem may or may not coincide with the solution of
the Hamilton-Jacobi equation posed in the whole space. Finally, [1] is much related
to a series of lectures [20] at Collège de France by P-L. Lions, where some results
obtained in collaboration with P. Souganidis, [22], were described. In the control
theoretic interpretation of [20, 22], the typical local perturbation of the running cost
was a bump oriented so that the neighborhood of the origin became repulsive. In [20],
it was shown that the presence of such a defect indeed does not affect the homog-
enized limit, but only possibly ”the next order correction”, that is the definition of
the corrector function itself. In other words, as mentioned above, homogenized limit
is a viscosity solution of the effective Hamilton-Jacobi equation posed in the whole
space. In contrast, it was shown in [1] that if the defect makes the origin attractive,
then it affects the homogenized limit itself, and the latter is impacted by the effective
Dirichlet condition. We will discuss the technical aspects of [1] in more details later,
when they are needed.

Note that homogenization theory in the presence of local defects within an other-
wise periodic environment was first introduced in [9], in the first of a series of works
by X. Blanc, C. Le Bris and P-L. Lions. It was further developed in [10, 11] and other
subsequent works by various authors, considering different classes of defects such as,
in particular, interfaces between two different periodic media. In those articles, the
typical setting is that of a linear non-degenerate elliptic equation, first in divergence
form and next in more general form. Only recently, some quasilinear second order
elliptic equation was considered in [26].

In the present work, we aim at studying examples in which homogenization leads
to stratified problems with more complex stratifications than in [1], for example with
a complete hierarchy of submanifolds. The new technical difficulty will consist of
combining the different correctors associated with the different submanifolds.

We work in R2 for simplicity, and discuss the homogenization limit for a first
order stationary Hamilton-Jacobi equation of the form

αuε ` H
´

x,
x

ε
,Duε

¯

“ 0 in R2.

The Hamiltonian is a continuous function of its three arguments, convex with respect
to its last argument, and arises from an optimal control problem (the assumptions
will be made more precise later). We mainly consider three situations:
Case 1 The Hamiltonian Hpx, y, pq does not depend on the fast variable y P R2, ex-
cept if y P Ω, where Ω is a neighborhood of the line half-line M1, M1 “ tpy1, 0q, y1 ă

0u. The set Ω is connected and is obtained as the union of a tubular neighborhood of
M1 and of a bounded neighborhood of the endpoint of M1, namely the origin 0R2 .
It is also assumed that for y P Ω such that |y1| is large enough, Hpx, y, pq coincides
with H1,perpx, y, pq, where H1,per is periodic with respect to y1, the first coordinate
of y. The regions of R2 introduced above are displayed on Figure 1.
Case 2 The function y ÞÑ Hpx, y, pq is 1-periodic with respect to both fast variables
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y1 and y2, the two coordinates of y, except in the region Ω introduced above. For y P Ω
such that |y1| is large enough, Hpx, y, pq “ H1,perpx, y, pq, where H1,per is 1-periodic
with respect to y1 P R, see Figure 2 for an illustration.
Case 3 Here, we set M1 “ M1,´ Y M1,` where M1,˘ “ tpy1, 0q,˘y1 ą 0u. The
function R2 Q y ÞÑ Hpx, y, pq is constant except in a tubular neighborhood Ω of
the straight line y1 “ 0, see Figure 3 for an illustration. For y near M1,´ and far
enough from the origin, Hpx, y, pq coincides with H1,´,perpx, y, pq, where H1,´,per is
periodic with respect to y1 P R. Similarly, near M1,` and far enough from the origin,
Hpx, y, pq “ H1,`,perpx, y, pq, where H1,`,per is periodic with respect to y1. Note that
H1,`,per and H1,´,per can be chosen completely independently, with different periods
for example.

In the three cases described above, H is obtained by perturbing in Ω a function
either invariant or periodic with respect to the fast variable y. We can see this
perturbation as a longitudinal defect localized near a half-line or a line.

The present work can also be seen as the continuation of two articles [3] and
[5], that addressed Hamilton-Jacobi equations in an environment consisting of two
different homogeneous media separated by an oscillatory interface. The oscillations of
the interface have small period and amplitude, and as the latter parameter vanishes,
the interface tends to an hyperplane. At the limit when both parameters vanish,
one finds on the flat interface an effective nonlinear transmission condition keeping
memory of the previously mentioned microscopic oscillations. The effective problem
can be seen as a stratified problem in which the discontinuity lies on a submanifold of
codimension one. By contrast, in the present work, the effective problem will involve
both a submanifold of codimension one, namely M1 defined above and a submanifold
of codimension two, namelyM0 “ t0u. Key arguments in [3, 5] are the construction of
families of correctors that account for the localized perturbations of the environment
and are defined in unbounded domains. We will see that the construction of such
correctors also plays a key role in the present work.

Our main results (Theorem 2.2 for Case 1, Theorem 4.1 for Case 2 and Theorem
4.2 for Case 3) state that when ε tends to zero, uε converges to the solution of an
effective stratified problem. In the three examples described above, as in [1] and in
contrast with [3, 5], we see that the origin plays a special role, because near this point,
the perturbation of the Hamiltonian is not periodic with respect to the longitudinal
variable. This explains the fact that the effective problem will be a stratified problem
for the flat Whitney stratification of R2 : R2 “ M0 Y M1 Y M2, where the one-
dimensional submanifold M1 has been defined above (the definition in Case 3 differs
from that in Cases 1-2), M0 “ t0u is of dimension zero and M2 “ R2zpM0 YM1q is
an open subset of R2. It will involve both effective (tangential) Hamiltonians defined
on M1 and reminiscent of those found in [3], and an effective Dirichlet data at the
origin, similar to the one found in [1].

Note that we have decided to focus on bidimensional problems only for simplicity.
Generalization to the homogenization of Hamilton-Jacobi equations in Rd with defects
localized near a half-hyperplane or two aligned complementary half-hyperplanes does
not bring any new difficulty. Similarly, homogenization with defects located near a
smooth connected submanifold of dimension m ă d of Rd may be tackled with the
same techniques as those proposed below.

Note also that the assumption regarding the continuity of H with respect to y
may be relaxed: for example, our techniques can be applied to the homogenization
of a stratified problem with a Hamiltonian piecewise constant in the state variable,
and associated with the Whitney stratification R2 “ ĂM2,ε Y ĂM1,ε Y ĂM0, where
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ĂM0 “ t0u, ĂM1,ε “ tpx1, εγpx1{εqq, x1 ă 0u, γ being a smooth and periodic function

defined on R and such that γp0q “ 0, and ĂM2,ε “ R2zp ĂM0 Y ĂM1,εq. In this case,
the effective problem is a stratified problem for the flat Whitney stratification R2 “

M0 Y M1 Y M2, with M1 defined in Case 1 and M0 “ t0u.
The article is organized as follows: in Section 2, focusing on Case 1, we set the

problem, state the main result (Theorem 2.2) and review relevant notions belonging
to the theory of stratified control problems. Section 3 is devoted to the proof of
Theorem 2.2. Cases 2 and 3 are dealt with in Section 4, more rapidly, because many
arguments are similar.

2. A prototypical case with a longitudinally periodic defect localized
in the neighborhood of a half-line.

2.1. Setting and assumptions. Let us define the problem and list the as-
sumptions. We wish to emphasize that these assumptions (regarding controllability,
convexity, coercivity, regularity, - see below) are classical and that we do not seek to
make them as general as possible, our focus being on other issues.

The description that follows is illustrated on Figure 1 below.
Hereafter, Brpxq stands for the ball of radius r centered at x P R2. Given R0 ą 0,

let Ω be the subset of R2 defined by

Ω “

´

p´8, 0s ˆ p´R0, R0q

¯

Y BR0p0q.(2.1)

For a small positive parameter ε that will eventually vanish, set Ωε “ εΩ.
We consider Hamilton-Jacobi equations related to infinite horizon optimal control

problems in R2. The Hamiltonian Hε : R2 ˆ R2 Ñ R is of the form

(2.2) Hεpx, pq “ max
aPA

´

´p ¨ fεpx, aq ´ ℓεpx, aq

¯

.

Here, A is a compact metric space. A partial justification of this assumption is that it
is made in [12, 8], although it does not seem crucial in the theory of stratified control
problems.

We assume that the dynamics fε : R2 ˆ A Ñ R2 and cost ℓε : R2 ˆ A Ñ R have
the following properties:

1. They have the form

(2.3) fεpx, aq “ f
´

x,
x

ε
, a
¯

, and ℓεpx, aq “ ℓ
´

x,
x

ε
, a
¯

,

where f : R2 ˆ R2 ˆ A Ñ R2 and ℓ : R2 ˆ R2 ˆ A Ñ R are bounded and
continuous. The function f is assumed Lipschitz continuous with respect to
its first two variables uniformly with respect to its third variable, i.e. for any
px, y, x̃, ỹq P pR2q4 and a P A,

(2.4) |fpx, y, aq ´ fpx̃, ỹ, aq| ď Lf p|x ´ x̃| ` |y ´ ỹ|q.

Concerning ℓ, there exists a modulus of continuity ωℓ such that for any
px, y, x̃, ỹq P pR2q4 and a P A,

(2.5) |ℓpx, y, aq ´ ℓpx̃, ỹ, aq| ď ωℓp|x ´ x̃| ` |y ´ ỹ|q.

Define

(2.6) Mf “ sup
xPR2,yPR2,aPA

|fpx, y, aq|, Mℓ “ sup
xPR2,yPR2,aPA

|ℓpx, y, aq|.
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We also suppose that there exists rf ą 0 such that for any x P R2, y P R2,
tfpx, y, aq, a P Au contains the ball Brf p0q, which implies that the trajectories
are locally strongly controllable.

2. There exist functions f̄ : R2 ˆ A Ñ R2 and ℓ̄ : R2 ˆ A Ñ R such that

(2.7) fpx, y, aq “ f̄px, aq, and ℓpx, y, aq “ ℓ̄px, aq if y R Ω.

3. There exist functions f1,per : R2 ˆR2 ˆA Ñ R2, px, y, aq ÞÑ f1,perpx, y, aq and
ℓ1,per : R2 ˆ R2 ˆ A Ñ R, px, y, aq ÞÑ ℓ1,perpx, y, aq such that
(a) f and ℓ coincide respectively with f1,per and ℓ1,per in the set R2 ˆ

´

p´8, 0s ˆ R
¯

ˆ A, i.e. for all x P R2, y P p´8, 0s ˆ R and a P A,

fpx, y, aq “ f1,perpx, y, aq and ℓpx, y, aq “ ℓ1,perpx, y, aq

(b) f1,per and ℓ1,per are 1-periodic with respect to y1
(c) for all x P R2 and a P A, f1,perpx, y, aq “ f̄px, aq and ℓ1,perpx, y, aq “

ℓ̄px, aq if |y2| ě R0.
The role of the index 1 in f1,per and ℓ1,per is to emphasize that the functions
are periodic with respect to the first coordinate y1 of y.

Remark 2.1. In Subsection 4.1, we will discuss the extension to the case when
fpx, y, aq and ℓpx, y, aq coincide respectively with fperpx, y, aq and ℓperpx, y, aq at all
y R Ω, where fper and ℓper are 1-periodic with respect to y1 and y2.

