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ON POLYNOMIAL AUTOMORPHISMS COMMUTING WITH A SIMPLE

DERIVATION

Pierre-Louis Montagard1, Iván Pan2, Alvaro Rittatore2

Abstract. Let D be a simple derivation of the polynomial ring k[x1, . . . , xn], where k is an
algebraically closed field of characteristic zero, and denote by Aut(D) ⊂ Aut

(
k[x1, . . . , xn]

)
the

subgroup of k-automorphisms commuting with D. We show that the connected component
of Aut(D) passing through the identity is a unipotent algebraic group of dimension at most
n − 2, this bound being sharp. Moreover, Aut(D) is an algebraic group if and only if it is a
connected ind-group. Given a simple derivation D, we characterize when Aut(D) contains a
normal subgroup of translations. As an application of our techniques we show that if n = 3, then
either Aut(D) is a discrete group or it is isomorphic to the additive group acting by translations,
and give some insight on the case n = 4.

1. Introduction

Let k[x1, . . . , xn] be the polynomial ring over an algebraically closed field k of characteristic
0. Recall that a k-derivation of k[x1, . . . , xn] is a linear endomorphism D ∈ End

(
k[x1, . . . , xn]

)
such that D(fg) = D(f)g+fD(g) for all f, g ∈ k[x1, . . . , xn]; we denote D ∈ Der

(
k[x1, . . . , xn]

)
.

A central and, of course, very difficult problem is to classify derivations up conjugation by
an automorphism of k[x1, . . . , xn]. If n = 2 there is a partial classification ([BaPa2019]), but
essentially nothing is known in higher dimension. In order to provide contributions to the
solution of this problem, one may try to classify derivations whose interest has been proven in
relation to various areas of mathematics. This is the case, for example, of the locally nilpotent
derivations and the simple derivations (see Definition 2.1 below). In the first case, significant
progress has been made in recent decades (see [Fr2017] and references therein), while little is
known about the second one.

Recall that if ∆ is a locally nilpotent derivation then the formal series et∆ :=
∑∞

i=0
ti∆i

i! acts

as a finite sum on every polynomial and defines an element in Aut
(
k[x1, . . . , xn]

)
(the group of

k-automorphisms of k[x1, . . . , xn]) for all t ∈ k; in this way, ∆ induces an action of the additive
group Ga = (k,+) on k[x1, . . . , xn]. Conversely, every action of Ga on k[x1, . . . , xn] is of this form
(see for example [Fr2017, §1.5]). When k = C, the field of complex numbers, if one associates
to a derivation D the polynomial vector field

(
D(x1), . . . , D(xn)

)
, then D is a locally nilpotent

derivation if and only if the general solution of the differential equation of the corresponding
vector field is polynomial ([FiWa1997]).
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On the other hand, given a simple derivation D ∈ Der
(
k[x1, . . . , xn]

)
— that is the only

D-stable ideals are the trivial ones —, one may extend the polynomial ring k[x1, . . . , xn] to a
“skew” polynomial ring R by adjoining a new indeterminate t with the rule: t · f − f · t = D(f)
for any f ∈ k[x1, . . . , xn]. It is well known that D is simple if and only if R has no non trivial
bilateral ideals (see for example [GoWa1989, Chap. 2]). Finally, if k = C and we consider the
singular foliation F associated with the vector field

(
D(x1), . . . , D(xn)

)
on Cn, then D being

simple is equivalent to saying that F is not singular and any of its leaves is Zariski dense. For a
more general field, the previous equivalence may be described in terms of algebraic independence
of power series in one indeterminate ([Le2008]).

Thus, if we compare the two kind of derivations previously mentioned by focusing on their cor-
responding flows (when k = C), then locally nilpotent and simple derivations appear as opposite
in a certain sense. More generally, if k is an arbitrary field and ∆ is a locally nilpotent derivation
of k[x1, . . . , xn], then ker∆ =

{
f ∈ k[x1, . . . , xn]; ∆(f) = 0

}
is a k-subalgebra of k[x1, . . . , xn]

with transcendence degree over k equal to n− 1 (see for example [vdE, Pro.1.3.32(i)]), whereas
clearly kerD = k when D is a simple derivation. One finds further evidence for this intuition on
the opposite behavior of simple and locally nilpotent derivations in dimension 2 ([MePa2016],
[Pa2022]), looking at the automorphisms group of the derivations:

Definition 1.1. Let D ∈ Der
(
k[x1, . . . , xn]

)
. The automorphisms group of D is the isotropy

group of D for the action of Aut
(
k[x1, . . . , xn]

)
on Der

(
k[x1, . . . , xn]

)
by conjugations:

Aut(D) = Aut
(
k[x1, . . . , xn]

)
D
⊂ Aut

(
k[x1, . . . , xn]

)
.

