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A B S T R A C T

Over the past decade, regulatory non-coding RNAs (ncRNAs) produced by RNA Pol II have been revealed as 
meaningful players in various essential cellular functions. In particular, thousands of ncRNAs are produced at 
transcriptional regulatory elements such as enhancers and promoters, where they may exert multiple functions to 
regulate proper development, cellular programming, transcription or genomic stability. Here, we review the 
mechanisms involving these regulatory element-associated ncRNAs, and particularly enhancer RNAs (eRNAs) 
and PROMoter uPstream Transcripts (PROMPTs). We contextualize the mechanisms described to the processing 
and degradation of these short lived RNAs. We summarize recent findings explaining how ncRNAs operate locally 
at promoters and enhancers, or further away, either shortly after their production by RNA Pol II, or through post- 
transcriptional stabilization. Such discoveries lead to a converging model accounting for how ncRNAs influence 
cellular fate, by acting on transcription and chromatin structure, which may further involve factors participating 
to 3D nuclear organization.

1. Introduction

The association of RNA polymerase II with DNA at any accessible 
region of the genome, i.e. depleted of nucleosomes, leads to transcrip
tion of a multitude of RNAs that are not translated into proteins, hence 
named non-coding RNAs (ncRNAs). While ~70-90 % of all ncRNAs in 
cells are transcribed by RNA polymerase I and III, ribosomal RNAs 
(rRNAs), transfer RNAs (tRNAs), other small nuclear RNAs (snRNAs), 
and numerous additional ncRNAs are either directly transcribed by Pol II 
or indirectly derived from Pol II transcripts. ncRNAs possess a myriad of 
roles and properties, notably in RNA processing, maturation and regu
lation [1,2]. The different RNA classes possess numerous and eclectic 
roles. Notably, extensive literature describes the roles of circular RNAs 
(circRNAs) (reviewed in [3,4]) and micro RNAs (miRNAs) [5] in tran
scription and gene expression regulation. Here, the review focuses on 
subclasses of Pol II-transcribed ncRNAs including enhancer RNAs 
(eRNAs) and PROMoter uPstream Transcripts (PROMPTs). Upon dis
covery, these two RNA species were first seen as mere by-products of 
transcription due to their relatively short half-life, of the order of mi
nutes, yet they have since been the subject of much attention [6]. 
Several eRNAs have notably been associated with cancers and diseases 

[7], as well as with the regulation of gene expression and 3D genome 
organization [8,9]. Intergenic RNAs, sometimes referred to as long non- 
coding RNAs (lncRNAs, for lengths above 200 bp) may in fact be 
considered as eRNAs, while PROMPTs and “conventional lncRNAs” 
represent a minor population [10]. Since lncRNA and eRNAs share a 
number of properties and roles, these two canonical RNA classes are now 
thought to define the two extremes of a continuous spectrum [9]. Here, 
we discuss how the production and processing of these ncRNAs help to 
describe their roles in the regulation of chromatin processes. Notably, 
we will focus on the current knowledge regarding how ncRNAs and 
processing factors may help to regulate transcription, along with the 
spatial organization of chromatin, and histone Post-Translational Mod
ifications (PTMs).

2. Part I. Birth, life and death of PROMPTs and eRNAs

2.1. Transcription at regulatory regions and its diversity: PROMPTs and 
eRNAs

eRNAs were first described by de Santa et al. [11] as a widespread bi- 
directional transcription at active enhancers, a notion that was gener
alised to all active enhancers and in all cell types, in vertebrates and 

* Corresponding authors.
E-mail addresses: olivier.fosseprez@pasteur.fr (O. Fosseprez), olivier.cuvier@inserm.fr (O. Cuvier). 

Contents lists available at ScienceDirect

BBA - Gene Regulatory Mechanisms

journal homepage: www.elsevier.com/locate/bbagrm

https://doi.org/10.1016/j.bbagrm.2024.195059
Received 26 June 2024; Received in revised form 12 August 2024; Accepted 23 August 2024  

BBA - Gene Regulatory Mechanisms 1867 (2024) 195059 

Available online 1 September 2024 
1874-9399/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:olivier.fosseprez@pasteur.fr
mailto:olivier.cuvier@inserm.fr
www.sciencedirect.com/science/journal/18749399
https://www.elsevier.com/locate/bbagrm
https://doi.org/10.1016/j.bbagrm.2024.195059
https://doi.org/10.1016/j.bbagrm.2024.195059
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbagrm.2024.195059&domain=pdf
http://creativecommons.org/licenses/by/4.0/


invertebrates. eRNAs were further characterised as mostly short, rarely 
spliced, 5’capped but non-polyadenylated, and of low-abundance RNAs 
(Fig. 1A, B) [12–14]. Moreover, a global correlation was demonstrated 
between the level of eRNA expression and the level of expression of the 
genes they regulate [12]. Interestingly, a non-negligible fraction of 
eRNAs tend to be longer, poly-adenylated and more stable, resulting in a 
bias towards one strand that produces more steady-state transcripts 