It is easy to check that the Hamiltonian Hε defined in (2.2) has the following
properties:

1. Hε is of the form

(2.8) Hεpx, pq “ H
´

x,
x

ε
, p
¯

,

whereH : R2ˆR2ˆR2 Ñ R is defined byHpx, y, pq “ maxaPA

´

´p¨fpx, y, aq´

ℓpx, y, aq

¯

. The function H is is convex with respect to its third argument,

and for any x, y, x̃, ỹ, p, q P R2,

Hpx, y, pq ě rf |p| ´ Mℓ,(2.9)

|Hpx, y, pq ´ Hpx̃, ỹ, pq| ď

ˆ

Lf |p|p|x ´ x̃| ` |y ´ ỹ|q

`ωℓp|x ´ x̃| ` |y ´ ỹ|q

˙

,(2.10)

|Hpx, y, pq ´ Hpx, y, qq| ď Mf |p ´ q|.(2.11)

Property (2.9) implies the coercivity of H w.r.t. its third variable uniformly
with respect to its first two variables, i.e. lim|p|Ñ8 infxPR2,yPR2 Hpx, y, pq “

`8.

2. Defining Hpx, pq “ maxaPA

´

´p ¨ f̄px, aq ´ ℓ̄px, aq

¯

for x P R2 and p P R2, we

see that

(2.12) Hpx, y, pq “ Hpx, pq if y R Ω.

3. Defining H1,per : R2 ˆ R2 ˆ R2 Ñ R by

H1,perpx, y, pq “ max
aPA

´

´p ¨ f1,perpx, y, aq ´ ℓ1,perpx, y, aq

¯

,

we see that
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(a) H coincides with H1,per in the set R2 ˆ

´

p´8, 0s ˆ R
¯

ˆ R2, i.e. for all

x P R2, y P p´8, 0s ˆ R and p P R2, Hpx, y, pq “ H1,perpx, y, pq

(b) H1,per is 1-periodic with respect to y1
(c) for all x P R2 and p P R2, H1,perpx, y, pq “ Hpx, pq if |y2| ą R0.

Hpx, y, pq “ Hpx, pq

Hpx, y, pq “ H1,perpx, y, pq ­“ Hpx, pq

Hpx, y, pq ­“ H1,perpx, y, pq

y2

y1

R0

2R0

Figure 1. The generic situation described in paragraph 2.1: fixing px, pq P R2ˆR2, the function
y ÞÑ Hpx, y, pq is continuous, constant in the white region and 1-periodic with respect to y1 in the
light grey region. The set Ω is the union of the grey regions. The sinusoidal graph is just meant to
symbolize the fact that y ÞÑ Hpx, y, pq is periodic with respect to y1 in the lighter grey region. Note
also that H1,per is defined in the full space pR2q3 and that H1,perpx, y, pq “ Hpx, pq if |y2| ě R0.

Remark 2.2. Examples fullfilling the assumptions above can be constructed by
suitably choosing f and ℓ in the additive form fpx, y, aq “ f̄px, aq`f1py, aq, ℓpx, y, aq “

ℓ̄px, aq ` ℓ1py, aq, where f̄ : R2 ˆ A Ñ R2, ℓ̄ : R2 ˆ A Ñ R, f1 : R2 ˆ A Ñ R2 and
ℓ1 : R2 ˆ A Ñ R are smooth, f1 and ℓ1 vanish outside Ω ˆ A and coincide on
´

p´8, 0s ˆ R
¯

ˆ A with functions that are 1-periodic w.r.t. y1.

Remark 2.3. Our setting includes the simpler case in which f1,per and ℓ1,per do
not depend on y1.

Remark 2.4. In the present setting, the region of the state space in which the
Hamiltonian Hε has fast variations is contained in Ωε.

Let α be a positive discount factor. It is well known, see e.g. [6], that the value
function uε of the optimal control problem:
(2.13)

uεpxq “ inf

ż 8

0

e´αtℓε pzptq, aptqq dt subject to

$

’

’

&

’

’

%

zptq “ x `

ż t

0

fε pzpτq, apτqq dτ,

a P L8pR`q

aptq P A, for almost t ě 0
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is the unique viscosity solution in BUCpR2q of

(2.14) αuε ` Hε px,Duεq “ 0 in R2.

Our goal is to study the asymptotic behaviour of uε as ε Ñ 0.

2.2. Main result.

Definition 2.1 (A flat stratification of R2). The following partition of R2 arises
naturally when we let ε vanish:

R2 “ M2 Y M1 Y M0,(2.15)

M0 “ t0u, M1 “ p´8, 0q ˆ t0u, M2 “ R2z pM0 Y M1q .(2.16)

The submanifolds M0, M1 and M2 are disjoint and are respectively of dimension 0,
1 and 2. Clearly M2 is an open subset of R2. In fact, M0, M1 and M2 form an
admissible flat Whitney stratification of R2, see for example [8, Definition 2.3].

Our main result is the following:

Theorem 2.2. We consider the solution uε of (2.14), in the setting of Subsection
2.1. As ε Ñ 0, the family uε converges locally uniformly to a bounded and Lipschitz
continuous function u defined on R2, which is the unique solution to the following
stratified problem associated to the admissible flat stratification of R2 defined in (2.16):

1. u is a viscosity solution of

(2.17) αu ` Hp¨, Duq “ 0 in M2.

2. (a) If ϕ P C1pR2q is such that u ´ ϕ has a local minimum at x P M1, then

(2.18) αupxq ` max
`

H1,T px, Bx1
ϕpxqq, Hpx,Dϕpxqq

˘

ě 0.

where H1,T : M1 ˆ R Ñ R is the effective tangential Hamiltonian
defined in Section 3.3 below.

(b) If ϕ P C1pM1q is such that u ´ ϕ has a local maximum at x P M1, then

(2.19) αupxq ` H1,T px, Bx1
ϕpxqq ď 0.

3. (a) If ϕ P C1pR2q is such that u ´ ϕ has a local minimum at 0, then

(2.20) αup0q ` max
`

E,H1,T p0, Bx1
ϕp0qq, Hp0, Dϕp0qq

˘

ě 0,

where E is the effective Dirichlet datum defined in Section 3.4 below.
(b)

(2.21) αup0q ` E ď 0.

Note that Theorem 2.2 is reminiscent of [1, Th. 1.1] that deals with the homoge-
nization of a class of stationary Hamilton-Jacobi equations in which the Hamiltonian
is obtained by perturbing near the origin an otherwise periodic Hamiltonian. In [1,
Th. 1.1], the limiting problem consists of a Hamilton-Jacobi equation outside the ori-
gin, with the same effective Hamiltonian as in periodic homogenization, supplemented
at the origin with an effective Dirichlet condition that keeps track of the perturbation.
In the present case, the limiting problem presents singularities both on M1 and at
the origin, because before homogenization, the fast variations of the Hamiltonian are
localized around M1. The origin plays a particular role as the endpoint of M1. The-
orem 2.2 can be seen as recursive version of [1, Th. 1.1], in terms of the dimensions
of the involved submanifolds.
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Definition 2.3. An upper semi-continuous function u : R2 Ñ R which is a vis-
cosity subsolution of (2.17) in M2 and satisfies (2.19) and (2.21) is named a weak
viscosity subsolution of the stratified problem or weak stratified subsolution, see [8,
Definition 19.1].

A lower semi-continuous function u : R2 Ñ R which is a viscosity supersolu-
tion of (2.17) in M2 and satisfies (2.18) and (2.20) is named a supersolution of
the stratified problem. In other words, u is a supersolution in the sense of Ishii of
the Hamilton-Jacobi equation whose Hamiltonian is discontinuous and coincides with
px, pq ÞÑ Hpx, pq at x P M2, with px, pq ÞÑ H1,T px, p1q at x P M1 and with E at
x “ 0, see [8, Definition 2.1].

The function u arising in Theorem 2.2 is named a weak stratified solution because
it is both a weak stratified subsolution and supersolution of the stratified problem, see
[8, Definition 19.1].

Remark 2.5. Consider a weak subsolution u of the stratified problem that is Lip-
schitz continuous in R2. Since u is a viscosity subsolution of αu ` Hp¨, Duq ď 0 in
M2, it satisfies αupxq ` Hpx,Dupxqq ď 0 at almost every x P R2, see [6, Prop. 1.9,
Chapter I, page 31, and its proof]. But H is continuous in R2 ˆR2 and convex w.r.t.
its second argument. Therefore, from [6, Prop. 5.1, Chapter II, page 77], u is a
viscosity subsolution of αv ` Hp¨, Dvq ď 0 in the whole space R2.

As a consequence, the function u arising in Theorem 2.2 is a viscosity subsolution
of αv ` Hp¨, Dvq ď 0 in the whole space R2.

3. Proof of Theorem 2.2.

3.1. Known facts. Recall that our goal is to understand the asymptotic behav-
iour of uε as ε vanishes. First, using either comparison principles, see for example
[6, Chapter II, Theorem 3.5] or arguments from the theory of optimal control, we see
that

´Mℓ ď ´max
yPR2

Hεpy, 0q ď αuεpxq ď ´ min
yPR2

Hεpy, 0q ď Mℓ.

From this estimate and (2.14), we infer from the coercivity of the Hamiltonian that
uε is Lipschitz continuous in R2 with a Lipschitz constant independent of ε.

In order to study the asymptotic behaviour of uε, we consider

upxq “ lim sup
εÑ0

uεpxq,(3.1)

upxq “ lim inf
εÑ0

uεpxq.(3.2)

Note that, from the observation above on the regularity of uε, u and u coincide
respectively with the half-relaxed semi-limits lim sup

x1Ñx,εÑ0
uεpx1q and lim inf

x1Ñx,εÑ0
uεpx1q, that

are classically used in the homogenization of Hamilton-Jacobi equations. It is clear
that the functions u and u are bounded and Lipschitz continuous. The following fact
is well known:

Lemma 3.1. The functions u and u are respectively a bounded subsolution and a
bounded supersolution of (2.17) in M2.

Remark 3.1. Arguing as in Remark 2.5, we see that u is a viscosity subsolution
of αv ` Hp¨, Dvq ď 0 in the whole space R2.

3.2. The strategy of proof for Theorem 2.2. The proof of Theorem 2.2 is
done in five different steps that we now describe.
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1. The first step (Subsection 3.3) is devoted to obtaining the viscosity inequal-
ities satisfied by u and u at x P M1. Since M1 is of codimension one, we
may rely on the existing literature on homogenization leading to transmission
boundary conditions on submanifolds of codimension one, see [4, 3, 5, 17, 14].
For p1 P R and x P M1, the construction of the effective tangential Hamilton-
ian H1,T px, p1q and of related correctors named ξpx, p1, ¨q is a key difficulty in
the theory. The latter correctors are defined in unbounded domains because
there is no periodicity w.r.t. y2, and they are constructed by introducing
a sequence of ergodic problems in truncated cells. The effective tangential
Hamiltonian keeps memory of the fast variations of the coefficients near M1.
From the control theoretic viewpoint, it accounts for the trajectories that
remain close to M1. Since the proofs are similar to those contained in the
above-mentioned articles, we will omit them.

2. The second step (Subsection 3.4) consists of constructing the ergodic constant
E associated to the origin and a related corrector w. This part is reminiscent
of the arguments of [1], in which the authors studied the homogenization of
a periodic Hamilton-Jacobi equation with a defect of periodicity located near
the origin. As above, an important difficulty is that the corrector w must
be a function defined in the whole space R2, which makes it necessary to
impose some condition at infinity. We will see that the latter amounts to the
fact that w is the locally uniform limit as R Ñ `8 of a family pwRqRą0 of
solutions of problems with state constraints posed in the balls BRp0q. From
the optimal control theory viewpoint, these problems, referred to as truncated
cell problems, account for trajectories that remain close to the origin.

3. In the third step (Subsection 3.5), we prove that the upper-limit u satisfies
(2.21), relying on Evans’ method of perturbed test-functions, see [15]. The
construction of the perturbed test-function involves the above mentioned so-
lution wR to the truncated cell problem in the ball BRp0q.