Theorem 1.2. If D ∈ Der
(
k[x1, x2]

)
, then

(a) D is locally nilpotent if and only is Aut(D) is not an algebraic group.

(b) If D is simple, then Aut(D) = 1. □

Recall that if n ≥ 2, then Aut
(
k[x1, . . . , xn]

)
does not admit a compatible structure of

group scheme, but it is an ind-group with filtration induced by total degree (see for example
[Sha1981] and [Ku2002, Chapter 4]). More precisely, if we consider the set theoretical inclusion
Aut

(
k[x1, . . . , xn]

)
↪→ k[x1, . . . , xn]n, given by φ 7→

(
φ(x1), . . . , φ(xn)

)
, then the degree of φ

induces a filtration Aut
(
k[x1, . . . , xn]

)
=

⋃
pAut

(
k[x1, . . . , xn]

)
p
, where

Aut
(
k[x1, . . . , xn]

)
p
=

{
φ = (f1, . . . , fn) ∈ Aut

(
k[x1, . . . , xn]

)
: ∀i deg(fi) ≤ p

}
.

It follows that a closed group G ⊂ Aut
(
k[x1, . . . , xn]

)
is algebraic if and only if there exists p

such that G ⊂ Aut
(
k[x1, . . . , xn]

)
p
. Clearly, Aut

(
k[x1, . . . , xn]

)
identifies in a canonical way with

Aut(An), the automorphisms group of the n-dimensional affine space; under this identification,
if G ⊂ Aut

(
k[x1, . . . , xn]

)
is algebraic, then the induced action G× An → An is regular.

If n > 2, it is not difficult to show that Aut(D) is never algebraic when D is locally nilpotent;
however, very few is known about the simple case. In fact, Aut(D) is expected to be algebraic:
in [Ya2022], after exhibiting examples of simple derivations whose isotropy is Ga acting by
translations, the author conjectures that in general, up to conjugation, if D is simple then
Aut(D) acts by translations.

The main objective of this work is to give evidence in the direction of proving that Aut(D)
is in fact an algebraic group. The structure of this work is as follows:
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In Section 2 we collect some basic definitions and results on Der
(
k[x1, . . . , xn]

)
and the ind-

group structure of Aut
(
k[x1, . . . , xn]

)
.

In Section 3 we prove that if D is a simple derivation, then Aut(D)0, the connected component
of Aut(D) passing through the identity, is a unipotent algebraic group (Theorem 3.2), and that
any algebraic element of Aut(D) is unipotent (Theorem 3.4). In particular, Aut(D) is algebraic
if and only if it is a connected group.

In Section 4 we show that ifD ∈ Der
(
k[x1, . . . , xn]

)
is a simple derivation, then dimAut(D)0 ≤

n− 2 (Theorem 4.7), and that this bound is sharp (Corollary 4.13).

When a simple derivation is such that Aut(D) contains a non trivial translation, then one
can give more insight on the structure of Aut(D)0; this is done in Section 5. More precisely, if
D is a simple derivation, we characterize in terms of a coordinate system when Aut(D) contains
a non trivial normal subgroup of translations and we use this characterization to somewhat
describe Aut(D)0 (Theorem 5.4). We apply our point of view in order to prove that the isotropy
group of a simple derivation of k[x1, x2, x3] is either trivial, either the additive group acting
by translations (upon conjugation) or it is an infinite countable discrete group — however, we
remark that, up to our knowledge, there is no known example of this last possibility.