compared to the other strand (Fig. 1B) [15–17]. This bias may reveal 
that, although eRNAs do not appear to have a conserved sequence, 
Transcription Start Sites (TSSs) of enhancers may be subject to evolu
tionary selection to favour accumulation of a specific eRNAs [16,18,19]. 
In myogenesis, “bi-stable” eRNAs were detected, i.e. where both strands 
of the enhancer produced more stable eRNAs [20]. Such a heterogeneity 
in eRNAs may highlight different properties and functions for each 
subset. For example, enhancers producing longer and more stable eRNAs 
tend to have higher H3K4me3 deposition, as well as more CCCTC- 
binding factor (CCTF), transcription factors (TFs) and RNA Pol II bind
ing, which can be speculated to underline different consequences or 
roles for these enhancers [9,16]. Also, to what extend distinct families of 
eRNAs can be distinguished according to their transcription levels or to 
their stability remains to be clarified. In turn, the effects of the various 
kinds of eRNAs may actually be different depending on their stability, as 
further discussed below.

PROMPTs, also referred to as Upstream Antisense transcripts (uaR
NAs) or Promoter Antisense transcripts (PAS RNAs), were first described 
as a widely distributed divergent transcription at promoters [21–23], 
similarly to eRNAs. They are transcribed on the promoters of genes, on 
the opposite strand and direction from the mRNA (Fig. 1C). The 
fundamental difference between eRNAs and PROMPTs is still blurry 
however, as they share the same properties of early termination, low 
stability and splicing, as well as relatively few polyadenylations 
[14,24–26]. In fact, this is reminiscent of the old debate of dis
tinguishing promoters and enhancers, as both can initiate transcription. 
Moreover, promoter can participate to the activation of other, distant 
genes, in the same manner as enhancers [27–29]. This advocates for a 
common property of transcription initiating regions to be intrinsically 
bi-directional which may have then been selected to asymmetrically 
favour the transcription of one transcript over the other. Such asym
metry may also result from the asymmetric maturation and stability of 
eRNAs [19,25,30,119], giving rise to “asymmetrically stable eRNAs” 
(Fig. 1B). Although the stability and length of PROMPTs have been 
associated with the proximity of additional nearby promoters [25], 
there is currently no sub-class known to be highly stable, as seen for 
certain eRNAs. As such, the potential effects of such short-lived 
PROMPTs onto transcription may be limited, as opposed to eRNAs 
with higher stability and steady-state.

Of note, the matrices of both eRNAs and PROMPTs appear to be 
depleted in U1 motif, while enriched in Poly(A) Sites motifs compared to 
mRNAs, in agreement with their low splicing and their higher rate of 
early transcriptional termination, as well as their higher Exosome 
degradation (Fig. 1) [24,31]. The global epigenetic marking of eRNAs 
and PROMPTs is also similar, with deposition of H3K4me1 and 
H3K4me3 next to the Nucleosome Depleted Regions (NDR). However, 
the ratio between those marks may be different, as PROMPTs templates 
exhibit low H3K4me1/H3K4me3 ratios, similar to gene promoters, 
whereas that of eRNAs display higher H3K4me1/H3K4me3 ratios, 
similar to enhancers. In the case of PROMPTs, it was demonstrated by 
[32] in Yeast that the deacetylase Rpd3S helps prevent their transcrip
tion. On the other hand, the Integrator complex influences RNA Pol II 
pause release and transcriptional termination [121], and as such, Inte
grator plays a central role in eRNAs biogenesis by enabling their 
termination [33]. In the same vein, the ubiquitous Pol II-associated 
factor SPT6 was shown in Human cells to regulate ncRNA transcrip
tion, including both PROMPTs and eRNAs, by ensuring correct 
H3K36me3 deposition only on coding genes, as well as enabling the 
recruitment of the Integrator complex to chromatin to favour early 
termination of ncRNAs [34]. DNA-RNA hybrids (R-loops) were shown to 
promote the transcription of ncRNAs, both at promoters and enhancers 
[34–36]. Conversely, the production of eRNAs and PROMPTs may in 
turn favour the formation of R-loops, as eRNAs and PROMPTs are able to 
form such structures [8]. Still, most of the possible impacts, functions 
and even molecular events accounting for differences in the regulations 
-production or stability- of ncRNAs are yet to be explored.