4. The fourth step (Subsection 3.6) consists of proving that the lower-limit u
satisfies condition (2.20). The main idea is to construct subcorrectors by
combining in a suitable way the function w mentioned above and the cor-
rectors ξp0, p, ¨q associated to the Hamiltonian H1,perp0, ¨q. We take benefit
of the present setting to revisit the proof presented in [1] and simplify it by
using subcorrectors instead of correctors.

5. The last step of the proof (Subsection 3.7) mostly consists of deducing from
the previously obtained results that u “ u, by means of a comparison princi-
ple. Theorem 2.2 then follows.

3.3. The effective Hamiltonian H1,T and the viscosity inequalities sat-
isfied by u and u on M1. In this subsection, we are going to discuss the effective
problem arising on M1 as ε Ñ 0. Because the submanifold M1 is of codimension
one, we can rely on results obtained in the last decade and concerning the analysis
of Hamilton-Jacobi equations posed on heterogeneous structures such as networks
[18, 2, 23], booklet-like geometries or multidimensional junctions [7, 19, 24]. These
problems all involve Hamilton-Jacobi equations with nonlinear transmission condi-
tions on submanifolds with codimension one. In particular, the works [3] and [5] were
concerned with Hamilton-Jacobi equations in an environment consisting of two dif-
ferent homogeneous media separated by an oscillatory interface. The oscillations of
the interface have small period and amplitude, and as the latter parameter vanishes,
the interface tends to an hyperplane. At the limit when both parameters vanish, one
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finds on the flat interface an effective nonlinear transmission condition keeping mem-
ory of the previously mentioned microscopic oscillations. Similarly, [17] is devoted
to a family of time dependent Hamilton-Jacobi equations on the simplest possible
network composed of two half-lines with a perturbation of the Hamiltonian localized
in a small region close to the junction. Related homogenization problems with appli-
cations to traffic flows were discussed in [16, 14]. Key arguments in [4, 3, 5, 17] are
the construction of families of correctors that account for the localized perturbations
of the environment and are defined in unbounded domains. The same strategy will
be used here in order to obtain the effective Hamiltonian H1,T .

Although [3] and [5] are focused on the homogenization of periodic interface prob-
lems while in the present case, the Hamiltonian depends continuously on the state
variable, the proofs of the results contained in the present subsection are quite similar
to those contained in the latter references. They will be omitted.

3.3.1. Construction of the effective Hamiltonian H1,T via truncated cell
problems. Since we have definedH1,perpx, ¨, ¨q at all x P R2, we are going to construct
H1,T px, ¨q at all x P R2, although for what follows, it would be sufficient to consider
only x P M1.

Fix x P R2 and p1 P R. We define the unbounded cell Y “ pR{Zq ˆ R, and,
given a parameter ρ ą R0 that will eventually tend to `8, the truncated cell Yρ “

pR{Zq ˆ p´ρ, ρq. The truncated cell problem associated with x P R2 and p1 P R is as
follows:

H1,perpx, y, p1e1 ` Dξρpx, p1, yqq ď λρpx, p1q if y P Yρ,(3.3)

H1,perpx, y, p1e1 ` Dξρpx, p1, yqq ě λρpx, p1q if y P Yρ,(3.4)

where the inequalities are understood in the sense of viscosity.

Remark 3.2. Problem (3.3)-(3.4) can be seen as an ergodic problem in Yρ associ-
ated with state constraints on the boundaries ty : y2 “ ˘ρu. An equivalent formulation
may be written by replacing Yρ by p0, 1q ˆ p´ρ, ρq and by additionally imposing peri-
odicity with period 1 in the variable y1.

Lemma 3.2. There is a unique λρpx, p1q P R such that (3.3)-(3.4) admits a vis-
cosity solution. For this choice of λρpx, p1q, there exists a solution ξρpx, p1, ¨q that is
Lipschitz continuous with Lipschitz constant L depending on p1 only (uniform in x
and ρ).

As in [4, 3], using the optimal control interpretation of (3.3)-(3.4), it is easy to
prove that for a positive K that may depend on p1 but not on x and ρ, and for all
R0 ă ρ1 ď ρ2,

λρ1
px, p1q ď λρ2

px, p1q ď K.

The effective tangential Hamiltonian H1,T px, p1q is defined by

(3.5) H1,T px, p1q “ lim
ρÑ8

λρpx, p1q, for all p1 P R.

Important properties of H1,T will be needed for obtaining comparison principle rela-
tive to the effective problem in Theorem 2.2. These properties are inherited from the
original Hamiltonian, as established in the pioneering work [21].

Lemma 3.3. For any x P R2, the function p1 ÞÑ H1,T px, p1q is convex. There
exist positive constants L1, C1, c1,m1 and a modulus of continuity ω1 such that, for
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any x, x̃ P R2 p1, p̃1 P R,

| H1,T px, p1q ´ H1,T px, p̃1q |ď L1|p1 ´ p̃1|,(3.6)

| H1,T px, p1q ´ H1,T px̃, p1q |ď C1|p1||x ´ x̃| ` ω1p|x ´ x̃|q,(3.7)

1

c1
|p1| ´ m1 ď H1,T px, p1q ď c1|p1| ` m1.(3.8)

3.3.2. Correctors. The following theorem is proved in the same way as Theo-
rem 4.8 in [3].

Theorem 3.4. Let ξρpx, p1, ¨q be a sequence of uniformly Lipschitz continuous
solutions of the truncated cell-problem (3.3)-(3.4) that converges to ξpx, p1, ¨q locally
uniformly in Y . Then ξpx, p1, ¨q is a Lipschitz continuous viscosity solution of the
following equation posed in Y :

(3.9) H1,perpx, y, p1e1 ` Dξpx, p1, yqq “ H1,T px, p1q,

which, we recall, means that ξ is 1-periodic with respect to y1 and satisfies (3.9) in
the viscosity sense at all y P R2.

By subtracting ξpx, p1, 0q to ξρpx, p1, ¨q and ξpx, p1, ¨q, we may assume that

(3.10) ξpx, p1, 0q “ 0.

Hereafter, we will always consider that ξpx, p1, ¨q satisfies (3.9) and (3.10).
For ε ą 0, let us set Ξεpx, p1, yq “ εξpx, p1,

y
ε q. The following result can be proved

in the same way as [17, Theorem 4.6,iii]:

Lemma 3.5. For any px, p1q P R2 ˆ R, there exists a sequence εn of positive
numbers tending to 0 as n Ñ `8 such that Ξεnpx, p1, ¨q converges locally uniformly
to a Lipschitz function y ÞÑ Ξpx, p1, yq (the Lipschitz constant does not depend on
x). This function is constant with respect to y1 and satisfies Ξpx, p1, 0q “ 0. Finally,
y ÞÑ Ξpx, p1, yq is a viscosity solution of

(3.11) H

ˆ

x,
dΞ

dy2
ppx, p1, yqe2 ` p1e1

˙

“ H1,T px, p1q

at all y P R2 such that y2 ­“ 0.

As a consequence of Lemma 3.5, H1,T px, p1q is bounded from below by a quantity
depending on Hpx, ¨q:

Corollary 3.6. For any px, p1q P R2 ˆ R,

(3.12) H1,T px, p1q ě min
qPR

Hpx, p1e1 ` qe2q.

Of course, (3.12) implies that H1,T px, p1q ě minqPR2 Hpx, qq ě ´Mℓ.

Definition 3.7.
For px, pq P R2 ˆ R2, we set

HÓpx, pq “ max
aPA:f̄px,aq¨e2ě0

´

´p ¨ f̄px, aq ´ ℓ̄px, aq

¯

,(3.13)

HÒpx, pq “ max
aPA:f̄px,aq¨e2ď0

´

´p ¨ f̄px, aq ´ ℓ̄px, aq

¯

.(3.14)
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The function p2 ÞÑ HÓpx, p1e1 ` p2e2q, resp. p2 ÞÑ HÒpx, p1e1 ` p2e2q is the non-
increasing, resp. nondecreasing envelope of p2 ÞÑ Hpx, p1e1 ` p2e2q. The following
identities hold:

Hpx, pq “ HÓpx, pq ` HÒpx, pq ´ min
qPR

Hpx, p1e1 ` qe2q(3.15)

“ max
`

HÓpx, pq, HÒpx, pq
˘

.

From Corollary 3.6 and the coercivity of H, the following quantities are well
defined for all px, p1q P R2 ˆ R,

Πpx, p1q “ max
␣

q P R : HÒpx, p1e1 ` qe2q “ H1,T px, p1q
(

,(3.16)

Πpx, p1q “ min
␣

q P R : HÓpx, p1e1 ` qe2q “ H1,T px, p1q
(

.(3.17)

The two propositions that follow can be proved in the same way as [3, Prop. 4.13
and 4.14]:

Proposition 3.8. For px, p1q P R2 ˆ R, if H1,T px, p1q ą minp2PR Hpx, p1e1 `

p2e2q, then there exist ρ˚ “ ρ˚px, p1q ą 0 and M˚ “ M˚px, p1q P R such that
1. for all py1, y2q P pR{Zq ˆ rρ˚,`8q, h2 ě 0 and h1 P R,

(3.18) ξpx, p1, y ` h1e1 ` h2e2q ´ ξpx, p1, yq ě Πpx, p1qh2 ´ M˚.

2. for all py1, y2q P pR{Zq ˆ p´8,´ρ˚s, h2 ě 0 and h1 P R,

(3.19) ξpx, p1, y ` h1e1 ´ h2e2q ´ ξpx, p1, yq ě ´Πpx, p1qh2 ´ M˚.

Proposition 3.9. Consider px, p1q P R2 ˆ R.
If H1,T px, p1q ą minqPR Hpx, p1e1 ` qe2q, then

(3.20) Ξpx, p1, yq “ Πpx, p1qy2,` ´ Πpx, p1qy2,´.

If H1,T px, p1q “ minqPR Hpx, p1e1 ` qe2q, then

Πpx, p1q ď By2
Ξpx, p1, yq ď Πpx, p1q,(3.21)

Πpx, p1qy2,` ´ Πpx, p1qy2,´ ď Ξpx, p1, yq ď Πpx, p1qy2,` ´ Πpx, p1qy2,´.(3.22)

3.3.3. Viscosity inequalities satisfied by u and u on M1. The following
theorem is proved by using Evans’ method of perturbed test-function, see [15], involv-
ing the functions Ξpx, p1, ¨q and the related correctors ξpx, p1, ¨q for suitable vectors
p. Its proof follows the same lines as that of [3, Th. 1.5].

Theorem 3.10. Consider x P M1.
If ϕ : R2 Ñ R is a continuous fonction with ϕ|Rˆr0,`8q P C1pR ˆ r0,`8qq and

ϕ|Rˆp´8,0s P C1pR ˆ p´8, 0sq and such that x is a local maximum of u ´ ϕ, then

αupxq ` max
`

H1,T px, Bx1
ϕpxqq, HÓ

`

x,Dϕ|Rˆr0,`8qpxq
˘

, HÒ

`

x,Dϕ|Rˆp´8,0spxq
˘˘

ď 0.

(3.23)

If ϕ : R2 Ñ R is a continuous fonction with ϕ|Rˆr0,`8q P C1pR ˆ r0,`8qq and
ϕ|Rˆp´8,0s P C1pR ˆ p´8, 0sq and such that x is a local minimum of u ´ ϕ, then

αupxq ` max
`

H1,T px, Bx1ϕpxqq, HÓ

`

x,Dϕ|Rˆr0,`8qpxq
˘

, HÒ

`

x,Dϕ|Rˆp´8,0spxq
˘˘

ě 0.

(3.24)
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We conclude Subsection 3.3 by the following corollary of Theorem 3.10, which
states that u and u are respectively sub and supersolutions of (2.19) and (2.18). This
will yield the effective problem on M1, i.e. item 2. in Theorem 2.2.

Corollary 3.11. Consider x P M1.
If ϕ P C1pM1q is such that x is a local maximum of u ´ ϕ on M1, then

(3.25) αupxq ` H1,T px, Bx1
ϕpxqq ď 0.