Most examples of explicit simple derivations of k[x1, . . . , xn] are produced by extending, recur-
sively, a simple derivation in k[x1], using Shamsuddin’s criterion (see Proposition 4.8), or some
of its variants, and are therefore of the form D = ∂/∂x1 +

∑n
i=2 ai∂/∂xi, ai ∈ k[x1, . . . , xn]. In

this case — we say that D admits x1 as a linear coordinate —, one can describe quite well the
action of an element of Aut(D)0 on the coordinate x1 (see Lemma 5.8). If n = 4, we use this
description in order to give more insight on the algebraicity of Aut(D) (Theorem 5.10).

2. Preliminaries

In this section we recall some basic definitions and results on simple and locally nilpotent
derivations.

Let V be a k-vector space. A linear endomorphism φ : V → V is locally finite if for all
v ∈ V , there exists a finite dimensional φ-stable vector space W containing v. If moreover φ|W
is nilpotent (resp. semisimple) for all finite dimensional φ-stable vector space W , then φ is said
to be locally nilpotent (resp. locally semisimple). We say that φ is locally unipotent if φ− Id is
locally nilpotent.

If φ ∈ Aut
(
k[x1, . . . , xn]

)
, we denote by ⟨φ⟩ the group generated by φ; we say that φ is

algebraic if the closure ⟨φ⟩ ⊂ Aut(An) is an algebraic group — along this work, closures are
taken with respect to the inductive topology of the ind-variety structure. It is well known
that φ is algebraic if and only if the total degree of the positive powers of φ is bounded:
max

{
deg(φℓ

)
: ℓ ≥ 0

}
<∞ (see for example [FuKr2018, Lemma 9.1.4]).

Finally, it is easy to prove that φ is algebraic if and only if φ is locally finite (see [FuKr2018,
Lemma 9.1.4]); in particular, φ is an algebraic unipotent automorphism if and only if φ is locally
unipotent.

Definition 2.1. A locally nilpotent derivation is a derivation D that is locally nilpotent as a
linear endomorphism of k[x1, . . . , xn].
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Let D be a derivation of k[x1, . . . , xn]. An ideal I of k[x1, . . . , xn] is D-stable if D(I) ⊂ I. If
the only D-stable ideals are the trivial ones, we say that D is a simple derivation.

Remark 2.2. (1) It is clear that if D is a derivation of k[x1, . . . , xn], then D =
∑

i ai
∂
∂xi

, with

ai ∈ k[x1, . . . , xn].

(2) Let D =
∑n

i=1 ai
∂
∂xi

be a derivation of k[x1, . . . , xn]. Then the ideal ⟨a1, . . . , an⟩k[x1,...,xn] ⊂
k[x1, . . . , xn] is D-stable.

If D is a simple derivation then ⟨a1, . . . , an⟩ = k[x1, . . . , xn].
(3) If D =

∑n
i=1 ai

∂
∂xi

∈ Der
(
k[x1, . . . , xn]

)
and s is such that ai ∈ k[xs+1, . . . , xn] for i > s,

then the restriction D = D|
k[xs+1,...,xn]

: k[xs+1, . . . , xn] → k[xs+1, . . . , xn] is also a derivation. If

moreover D is simple, then D is also a simple derivation.

Definition 2.3. Let D ∈ Der
(
k[x1, . . . , xn]

)
. We say that f ∈ k[x1, . . . , xn] \ {0} is a Darboux

polynomial for D of eigenvalue λ ∈ k[x1, . . . , xn] if D(f) = λf . In the literature f is also called
an eigenvector of D.

Remark 2.4. (1) If f ∈ k[x1, . . . , xn] is a Darboux polynomial for D, then the ideal ⟨f⟩ ⊂
k[x1, . . . , xn] is D-stable.

(2) The kernel of a derivation D, denoted as ker(D), is the subspace of Darboux polynomials of
eigenvalue equal to 0.

(3) In particular, if D is a simple derivation, the only Darboux polynomials are the constant
polynomials, and therefore ker(D) = k.

Remark 2.5. Let ∆ ∈ Der
(
k[x1, . . . , xn]

)
be a locally nilpotent derivation and consider Ga ={

et∆ : t ∈ k
}
. Recall that the linear span ⟨∆⟩k ⊂ Der

(
k[x1, . . . , xn]

)
is naturally identified with

the Lie algebra of Ga and ker(∆) = k[x1, . . . , xn]Ga , the subalgebra of Ga-invariants.