Abbreviations

ncRNAs non-coding RNAs
eRNAs enhancer RNAs
PROMPTs Promoter Upstream transcripts
RNAPII RNA Polymerase II

Fig. 1. eRNAs and PROMPTs have specific properties & transcriptional con
texts Schemes representing the bi-directional transcription of eRNAs & 
PROMPTs, their properties and genomic contexts. Non-stable eRNAs (A), like 
PROMPTs (C), have low steady states levels due to their fast degradation via the 
exosome, while non-canonical asymmetrically stable eRNAs (B) can have longer 
half-lives, be spliced and accumulate. The gradients on the right express the 
gradual increase in directionally-biased transcription, RNA stability, U1 
splicing motif enrichment, and PolyAdenylation Signal (PAS) depletion, and the 
opposite bias in H3K4me1 over H3K4me3 ratio.
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2.2. PROMPTs & eRNAs targeted degradation by the exosome

When first described, both eRNAs and PROMPTs were suggested to 
be simple by-products of transcription due to their high turnover and 
low steady-state level. Both are degraded by the nuclear Exosome ma
chinery, usually shortly after transcription, which explains their very 
low accumulation levels in conventional RNAseq data. However, the 
Exosome itself has poor specificity and cannot process RNA secondary 
structures [37]. To bring specificity, the Nuclear EXosome Targeting 
complex (NEXT) and the Poly(A) eXosome Targeting complex (PAXT) 
are the bearers of binding and helicase properties [38–40], even though 
the exact way by which they target specific RNAs is yet to be deter
mined. The NEXT complex has been demonstrated as being necessary to 
enable the proper degradation of most PROMPTs and eRNAs, while the 
PAXT complex tends to target longer, processed and poly-adenylated 
targets [39–41]. Studies on the secondary structures of ncRNAs are 
scarce, and the requirement for the NEXT complex to enable their 
degradation may be due to the formation of secondary structures, such 
as hairpins. The RNA helicase Mtr4 in particular, present in both PAXT 

and NEXT, is necessary for the degradation of both PROMPTs and 
eRNAs, but also of some introns, which may again highlight the for
mation of secondary structures to be unfolded by this RNA helicase 
[38–40].

Of interest, it is yet to be understood whether this degradation of 
PROMPTs and eRNAs can be regulated, or if it is a simple “all you can 
degrade” mission for the exosome and its targeting complexes. In fact, 
the studies performed to date were mostly limited to the observation of 
accumulations of ncRNAs upon degradation of either an Exosome 
component or a targeting complex factor [37–40]. In the hypothesis of a 
function for eRNAs and PROMPTs, it would make sense indeed for the 
degradation of these ncRNAs to be dynamically regulated or even locally 
prevented, so as to enable their accumulation and enhance their effect in 
precise contexts. Interestingly, two contradicting studies recently re
ported that m6A methylations of eRNAs and PROMPTs appear to either 
protect them against early termination and degradation [42], or facili
tate their degradation via YTHDC1 binding [43], revealing an unex
pected layer of regulation that may be context dependent. Supporting 
this view, the recently published structure of the NEXT complex has 

Fig. 2. Non-coding RNAs regulate transcription, chromatin & genome 3D organization. Schematic summarizing some of the roles identified for eRNAs & PROMPTs 
to date. The upper and lower parts represent distinct types of factors that can associate with 3D clusters of genes for the same genomic context. (A) Color-coded in 
blue, exemplifies the regulation of Pause-release by eRNAs & PROMPTs, notably through inhibition of the pausing factor NELF, and the activation of the p-TEFb 
kinase. (B) Color-coded in yellow, showcase of the contexts in which stable and unstable ncRNAs may facilitate the regulation of histone PTMs deposition, such as for 
H3K27me3 at silenced genes, or H3K4me3 and histone acetylation at promoters & enhancers. (C) Color-coded in green, Transcription Factors recruitment to pro
moters & enhancers is facilitated & targeted by binding to various eRNAs. (D) Color-coded in red, formation of chromatin loops & phase separated condensates are 
regulated by stable and unstable PROMPTs & eRNAs to favour gene regulation and transcription. (E) Model of the formation and dynamics of phase-separated 
transcriptional condensates. The main actors of phase separation in this context are the abundance of RNAs including ncRNAs, and of RNA binding proteins 
(RBPs) such as transcription factors or CTCF and cohesin. As such, an increase in transcription or in RNA stability, including of ncRNAs, will facilitate condensates 
formation, whereas a decrease of RNA production or an increase of RNA degradation will challenge formation of condensates. Importantly, this model is not linear, as 
an excessive concentration of negatively charged RNAs, will also cause the condensates to crumble.
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revealed regulatory configurations preventing processing of the bound 
RNA, especially via the ZCCHC8 subunit [38]. Furthermore, the NEXT 
complex interacts with various factors outside of the Exosome, notably 
via ZC3H18 [44], which leaves ample space to elucidate the molecular 
mechanisms by which different classes of ncRNAs are recognized and 
targeted for degradation by the Exosome. The PAXT complex also in
teracts with the PolyA polymerase gamma (PAPγ) [41], which in turn 
regulates the polyadenylation of ncRNAs, involving the ability of PAXT 
to favour the recruitment of PAPγ. Such interactions may in turn regu
late both polyadenylation and degradation of mRNAs and PROMPTs, 
though the specificity of the targeting is unclear.