If ϕ P C1pR2q is such that x is a local minimum of u ´ ϕ, then

(3.26) αupxq ` max
`

H1,T px, Bx1
ϕpxqq, Hpx,Dϕpxqq

˘

ě 0.

Proof. Obtaining (3.26) from (3.24) is straightforward.
Let ϕ P C1pM1q be such that x is a local maximum of u´ϕ on M1. It is possible

to extend ϕ outside M1 by a continuous function rϕ : R2 Ñ R of the following form:

rϕpzq “ ϕpz1q ` B|z2|,

where the positive real number B will be chosen soon. Clearly, rϕ|tz:z2ě0u P C1pR ˆ

r0,`8qq and rϕ|tz:z2ď0u P C1pR ˆ p´8, 0sq. We choose B in order to satisfy two
conditions:

1. B is greater than the Lipschitz constant of u. This implies that x is a local
maximum of u ´ rϕ.

2. B is sufficiently large such that

HÓ

´

x,Drϕ|Rˆr0,`8qpxq

¯

“ HÓ px,Dϕpxq ` Be2q “ min
q2

H px,Dϕpxq ` q2e2q ,

HÒ

´

x,Drϕ|Rˆp´8,0spxq

¯

“ HÒ px,Dϕpxq ´ Be2q “ min
q2

H px,Dϕpxq ` q2e2q .

It is clear that B satisfying the condition above exists. Thanks to (3.12),

H1,T px, Bx1
ϕpxqq ě max

´

HÓ

´

x,Drϕ|Rˆr0,`8qpxq

¯

, HÒ

´

x,Drϕ|Rˆp´8,0spxq

¯¯

.

Because (3.23) is satisfied by rϕ, the observation above yields (3.25).

We have found the inequality satisfied by u and u at x P M1. We can now concentrate
on the effective equations at the origin.

3.4. The ergodic constant E and related correctors. The construction
that follows is identical to that introduced in [1], and we repeat it for consistency
and convenience of the reader. In order to understand the asymptotics of uε near
the origin, we start by solving truncated cell problems in balls, associated to state
constrained boundary conditions. From the optimal control theory viewpoint, these
problems account for trajectories that remain close to the origin.
For λ ą 0, R ą 0, we know from e.g. [25, 13] that there exists a unique function
wλ,R P CpBRp0qq such that

λwλ,R ` Hp0, y,Dwλ,Rq ď 0 in BRp0q,(3.27)

λwλ,R ` Hp0, y,Dwλ,Rq ě 0 in BRp0q,(3.28)
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the above inequalities being understood in the sense of viscosity. The function wλ,R

is the value function of the following infinite horizon state constrained optimal control
problem in BRp0q,

wλ,Rpzq “(3.29)

inf

ż 8

0

e´λtℓ p0, yptq, aptqq dt subj. to

$

’

’

’

’

&

’

’

’

’

%

yptq “ z `

ż t

0

f p0, ypτq, apτqq dτ

yptq P BRp0q,
a P L8pR`q

aptq P A, for almost t ě 0.

Since ℓp0, ¨, ¨q is bounded on R2 ˆA, λ}wλ,R}L8pBRp0qq is bounded uniformly in λ and

R. More precisely, minpy,aqPR2ˆA ℓp0, y, aq ď λwλ,R ď maxpy,aqPR2ˆA ℓp0, y, aq. This

and the uniform coercivity of H imply with (3.27) that }Dwλ,R}L8pBRp0qq is bounded
uniformly in λ and R.

Using Ascoli-Arzelà theorem, we may suppose that up to the extraction of a
sequence, as λ Ñ 0, λwλ,R tends uniformly on BRp0q to some ergodic constant ´ER

that is bounded from above and below uniformly in R, and that wλ,R ´wλ,Rp0q tends
uniformly on BRp0q to some function wR such that wRp0q “ 0 and which is Lipschitz
continuous with a Lipschitz constant independent of R. By classical results on the
stability of viscosity solutions of state constrained problems, wR is a viscosity solution
of

Hp0, y,DwRq ď ER in BRp0q,(3.30)

Hp0, y,DwRq ě ER in BRp0q.(3.31)

The comparison principle for state constrained problems, see [25, 13], yields the
uniqueness of ER such that (3.30)-(3.31) has a solution. Thus,

lim
λÑ0

}λwλ,R ` ER}CpBRp0qq
“ 0,

i.e. uniform convergence and not only for a subsequence.
We deduce for example from (3.29) that

R1 ě R2 ñ λwλ,R1 ď λwλ,R2 ,

and passing to the limit as λ Ñ 0, we obtain the monotonicity property of the ergodic
constants ER:

(3.32) R1 ě R2 ñ ER1 ě ER2 .

Since ER is bounded from above independently of R, (3.32) implies that

(3.33) E “ lim
RÑ8

ER

exists in R.
Similarly, since wRp0q “ 0 and wR is Lipschitz continuous on BRp0q with a

Lipschitz constant independent of R, we may construct by Ascoli-Arzelà theorem and
a diagonal extraction argument a sequence pRnqnPN, Rn Ñ `8 as n Ñ 8, such that
wRn tends to some function w locally uniformly in R2. We then see that wp0q “ 0
and w is a Lipschitz continuous viscosity solution of

(3.34) Hp0, y,Dwq “ E in R2.
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Let us now zoom out and consider the function wε : x ÞÑ εwpx
ε q; it is clearly a viscosity

solution of Hp0, x
ε , Dxwεq “ E, and it is Lipschitz continuous with the same constant

as w. Hence, after the extraction of a sequence, we may assume that wε converges
locally uniformly to some Lipschitz function W on R2. A standard argument yields
that W is a viscosity solution of Hp0, DW q “ E in M2. This implies

(3.35) E ě min
pPR2

Hp0, pq.

Arguing as in Subsection 3.3, in particular Theorem 3.10 and Corollary 3.11, or as
in [3], it can also be proved thatW |M1 is a viscosity subsolution ofH1,T p0, Bx1W q “ E
on M1 and that if ϕ P C1pR2q is such that W ´ ϕ has a local minimum at x P M1,
then

max
`

H1,T p0, Bx1ϕpxqq, Hp0, Dϕpxqq
˘

ě 0.

The fact that W |M1
is a viscosity subsolution of H1,T p0, Bx1

W q “ E on M1 implies

(3.36) E ě min
p1PR

H1,T p0, p1q,

which is stronger than (3.35) because of (3.12).

3.5. Upper bound on up0q.

Proposition 3.12. The upper limit u is such that αup0q ď ´E.

Proof. Let us proceed by contradiction and assume that

(3.37) αup0q ` E “ θ ą 0.

Using wR defined in Subsection 3.4 (recall wRp0q “ 0), let us set

ϕε,R “ up0q ` εwRp
x

ε
q.

We deduce from (3.31) and (3.37) that ϕε,R is a viscosity supersolution of

αϕε,Rpxq ` H
´

0,
x

ε
,Dϕε,R

¯

ě αεwR
´x

ε

¯

` ER ´ E ` θ in BεRp0q.

There exists r ą 0 such that ER´E ě ´ θ
4 for any R ě r. Let us fix such a value of R.

Having fixed R, we see that for ε0 sufficiently small and any ε such that 0 ă ε ď ε0,

αεwR pyq ě ´
θ

4
for any y P BRp0q.

We deduce that, for any ε ď ε0,

(3.38) αϕε,R ` H
´

0,
x

ε
,Dϕε,R

¯

ě
θ

2
in BεRp0q.

Next, using (3.1), consider a vanishing sequence 0 ă εn ď ε0 such that uεnp0q

tends to up0q.
We know that uεn satisfies in the sense of viscosity

αuεn ` H

ˆ

x,
x

εn
, Duεn

˙

ď 0 in BεnRp0q.
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Recall that uεn is Lipschitz continuous with a Lipschitz constant uniform in εn and
R. From this observation and from (2.10), we see that for εn sufficiently small, uεn

satisfies in the sense of viscosity

(3.39) αuεn ` H

ˆ

0,
x

εn
, Duεn

˙

ď
θ

4
in BεnRp0q.

From (3.38) and (3.39), the comparison principle for Hamilton-Jacobi equations with
state constraints, see [25, 13] and [6, Th. 5.8, Chapter IV, page 278], then implies
that

ϕεn,R ´
θ

4α
ě uεn in BεnRp0q,

Taking x “ 0 and letting n tend to `8 yields up0q ´ θ
4α ě up0q, the desired contra-

diction.

3.6. Study of u near the origin. We first state and prove two technical lem-
mas, namely Lemma 3.13 and 3.14, where the fixed vector p P R2 is a placeholder for
the gradient Dϕ of the test-function at the origin that will later be used (in Proposi-
tions 3.15 through 3.17) in order to establish the properties of item 3. within Theorem
2.2.

Lemma 3.13. Consider p P R2. If maxpE,H1,T p0, p1qq ă Hp0, pq, then there
exists a Lipschitz function χ : R2 Ñ R such that

χpyq ď p ¨ y, for all y P R2,(3.40)

Hp0, y,Dχpyqq ď Hp0, pq, in R2,(3.41)

where (3.41) is understood in the viscosity sense.

Proof. From the convexity of H1,T p0, ¨q, there exists a unique q1 ą p1 such that
H1,T p0, q1q “ Hp0, pq. Because q1 ą p1, there exists a constant c ą 0 such that
q1y1`ξp0, q1, yq´c ă p ¨y for all y P Ω, recalling that ξp0, q1, ¨q is defined in paragraph
3.3.2. For such a constant c, there exists R1 ą R0 (recall that R0 is fixed in paragraph
2.1, see (2.1)) such that

(3.42) q1y1 ` ξp0, q1, yq ´ c ą p ¨ y, for all y P D,

where

(3.43) D “ ty P R2 : y1 ą 0, |y| ě R1 |y2| ď R0u

Note that Hp0, q1e1 ` Dξp0, q1, yqq “ Hp0, pq in |y2| ą R0.
With w defined in Subsection 3.4, we may then choose C ą 0 such that wpyq ´ C ă

minpq1y1 ` ξp0, q1, yq ´ c, p ¨ yq for all y P BR1p0q. We deduce that the function
χ : y ÞÑ minpwpyq ´ C, q1y1 ` ξp0, q1, yq ´ c, p ¨ yq is Lipschitz continuous as the
minimum of three Lipschitz continuous functions. To prove that χ is also an almost
everywhere subsolution of (3.41), we split the space R2 into four regions (the first two
of that overlap each other):
(i) for y P BR1p0q, the constant C has been chosen so that χpyq “ wpyq ´C. Thanks
to (3.34) and because Hp0, pq ą E w ´ C satisfies (3.41) in the sense of viscosity and
almost everywhere in BR1

p0q.
(ii) for y P Ω, the constant c has been chosen so that q1 y1 ` ξp0, q1, yq ´ c ă p.y,
so χpyq “ minpq1 y1 ` ξp0, q1, yq ´ c, wpyq ´ Cq. Both y ÞÑ q1 y1 ` ξp0, q1, yq ´ c and
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w ´ C are subsolutions of (3.41) in Ω. Hence χ is an almost everywhere subsolution
of (3.41) in Ω, see Lemma A.1 in the appendix. Note that in general, y ÞÑ p ¨ y is not
a subsolution of (3.41) in Ω.
(iii) Let D be the set defined in (3.43). If y1 P D, then χpyq “ minpp ¨ y, wpyq ´ Cq,
from the choice ofR1. Both y ÞÑ p¨y and w´C are viscosity subsolutions of (3.41), so χ
is an almost everywhere subsolution of (3.41) in D. Note that y ÞÑ q1y1`ξp0, q1, yq´c
is generally not a subsolution of (3.41) in D.
(iv) If y P R2zpBR1

p0q Y Ω Y Dq, then χpyq may coincide with wpyq ´ C or q1y1 `

ξp0, q1, yq´c or p¨y. In this region, the latter three functions are viscosity subsolutions
of (3.41). Hence, χ is an almost everywhere subsolution of (3.41) in R2zpBR1p0q Y

Ω Y Dq.
Finally, χ is almost everywhere a subsolution of (3.41) in R2. Since q ÞÑ Hp0, y, qq is
convex, we know from [6, Prop. 5.1, Chapter II] that this Lipschitz continuous almost
everywhere subsolution is also a viscosity subsolution of (3.41).

