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Abstract: There is compelling evidence that the absorption of low-energy UV radiation directly
by DNA in solution generates guanine radicals with quantum yields that are strongly dependent
on the secondary structure. Key players in this unexpected phenomenon are the photo-induced
charge transfer (CT) states, in which an electric charge has been transferred from one nucleobase
to another. The present work examines the factors affecting the population of these states during
electronic relaxation. It focuses on two dinucleotides with opposite orientation: 5′-dApdG-3′ (AG)
and 5′-dGpdA-3′ (GA). Quantum chemistry calculations determine their ground state geometry and
the associated Franck–Condon states, map their relaxation pathways leading to excited state minima,
and compute their absorption spectra. It has been shown that the most stable conformer is anti-syn
for AG and anti-anti for GA. The ground state geometry governs both the excited states populated
upon UV photon absorption and the type of excited state minima reached during their relaxation.
Their fingerprints are detected in the transient absorption spectra recorded with excitation at 266 nm
and a time resolution of 30 fs. Our measurements reveal that in the large majority of dinucleotides,
chromophore coupling is already operative in the ground state and that the charge transfer process
occurs within ~120 fs. The competition among various relaxation pathways affects the quantum
yields of the CT state formation in each dinucleotide, which are estimated to be 0.18 and 0.32 for AG
and GA, respectively.

Keywords: DNA; dinucleotides; G-quadruplexes; polarity; directionality; charge transfer states;
oxidative damage; photoionization; quantum yield; transient absorption spectroscopy; quantum
chemistry

1. Introduction

Guanine radical cations, which are precursors to oxidative DNA damage, may be
generated through an ionization process triggered by ion beams or electromagnetic radia-
tion [1]. Regarding photoionization, it was long considered to be limited at wavelengths
shorter than 210 nm [2–4]. However, during the past two decades, it has been clearly
observed that DNA in aqueous solution also undergoes one-photon ionization at much
longer wavelengths [5], extending to the UVB spectral domain [6]. The photoionization
quantum yields (Φi) at low energies are much smaller than those at high energies [7]. For
example, the Φi determined for calf thymus DNA is ~50 × 10−3 [4,8] at 193 nm and only
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2 × 10−3 at 266 nm [5]. Yet, the latter value is similar to the quantum yield determined at
254 nm for the totality of pyrimidine dimers [9], which are considered the major lesions
provoked in DNA by direct absorption of UV radiation [10]. Therefore, the mechanism
underlying the low-energy photoionization deserves further investigation.

The picture emerging from the ensemble of studies is that in low-energy photoion-
ization, the electron is not ejected vertically, without prior geometrical rearrangement of
the system, as in the case of the high-energy process [11–13]. Instead, photoionization
is the result of a multistep mechanism, which is strongly correlated with the relaxation
of the DNA electronic excited states (Figure 1). The Franck–Condon states, mostly ex-
tending over more than one nucleobase, may evolve toward excited charge transfer (CT)
states [14–23]. In the latter, an electron is transferred between two stacked nucleobases, the
driving force being the difference between their oxidation potentials, which are modulated
by the local environment. A small fraction of CT states undergoes charge separation, which
is a process that has already been reported in the literature [24,25]. Finally, an electron
is ejected from the nucleobase bearing the negative charge because its ionization poten-
tial is lower compared to its neutral counterpart [26]. Thus, it is understandable why
the low-energy photoionization strongly depends on the secondary DNA structure; it is
not detectable for its monomeric building blocks, dinucleotides, or poorly stacked single
strands (Φi < 3 × 10−4), and Φi increases to 1–2 × 10−3 for duplexes and up to 15 × 10−3

for guanine quadruplexes (G-quadruplexes) [5,27].
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Thanks to the structural versatility of G-quadruplexes, it was shown that, among
other factors, such as the nature of the metal cation in their central cavity, Φi depends on
the polarity (also called directionality) of the DNA strands [27], that is the order in which
nucleobases are connected via the backbone from the 5′ end to the 3′ end. Those determined
for a series of structures composed of four identical 5′-XGGGG-3′ or 5′-GGGGX-3′ strands
and characterized by the presence of ending groups X, [X = adenine (A) or thymine (T)]
at one end, are presented on Table 1. The nearly threefold variation observed in the Φi
values was correlated with the formation of CT states between the ending group X and
guanine of the quadruplex core, G+→X−; the directionality of the transfer is determined by
the fact that G is the nucleobase with the lowest oxidation potential [28]. The lifetimes of
the CT states (τCT), that is, the time required for charge recombination leading back to the
ground state, are also presented in Table 1. They were determined for the corresponding
dinucleoside monophosphates, 5′-dXpG-d3′ and or 5′-dGpdX-3′, which, for simplicity, are
hereafter called dinucleotides and abbreviated as XG and GX, respectively. We remark that,
indeed, the longer the lifetime, the higher the Φi value. This is in line with the mechanism
depicted in Figure 1; a longer lifetime is expected to favor charge separation under the
effect of conformational motions. Yet, the correlation is not linear, indicating that other
factors also play an important role.
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Table 1. Correlation between the Φi values determined for tetramolecular G-quadruplexes composed
of four identical strands 5′-XGGGG-3′/5′-GGGGX-3′ (X = adenine, thymine) and the lifetimes of the
CT states (τCT) in GX and XG dinucleotides; excitation wavelength: 266 nm.