Definition 2.6. If ∆ ∈ Der
(
k[x1, . . . , xn]

)
is a locally nilpotent derivation, we say that s ∈

k[x1, . . . , xn] is a slice for ∆ if ∆(s) = 1.

LetD ∈ Der
(
k[x1, . . . , xn]

)
be an arbitrary derivation. We say that s ∈ k[x1, . . . , xn] is a linear

coordinate for D if D(s) = 1 and there exist polynomials s2, . . . , sn such that k[s, s2, . . . , sn] =
k[x1, . . . , xn]:

D =
∂

∂s
+

n∑
i=2

ai
∂

∂si
, ai ∈ k[s, s2, . . . , sn].

3. Automorphisms of simple derivations: first results

As noted in the introduction, the main object of study of this work is the isotropy subgroup
of a simple derivation (see Definition 1.1).

3.1. On the ind-group structure of the isotropy group of a simple derivation.

Recall that Aut(An) is an ind-group, therefore, Aut(D) being an isotropy group, it is also an
ind-group. We begin this section by showing that if D is simple, then Aut(D)0 ⊂ Aut(D), the
unique connected component containing the identity, is an algebraic group.
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First, we recall the following result of Baltazar (see [B2016, Proposition 7]):

Proposition 3.1. Let D be a simple derivation of k[x1, . . . , xn]. Then every non trivial element
of Aut(D) admits no fixed point. □

As a consequence of Proposition 3.1 above and some general results about ind-groups, we
obtain the following description of Aut(D) as an ind-group.

Theorem 3.2. If D ∈ Der
(
k[x1, . . . , xn]

)
is simple, then Aut(D)0 is an affine algebraic group

of dimension at most n which acts freely on An, and there exists a family of automorphisms
(φi)i∈N, with φi ∈ Aut(D), such that φ0 = Id and

Aut(D) =
⋃
i∈N

φiAut(D)0. (1)

In particular Xn =
⋃n

i=0 φiAut(D)0, n ∈ N, is a filtration of Aut(D) by (affine) algebraic
varieties.

Proof. The first assertion follows from Proposition 3.1 above and [FuKr2018, Propositions 1.8.3
and 7.1.2]. By [FuKr2018, proposition 1.7.1 and 2.2.1] it follows that Aut(D) is a countable
disjoint union of connected algebraic varieties: Aut(D) =

⋃
i∈N Yi, such that Y0 = Aut(D)0,

where Aut(D)0 is a connected and normal algebraic subgroup of Aut(D).

If we choose φi ∈ Yi, i ̸= 0, then φiAut(D)0 = Yi, since left multiplication by φi is an
isomorphism of ind-varieties. It follows that Aut(D) =

⋃
i∈N φiAut(D)0, where φ0 = Id. □

Question 3.3. To our knowledge, there are no known examples of a simple derivation of
k[x1, . . . , xn] with non-connected automorphisms group.

Is it true that if D is a simple derivation, then Aut(D) is connected?

In view of Theorem 3.2, this would imply that any simple derivation has algebraic automor-
phisms group.

Theorem 3.4. Let D ∈ Der
(
k[x1, . . . , xn]

)
be a simple derivation and φ ∈ Aut(D). If φ is

algebraic, then φ is unipotent. In particular, if G ⊂ Aut(D) is an algebraic subgroup, then G is
a unipotent subgroup and therefore G is a closed connected subgroup of Aut(D)0.

Proof. If φ is algebraic, then there exists a Jordan decomposition φ = φsφu, with φs semi-
simple and φu unipotent and such that φs, φu ∈ ⟨φ⟩ ⊂ Aut(D). By a result of Furter and
Kraft ([FuKr2018, Proposition 15.9.3.]), φs acts in An with a fixed point, and it follows from
Proposition 3.1 that φs is trivial. Hence, φ = φu — that is, φ is unipotent.

If G ⊂ Aut(D) is algebraic, then we deduce that G is unipotent, so it is connected, proving
the second assertion. □

Remark 3.5. If D is a simple derivation and φ ∈ Aut(D) is a locally finite automorphism, then

applying Theorem 3.4 to G = ⟨φ⟩ ⊂ Aut(An) we deduce that φ ∈ Aut(D)0.