Clearly, χ also satisfies (3.40). This concludes the proof.

Lemma 3.14. Consider p P R2.
If maxpE,Hp0, pqq ă H1,T p0, p1q or E ă Hp0, pq “ H1,T p0, p1q, then there exists a
Lipschitz function χ : R2 Ñ R such that

χpyq ď p ¨ y, for all y P R2,(3.44)

Hp0, y,Dχpyqq ď H1,T p0, p1q, in R2,(3.45)

where (3.45) is understood in the viscosity sense.

Proof. Because of (3.36), H1,T p0, p1q ą E ě minH1,T p0, ¨q. Hence, there exists
p̃1 ­“ p1 such that H1,T p0, p1q “ H1,T p0, p̃1q.
First case: p1 ą p̃1 It is possible to choose c ą 0 sufficiently large such that

(3.46) p1y1 ` ξp0, p1, yq ´ c ă min
´

p ¨ y, p̃1y1 ` Πp0, p̃1qy2

¯

for all y P Ω,

recalling that ξp0, p1, ¨q and Πp0, p̃1q are defined in paragraph 3.3.2, and in particular
that

(3.47) Hp0, y, p̃1e1 ` Πpp̃1qe2q “ H1,T p0, p̃1q “ H1,T p0, p1q.

Let us set χ1pyq “ minpp ¨ y, p1y1 ` ξp0, p1, yq ´ cq. Because p1 ą p̃1, it is possible to
choose R1 ą R0 such that

p̃1y1 ` Πp0, p̃1qy2 ă χ1pyq for all y P D,(3.48)

where D “ ty P R2 : y1 ą 0, |y| ě R1, |y2| ď R0u, and R0 is the fixed radius
introduced in paragraph 2.1, see (2.1).
Let us set χ2pyq “ minpp̃1y1 ` Πp0, p̃1qy2, χ1pyqq. With w defined in Subsection 3.4,
we may choose C ą 0 sufficiently large such that

(3.49) wpyq ´ C ă χ2pyq, for all y P BR1
p0q.

Consider the function χ : y ÞÑ min
´

wpyq ´ C,χ2pyq

¯

. To prove that χ is also an

almost everywhere subsolution of (3.45), we split the space R2 into four regions:
(i) for y P BR1

p0q, χpyq “ wpyq ´ C, and from (3.34) and (3.36), w ´ C satisfies
(3.45) in the sense of viscosity and almost everywhere in BR1

p0q.
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(ii) for y P Ω, the constant c has been chosen so that χpyq “ minpp1 y1 ` ξp0, p1, yq ´

c, wpyq ´ Cq. Both y ÞÑ p1 y1 ` ξp0, p1, yq ´ c and w ´ C are subsolutions of (3.45) in
Ω. Hence χ is an almost everywhere subsolution of (3.45) in Ω. Note that y ÞÑ p ¨ y
and p̃1y1 ` Πp0, p̃1qy2 are generally not subsolutions of (3.45) in Ω.
(iii) Recall that D “ ty : y1 ą 0, |y| ě R1 |y2| ď R0u. If y P D, then χpyq “

minpp̃1y1 ` Πp0, p̃1qy2, wpyq ´ Cq, from the choice of R1. From (3.47), (3.34) and
(3.36), both y ÞÑ p̃1y1 `Πp0, p̃1qy2 and w´C are viscosity subsolutions of (3.45), so χ
is an almost everywhere subsolution of (3.45) in D. Note that y ÞÑ p1y1`ξp0, p1, yq´c
may not be a subsolution of (3.45) in D.
(iv) If y P R2zpBR1p0q Y Ω Y Dq, then χpyq may coincide with wpyq ´ C, p1y1 `

ξp0, p1, yq ´ c, p̃1y1 ` Πp0, p̃1qy2 or p ¨ y. In this region, the latter four functions are
viscosity subsolutions of (3.45). Hence, χ is an almost everywhere subsolution of
(3.45) in R2zpBR1

p0q Y Ω Y Dq.

The function χ : y ÞÑ min
´

wpyq ´ C,χ2pyq

¯

has all the desired properties.

Second case: p1 ă p̃1 It is possible to choose c ą 0 sufficiently large such that

p̃1y1 ` ξp0, p̃1, yq ´ c ă p ¨ y, for all y P Ω.

Because p1 ă p̃1, it is possible to choose R1 ą R0 such that

p ¨ y ă p̃1y1 ` ξp0, p̃1, yq ´ c, for all y P D

with D “ ty P R2 : y1 ą 0, |y| ě R1, |y2| ď R0u.
Finally, we may choose C ą 0 sufficiently large such that

wpyq ´ C ă min
´

p ¨ y, p̃1y1 ` ξp0, p̃1, yq ´ c
¯

, for all y P BR1p0q.

The function χpyq “ min
´

wpyq ´ C, p ¨ y, p̃1y1 ` ξp0, p̃1, yq ´ c
¯

has all the desired

properties. Indeed, we can argue exactly as in the proof of lemma 3.13 replacing
q1 with p̃1, but we write the proof for clarity. To prove that χ is also an almost
everywhere subsolution of (3.45), we split the space R2 into four regions:
(i) for y P BR1

p0q, χpyq “ wpyq´C, and w´C satisfies (3.45) in the sense of viscosity
and almost everywhere in BR1

p0q.
(ii) for y P Ω, the constant c has been chosen so that χpyq “ minpp̃1 y1 ` ξp0, p̃1, yq ´

c, wpyq ´ Cq. Both y ÞÑ p̃1y1 ` ξp0, p̃1, yq ´ c or w ´ C are subsolutions of (3.45) in
Ω. Hence χ is an almost everywhere subsolution of (3.45) in Ω. Note that y ÞÑ p ¨ y
is not in general a subsolution of (3.45) in Ω.
(iii) Set D “ ty : y1 ą 0, |y| ě R1 |y2| ď R0u. If y1 P D, then χpyq “ minpp ¨

y, wpyq´Cq, from the choice of R1. Both y ÞÑ p¨y and w´C are viscosity subsolutions
of (3.45), so χ is an almost everywhere subsolution of (3.45) in D. Note that y ÞÑ

p̃1y1 ` ξp0, p̃1, yq ´ c is generally not a subsolution of (3.45) in D.
(iv) If y P R2zpBR1

p0q Y Ω Y Dq, then χpyq may coincide with wpyq ´ C, p̃1y1 `

`ξp0, p̃1, yq ´ c or p ¨ y. In this region, the latter three functions are viscosity
subsolutions of (3.45). Hence, χ is an almost everywhere subsolution of (3.45) in
R2zpBR1

p0q Y Ω Y Dq.

Lemmas 3.13 and 3.14 are used in the proofs of the following two propositions:

Proposition 3.15. For all ϕ P C1pR2q such that 0 is a local minimizer of u ´ ϕ
and Hp0, Dϕp0qq ą maxpE,H1,T p0, B1ϕp0qq, we have

(3.50) αup0q ` Hp0, Dϕp0qq ě 0.
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Proof. We can always assume that ϕp0q “ up0q and that u ´ ϕ has a strict local
minimum at the origin. For brevity, let us set p “ Dϕp0q. Suppose by contradiction
that

(3.51) αup0q ` Hp0, pq “ ´θ ă 0,

Let χ be the function arising in Lemma 3.13. Consider the perturbed test-function

ϕεpxq “ ϕpxq ´ p ¨ x ` εχp
x

ε
q.

Note that Dϕpxq´p tends to 0 as x Ñ 0 and ϕpxq´p ¨x “ up0q`op|x|q “ p´Hp0, pq´

θq{α ` op|x|q from (3.51).
From the definition of ϕε, the latter two points, (3.40) and the regularity proper-

ties of H and finally (3.41), we deduce that there exists r0 ą 0 and ε0 ą 0 such that
for all 0 ă ε ă ε0 and 0 ă r ă r0, ϕε is a viscosity subsolution of

(3.52) αϕε ` Hεpx,Dϕεq ď ´
θ

2
in Brp0q.

On the other hand, since 0 is a strict local minimizer of u´ϕ, there exists r1 ą 0 and
a function k : p0, r1s Ñ p0, 1s, such that limrÑ0 kprq “ 0 and for any r P p0, r1s,

ϕpxq ď upxq ´ kprq on BBrp0q.

From (3.40), we know that for x ­“ 0, εχpx
ε q ď p ¨ x.

Using (3.2), this implies that first fixing r ą 0 sufficiently small, we have for ε
sufficiently small,

(3.53) ϕεpxq ď uεpxq ´
kprq

2
on BBrp0q.

From (3.52) and (3.53) and since uε is a viscosity solution of (2.14), the comparison
principle yields that it is possible to choose r ą 0 such that, for ε sufficiently small,

ϕεpxq ď uεpxq ´
kprq

2 in Brp0q.
By choosing a sequence εn such that uεnp0q tends to up0q, we deduce that ϕp0q `

kprq

2 ď up0q, the desired contradiction.

Proposition 3.16. For all ϕ P C1pR2q such that 0 is a local minimizer of u ´ ϕ
and H1,T p0, B1ϕp0qq ą maxpE,Hp0, Dϕp0qq or H1,T p0, B1ϕp0qq “ Hp0, Dϕp0q ą E,
we have

(3.54) αup0q ` H1,T p0, B1ϕp0qq ě 0.

Proof. The proof is identical to that of Proposition 3.16 except that χ is now
chosen as the function appearing in Lemma 3.14.

Proposition 3.17. For all ϕ P C1pR2q such that 0 is a local minimizer of u ´ ϕ
and E ě maxpH1,T p0, B1ϕp0qq, Hp0, Dϕp0qq, we have

(3.55) αup0q ` E ě 0.

Proof. As above, we can always assume that ϕp0q “ up0q and that u ´ ϕ has a
strict local minimum at the origin and we set p “ Dϕp0q. For all η ą 0, it is clear from
the hypothesis that E ` η ą minq1PR H1,T p0, q1q and that E ` η ą minqPR2 Hp0, qq.
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From the latter inequality, there exists a unique pair pq
2
, q2q P R2 such that

q
2

ă p2 ă q2 and that Hp0, p1e1 ` q
2
e2q “ Hp0, p1e1 ` q2e2q “ E ` η. Let us set

q “ p1e1 ` q2e2 and q “ p1e1 ` q
2
e2. It is straightforward to check that for all y P R2,

minpq ¨ y, q ¨ yq ď p ¨ y.

There also exists q1 P R such that q1 ą p1 and H1,T p0, q1q “ E ` η. Hence, there
exists a constant c ą 0 such that q1y1 ` ξp0, q1, yq ´ c ă minpq ¨ y, q ¨ yq for all y P Ω.
Because q1 ą p1, it is possible to choose R1 ą R0 such that

q1y1 ` ξp0, q1, yq ´ c ą minpq ¨ y, q ¨ yq, for all y P D,

where D “ ty P R2 : y1 ą 0, |y| ě R1, |y2| ď R0u and R0 is the fixed radius
introduced in paragraph 2.1, see (2.1).