G-Quadruplex 1 Φi × 103 [27] Dinucleotide 2 τCT (ps)

4 × (5′-GGGGA-3′) 12.6 ± 0.1 GA 170 ± 10 [29]
4 × (5′-AGGGG-3′) 9.9 ± 0.4 AG 112 ± 12 [29]
4 × (5′-GGGGT-3′) 8.8 ± 0.2 GT 13 ± 1 [30]
4 × (5′-TGGGG-3′) 4.7 ± 0.7 TG 5.44 ± 0.03 [31]

1 From ns TA experiments; 2 from fs TA experiments.

The objective of the present work is to explore the structural and electronic factors
that affect the population of CT states in the dinucleotides AG and GA. This is a necessary
step before tackling the more complex four-stranded structures, in which different types
of CT states may be formed [32,33]. Our comparative study is conducted using quantum
chemistry calculations and broadband ultrafast transient absorption spectroscopy as the
main tools. Previous publications have reported lifetimes of CT states in these systems
and estimated quantum yields (ΦCT) for their formation (Table 2). Despite the existing
studies, several questions remain open. The first point concerns the stacking pattern char-
acterizing each dinucleotide. This question was either eluded [34] or it was implicitly
considered that the geometry corresponds to the conformation adopted in B-form double
helices [29,35], which is determined by interactions involving the ensemble of the duplex
structure. Secondly, it was considered that electronic excitations in all the stacked configu-
rations give rise to a CT state; ΦCT was determined from the recovery of the ground state
bleaching signal in transient absorption (TA) experiments [34]. In the meantime, quantum
chemistry calculations revealed the existence of various Franck–Condon transitions in each
dinucleotide, which may evolve toward different minima [29,31]. Moreover, quantum
dynamical simulations showed that the probability of populating a CT state in CG steps
is lower compared to that of GC steps (C = cytosine) [36]. Finally, it was estimated that
the formation of the CT state in AG takes 5–10 ps; the latter conclusion was drawn from
experiments whose time resolution was 150 fs after deconvolution using global analysis
with multi-exponential functions [35]. However, in our recent study on the dinucleotide
TG, which was performed with a time resolution of 30 fs, we showed that this process is
much faster, occurring within 100 fs [31].

Table 2. Lifetimes (in ps) of the CT states in AG and GA dinucleotides reported in the literature; in
parentheses: excitation/probed wavelengths or energies.

AG GA

105 ± 30 (267 nm/252 nm) 1 [34] -
124 ± 4 (260 nm/330–680 nm) 2 [35] -

280 ± 160 (266 nm/1500–1700 cm−1) 3 [37] 420 ± 120 (266 nm/1500–1700 cm−1) 4 [37]
112 ± 12 (266 nm/330–680 nm) [29] 170 ± 10 (266 nm/500–645 nm) [29]

ΦCT: 1 33 ± 6%; 2 >26%; 3 32 ± 15%; 4 42 ± 20%.

In order to elucidate the above points, in the present study, we follow the methodology
we developed recently using TG as the showcase [31]. Transient absorption spectra (TAS)
are recorded from 20 fs to 40 ps over the 330–650 nm range with a temporal resolution
of ~30 fs. In parallel, quantum chemistry calculations determine the associated Franck–
Condon states of the most stable conformers with stacked nucleobases and map their
relaxation along the potential energy surfaces (PES); they also provide computed TAS for
both the Franck–Condon states and the PES minima, facilitating their identification in the
experimental data. Our work reveals the competition among various relaxation pathways,
depending on the ground state geometry and the excitation wavelength, which affect ΦCT.
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2. Materials and Methods
2.1. Samples