3. Part 2. A life worth living: PROMPTs’ and eRNAs’ roles in 
functional mechanisms

The aforementioned assumption that eRNAs and PROMPTs are use
less transcriptional by-products, based on their rapid degradation, has 
been overturned by the discovery of regulatory roles, particularly for 
certain eRNAs. Notably, studies have suggested roles for these non- 
coding RNAs in Pol II Pause release, Histone PTMs deposition, TFs 
recruitment and 3D genome organization (Fig. 2). However, the ques
tion of the role of the RNAs per se, or of their transcription, was raised. 
As such, transcription of the enhancer may function by maintaining the 
enhancer accessible, and in this instance, only transcription may be 
really necessary, while eRNAs can be targeted for degradation. Alter
natively, eRNAs or PROMPTs might act locally, before their degrada
tion. Finally, more stable ncRNAs have been suggested to regulate the 
pausing of RNA Pol II or even the organization of chromatin in 3D, 
possibly through their ability to stabilize the binding of RNA-binding 
proteins. Thus, stable ncRNAs could possibly act in trans, i.e. further 
away from their loci of transcription. As many ncRNAs are predicted to 
have secondary structures, it is also plausible that their structure, rather 
than their sequences, is necessary to mediate their roles [6]. For a more 
detailed review of the existing links between eRNAs structures and their 
functions, see Harrison & Bose [122]. In this section, we discuss the 
various mechanism in which ncRNAs have been attributed functions, 
while considering the features cited above, i.e. the stability of ncRNAs, 
their spatial and temporal localization, and their sequence or structure.

3.1. ncRNAs direct influence on Pol II transcription

Various studies have demonstrated that ncRNAs can regulate gene 
expression possibly at distinct stages of transcription. In particular, 
certain eRNAs were shown to participate to the regulation of their en
hancers’ target genes. Most of these studies were based on approaches 
such as depletions, or more sporadically accumulations of target eRNAs, 
to demonstrate a deregulation of the gene of interest (i.e. not necessarily 
local) or of the genes in the vicinity of the deregulated enhancer 
[45–53]. In 2013, Melo et al. [54] performed a Gal4-MS2 targeting of 
specific exogenously transcribed eRNAs to a promoter to demonstrate 
their capacity to enhance gene expression, though the precise mecha
nism by which these eRNAs could impact gene regulation remains un
clear. Since then, a CRISPR-dCas9-based method was developed to 
target ncRNAs [55–58], revealing variable influence in the regulation of 
enhancers activity. Another study also observed that RNA-exosome- 
regulated ncRNAs, i.e. mostly PROMPTs and eRNAs, were influential 
in the regulation of super-enhancers activity [35]. Finally, hnRNPL, a 
protein involved in RNA alternative splicing and transcriptional regu
lation has been shown by several reports to bind eRNAs to regulate gene 
expression levels. It may do so at several steps of the transcription 
process, as one of these reports observed repressing effect of the ncRNA- 
hnRNPL interaction, while the two others found up-regulating effects 
[20,59,60].

Interestingly, the structures of ncRNAs may participate in their 
regulatory functions, particularly to provide specificity to proteins 
binding. Although poorly investigated in the context of eRNAs and 

PROMPTs compared to other functional ncRNAs (such as 7SK, tRNAs 
and ribosomal RNAs), this hypothesis agrees with the observed lack of 
sequence conservation among most eRNAs and PROMPTs, and espe
cially for the less stable ones. Yet only few eRNAs/PROMPTs structures 
have been experimentally characterised [55,58,61,62], although many 
have been predicted to be spatially folded [6]. In a few cases however, 
the structures of eRNAs and PROMPTs have been directly associated 
with their role [58,62]. In the case of DDReRNA in myogenesis for 
example, it is striking to see different domains, and their respective 
unpredicted but experimentally confirmed structures, regulate separate 
sets of genes, through different mechanisms [62].