We may then choose C ą 0 such that wpyq´C ă minpq1y1`ξp0, q1, yq´c, q¨y, q¨yq

for all y P BR1p0q.
Collecting all the information above and arguing essentially as in the proofs of

Lemmas 3.13 or 3.14, we can check that the function χ : y ÞÑ minpwpyq ´ C, q1y1 `

ξp0, q1, yq ´ c, q ¨y, q ¨yq is a viscosity subsolution of Hp0, y,Dχpyqq ď E `η in R2 and

that χpyq ď p ¨ y for all y P R2.
Reproducing the proof of Proposition 3.15 with this new choice of χ leads to the

inequality
αup0q ` E ` η ě 0.

Letting η tend to 0, we obtain the desired result.

We have proved that u satisfies (2.18). In order to prove Theorem 2.2, there only
remains to establish that u “ u.

3.7. End of the proof of Theorem 2.2. We have proved that u is a weak
viscosity subsolution of the stratified problem and that u is a viscosity supersolution
of the stratified problem, see Definition 2.3. Applying the comparison principle for
stratified solutions, see [8, theorem 19.1], we infer that u “ u. We deduce that the
whole family uε converges locally uniformly to the solution of (2.17) through (2.21).

4. Generalizations.

4.1. A longitudinal defect within a periodic background.

4.1.1. Setting. The open set Ω is still defined by (2.1). The Hamiltonian Hε :
R2 ˆ R2 Ñ R is of the form (2.2) where A is compact metric space.

We make the same assumptions on fε : R2 ˆA Ñ R2 and ℓε : R2 ˆA Ñ R except
that we now suppose that

‚ there exist functions fper : R2 ˆ R2 ˆ A Ñ R2 and ℓper : R2 ˆ R2 ˆ A Ñ R
that are periodic with respect to their second argument with period r0, 1s2,
such that

(4.1) fpx, y, aq “ fperpx, y, aq, and ℓpx, y, aq “ ℓperpx, y, aq, if y R Ω.

Assumption (4.1) replaces assumption (2.7).
‚ There exist functions f1,per : R2 ˆR2 ˆA Ñ R2, px, y, aq ÞÑ f1,perpx, y, aq and
ℓ1,per : R2 ˆ R2 ˆ A Ñ R, px, y, aq ÞÑ ℓ1,perpx, y, aq such that
1. f and ℓ coincide respectively with f1,per and ℓ1,per in the set R2 ˆ

´

p´8, 0s ˆ R
¯

ˆ A, i.e. for all x P R2, y P p´8, 0s ˆ R and a P A,

fpx, y, aq “ f1,perpx, y, aq and ℓpx, y, aq “ ℓ1,perpx, y, aq

20



2. f1,per and ℓ1,per are 1-periodic with respect to y1
3. for all x P R2 and a P A, f1,perpx, y, aq “ fperpx, y, aq and ℓ1,perpx, y, aq “

ℓperpx, y, aq if |y2| ě R0.
Set

Hperpx, y, pq “ sup
aPA

´p ¨ fperpx, y, aq ´ ℓperpx, y, aq,

and

H1,perpx, y, pq “ sup
aPA

´p ¨ f1,perpx, y, aq ´ ℓ1,perpx, y, aq.

Hpx, y, pq “ Hperpx, y, pq

Hpx, y, pq “ H1,perpx, y, pq ­“ Hperpx, pq

Hpx, y, pq ­“ H1,perpx, y, pq
y2

y1

R0

2R0

Figure 2. The generic situation described in paragraph 4.1.1: fixing px, pq P R2 ˆR2, the func-
tion y ÞÑ Hpx, y, pq is continuous, periodic with period r0, 1s2 in the region filled with a checkerboard
pattern, and 1-periodic with respect to y1 in the lighter grey region. The set Ω is the union of the
grey regions. The sinusoidal graph is just meant to symbolize the fact that y ÞÑ Hpx, y, pq is periodic
with respect to y1 in the lighter grey region. Note also that H1,per is defined in the whole space
pR2q3 and that H1,perpx, y, pq “ Hperpx, y, pq if |y2| ě R0.

Remark 4.1. Examples fulfilling the assumptions above can be constructed by
suitably choosing f and ℓ in the additive form fpx, y, aq “ f0px, y, aq ` f1py, aq,
ℓpx, y, aq “ ℓ0py, aq ` ℓ1py, aq, where f0 : R2 ˆ R2 ˆ A Ñ R2, ℓ0 : R2 ˆ R2 ˆ A Ñ R,
f1 : R2 ˆ A Ñ R2 and ℓ1 : R2 ˆ A Ñ R are smooth, f0 and ℓ0 are periodic with
respect to their second argument with period r0, 1s2, f1 and ℓ1 vanish outside Ω ˆ A

and coincide on
´

p´8, 0s ˆ R
¯

ˆ A with functions that are 1-periodic w.r.t. y1.

Homogenization of the periodic Hamilton-Jacobi equation is well understood since
[21]. In the periodic case, the homogenized equation is

(4.2) αu ` Hpx,Duq “ 0 in R2,

where the effective Hamiltonian is characterized as follows: for any p P R2, Hpx, pq is
the unique real number such that there exists a periodic corrector χper,ppx, ¨q, i.e. a
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viscosity solution χper,ppx, ¨q P CpT2q (T2 “ R2{Z2 denotes the torus of R2) of

(4.3) Hperpx, y, p ` Dyχper,pq “ Hpx, pq in T2.

In general, the latter periodic corrector is not unique, even up to the addition of
a scalar constant. It is well known that, under the assumptions made above, H
inherits the properties of the periodic Hamiltonian Hper. For any x P R2, the function
p ÞÑ Hpx, pq is convex. There exist positive constants L,C, c,m and a modulus of
continuity ω such that, for any x, x̃ P R2 p, p̃ P R2,

| Hpx, pq ´ Hpx, p̃q |ď L|p ´ p̃|,

| Hpx, pq ´ Hpx̃, pq |ď C|p||x ´ x̃| ` ωp|x ´ x̃|q,

1

c
|p| ´ m ď Hpx, pq ď c|p| ` m.

4.1.2. Effective behaviour as ε Ñ 0. A similar strategy as in Section 3 leads
to the following theorem:

Theorem 4.1. We consider the solution uε of (2.9). If the assumptions made in
Subsection 4.1.1 are satisfied, then, then, as ε Ñ 0, the family uε converges locally
uniformly to a bounded and Lipschitz continuous function u defined on R2, which
is the unique solution to the stratified problem (2.17), (2.18), (2.19), (2.20), (2.21)
associated to the admissible flat stratification of R2 defined in (2.16), where

‚ the effective Hamiltonian H is obtained by homogenization of the periodic
problem (4.2) involving Hper, see (4.3)

‚ H1,T : M1 ˆ R Ñ R is the Hamiltonian defined in Section 3.3 with the new
version of H1,per

‚ E is the effective Dirichlet datum defined in Section 3.4

Remark 4.2. The only difference with Theorem 2.2 is the definitions of the ef-
fective Hamiltonians H and H1,T .

Remark 4.3. Note that in the assumptions, M1 is aligned with one of the direc-
tion of periodicity of Hper. This is important to generalize the construction made in
Section 3.3.1, in particular the construction of ξpx, p1, ¨q. The result can be further
generalized to the case when M1 is aligned with me1 ` ne2 with pm,nq P Z2. Our
proof does not cover as such the case of irrational quotients m{n. The result might
hold true but we will not proceed in that direction.

Remark 4.4. The particular case when H1,per coincides with Hper has already
been studied in [1]. In this case, the proof proposed above becomes much simpler
because it only involves w (the ξp0, y, pq are irrelevant in this case). In particular,
Lemma 3.14 becomes irrelevant and the counterpart of Lemma 3.13 is much simpler
in this case. Note that the proof proposed in the present work is simpler compared
to that in[1], because the present study of u only involves subcorrectors instead of
correctors as in [1].

4.2. A defect located in a tubular neighborhood of a straight line and
longitudinally periodic away from the origin. Let us focus on a case in which
the fast variations of the coefficients are localized in a neighborhood of the straight
line tx2 “ 0u.

In both regions tx1 ă ´R0εu and tx1 ą R0εu, the Hamiltonian coincides respec-
tively with H1,´,per and H1,`,per that are periodic with respect to x1{ε (with possibly
different periods).

22



We expect that the effective problem involves the following stratification of R2:
R2 “ M0 YM1 YM2 where M0 “ t0u and M1 “ M1,` YM1,´, M1,˘ “ t˘se1, s ą

0u. Note that M1,` and M1,´ are disjoint open half-lines.

4.2.1. Setting. The description that follows is illustrated on Figure 3.
Let Ω˘ be the two subsets of R2 defined by

Ω˘ “ t˘se1 ` te2, s ě R0, t P p´R0, R0qu,(4.4)

where R0 is a positive number. Let us also fix R1 ą
?
2R0 and set Ω “ Ω` Y Ω´ Y

BR1p0q. For a small positive parameter ε that will eventually vanish, set Ω˘,ε “ εΩ˘

and Ωε “ εΩ. The Hamiltonian Hε : R2 ˆ R2 Ñ R is of the form (2.2) where A is
compact metric space.

We assume that the functions fε : R2 ˆ A Ñ R2 and ℓε : R2 ˆ A Ñ R have the
form (2.3) where f : R2 ˆ R2 ˆ A Ñ R2 and ℓ : R2 ˆ R2 ˆ A Ñ R2 are bounded and
continuous. The function f Lipschitz continuous with respect to its first two variables
uniformly with respect to its third variable, i.e. it satisfies (2.4). The function ℓ is
uniformly continuous with respect to its first two variables, i.e. is satisfies (2.5). We
also suppose that there exists some radius rf ą 0 such that for any x P R2, y P R2,
tfpx, y, aq, a P Au contains the ball Brf p0q, which implies that the trajectories are
locally strongly controllable.

Define Mf and Mℓ as in (2.6). We also suppose
1. there exist functions f̄ : R2 ˆ A Ñ R2 and ℓ̄ : R2 ˆ A Ñ R such that (2.7)

holds.
2. There exist two functions f´,per and f`,per from R2 ˆ R2 ˆ A to R2 and two

functions ℓ˘,per : R2 ˆ R2 ˆ A Ñ R, px, y, aq ÞÑ ℓ˘,perpx, y, aq such that
(a) f and ℓ coincide respectively with f˘,per and ℓ˘,per in the set R2ˆΩ˘ˆA

i.e. for all x P R2, y P Ω˘, a P A, fpx, y, aq “ f˘,perpx, y, aq and
ℓpx, y, aq “ ℓ˘,perpx, y, aq

(b) f˘,per and ℓ˘,per are periodic with respect to y1 ( f`,per and ℓ`,per have
the same period, and f´,per and ℓ´,per have the same period)

(c) for all x P R2 and a P A, f˘,perpx, y, aq “ f̄px, aq and ℓ˘,perpx, y, aq “

ℓ̄px, aq if |y2| ě R0.
Define H1,˘,per : R2 ˆ R2 ˆ R2 Ñ R by

H1,˘,perpx, y, pq “ max
aPA

´

´p ¨ f˘,perpx, y, aq ´ ℓ˘,perpx, y, aq

¯

.

4.2.2. Effective behaviour as ε Ñ 0. LetH1,˘ : M1,˘ˆR Ñ R be the effective
Hamiltonian obtained by reproducing the analysis in Section 3.3 and replacing M1

in Section 3.3 by M1,˘, and H1,per by H1,˘,per.

Theorem 4.2. We consider the solution uε of (2.9). If the assumptions made in
paragraph 4.2.1 are satisfied, then, as ε Ñ 0, the family uε converges locally uniformly
to a bounded and Lipschitz function u defined on R2, which is the unique solution to
the following stratified problem associated to the admissible flat stratification R2 “

M0 Y M1 Y M2 :
1. u is a viscosity solution of

(4.5) αu ` Hp¨, Duq “ 0 in M2.