AG and GA dinucleotides, which were purified by desalting and, subsequently, using
reverse phase HPLC, were purchased by Eurogentec (Liege/Belgium). The corresponding
MALDI-TOF spectra, which are shown in Figure S1 in the Supplementary Materials (SM),
indicate that both impurities and monomeric constituents have been efficiently removed.
We note that electron paramagnetic resonance measurements detected other contaminants
in commercially available oligonucleotides [38]. Moreover, the presence of monomeric
chromophores in the solution may lead to an erroneous interpretation of the experimental
results because signals originating from such “monomer impurities” are attributed to un-
stacked nucleobases of nucleotides. The dinucleotides were dissolved in phosphate buffer
(0.12 molL−1, pH 7.0) using Milli-Q water. Their concentration (4 × 10−3 molL−1) was
much higher than that of absorbed photons (8 × 10−6 molL−1), rendering two-photon ab-
sorption highly improbable. Experiments on the monomeric chromophores were performed
using the mononucleosides 2′-deoxyadenosine (dA) and 2′-deoxyguanosine (dG) in water,
instead of the corresponding mononucleotides, which have a great propensity to aggregate
in solutions containing salts [39]. All measurements were performed at room temperature.

2.2. Spectroscopic Setups

Steady-state absorption spectra were recorded by means of a PerkinElmer Lambda
1050 Spectrophotometer, manufactured by PerkinElmer Inc., Waltham, MA, USA, utilizing
quartz cells with a 1 mm path length. Circular dichroism (CD) spectra were obtained on
a JASCO J-815 CD Spectrometer, produced by JASCO Corporation, Tokyo, Japan, using
0.2 mm quartz cuvettes.

TA experiments were conducted using an amplified Ti:Sapphire laser, Libra, Coher-
ent, sourced from Santa Clara, CA, USA (800 nm, 100 fs pulse duration, 1 kHz repetition
rate) [40]. Initially, a portion of the laser beam was frequency-doubled to drive a non-
collinear optical parametric amplifier (NOPA), generating broadband visible pulses. These
pulses were then compressed using chirped dielectric mirrors. Subsequently, the com-
pressed pulses were frequency-doubled in a 20 µm-thick β-barium borate crystal to create
broadband UV pump pulses that were tunable across the 250–300 nm range. The UV pump
pulses were characterized by two-dimensional spectral interferometry and compressed to
24 fs (FWHM) with the aid of a prism pair before being tuned to 266 nm for the experiment.
To generate broadband probe pulses, a portion of the primary laser beam was focused onto
a 2 mm-thick CaF2 plate, producing a white light continuum that spanned from 330 nm to
650 nm. The pump and probe pulses were then non-collinearly focused onto the sample,
with spot sizes of 180 µm and 95 µm, respectively. Their relative polarizations were adjusted
to the magic angle (54.7◦). The pump fluence was maintained at 100 µJ cm−2, ensuring that
the differential absorption (DA) signals remained below 10−3. This approach effectively
minimized contributions from coherent processes and solvated electrons resulting from the
two-photon ionization of the solvent. To avoid photodamage during the experiment, a 6 mL
solution was continuously circulated through a 1 mm-thick quartz cell using a peristaltic
pump. Details on the determination of the time resolution are given in reference [31].

2.3. Computational Techniques

Quantum mechanical (QM) calculations were based on the density functional theory
(DFT), and its time-dependent (TD-DFT) version, using the M052X functional [41,42], the
6–31G(d) basis set, and an implicit polarizable continuum model (PCM) [43] for solvent.
One Na+ ion was considered per dinucleotide. This method is known to provide accurate
results when optimizing charged species and computing spectral properties and PES in
small DNA models, as well as in G-quadruplexes [20,33,44,45].

The vertical absorption energies, intensities (oscillator and rotatory strengths) of
the different excited states, and corresponding PES were characterized using the above-
described methodologies, but resorting to TD-DFT. The CT character was computed using a
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simple Mulliken population analysis in terms of δq, i.e., the difference between the charges
in the excited state and the ground state. All these calculations were performed with the
Gaussian16 program [46].

The computed spectra are compared with the experimental spectra after shifting their
energy by −0.65 eV. Part of this difference arises from the absence of vibronic effects in our
computations [47]. The value of −0.65 eV was chosen so that the energy computed for the
lowest bright state (La) of dG in water and the corresponding value derived from deconvo-
lution of the experimental spectrum (Figure 2 in reference [48]) coincide. A multifunctional
analyzer (multiwfn program) [49] provided the transition dipole moments between the
excited states for the computation of the TAS, for which there is no reference regarding the
appropriate shift; therefore, for the sake of uniformity, we shifted them in the same way as
for the steady-state spectra. In all cases, a phenomenological broadening via a Gaussian
function with a width of 0.4 eV (FWHM) was applied to each transition.