Aside of these rather general association of gene regulation with 
modifications of ncRNA levels, certain eRNAs were observed to directly 
impact Pol II pausing (Fig. 2A). They do so by acting as decoys and/or 
destabiliser for the Negative Elongation Factor (NELF), hence facili
tating pause release into productive elongation [61,63,64]. This action 
was demonstrated in vitro to be mediated through direct interactions 
between eRNAs and NELF-A/E subunits, yet with no effects of structures 
nor sequences, needing only a certain length of RNA (>200 bases) and 
unpaired guanosines to be effective [61]. This argues for a role of the 
RNA themselves, regardless of motif recognition [61], in tune with the 
previous demonstration that NELF-E binds a large range of RNA with no 
sequence or structure preference [65]. In the same vein, the pause- 
release kinase p-TEFb was shown to be bound and activated by an 
eRNA, thus promoting RNA Pol II phosphorylation and productive 
elongation. In this case, the structure-motif of the eRNA was shown to be 
influential, as it substitutes the well characterised p-TEFb inhibitor RNA 
7SK [66]. It remains to be determined whether these mechanisms can be 
generalised to all eRNAs, as suggested for NELF [61]. Nonetheless, it is 
clear that at least eRNAs and maybe other ncRNAs have regulatory roles 
on Pol II pause release and gene expression, both dependent and inde
pendent on their structures-motif.

The accumulation of ncRNAs has also been reported to participate in 
the formation of transcriptional hubs, which may in turn favour or 
regulate transcription at several stages. Notably, transcription initiation 
has been proposed to be substantially impacted by the concentration of 
ncRNAs in the transcriptional condensates [67,68]. In effect, transcrip
tional condensates are formed mainly via the Intrinsically Disordered 
Regions (IDR) of TFs, via the global process of phase separation (Fig. 2A, 
E) [69–73]. Interestingly, these IDRs are canonical RNA-binding do
mains in many proteins involved in transcriptional condensate forma
tion [74]. In 2021, Henninger et al. proposed a model, where the 
synthesis of relatively small and quickly degraded eRNAs and PROMPTs 
would, at low concentrations, facilitate the formation and efficiency of 
the initial transcriptional condensates (Fig. 2A, E). Upon induction of 
the transcriptional burst however, the massive accumulation of mRNAs 
would then concentrate too many negative charges, making the phase 
crumble on itself, and thus terminating the period of hyper-efficient 
transcription. This model was actually supported by other studies 
[68,75–77], and it provides a brilliantly simple mechanistic framework 
to explain transcriptional bursts (see [78] for a more extensive discus
sion of Transcriptional Bursting). Still, a great number of additional 
transcription factors may be involved, and additional parameters from 
alternative transcriptional models also suggested how separate phases 
may correspond to initiation and productive elongation (see [79]). Also, 
the former model was challenged by quantitative live-imaging and 
super-resolution that argue for enhancer transcription to antagonize 
molecular crowding of transcription factors, suppressing transcriptional 
bursting of the linked genes, while certain developmental enhancers 
may be structurally optimized to support both coding and non-coding 
transcriptional activation [80]. They argue that enhancer function 
would be tuneable through non-coding transcription and hub formation 
to perform gene regulation. Importantly, this study uses synthetic con
structions where the effect of non-coding transcription is to displace TFs 
bound at the enhancer, perhaps explaining the contradicting effect 
observed, which may reflect the configurations of a few natural – and 
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mostly developmental – enhancers. Also, distinguishing the effects of 
non-coding transcription versus accumulation of ncRNAs may help un
derstanding such paradox.

Interestingly, the m6A modification of eRNAs has been advanced as 
potentiating the formation of transcriptional condensates through its 
phase-separating reader YTHDC1, in turn activating gene expression 
[81]. It remains to be investigated whether this effect is directly exerted 
by the m6A modification, for which the eRNAs would be mere carriers, 
or if it is really the eRNAs that are effective, in which case the m6A 
modification may play its part in regulating the stability of the eRNAs 
[42,43]. A global analysis by Quinodoz et al. [82] based on the devel
opment of the RD-SPRITE technique, enabling the simultaneous obser
vation of RNA and DNA spatial repartition genome-wide, allowed to 
propose a general model whereby ncRNAs globally act as seeds and 
recruiters of various protein factors to form specific and localised 
genome 3D structures. Such ncRNA-driven clustering in 3D may then 
regulate and shape gene expression, DNA contacts, but also hetero
chromatin assembly. The great asset of this model, as well as that of the 
rather complementary transcriptional condensate model exposed above, 
is that they finally provide a general rule and framework to understand 
how ncRNAs can influence gene transcription.

3.2. ncRNAs influence on chromatin regulation through histone PTMs

Alternative mechanisms by which ncRNAs may regulate genes have 
been proposed, notably through various indirect changes in chromatin, 
either at the level of nucleosome occupancy or histone Post- 
Translational Modifications (PTMs), or at the level of transcription 
factor recruitment (Fig. 2B,C). This notably includes the extensively 
studied Xist ncRNA, which mediates X-chromosome Inactivation in 
Mammals by triggering gene silencing and structural reorganization 
through the recruitment of a vast array of chromatin modifiers 
(reviewed by [83]), which will not be further reviewed here. Of note, 
what had been demonstrated for the X chromosome inactivation, 
deserve consideration to test whether it also stands in the less-studied 
roles and multitude of other ncRNAs.