2. (a) If ϕ P C1pR2q is such that u´ϕ has a local minimum at x P M1,`, then

(4.6) αupxq ` max
`

H1,`,T px, B1ϕpxqq, Hpx,Dϕpxqq
˘

ě 0,
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Hpx, y, pq “ Hpx, pq

Hpx, y, pq “ H1,´,perpx, y, pq ­“ Hpx, pq

Hpx, y, pq ­“ H1,˘,perpx, y, pq

Hpx, y, pq “ H1,`,perpx, y, pq ­“ Hpx, pq

y2

y1

R1

2R0

Figure 3. The generic situation described in paragraph 4.2.1 : fixing px, pq P R2 ˆ R2, the
function y ÞÑ Hpx, y, pq is continuous, constant in the white region and periodic with respect to
y1 in the two regions in light grey. The sinusoidal graphs are just meant to symbolize the fact
that y ÞÑ Hpx, y, pq is periodic with respect to y1 in the two regions in light grey. Note also that
H1,˘,perpx, y, pq “ Hpx, pq if |y2| ě R0.

and if ϕ P C1pR2q is such that u ´ ϕ has a local minimum at x P M1,´,
then

(4.7) αupxq ` max
`

H1,´,T px, B1ϕpxqq, Hpx,Dϕpxqq
˘

ě 0,

where H1,˘ : M1,˘ ˆ R Ñ R are the Hamiltonians defined immediately
above.

(b) If ϕ P C1pM1,`q is such that u ´ ϕ has a local maximum at x P M1,`,
then

(4.8) αupxq ` H1,`,T px, ϕ1pxqq ď 0,

and if ϕ P C1pM1,´q is such that u´ϕ has a local maximum at x P M1,´,
then

(4.9) αupxq ` H1,´,T px, ϕ1pxqq ď 0.

3. (a) If ϕ P C1pR2q is such that u ´ ϕ has a local minimum at 0, then
(4.10)
αup0q`max

`

E,H1,`,T p0, B1ϕp0qq, H1,´,T p0, B1ϕp0qq, Hp0, Dϕp0qq
˘

ě 0,

where E is the effective Dirichlet datum defined in Section 3.4.
(b)

(4.11) αup0q ` E ď 0.
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Elements of proof. The strategy of proof is exactly the same as in Section 3 above.
The main changes concern the technical lemmas contained in Subsection 3.6 and
devoted to the construction of subcorrectors. The following lemma is the counterpart
of Lemma 3.13:

Lemma 4.3. Consider p P R2. If maxpE,H1,`,T p0, p1q, H1,´,T p0, p1qq ă Hp0, pq,
then there exists a Lipschitz function χ : R2 Ñ R such that

χpyq ď p ¨ y, for all y P R2,(4.12)

Hp0, y,Dχpyqq ď Hp0, pq, in R2,(4.13)

where (4.13) is understood in the viscosity sense.

Proof. There exists a unique q1,´ ą p1 such that H1,´,T p0, q1,´q “ Hp0, pq and
a unique q1,` ă p1 such that H1,`,T p0, q1,`q “ Hp0, pq. Because q1,´ ą p1 ą q1,`,
there exists a constant c ą 0 such that q1,´y1 ` ξ´p0, q1,´, yq ´ c ă p ¨ y for all y P Ω´

and that q1,`y1 ` ξ`p0, q1,`, yq ´ c ă p ¨y for all y P Ω`. Here ξ˘ are the counterparts
of ξ defined in Subsection 3.3.2 when H1,per is replaced by H1,˘,per.

Next, there exists R2 ą R1 (recall that R1 is fixed in paragraph 4.2.1) such that

q1,`y1 ` ξ`p0, q1, yq ă q1,´y1 ` ξ´p0, q1, yq, for all y P D`

and that

q1,´y1 ` ξ´p0, q1, yq ă q1,`y1 ` ξ`p0, q1, yq, for all y P D´,

where

D` “ ty P R2 : y1 ą 0, |y| ě R2, |y2| ď R0u,(4.14)

D´ “ ty P R2 : y1 ă 0, |y| ě R2, |y2| ď R0u.(4.15)

Note that Hp0, q1,˘e1 ` Dξ˘p0, q1,˘, yqq “ Hp0, pq in ty : |y2| ą R0u.
With w defined in the same way as in Subsection 3.4, we may then choose C ą 0

such that wpyq ´ C ă minpq1,´y1 ` ξ´p0, q1,´, yq ´ c, q1,`y1 ` ξ`p0, q1,`, yq ´ c, p ¨ yq

for all y P BR2
p0q. The function χ : y ÞÑ minpwpyq ´ C, q1,´y1 ` ξ´p0, q1,´, yq ´

c, q1,`y1 ` ξ`p0, q1,`, yq ´ c, p ¨ yq is Lipschitz continuous as the minimum of four
Lipschitz continuous functions. To prove that χ is an almost everywhere subsolution
of (4.13), we split the space R2 into four regions:
(i) for y P BR2p0q, χpyq “ wpyq´C, and w´C satisfies (4.13) in the sense of viscosity
and almost everywhere in BR2

p0q.
(ii) In D´, the set defined by (4.15), χpyq “ minpq1,´y1`ξ´p0, q1,´, yq´c, wpyq´Cq.
Both y ÞÑ q1,´y1 `ξ´p0, q1,´, yq´c and w´C are subsolutions of (4.13) in D´, hence
χ is an almost everywhere subsolution of (4.13) in D´.
(iii) Similarly, in D`, the set defined by (4.14), χpyq “ minpq1,`y1 ` ξ`p0, q1,`, yq ´

c, wpyq´Cq. Both y ÞÑ q1,`y1 `ξ`p0, q1,`, yq´c and w´C are subsolutions of (4.13)
in D`, hence χ is an almost everywhere subsolution of (4.13) in D`.
(iv) If y P R2zpBR2

p0q Y D´ Y D`q, then χpyq may coincide with either wpyq ´ C,
q1,´y1 ` ξ´p0, q1,´, yq ´ c, q1,`y1 ` ξ`p0, q1,`, yq ´ c or p ¨ y. In this region, the latter
four functions are viscosity subsolutions of (4.13). Hence, χ is an almost everywhere
subsolution of (4.13) in R2zpBR2p0q Y D´ Y D`q.
Finally, χ is almost everywhere a subsolution of (4.13) in R2. Since q ÞÑ Hp0, y, qq is
convex, we know from [6, Prop. 5.1, Chapter II] that this Lipschitz continuous almost
everywhere subsolution is also a viscosity subsolution of (4.13). Clearly, χ satisfies
also (4.12).
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The following lemma is the counterpart of Lemma 3.14:

Lemma 4.4. Consider p P R2.
1. If

(4.16) maxpE,Hp0, pqq ă maxpH1,´,T p0, p1q, H1,`,T p0, p1qq,

or

E ă Hp0, pq “ maxpH1,´,T p0, p1q, H1,`,T p0, p1qq,(4.17)

H1,´,T p0, p1q ­“ H1,`,T p0, p1q,(4.18)

or

E ă Hp0, pq “ H1,´,T p0, p1q “ H1,`,T p0, p1qq,(4.19)

near p1, H1,´,T p0, ¨q or ´H1,`,T p0, ¨q is decreasing,(4.20)

then there exists a Lipschitz function χ : R2 Ñ R such that

χpyq ď p ¨ y, for all y P R2,(4.21)

Hp0, y,Dχpyqq ď maxpH1,´,T p0, p1q, H1,`,T p0, p1qq, in R2,(4.22)

where (4.22) is understood in the viscosity sense.
2. If (4.19) holds and both H1,´,T p0, ¨q and ´H1,`,T p0, ¨q are non decreasing

near p1, then for η ą 0, there exists a Lipschitz function χ : R2 Ñ R that
satisfies (4.21) and

(4.23) Hp0, y,Dχpyqq ď maxpH1,´,T p0, p1q, H1,`,T p0, p1qq ` η in R2.

Remark 4.5. From the convexity of H1,´,T p0, ¨q and H1,`,T p0, ¨q, we deduce that
if E ă H1,´,T p0, p1q “ H1,`,T p0, p1qq, then H1,´,T p0, ¨q and H1,`,T p0, ¨q are (strictly)
monotone near p1, because

H1,´,T p0, p1q ą E ě min
q1

H1,´,T p0, q1q,

H1,`,T p0, p1q ą E ě min
q1

H1,`,T p0, q1q.

This justifies the assumptions (4.19)-(4.20) and the assumptions in case 2.

Proof. We start with proving point 1.
First case: H1,´,T p0, p1q ą H1,`,T p0, p1q.
Because H1,´,T p0, p1q ą E ě minH1,`,T p0, ¨q, we see that there exists p̃1 ă p1 such
that H1,`,T p0, p̃1q “ H1,´,T p0, p1q. It is possible to choose c ą 0 sufficiently large
such that

(4.24) p1y1 ` ξ´p0, p1, yq ´ c ă min
´

p ¨ y, p̃1y1 ` ξ`p0, p̃1, yq

¯

for all y P Ω´.

Let us set χ1pyq “ minpp ¨ y, p1y1 ` ξ´p0, p1, yq ´ cq. Because p1 ą p̃1, it is possible to
choose R2 ą R1 such that

p̃1y1 ` ξ`p0, p̃1, yq ă χ1pyq for all y P R2 such that

$

&

%

y1 ą 0,
|y| ě R2,
|y2| ď R0,

(4.25)
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recalling that R0 and R1 were introduced in paragraph 4.2.1.
Let us set χ2pyq “ minpp̃1y1 ` ξ`p0, p̃1, yq, χ1pyqq. With w defined in Subsection 3.4,
we may choose C ą 0 sufficiently large such that

(4.26) wpyq ´ C ă χ2pyq, for all y P BR2p0q.

In view of (4.24), (4.25), (4.26), the function χ : y ÞÑ min
´

wpyq ´ C,χ2pyq

¯

has all

the desired properties.
Second case: H1,`,T p0, p1q ą H1,´,T p0, p1q. The desired result is obtained in a very
similar manner as in the previous case, by exchanging the roles of ` and ´.
Third case: H1,`,T p0, p1q “ H1,´,T p0, p1q ą Hp0, pq.
Clearly, H1,`,T p0, p1q ą Hp0, pq implies that H1,`,T p0, p1q ą minq Hp0, p1e1 ` qe2q,
hence the slopes Π˘ and Π˘ can be defined similarly as in (3.16) and (3.17) and

(4.27) Π`p0, p1q ă p2 ă Π`p0, p1q.

Note that

(4.28) Π´p0, p1q “ Π`p0, p1q and Π´p0, p1q “ Π`p0, p1q,

because H1,`,T p0, p1q “ H1,´,T p0, p1q. From the properties of ξ˘, we deduce easily
that there exists c ą 0 such that

(4.29)
p1y1 ` ξ`p0, p1, yq ´ c ă p ¨ y, if y P Ω`,
p1y1 ` ξ´p0, p1, yq ´ c ă p ¨ y, if y P Ω´.

Because of (4.27) and (4.28), there exists δ ą 0 such that

(4.30) p ¨ y ă

"

p1y1 ` ξ`p0, p1, yq ´ c if y1 ě 0 and |y2| ą δ,
p1y1 ` ξ´p0, p1, yq ´ c, if y1 ď 0 and |y2| ą δ.

Let us set R2 “ maxpδ,R1q. With w defined in Subsection 3.4, we may choose C ą 0
sufficiently large such that
(4.31)

wpyq ´ C ă

"

minpp ¨ y, p1y1 ` ξ`p0, p1, yq ´ cq if y P BR2
p0q and y1 ě 0,

minpp ¨ y, p1y1 ` ξ´p0, p1, yq ´ cq if y P BR2p0q and y1 ď 0.