3. Results
3.1. Experimental
3.1.1. Steady-State Spectroscopy

The steady-state absorption spectra of the studied dinucleotides are plotted in Figure 2a,
taking into account the molar absorption coefficients (ε) provided by Eurogentec. Although
they seem very similar, subtle differences can be observed; the spectrum of AG peak at
254 nm, and its maximum intensity is slightly higher than that of GA, which peaks at
256 nm. The same similarity is observed for the thermal absorption spectra (Figure 2b),
which are determined from the difference between the spectra recorded at 95 ◦C, where
stacking is destroyed, and those recorded at 23 ◦C. Both spectra reveal a hypochromic effect
above 255 nm at room temperature, reaching 3.7 ± 0.1%, and a hyperchromic effect at
shorter wavelengths.
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Figure 2. (a) Steady-state and (b) thermal absorption spectra determined for AG (blue) and GA (red).
The thermal spectra are the difference between the steady-state absorption spectra recorded for each
dinucleotide at 95 ◦C (A95 ◦C) and 23 ◦C (A23 ◦C), divided by A23 ◦C.

An important difference in the interchromophore interactions within each dinucleotide
is attested by the CD spectra shown in Figure 3a. The dinucleotide spectra differ from the
spectrum recorded for an equivalent mixture of mononucleotides, i.e., having the same
concentration of dA and dG as the dinucleotide. The CD spectrum of GA is characterized
by well-defined positive (at 215 and 249 nm) and negative (at 204 and 270 nm) peaks. While
the positive peak at 215 nm, which is preceded by a negative feature at short wavelengths, is
also present in the CD spectrum of AG, its structure above 220 nm is ill-defined, presenting
multiple local fluctuations.
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Figure 3. CD spectra recorded for AG (blue), GA (red), and an equimolar mixture of dA and dG
(gray) (a) and computed for anti-syn AG (dark blue), anti-anti GA (red), and anti-anti AG (cyan) (b,c).

3.1.2. Time-Resolved Spectroscopy

The experimental TAS recorded from 20 fs to 100 fs for AG, GA, and an equivalent
mixture of dA and dG are presented in Figure 4a–c, respectively.
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Figure 4. Experimental TAS obtained for AG (a), GA (b), and an equivalent mixture of dA and dG
(c) recorded between 20 fs (dark red) and 100 fs (dark blue) with 10 fs steps. TA signals at 600 nm
obtained for AG (blue), GA (red), and an equivalent mixture of dA and dG (black) (d).

The most notable feature in the evolution of the dinucleotide TAS is their increase in
intensity over the probed spectral region. Much smaller variations are observed in the case
of monomeric chromophores; the largest changes, appearing below 380 nm, are absent from
the dinucleotide TAS. The rise in the mononucleosides’ TA signal at 600 nm (Figure 4d)
stops at the end of the laser pulse. In contrast, in the case of the dinucleotides, it is pursued
for a few tens of fs more, reaching a maximum value at around 130 fs for AG and 110 for
GA. After this time, a slow decay is observed, with concomitant changes in the spectral
shapes, which have been reported in our previous publication on these systems [29].
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3.2. Computational
3.2.1. Ground State Geometry

We optimized the ground state geometries considering four possible stacking modes:
anti-anti, anti-syn, syn-anti, and syn-syn, where anti and syn refer to the position of each
nucleobase (in the order 5′ to 3′), with respect to the angle of the glycosidic bond associated
with the deoxyribose moiety. The resulting conformers are presented in Figure 5. The
energies of the four conformers computed for each dinucleotide (Tables S1 and S2 in the
Supplementary Materials (SM)) are given using as a reference that of the corresponding
anti-anti conformer, which is the one encountered in B-form duplexes.
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Figure 5. Side and top views of the ground state structures corresponding to the four possible
conformers with stacked nucleobases computed for AG and GA. Their relative energies (∆G, in eV)
are shown in black. Adenine and guanine are depicted in pink and turquoise, respectively, and the
backbone is in gray. The top view of syn-anti GA has been omitted because the overlap is very poor.

The relative energy values reveal that the two systems do not behave in the same
way. The most stable conformer of AG is anti-syn, while for GA, the minimum energy is
found for the anti-anti conformer. A second important difference concerns the energy gap
between the lowest and highest values: 0.18 eV for AG and nearly twice as high (0.33) for
GA. Given that the energy of thermal fluctuations at room temperature amounts to 0.025 eV,
the anti-anti conformer, whose energy differs by 0.14 eV from the next more stable one, is
likely to be the dominant structure of the GA solution. In contrast, the anti-syn conformer
could coexist in the AG solution with some percentage of the anti-anti conformer.