In the specific case of enhancers, it was demonstrated that tran
scription of the enhancer, independently of eRNA, is what precedes and 
facilitates H3K4 methylation at enhancers, independently of the eRNA 
stability [84]. Interestingly, this argues that eRNA transcription is not a 
simple consequence of enhancer function, but rather is necessary to 
enable the activity of certain enhancers. Accordingly, the transcription 
of a distal enhancer, and particularly one of the eRNAs produced, was 
shown to influence the modifications of several histone PTMs at both 
enhancers and promoters (Fig. 2B) [85]. In this instance, a simple 
knockdown of only one strand of the bi-directional eRNA is sufficient to 
cause a loss of H3K27ac at the enhancer and replacement by H3K27me3, 
coinciding with H3K4me3 loss at the promoter. Of note, the authors 
used an experimental strategy acting solely post-transcriptionally, hence 
arguing against a direct role of transcription, but rather by the ncRNAs 
themselves.

ncRNAs further antagonize H3K27me3 deposition by PRC2, even 
though PRC2-RNA interactions are necessary for proper targeting of the 
silencing complex to chromatin. In this instance, JARID2, a specific 
subunit of PRC2, may timely inhibit RNA-binding when necessary, in 
order to enable PRC2 catalytic activity [86–89]. Although most of these 
studies do not distinguish different RNA species, at least three studies 
demonstrate that specific ncRNAs, localised away from their target 
genes, also mediate their regulatory role through the PRC2-RNA inter
action mechanism [90–92]. This suggests a model in which many, if not 
all ncRNAs would participate in regulating H3K27me3 deposition to 
setup and maintain transcriptional programs (Fig. 2B). In another 
illustration of histone PTMs being regulated by ncRNAs, PROMPTs have 
also recently been shown to stabilize the binding to promoters of the 
demethylases of H3K9me3, KDM4B and KDM4C, thereby regulating 
transcription of numerous genes [58]. Similar to histone methylation, 

acetylation has also been shown to be regulated by eRNAs. The Histone 
AcetylTranferase (HAT) complex CBP/p300 binds locally-transcribed 
eRNAs directly, targeting and stimulating histone acetylation at 
enhancer, and hence transcription of target genes (Fig. 2B) [55,93,94]. 
This mechanism is further supported by the eRNA-binding property of 
BRD4, a Bromodomain-containing protein that binds to histone acety
lation to enhance transcription. This direct eRNA binding again in
creases BRD4 binding to acetylated histones and thus its recruitment to 
enhancers to function as a transcriptional cofactor (Fig. 2C) [95]. Taken 
together, a number of studies have therefore highlighted key aspects of 
the regulation by which eRNAs or their transcription empower tran
scriptional regulation, notably by snowballing the deposition of several 
histone PTMs favourable to transcription, but also by prohibiting 
deposition of repressive marks, thus making chromatin more permissive.

3.3. eRNAs and PROMPTs impact chromatin by recruiting TFs and 
forming R-loops

ncRNAs may also control transcription through the recruitment of 
various transcription factors and cofactors. Several Bromodomains- 
containing factors, analogous to BRD4 as cited above, have been 
shown to bind eRNAs, even though a complete description of the genes 
they may regulate through ncRNA binding is still lacking [95]. The 
ncRNA ARIEL has also been shown to enhance the activation of an 
oncogenic transcriptional program by a specific TF named TAL1, 
through the recruitment of the Mediator complex [96]. Similarly, other 
oncogenic TF, such as c-JUN [64] and NF-κB [97,98], were documented 
to depend on eRNAs for their recruitment to regulate gene expression. 
Finally, Sigova et al. demonstrated in 2015 that the ubiquitously 
expressed YY1 is also affected by eRNAs, as they facilitate its recruit
ment and retention on chromatin at enhancers (Fig. 2C). Surprisingly 
however, general accumulation of eRNAs and PROMPTs through exo
some depletion caused a global decrease of YY1 at enhancers. The au
thors interpret this result as a titration of YY1 by the excessive 
accumulation of eRNAs, keeping too many YY1 molecules away from 
chromatin and with no possibility to bind anything but the eRNAs. 
Clearly, YY1 has been involved in 3D clustering of distant sites, and the 
interplay between YY1 and eRNAs may also be complicated by the 
saturating levels of eRNAs.