As a direct follow up of theorems 3.4 and 3.2, we have the following characterization of the
algebraicity of the automorphisms group of a simple derivation.

Corollary 3.6. If D ∈ Der
(
k[x1, . . . , xn]

)
is simple then the following are equivalent:
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(1) The ind-group Aut(D) is an algebraic group.

(2) The ind-group Aut(D) is connected.

(3) Every element φ ∈ Aut(D) is algebraic.

(4) Every element φ ∈ Aut(D) is a locally finite automorphism.

(5) Every element φ ∈ Aut(D) is a unipotent locally finite automorphism. □

3.2. Additive subgroups of Aut(D).

Definition 3.7. Let X be an affine algebraic variety and φ : Gs
a ×X → X be a regular action.

We say that φ is globally (equivariantly) trivial, if there exists an affine algebraic variety V and
an action ϕ : Gs

a × (As × V ), ϕ
(
a, (t, v)

)
= (t+ a, v) for all a ∈ Gs

a, t ∈ As, v ∈ V , together with
an equivariant isomorphism X ∼= As × V .

We say that φ is locally trivial if there exists a cover X =
⋃ℓ

i=1 Ui by affine open Gs
a-stable

subsets such that the restrictions φ|
Gs
a×Ui

: Gs
a × Ui → Ui are globally trivial actions.

Let Gs
a ↪→ Aut(An) be a closed immersion. We say that (the image of) Gs

a acts by translations
or that Ga is a group of translations if the induced action φ : Gs

a × An → An is globally trivial
where An ∼= As × An−s and Gs

a acts by translations in the first s coordinates.

A subgroup of automorphisms Gs
a ⊂ Aut

(
k[x1, . . . , xn]

)
is said to act in a locally trivial (resp.

globally trivial, resp. by translations) way if the induced action φ : Gs
a × An → An is so.

Remark 3.8. (1) Notice that Gs
a acts by translations on An if and only if Gs

a is conjugated to
a subgroup of the group of translations of An (as subgroups of Aut(An)).

(2) If ∆ ∈ Der
(
k[x1, . . . , xn]

)
is a locally nilpotent derivation then s ∈ k[x1, . . . , xn] is a slice

(see Definition 2.6) if and only if the canonical action of H =
{
et∆ : t ∈ k

} ∼= Ga over An is

globally trivial, where V ∼= Spec
(
ker(∆)

)
— this is the content of the slice theorem, see for

example [Fr2017, Corollary 1.26].

If moreover s is a linear coordinate for ∆, then the action of H is by translations

(3) Let φ : Gs
a × X → X be a globally trivial action, with X ∼= As × V . Then it is easy to

show that the projection p2 : X ∼= As × V → V is the geometric quotient. In particular,
k[V ] = k[X]G

s
a , the subalgebra of invariants of Gs

a.

In [Fr2017], the following characterization of the local triviality of a free action of Ga on An

is given.

Definition 3.9. Let ∆ : k[x1, . . . , xn] → k[x1, . . . , xn] be a locally nilpotent derivation with
kernel A. We call pl(∆) = A ∩ Im(∆) the plinth ideal of ∆.

Lemma 3.10. Let ∆ be a locally nilpotent derivation of k[x1, . . . , xn] and consider Ga =
{
et∆ :

t ∈ k
}
⊂ Aut(D) (see Remark 2.5). Then the restricted action of Ga is locally trivial if and only

if
〈
pl(∆)

〉
k[x1,...,xn]

= k[x1, . . . , xn].

Proof. See [Fr2017, p. 34]. □
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If ∆ is a locally nilpotent derivation that commutes with a simple derivation, the characteri-
zation of the local triviality of the action of the additive group {et∆ : t ∈ k} takes the following
form:

Proposition 3.11. Let D ∈ Der
(
k[x1, . . . , xn]

)
be a simple derivation and assume that there

exists a closed immersion Ga ↪→ Aut(D). Then the induced action of Ga on An is locally
trivial. In particular, the action is proper — that is, the orbit map φ : Ga × An → An × An,
φ(g, x) =

(
x, g(x)

)
is a proper morphism.