Figure 3b shows the CD spectra computed for the most stable conformers, anti-syn AG
and anti-anti GA; starting from long wavelengths, both exhibit a negative peak, followed
by a positive one. In contrast, the two conformers of AG exhibit quite opposite patterns
(Figure 3c).

3.2.2. Franck–Condon States and Their Evolution

In view of the abovementioned findings, we computed the properties of the excited
states for anti-syn AG, anti-anti AG, and anti-anti GA. The Franck–Condon states of anti-
anti AG and anti-anti GA, as well as the minima in their PES, were reported in reference [27];
their properties are also shown in the Supplementary Materials (SM), together with those of
anti-syn AG, which were determined for the first time in the present study (Tables S3–S5).

Based on the abovementioned data, we calculated the steady-state absorption spec-
trum of each conformer and simulated those of the individual transitions that compose it
(Figure 6). We observe in Figure 6a that for both AG conformers, the maximum is located
at shorter wavelengths, and its intensity is higher than that of GA.
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Figure 6. Steady-state absorption spectra (solid lines) computed for anti-anti AG (cyan), anti-syn AG
(dark blue), and anti-anti GA (red) (a). Individual transitions (dashed lines, see Tables S3–S5 in the
Supplementary Materials (SM)) composing each one of them (b–d); the color code of the dashed lines
is defined by the minimum toward which evolves each individual transition (see Tables S6–S8 in the
Supplementary Materials (SM)): min-CT (red); min ππ*G(La) (green); min-nπ*A (black); ππ* exciton
delocalized on A and G (blue). The spectrum of the exciting laser pulse is shown in yellow.

The main electronic states correlated with the steady-state absorption spectrum of
anti-anti AG in the 240–300 nm region are ππ*G(La) (S1), ππ*A (S2), and G+→A− CT (S4)
(Figure 6b, Table S3). Their evolution along the corresponding PES leads, respectively, to
three different minima, min-ππ*G(La), min-nπ*A, and min-exciton, i.e., a ππ* delocalized
over A and G (Table S6). The same Franck–Condon states, ππ*G(La) (S1) and ππ*A (S2), are
also present in the more stable anti-syn AG (Figure 6c, Table S4). Although S1 also evolves
toward a min-ππ*G(La) in this conformer, S2 reaches a minimum with a clear G+→A− CT
character (δ = 0.4 a.u.) (Table S7). In the case of anti-anti AG, a min-CT is reached only
following the population of the S9 state, which is located at 218 nm according to the scale
adopted in Figure 6; thus, it is very unlikely to be populated by the exciting laser pulse
used in our experiments, whose spectrum is also shown in Figure 6b–d.

Four electronic transitions, whose oscillator strength ranges from 0.020 to 0.267, un-
derlie the absorption spectrum of anti-anti GA (Table S5 and Figure 6d) [27]. Two of them,
S1 (ππ*G(La)) and S2 (ππ*A combined to G+→A− CT; δ = 0.3 a.u.), result in a min-CT
(δ = 0.7 a.u.) (Table S8). S3, whose main character is ππ*G(La), with a small contribution of
G+→A− CT (δ = 0.1 a.u.), results in min-ππ*G(La). Finally, the S4 state (nπ*A) results in
min-nπ*A.

Next, we calculated the TAS of the Franck–Condon states for the most stable con-
formers of AG and GA (Figure 7c,d), more or less overlapping with the spectrum of the
laser. We observe that both the shape and the oscillator strength differ from one state to
the other and from one system to the other. All these states underlie the “global” TAS, but
their contribution depends on the probability of being populated by the excitation pulse.
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A rough estimate is obtained by multiplying each TAS by the oscillator strength of the
corresponding steady-state transition at 266 nm (Figure 6c,d). The resulting linear combina-
tions are shown in Figure 7c, where it appears that the intensity of the anti-anti GA TAS is
significantly higher than that of anti-syn AG, in particular at the high- and low-energy sides.
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Figure 7. TAS of Franck–Condon states. Computed for S1 (green) and S2 (red) of anti-syn AG (a) and
S1 (red solid line), S2 (red dashed line), S3 (green), and S4 (black) of anti-anti GA (b); the color code is
the same as that in Figure 6c,d. (c). Weighted sum of the TAS of all the states in Figure 6c (anti-syn AG:
dark blue) and Figure 6d (red: anti-anti GA), each one scaled by the corresponding oscillator strength
at 266 nm. (d) Experimental TAS recorded at 30 fs for AG (blue) and GA (red).