Complementary to these mechanisms, the R-loops formed by eRNAs 
and PROMPTs can enhance transcription by serving as promoters 
through the opening of the DNA helix [36]. Importantly, R-loops are 
DNA-RNA hybrids which have been extensively studied in recent years, 
and were shown to be highly regulated, and to have ambivalent roles 
both in causing genomic instability, as well as regulating important gene 
regulation and chromatin accessibility (for a more extensive review, see 
[99]). Of note, the exact mechanisms afoot to regulate ncRNA-mediated 
formation of R-loops are still under investigation. Aside from this direct 
regulation of transcription initiation, the ncRNA named KHPS1 may 
control, via the formation of R-loops, various chromatin regulators such 
as CTCF, p300 and an eRNA, to target the regulation of a gene, SPHK1 
[100]. This rather complex mechanism highlights the possibility for 
ncRNAs to form DNA-RNA hybrids as a mean of targeting to specific 
regions, as will be discussed in depth in the next section regarding 
spatial genome regulation by ncRNAs. Cooperatively, it was suggested 
that m6A modifications of a subset of eRNAs and PROMPTs forming R- 
loop might participate in their targeting to degradation via YTHDC1 
[43]. This modification would in turn inhibit TFs recruitment and his
tone PTM deposition, allowing for the abrogation of the otherwise self- 
sustaining mechanism of transcription activation.

To conclude, substantial evidence demonstrates that ncRNAs enable 
the setup and enforcement of transcriptional programs by regulating 
chromatin. In particular, the deposition of histone PTMs and the 
recruitment of TFs facilitated by eRNAs is influential to regulate various 
genes and processes. However, it is still unclear in most cases whether 
these observations can be generalised, or if ncRNAs act in a context 
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specific manner to regulate limited numbers of genes. As such, it will be 
of great interest to develop an exhaustive view of the transcription 
factors and histone modifiers that necessitate or are regulated by the 
repertoire of ncRNAs.

3.4. ncRNAs influence on 3D genome organization

The 3D structure of the genome has substantial impacts on various 
cellular processes, and in particular gene expression. The regulation of 
enhancer-promoters contacts is notably influential. The current model is 
that a loop-extrusion mechanism mediated by the Cohesin ring enables 
most contacts to happen, while certain contacts are enriched due to the 
formation of domain borders (mainly by CTCF in Mammals), more 
rarely due to random collisions. Domain borders stop or slow loops 
extrusion to limit spurious enhancer-promoter contacts between two 
contiguous Topologically associating Domains (TADs). Upon certain 
interactions, DNA looping between a regulatory element and its “pro
moter target” are favoured through the stabilization of Cohesin and/or 
other factors. For a better understanding of the intricacies of genome 3D 
architecture and the various factors involved, see e.g. [101].

ncRNAs have been involved in regulating this spatial architecture of 
the genome by binding and recruiting various architectural factors 
(Fig. 2D), also involving transcriptional condensates (Fig. 2E). Cohesin 
was first shown to bind several eRNAs in 2013 by Li et al., with impli
cations in gene regulation by promoting Cohesin binding at enhancers. 
This finding was later supported by studies on the previously mentioned 
DDReRNA, which interacts with the Cohesin complex and is required for 
its proper loading and activity to regulate the Myogenin gene [62,102]. 
Another biochemical investigation also demonstrated that the SA1 and 
SA2 subunits of Cohesin directly bind not only single stranded RNA 
(ssRNA), but also double stranded RNA (dsRNA) and RNA:DNA hybrids, 
opening the door to many potential effects of ncRNA transcripts on 
Cohesin recruitment and its mediation of 3D interactions [103]. YY1 
was actually shown to enable the formation of certain E-P interactions 
by anchoring Cohesin in an eRNA-binding dependent manner, because it 
is regulated by eRNA interactions, as detailed in the previous section 
[57,104]. Similarly, Mediator binding to ncRNAs was demonstrated to 
promote chromatin looping [49]. Given the ongoing debate regarding 
Mediator’s role in chromatin looping [105,106], we may speculate that 
the RNA-Mediator interaction effect on chromatin looping also involves 
Cohesin. In the same vein, the observed modification in chromatin 
looping stabilized by eRNAs in the regulation of Nanog and Dppa3 by 
super-enhancers could possibly involve Cohesin [107].

The other major regulator of chromatin 3D organization in verte
brates, CTCF, has also been shown in Human and Mouse to bind RNAs. 
First reported in a case study with the SRA ncRNA, the RNA-binding 
property of CTCF was then proposed as necessary for its insulating ac
tivity at a few loci [108]. The RNA-binding regions of CTCF were later 
identified, and demonstrated to bind a large variety of transcripts, 
including ncRNAs, with surprisingly no particular sequence or motif 
preference [109–111]. Even more intriguing, although CTCF is well 
known to be required for virtually all TAD borders and loops in verte
brates, the deletion of its RNA Binding Regions (RBR) impacted only 
about half of all loops and TADs mediated by CTCF [109]. This result is 
mirrored by the specific disruption of CTCF binding to DNA only in 
certain loci that depend on the deleted RBR [109,111]. Two classes of 
loops could even be distinguished, between RBR dependent loops that 
are abolished upon RBR deletion, and RBR independent loops that are 
not affected. A new report from Harris et al. [112] has shown using 
ultra-deep sequencing that the RBR of CTCF may actually distinguish 
different types of loops. Hence, the more diffusive loops would depend 
on CTCF’s RBR, while the punctuate loops remain unaffected, perhaps 
due to different mechanisms behind their formation. The model pro
posed for the influence of RNA on CTCF is that RNAs would facilitate the 
oligomerization and clustering of CTCF, hence maintaining loops, 
perhaps somewhat independently from Cohesin [109,111]. Yet a proper 