Proof. Let ∆ ∈ Der
(
k[x1, . . . , xn]

)
be such that e∆ is a generator of (the image of) Ga and write

A = ker(∆). Then et∆D = Det∆ for all t ∈ k, and therefore [D,∆] = 0. Hence, D(A) ⊂ A and
it follows that the plinth ideal pl(∆) ⊂ A is D-stable so

〈
pl(∆)

〉
k[x1,...,xn]

is also D-stable. We

conclude by Lemma 3.10 and the simplicity of D.

Finally, the properness of the action follows from [DeFiGe1994] (see also [Fr2017, Theorem
3.37]). □

We will use the previous characterization later in order to study the subgroup of translations
of the isotropy group of a simple derivation, see Lemma 5.9.

4. Automorphisms of simple derivations : dimension of Aut(D)0

We begin this section by dealing with the special case where D ∈ Der
(
k[x1, . . . , xn]

)
is simple

and Aut(D) contains a subgroup acting in a globally trivial way or by translations.

Proposition 4.1. Let D ∈ Der
(
k[x1, . . . , xn]

)
be a simple derivation and H ⊂ Aut(D) be a

(closed) s-dimensional subgroup, H ∼= Gs
a, acting in a globally trivial way. If B = k[x1, . . . , xn]H ,

then ImD ⊂ B. Moreover, the restriction D = D|B : B → B is a simple derivation,
and if {f1, . . . , fℓ} is a generating set of the k-algebra B, then

〈
D(f1), . . . , D(fℓ)

〉
B

= B and〈
D(f1), . . . , D(fℓ)

〉
k[x1,...,xn]

= k[x1, . . . , xn] unless B = k — that is s = n.

Proof. By the global triviality of the Gs
a-action, there exists a Gs

a-equivariant isomorphism
An ∼= As × Spec(B) and therefore k[x1, . . . , xn] = B[y1, . . . , ys], with y1, . . . , ys algebraically
independent over B. If p ∈ k[x1, . . . , xn] and ∆ ∈ Lie(H) ⊂ Der

(
k[x1, . . . , xn]

)
, then ∆

(
D(p)

)
=

D
(
∆(p)

)
= 0. We deduce that

D(p) ∈
⋂

∆∈Lie(H)

ker(∆) = k[x1, . . . , xn]H = B.

Finally, it is clear that the restriction D : B → B must be a simple derivation and, since
I =

〈
D(f1), . . . , D(fℓ)

〉
B

is a D-stable ideal, it is either 0 or B. But D(fi) = 0 implies that fi
is a constant so the result follows. □

Remark 4.2. We will show in Theorem 4.7 that, in the notations of Proposition 4.1, s =
dimH ≤ n− 2, so k[x1, . . . , xn]H ̸= k.

Corollary 4.3. Let D ∈ Der
(
k[x1, . . . , xn]

)
be a simple derivation and H ⊂ Aut(D) be a (closed)

s-dimensional subgroup of translations. Then there exist coordinates such that D =
∑

i ai
∂
∂xi

,
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with ai ∈ k[xs+1, . . . , xn]. Moreover,
〈
as+1, . . . , an

〉
k[xs+1,...,xn]

= k[xs+1, . . . , xn] and therefore〈
as+1, . . . , an

〉
k[x1,...,xn]

= k[x1, . . . , xn].

Proof. In this case, k[x1, . . . , xn]H is a polynomial ring and result follows directly from Propo-
sition 4.1. □

In [DEFM2011, theorem 2], the authors describe the structure of the action of an unipotent
group of dimension n− 1 on an affine variety of dimension n. We present here an adaptation to
our special case where X is an affine space:

Theorem 4.4. Let U be a unipotent group of dimension n− 1 acting freely on An. Then An is
U -isomorphic to U × k. □

Using Lie-Kolchin Theorem and the well known identification of Lie(U) as a sub-Lie algebra
of Der

(
k[x1, . . . , xn]

)
(see Remark 2.5), in [DEFM2011, proposition 1] the authors give the

following nice description:

Proposition 4.5. Let U be a unipotent group of dimension n acting on An such that there exists
x ∈ An with Ux = {Id}. Then, upon conjugation with an automorphism, there exists a basis
∆1, . . . ,∆n of the Lie algebra Lie(U) such that ∆i(xj) = δij for 1 ≤ i ≤ j ≤ n. □

Corollary 4.6. Let U be a unipotent group of dimension d = n − 1 or d = n which acts
freely on An. Then, upon conjugation with an automorphism, there exist U -invariant locally
nilpotent derivations {∆1, . . . ,∆d} ⊂ Der

(
k[x1, . . . , xn]

)
such that ∆i(xj) = δij for i = 1, . . . , d

and j = i, . . . , n.