3.3. TAS of the Minima

From the computational results presented in the previous section, it appears that two
main minima are expected to be populated during the excited state relaxation in the most
stable conformers of AG and GA, min-CT and min-ππ*G(La). The latter would also be
reached from the less stable conformer, anti-anti AG, for which a third type of minimum,
min-nπ*A (Figure 6b), may also have a non-negligible contribution, as well as, to a lesser
extent, a ππ* state delocalized on both A and G (exciton).

We searched the fingerprints of min-CT and min-ππ*G(La) in the experimental TAS.
To this end, we performed a global analysis between 4 and 45 ps. We neglected the first
4 ps on purpose, so as to be sure that all the minima were reached and we could safely use
exponential functions. As explained in detail in reference [31], if the abovementioned con-
dition is not applied and numerous transient species coexist in the solution, the conclusions
derived from such an analysis may be erroneous.

Decay-associated spectra (DAS) were derived using two exponential functions
(Figure 8a,b). In order to minimize the number of variables, we fixed one of the time
constants to the values determined previously from the TA decays measured between 500
and 645 nm by means of a different experimental setup [29]. In both cases, good-quality
fits were obtained (Figure S2 in the Supplementary Materials (SM)). The spectral profiles
associated with the shortest time constant are similar for the two systems and resemble
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the dG TAS at 4 ps (Figure 8c). Despite the similarity of the two DAS, the corresponding
time constants differ significantly: 2.7 ps for GA and 4.5 ps, which is much higher, for AG.
This difference in the dynamics can also be directly observed in changes in the TAS profiles
recorded for the two dinucleotides (Figures 3 and 4 in reference [29]); the relative intensity
of long and short wavelength peaks is inverted faster for GA compared to AG. We note
that the longest time constants reported in the literature for the guanosine chromophore
range from 1.9 to 2.7 ps [31,50–52].
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Figure 8. DAS derived from global fits of the TAS of AG (dashed lines, (a)) and GA (solid lines, (b))
between 4 and 45 ps. Red: DAS associated with the longer lifetime, 112 ps for AG and 170 ps for GA;
green: DAS associated with the shorter lifetime, 4.5 ps for AG and 2.7 ps for GA; solid black line in
(c): TAS obtained for dG alone at 4 ps; dotted line in (d): absorption spectrum corresponding to an
equimolar mixture of the adenosine radical anion [53] and the guanosine radical cation [54]. The TAS
in (c) are normalized at their maximum intensity and in (d) at 520 nm.

The DAS associated with the longest time constants (Figure 8d) both exhibit peaks
at ~384 nm and broad bands above 500 nm. A peak at 520 nm is present in the spectrum
of an equimolar mixture of the guanosine radical cation and the adenosine radical anion
(Figure 8d), which are determined, respectively, using ns TA and pulsed radiolysis [53,54].
It is not surprising that the latter does not fully overlap with the TAS of the CT states, for
which the transferred charge is not complete: it is: 0.4 a.u. for anti-syn AG and 0.7 a.u. for
anti-anti GA, according to our computations. The TAS computed for the min-CT of the
two systems, presented in Figure 9a,b, respectively, also exhibit one peak in the UV and a
second above 500 nm. Moreover, it is blue-shifted with respect to that of the corresponding
Franck–Condon state.
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Figure 9. Comparison of computed TAS: (a) min-CT of anti-syn AG (dark blue line) and min-nπ*A of
anti-anti AG (cyan dashed line); (b) min-CT of anti-anti GA: S2 Franck–Condon state (dashed line)
evolving toward the min-CT (solid line).

Unlike min-ππ*G(La) and min-CT, it is difficult to obtain experimental information
on the TAS of min-nπ*A. Temps and coll. attributed a time constant of 0.45 ps to nπ*A,
which was derived from global fits with two exponential functions [55]; the same time
constant has been also reported by Kwok and coll. [56]. In both studies, the presented TAS
peak at wavelengths shorter than 310 nm. Later experiments, which were performed with
lower excitation intensity and higher time resolution, reported a transient species peaking
at 380 nm and characterized by a lifetime of 1.4 ± 0.2 ps instead [57]. In view of these
discrepancies, the TAS computed for min-nπ*A in the dinucleotides are precious. That of
the minor conformer anti-anti AG is shown in Figure 9a; it exhibits a rich structure over
the visible domain, with an intense band in the red part located at longer wavelengths
compared to those of the min-CT of anti-syn AG.