demonstration of this speculative model remains to be generated, as it is 
still obscure how exactly RNA binding by CTCF would cause or favour 
loop formation in some cases and not others. The lack of specific 
sequence motif is just as puzzling, as the current understanding would 
mean that any RNA can be bound by CTCF, making it conceptually hard 
to appreciate context specificities. The potential of RNA structures 
mentioned above may bring a first layer of specificity but remains to be 
demonstrated as impacting RNA-CTCF interactions. RNA-based con
densates may form depending on RNA binding proteins (RBP) that set up 
multivalent interactions with easily tuneable concentrations of RNAs, 
including ncRNAs. As such, production or stabilization of RNAs may 
lead to highly concentrated condensates of RNAs and factors that do not 
respond to equilibrium dynamics with the outside environment, thereby 
defining the bona fide conditions for phase separation (Fig. 2D, E) 
[69–73,113]. Yet another layer of comprehension may be derived from 
two studies of HOTTIP, a ncRNA involved in the setup of the leukemic 
transcription profile [114,115], as well as two studies of Jpx, a ncRNA 
involved in Xist expression for X-chromosome inactivation [116,117]. 
These studies show that these two ncRNAs are targeted widely in the 
genome, via the formation of sequence specific R-loops in the case of 
HOTTIP, to regulate a large transcriptional program. To mediate this 
regulation, HOTTIP seemingly helps to recruit CTCF and Cohesin to 
form TAD boundaries where it forms R-loops, in a sort of targeted 
enhancement CTCF boundary formation [115]. These findings, if 
generalised to other ncRNAs, could mean that CTCF does not need to 
bind only free RNAs, but rather chromatin-tethered RNAs that would 
retain or empower CTCF at certain loci, hence the specificity. Oppo
sitely, Jpx seem to act as a competitor for CTCF binding, displacing it 
from low-affinity sites, thus favouring the formation of other loops and 
possibly TAD frontiers, although a complete description of the effects of 
Jpx on TADs and Cohesin recruitment remains to be produced. 
Regarding ncRNAs, their formation of R-loops and their binding to 
chromatin proteins may thus be shown influential to regulate CTCF 
architectural purposes in precise contexts.

In conclusion, although comprehensive models are still lacking to 
explain how architectural proteins are impacted by ncRNAs, it is clear 
that such a layer of regulation does exist in Mammals. It is however 
surprising that all of the studies to date are limited to Human and Mouse 
models. In fact, a very limited number of studies analysed the effects of 
ncRNAs on architectural proteins present in Drosophila and Yeast, two 
widely used models for the study of 3D genome organization. Yet an 
original study performed in Drosophila by Lei and Corces in 2006 
highlighted an RNA-dependent interaction between the insulator pro
tein CP190 and an RNA helicase, Rm62, though the potential role of 
RNA remains to be shown. A second study tackle how mRNAs may 
participate in the formation of insulator complexes in Drosophila, 
reporting the interaction of CP190 and Su(Hw) with RNAs [118,120]. To 
summarize, the potential effects of ncRNAs on 3D genome organization 
in these organisms are still vastly unexplored, and left to be speculated 
from observations made in Mammals, which is an error-prone task in 
regards of the poor homology of architectural factors between Mammals 
and Invertebrates.

4. Concluding remarks

Altogether, the various genome-wide and loci-specific data produced 
to date argue for both promiscuous, local effect of ncRNAs and their 
transcription, as well as more long-range effects of specific and more 
stable ncRNAs. Even though most studies do not examine the stability 
versus transcription of the ncRNAs, complicating interpretations as to 
whether they exert their effect locally or distantly. Importantly, the 
myriad of mechanisms through which ncRNAs impact chromatin, 3D 
genome organization and transcription support a general and prevalent 
role for these sometimes-rare ncRNAs, albeit not in all contexts nor by all 
ncRNAs. It may be expected that the diversity of mechanisms in which 
eRNAs act, for example, is comparable to the variety in enhancers and 
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transcription factors bound to them. Clearly, a comprehensive model of 
how ncRNAs impact genome regulation is yet to be achieved, even 
though interesting models have been proposed. The development of new 
methods to study ncRNAs in their native contexts while decoupling their 
effects from that of their transcription will be a major challenge and 
prospect to understand the multitude of ncRNAs functions. Eventually, a 
better understanding of these mechanisms may permit to harness the 
regulatory potential of ncRNAs in a variety of therapeutic contexts.
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