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1 Introduction
In seamless hybrid RANS/LES (sHRL) methods, the filtering operator is a complex blending between
the ensemble-average (associated with RANS) and convolution filtering (associated with LES) of the
Navier-Stokes equation. Unfortunately, differential operators do not commute with the sHRL filtering
operation: the derivative of a filtered quantity is not equal to the filtering of the derivative of that
quantity. Formally, a commutation error Ec then arises:

Eci ≡
D̃ui
Dt

H

− DũHi
Dt

. (1)

where the operator .̃H is sHRL filtering. This error is non-negligible in areas with steep transition
in resolution level (see e.g. [1]). Although it may not be the only source, this commutation error is
undeniably one cause of the modeled scale depletion / log-layer mismatch issues which plague sHRL
methods. A simple and comprehensive correction to this issue is presented hereafter.

2 Estimation of the commutation error
Following the additive filter idea of Germano [2], the hybrid filter H of a sHRL method may be expressed
as:

.̃H = b .̃F + (1− b) .̃E , (2)

where .̃F represents a filter which is arbitrarily well-resolved and .̃E the ensemble-average. The parameter
b is a blending factor, which may vary in space and time.

The above equation allows to express the commutation error Ec between the H-filtering and any
differential operator Di:

D̃i.
H

= Di .̃
H − ∂b

∂xi

(
.̃F − .̃E

)
. (3)

In the present work, an estimation of the commutation error Ec is presented, by (i) linking the
blending parameter b in Eq. (2) to the energy ratio parameter rk defined by the fraction of modeled
turbulent kinetic energy within the total (modeled+resolved) turbulent kinetic energy, and (ii) choosing
F ≡ I, i.e. no filtering at all.

To establish a relationship between the blending factor b and the energy ratio rk, we use the expression
of the turbulent stress at the H level, since the cutoff only appears explicitly within the turbulence
equations. Recalling the turbulent stresses τOij associated with an arbitrary filter O, i.e. the part of the
velocity fluctuations filtered by O:

τOij = ũiuj
O − ũi

Oũj
O , (4)

and substituting the definition of the blended filter Eq. (2), gives the ensemble-averaged turbulent stress
at the H level, keeping in mind that τFij = 0:

τ̃Hij
E

=
(
1− b2

)
τEij . (5)
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Keeping in mind that τ̃Hii
E

= rkτ
E
ii and assuming isotropy of b and rk, one establishes a relationship

between b and rk:
b =

√
1− rk . (6)

With b known, Eq. (3) can now be applied to the flow equations, to estimate commutation correction
terms. For the momentum equations, assuming b constant in time, the correction Eci reads:

Eci =
1

ρ

∂b

∂xi

(
p̃F − p̃E

)
+

∂b

∂xj

(
ũi

F ũj
F − ũi

E ũj
E
)

− ∂b

∂xj

(
τEij

)
− 2ν

∂b

∂xj

∂

∂xj

(
ũi

F − ũi
E
)
− ν

∂2b

∂x2j

(
ũi

F − ũi
E
)
.

(7)

The F -filtered quantities in (7) are unknown, but were conveniently evaluated in [1]. For instance, the
F -filtering operation over any quantity ϕ yields (as long as b ̸= 0):

ϕ̃F = ϕ̃H +
1− b

b

(
ϕ̃H − ϕ̃E

)
⇔ ϕ̃F = ϕ̃E +

ϕ̃H − ϕ̃E

b
. (8)

The above formulation is invalid for the case b = 0, which corresponds to the RANS limit. Within the
RANS area, this is no problem, since Ec vanishes anyway. But at the limit between b = 0 and b > 0,
Eq. (8) cannot provide the F -filtered variables anymore. In this case, there are two possibilities:

1. preventing b = 0, by setting a minimum value bmin. In [1], bmin = 0.15 ⇔ rk,max ≈ 0.98.

2. reconstructing the F -field from the E-field and the τEij stresses, instead of from the E- and H-fields.
A similar strategy has been successfully used by [3].

The second solution above, is presented hereafter:

ũFi = ũEi +
√
τEii N (0, 1)︸ ︷︷ ︸
≈ u′′E

i

, p̃F = p̃E +
ρτEii
2

N (0, 1)︸ ︷︷ ︸
≈ p′′E

, (9)

where N (0, 1) is a random number with a normal distribution of average 0 and standard deviation 1.
Regarding F velocities in Eq. (9), the Einstein convention does not apply.

Furthermore, the total turbulent kinetic energy (resolved+modeled) must remain unaffected by extra
terms accounting for commutation errors. Therefore, as Ec changes the balance of resolved turbulent
kinetic energy, this must be compensated at the subfilter level. This implies that transport equation for
any second turbulent scale, must also be corrected.

3 Turbulence model
The chosen turbulent closure is the k − ω SST of [4]. The hybridization is performed on the sink term
of the unresolved turbulent kinetic energy ku, following the “Equivalent DES” method described in [5] :

β∗ωk︸ ︷︷ ︸
RANS

→ k
3/2
u

L︸︷︷︸
hybrid

with L =
r
3/2
k

√
ktot

Cµψωtot
(10)

where ω∗ is the transported specific dissipation (second scale of the turbulence model), and ψ is given
by [6] :

ψ =
β

Cµγ + rk (β − Cµγ)
(11)

where the parameters β, Cµ and γ are defined as in the RANS version.
Furthermore, the eddy viscosity related to the unresolved motion, is given by [6]:

νu =
a1ku

max
[
a1ψω∗; S̃F2

] (12)
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where:
S̃ =

√
2S̃ijS̃ij , S̃ij =

1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(13)

and F2 is formally identical to its RANS version. Moreover, the target energy ratio is given by:

rk =
1

β0

(
π
√
ktot

∆Cµωtot

)−2/3

, β0 = 0.44 , ∆ = Ω
1/3
cell (14)

4 Numerical methodology
The computations were run using Code_Saturne. (détails code)

To assess the effect of accounting for commutation errors, four configurations will be considered:

(a) Basic Equivalent-DES, initialized with the proper repartition between modeled and resolved tur-
bulent kinetic energy,

(b) Same as (a) + the energy partition is enforced during the computation

(c) Same as (a) + commutation error

(d) Same as (b) + commutation error

The chosen test case is the periodic channel flow at Reτ = 395, where the resolution varies only in the
normalwise direction.

5 Results
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