4. Discussion
4.1. Base Stacking and Photon Absorption

An early work that pioneered the study of CT states in dinucleotides proposed a model,
according to which they should be formed only between pre-stacked nucleobases, with
the remaining excitations (75% in the case of AG) decaying as monomer bright states [34].
Therefore, a key question in the present study is whether the nucleobases are already
stacked in the ground state and to what extent. Although it is not possible to obtain a
quantitative answer, our results provide important qualitative information.

The hyperchromic and hypochromic effects detected in the thermal spectra (Figure 2b)
are characteristic of chromophore stacking. They result from the coupling between ππ* and
CT states [15,58], requiring orbital overlap. Most importantly, the sharp contrast observed
between the dinucleotide TAS and those of an equivalent mixture of mononucleotides
recorded below 100 fs (Figure 4a–c) demonstrates that the percentage of non-coupled
chromophores in AG and GA is low.

The relative ground state energies computed for the various conformers with stacked
nucleobases (Figure 5) suggest that, while only the anti-anti conformer is expected to be
present in GA room temperature solutions, the situation is more complex for AG. For the
latter, in addition to the most stable anti-syn conformer, the presence of a small amount of
the anti-anti conformer is also possible. This is in agreement with the picture emerging from
the CD spectra. As previously noted, the experimental CD spectrum of AG, unlike that of
GA, exhibits multiple fluctuations above 220 nm (Figure 3a). This is readily explained by
the coexistence of a major (anti-syn) and a minor (anti-anti) conformer, whose computed
CD spectra are characterized by opposite patterns (Figure 3c); given that the signatures
of the two AG conformers are not canceled out in the experimental CD spectra and only
fluctuations are observed, the anti-anti AG concentration in the solutions is significantly
smaller compared to that of anti-syn AG.
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It is also worth noting that the peaks of the steady state computed for the major and
minor AG conformers are located at shorter wavelengths, and their intensity is higher
compared to that of anti-anti GA (Figure 6a). They follow a tendency similar to that of
the experimental spectra (Figure 2a) but are significantly amplified. This suggests that
although the comparison between computed and experimental spectra in the present study
is not intended to be quantitative, the spectra of different systems computed following the
same methodology reveal interesting trends.

4.2. Relaxation Dynamics: From the Franck–Condon States to the Minima

A quantitative analysis of the spectra in Figure 4a,b is not possible due to three
reasons. The first is the existence of several Franck–Condon states per conformer evolving
toward different minima. The second is the lack of theoretical information regarding
the dynamic patterns followed in this evolution. The third is the existence in AG of a
minor conformer with an unknown concentration. However, we can make qualitative
observations, assuming that the dominant structures are anti-syn for AG and anti-anti for
GA, as determined theoretically, while for the former system, a smaller contribution from
the anti-anti conformer is also possible.

The important changes observed in the TAS presented in Figure 4a,b are associated
with the evolution along the various PES. This is supported by the rise of the TA signals in
Figure 4d; while that of the monomers stops just after the end of the exciting laser pulse, in
the case of the dinucleotides, it lasts longer. The fact that the maximum value is reached
faster for GA compared to the AG (110 fs vs. 130 fs) could be due to an equilibrium between
two conformers.

Although we cannot rule out that the relaxation process has already started before
the end of the laser pulse, the TAS at 30 fs (Figure 7d) are likely to be dominated by the
Franck–Condon states. The stronger intensity observed for GA is indeed reproduced in the
TAS computed for the most stable conformers of the two dinucleotides (Figure 7c), taking
into account the probability of each Franck–Condon to be populated by the exciting laser
pulse (Figure 6).

Next, we search in the TAS evolution the fingerprints of the minima predicted theo-
retically: sy: min-ππ*G(La), min-CT, and min-nπ*A. The global analysis performed on the
experimental TAS recorded from 4 to 45 ps confirmed that min-ππ*G(La) and min-CT are
indeed populated in both AG and GA (Figure 8). The early time dynamics (Figure 4) show
that this population is very fast.

Starting from the simpler case of GA, for which a single conformer is dominant, we
observe that, in parallel with the intensity increase, the band initially peaking around
620 nm progressively shifts to shorter wavelengths, reaching 580 nm at 100 fs (Figure 4b).
We assign these changes to the evolution along the PES, leading from S1 and S2 to min-CT.
According to the computed TAS (Figure 9b), the population of min-CT is manifested indeed
by an increase in intensity and a blue shift compared to the corresponding Franck–Condon
state. Consequently, we deduce that the changes observed in the long-wavelength band in
Figure 4b reflect the dynamics of the charge transfer process.