Let us define

(4.32) χpyq “

"

minpwpyq ´ C, p ¨ y, p1y1 ` ξ´p0, p1, yq ´ cq if y1 ď 0,
minpwpyq ´ C, p ¨ y, p1y1 ` ξ`p0, p1, yq ´ cq if y1 ě 0.

Thanks to (4.30) and (4.31), χ is Lipschitz continuous in R2 and χpyq ď p ¨ y at all
y P R2. It can also be checked that χ is viscosity subsolution of (4.21).
Fourth case: (4.19) and (4.20) hold. We may assume without loss of generality
that H1,`,T p0, ¨q is increasing near p1.
There exists p̃1 ă p1 such that E ă H1,`,T p0, p̃1q ă H1,`,T p0, p1q. Hence, there exists
a constant R2 ą R1 such

p̃1y1 ` ξ`p0, p̃1, yq ă p1y1 ` ξ´p0, p1, yq if |y| ě R2, y1 ą 0 and |y2| ă R0,

p̃1y1 ` ξ`p0, p̃1, yq ą p1y1 ` ξ´p0, p1, yq if |y| ě R2, y1 ă 0 and |y2| ă R0.
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Then there exists a constant c ą 0 such that

minpp̃1y1 ` ξ`p0, p̃1, yq ´ c, p1y1 ` ξ´p0, p1, yq ´ cq ă p ¨ y in Ω.

Finally, there exists C ą 0 such that

wpyq ´ C ď minpp̃1y1 ` ξ`p0, p̃1, yq ´ c, p1y1 ` ξ´p0, p1, yq ´ c, p ¨ yq in BR2p0q.

The function

χpyq “ minpwpyq ´ C, p̃1y1 ` ξ`p0, p̃1, yq ´ c, p1y1 ` ξ´p0, p1, yq ´ c, p ¨ yq

has all the desired properties.
Point 1. is proved.

We now tackle point 2. Since H1,`,T p0, ¨q is non increasing near p1, coercive and
convex, there exists p̃1 ă p1 such that E ă H1,`,T p0, p̃1q “ H1,`,T p0, p1q ` η. The
function χ constructed in the Fourth case above with the new value of p̃1 satisfies
(4.21) and (4.23).

The following proposition is the counterpart of Proposition 3.16. Its proof is
essentially the same as that of Proposition 3.16, except in a particular case.

Proposition 4.5. For all ϕ P C1pR2q such that 0 is a local minimizer of u ´ ϕ
and either

maxpE,Hp0, Dϕp0qqq ă maxpH1,´,T p0, B1ϕp0qq, H1,`,T p0, B1ϕp0qqq

or

E ă Hp0, Dϕp0qqq “ maxpH1,´,T p0, B1ϕp0qq, H1,`,T p0, B1ϕp0qqq,

we have

(4.33) αup0q ` maxpH1,´,T p0, B1ϕp0qq, H1,`,T p0, B1ϕp0qqq ě 0.

Proof. Let us set p “ Dϕp0q.
If p satisfies the assumptions in point 1. of Lemma 4.4, then the proof follows

exactly the same arguments as the proof of Proposition 3.16, using the subcorrector
arising in point 1. of Lemma 4.4.

If p satisfies the assumptions in point 2. of Lemma 4.4, then, using the approxi-
mate subcorrector χ arising in point 2. of Lemma 4.4, the same arguments yield that
for any η ą 0 small enough,

αup0q ` maxpH1,´,T p0, p1q, H1,`,T p0, p1qq ě ´η,

and (4.33) is obtained by letting η tend to 0.

‘ The following proposition is the counterpart of Proposition 3.17. A key argument
in its proof involves subcorrectors that are different from those constructed in Lemmas
3.13 and 3.14 above.

Proposition 4.6. For all ϕ P C1pR2q such that 0 is a local minimizer of u ´ ϕ
and E ě maxpH1,´,T p0, B1ϕp0qq, H1,`,T p0, B1ϕp0qq, Hp0, Dϕp0qq, we have

(4.34) αup0q ` E ě 0.

28



Proof. We may assume that ϕp0q “ up0q and that u ´ ϕ has a strict local min-
imum at the origin and we set p “ Dϕp0q. For all η ą 0, it is clear that E ` η ą

minq1PR H1,˘p0, q1q and that E`η ą minqPR2 Hp0, qq. From the latter inequality, there
exists a unique pair pq

2
, q2q P R2 such that q

2
ă p2 ă q2 and that Hp0, p1e1 ` q

2
e2q “

Hp0, p1e1`q2e2q “ E`η. Let us set q “ p1e1`q2e2 and q “ p1e1`q
2
e2. It is straight-

forward to check that for all y P R2, minpq¨y, q¨yq ď p¨y. There also exist q1,´, q1,` P R
such that q1,´ ą p1 ą q1,` and H1,´,T p0, q1,´q “ H1,`,T p0, q1,`q “ E ` η. Hence,
there exists a constant c ą 0 such that q1,´y1 ` ξ´p0, q1,´, yq ´ c ă minpq ¨ y, q ¨ yq for

all y P Ω´ and q1,`y1 ` ξ`p0, q1,`, yq ´ c ă minpq ¨ y, q ¨ yq for all y P Ω`. It is then
possible to choose R2 ą R1 such that

q1,´y1 ` ξ´p0, q1,´, yq ´ c ą minpq ¨ y, q ¨ y, q1,`y1 ` ξ`p0, q1,`, yq ´ cq,

for all y P R2 such that y1 ą 0, |y| ě R2 and |y2| ď R0, and

q1,`y1 ` ξ`p0, q1,`, yq ´ c ą minpq ¨ y, q ¨ y, q1,´y1 ` ξ´p0, q1,´, yq ´ cq,

for all y P R2 such that y1 ă 0, |y| ě R2 and |y2| ď R0. Recall that R0, R1 are
introduced in paragraph 4.2.1.

Let us set

χ1pyq “ minpq ¨ y, q ¨ y, q1,´y1 ` ξ´p0, q1,´, yq ´ c, q1,`y1 ` ξ`p0, q1,`, yq ´ cq.

We may then choose C ą 0 such that wpyq ´ C ă χ1pyq for all y P BR2
p0q.

Collecting all the information above and arguing as above, the function χ : y ÞÑ

minpwpyq´C,χ1pyqq is a subsolution of Hp0, y,Dχpyqq ď E`η in R2 and χpyq ď p ¨y
for all y P R2.

Reproducing the proof of Proposition 3.15 with this new choice of χ leads to the
inequality

αup0q ` E ` η ě 0.

Letting η tend to 0, we obtain the desired result.

4.3. Perspectives. The most natural generalization that we do not tackle here
concerns longitudinally periodic defects located near two half-lines with a common
endpoint, forming an angle different from 0 and π. More explicitly, consider two
linearly independent unitary vectors b1 and b2 in R2. For i “ 1, 2, let Ωi be the subset
of R2 defined by

Ωi “ tsbi ` tbK
i , s ď 0, t P p´R0, R0qu,

where bK
i is a unitary vector orthogonal to bi and R0 is a positive number. Let us also

fix R1 ą R0 such that
Ş2

i“1 Ωi Ă BR1p0q and set Ω “ BR1p0q Y
Ť2

i“1 Ωi. For a small
positive parameter ε that will eventually vanish, the Hamiltonian Hε : R2 ˆ R2 Ñ R
is a smooth function for simplicity, convex and coercive w.r.t. its second argument,
and of the form (2.8), where

‚ Hpx, y, pq “ Hpx, pq if y R Ω
‚ for y P Ωi and far enough from the origin, Hpx, y, pq “ Hi,perpx, y, pq, where
Hi,per is periodic with respect to y ¨ bi P R.

We expect that the effective problem involve the stratification R2 “ M0 YM1 YM2

where M0 “ t0u and M1 “ Y2
i“1M1,i, M1,i “ tsbi, s ă 0u.

Although this situation somehow resembles the one addressed in Subsection 4.2,
the homogenization should be more challenging. Indeed, since the angle between
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M1,1 and M1,2 is not π, it does not seem easy to handle the interactions between the
correctors ξi associated to the effective tangential Hamiltonians Hi,T , i “ 1, 2, as we
did in Subsection 4.2.

A strategy that would be succesful in the latter case should also work with no
major changes for longitudinally periodic defects located near N half-lines with a
common endpoint, N being an arbitrary positive integer.

Appendix A. A useful property. For completeness, we state and prove a
property which is used repeatedly in the paper, in particular in the proofs of Lemmas
3.13, 3.14, 4.3 and 4.4.

Lemma A.1. Let H : Rd ˆ Rd Ñ R be a continuous Hamiltonian, convex with
respect to its second argument. Consider two locally Lipschitz continuous viscosity
subsolutions ui, i “ 1, 2, of λv ` Hpx,Dvq ď 0 in Rd. Then u “ minpu1, u2q is also
a subsolution.

Proof. We know that for i “ 1, 2, λuipxq ` Hpx,Duipxqq ď 0 at all x P RdzE,
where E is a negligible set, see also [6, Prop 1.9, Chapter 1, page 31].

We also observe that u is locally Lipschitz continuous as the minimum of two
locally Lipschitz continuous functions. Since u, u1 and u2 are locally Lipschitz con-
tinuous, these functions are differentiable at almost every x P Rd.

Set A “ tx P RdzE : u, u1, u2 are differentiable at xu. The set RdzA is negligible.
Consider first x P A such that upxq “ u1pxq ă u2pxq. There exists r ą 0 such that

upyq “ u1pyq ă u2pyq in Brpxq, hence Dupxq “ Du1pxq and λupxq`Hpx,Dupxqq ď 0.
The same argument can be applied if upxq “ u2pxq ă u1pxq. In this case, Dupxq “

Du2pxq and λupxq ` Hpx,Dupxqq ď 0.
Next, let us prove that it is not possible to find x P A such that u1pxq “ u2pxq

and Du1pxq ­“ Du2pxq. If it was the case, then the sets F´ “ tξ P Rd : ξ ¨ pDu1pxq ´

Du2pxqq ă 0u and F` “ ´F´ “ tξ P Rd : ξ ¨ pDu1pxq ´ Du2pxqq ą 0u would be open
half vector spaces. There would exists r ą 0 such that

u1pyq “ u1pxq ` Du1pxq ¨ py ´ xq ` op|y ´ x|q

“ u2pxq ` Du1pxq ¨ py ´ xq ` op|y ´ x|q ă u2pyq

in ptxu ` F´q X Brpxq, and

u2pyq “ u2pxq ` Du2pxq ¨ py ´ xq ` op|y ´ x|q

“ u1pxq ` Du2pxq ¨ py ´ xq ` op|y ´ x|q ă u1pyq

in ptxu ` F`q X Brpxq. Hence, u would coincide with u1 in ptxu ` F´q X Bxprq and
with u2 in ptxu ` F`q X Brpxq. But, since u is differentiable at x, this would imply
that for all ξ P F´

Du1pxq ¨ ξ “ Dupxq ¨ ξ, and ´ Du2pxq ¨ ξ “ ´Dupxq ¨ ξ,

and therefore Dupxq “ Du1pxq “ Du2pxq, which is the desired contradiction.
We have proved that for x P A, λupxq ` Hpx,Dupxqq ď 0, so the inequality is

satisfied pointwise almost everywhere. But H is convex in p, so thanks to [6, Prop
5.1, Chapter 1, page 77], u is a viscosity subsolution of λv ` Hpx,Dvq ď 0 in Rd.

Remark A.1. Note that if H is coercive in p uniformly in x, then the viscosity
subsolutions of λv ` Hpx,Dvq ď 0 which are (locally) bounded are (locally) Lipschitz
continuous.
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[20] P.-L. Lions, Équations elliptiques ou paraboliques, et homogénéisation précisée [Elliptic
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