An important difference between the TAS of the two systems is that the long-wavelength
band, shifting to shorter wavelengths for GA, progressively splits into two components for
AG; at 100 fs, a peak at 586 nm and a shoulder at ~530 can be distinguished. Such a complex
behavior is assigned to the population of min-nπ*A in the minor anti-anti AG conformer.
Our interpretation is based on the computed TAS; the low-energy band observed in that of
min-nπ*A is red-shifted compared to that of the min-CT of anti-syn AG (Figure 9a). Thus,
the concomitant population of these two minima should induce a spectral evolution similar
to that observed in Figure 4a.

The peak at ~440 nm growing in the TAS of both AG and GA is correlated with
the guanosine chromophore [31]. Several experimental studies reported that the excited
state relaxation of this chromophore in solution is very complex [50–52,59,60]. Moreover,
a theoretical work that was performed combining quantum chemistry calculations and
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molecular dynamics simulations identified the presence of three different minima in the
PES of its first singlet excited state [61]. The first minimum absorbs at longer wavelengths
(around 400 nm) than the third one, which is characterized by the longest lifetime. The
latter was indeed detected through our global analysis (Figure 8c).

4.3. Quantum Yields

In our previous publication, we reported on the relative ΦCT values; the value for GA
was found to be 75% higher than that for AG [29]. This conclusion was drawn from the
relative intensities of the UV bands present in the TAS at zero time, which were obtained
from the TAS at 15 ps according to the equation (DA)0 = (DA)15ps/exp(–15ps/τCT). In the
present more refined study, we examine this issue again. Now, we start from the TAS at
40 ps and focus on the low-energy band, which has been associated with the sum of the
absorption spectra of the dA radical anion and the dG radical cation (Figure 8d). Applying
the same formula as before, we find that the peak intensity is 71% higher for GA than for AG
(Figure 10a). Then, using the molar absorption coefficient corresponding to an equimolar
mixture of the dA radical anion [53] and the dG radical cation [54] (1230 mol−1Lcm−1)
and considering the concentration of absorbed photons (8 × 10−6 molL−1), we obtain a
ΦCT value of 0.18 for AG and 0.32 for GA. According to our calculations, the oscillator
strength of the low-energy peaks present in the TAS of the min-CT is higher than that
corresponding to the sum of the absorption spectra computed for the dA radical anion and
the dG radical cation (Figure 10b), suggesting that the determined values represent upper
limits for the ΦCT.
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Figure 10. Low-energy band of the CT states. (a) TAS recorded for AG (blue) and GA (red) at
40 ps (solid lines) and extrapolated to zero time (dashed lines). (b) TAS computed for the CT-min
of anti-syn AG (dark blue) and anti-anti GA (red); the gray line corresponds to the sum of the
spectra computed for the dA radical anion and the dG radical cation (average for the anti and syn
conformations for each radical).

5. Conclusions

Our present theoretical and experimental study on the AG and GA dinucleotides,
which is the continuation of our previous work on these systems [29], sheds important
light on the excited state relaxation occurring in these systems upon excitation at 266 nm.
Based on a series of quantum chemistry calculations, combined with broad-band transient
absorption spectroscopy at the exceptional resolution of 30 fs, we followed the processes
occurring at early times, from photon absorption to the population of the CT states.

The main findings are summarized as follows:

➢ Our computations on these systems showed that the stacking pattern corresponding
to the most stable geometry of the studied systems depends on the dinucleotide
polarity; while the anti-anti conformation present in B-form duplexes is adopted in
GA, AG corresponds to the anti-syn configuration.
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➢ The computed Franck–Condon states and their evolution depend both on the polarity
and the stacking geometry.

➢ The excited state minima predicted theoretically, min-CT, min-ππ*G(La), and min-
nπ*A, were detected in the experimental TAS; they are reached within ~120 fs.

➢ From the experimental TAS, we deduced that the largest portion of the nucleobases
within the dinucleotides are electronically coupled in their ground state. This does not
preclude the existence of a minimum localized on a single nucleobase, min-ππ*G(La),
whose lifetime depends on the dinucleotide polarity.

➢ As a result of the competition among the different relaxation paths, the quantum
yields determined for the formation of the CT state are relatively low. The estimated
upper values in AG and GA are 0.18 and 0.32, respectively.

➢ From a methodological point of view, our computations showed that the TAS of the
various excited states involved in the relaxation process exhibit different spectral
shapes and oscillator strengths. This reason renders the use of the pre-exponential
factors derived from fits of the TA signals inappropriate for the determination of their
populations.

The knowledge acquired by the present study on dinucleotides will serve as a foun-
dation for the characterization of the abovementioned processes in G-quadruplexes, with
adenines at the 3′ and/or the 5′ ends, whose Φi values at 266 nm are the highest determined
for any DNA system [27].
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