Proof. If dimU = n, the result is a direct consequence of Proposition 4.5, and if dimU = n− 1,
then by Theorem 4.4, the affine space An is U -isomorphic to U ×k and we conclude by applying
again Proposition 4.5 on U acting on itself. □

Now we can state the main result of this section.

Theorem 4.7. Let D be a simple derivation of k[x1, . . . , xn], with n ≥ 2. Then dimAut(D)0 ≤
n− 2.

Proof. By Theorem 3.2, Aut(D)0 is an algebraic unipotent group of dimension at most n. Let
d = dimAut(D)0 and suppose that d = n or d = n − 1. It follows from Corollary 4.6 that,
upon a choice of coordinates, there exist derivations {∆1, . . . ,∆d} such that ∆i(xj) = δij for
i = 1, . . . , d and j = i, . . . , n and such that the subgroups {et∆i , t ∈ k} are contained in Aut(D)0.

Let D =
∑
ai

∂
∂xi

. By Corollary 4.3, since et∆1 is a translation for all t, we deduce that

aj ∈ k[x2, . . . , xn] for all j = 1, . . . , n.

Let D and ∆2 be the restrictions of D and ∆2 to k[x2, . . . , xn] respectively. Then for t ∈ k,
et∆2 is a translation along x2 that belongs to Aut(D). We conclude that aj ∈ k[x3, . . . , xn] for
j = 2, . . . , n.

By recurrence, we deduce that an−1 ∈ k[xn]; moreover an ∈ k if d = n or an ∈ k[xn] if
d = n− 1. In both cases, we can consider the restriction D̂ of D to k[xn−1, xn] which is simple

by Remark 2.2. Write D̂ = an−1
∂

∂xn−1
+ an

∂
∂xn

with an−1, an ∈ k[xn]; restricting to the last
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coordinate, we deduce that an ∈ k, and therefore D̂ is not simple (see Remark 4.9), which is a
contradiction. □

Our next goal is to provide examples that show the bound given by Theorem 4.7 is optimal
for all n ≥ 2, see Example 4.12 below. In order to do so, we will use the following criterion,
attributed to Shamsuddin.

Proposition 4.8. Let A be a k-algebra and consider a simple derivation δ ∈ Der(A). Let
Da,b ∈ Der

(
A[y]

)
the derivation obtained by extending δ by Da,b(y) = ay+ b with a, b ∈ A. Then

Da,b is simple if and only if

δh ̸= ah+ b for all h ∈ A.

Proof. See [No1994, Theorem 13.2.1]. □

Remark 4.9. (1) Notice that in particular there exist infinitely many simple derivations of the
form ∂

∂u + c(u, v) ∂
∂v , c ∈ k[u, v].

(2) If c ∈ k[u] and α ∈ k∗, then the derivation δ = α ∂
∂u + c′(u) ∂

∂v , is not simple, since δ(α−1c) =
c′(u).

Proposition 4.10. Let D ∈ Der
(
k[u, v, x1, . . . , xn]

)
be a simple derivation of the form D =

∂
∂u + c(u, v) ∂

∂v +
∑n

j=1 bj(u, v, x)
∂

∂xj
. Then φ|k[u,v] = Idk[u,v] for all φ ∈ Aut(D).

Proof. Let φ = (f1, f2, g1, . . . , gn) ∈ Aut(D). Since 1 = φD(u) = D
(
φ(u)

)
= D(f1) we have

that D(f1 − u) = 0 so f1 = u+ t for some t ∈ k.
We write f2 =

∑
r αrx

r, where r = (r1, . . . , rn) ∈ Zn
≥0 and xr = xr11 . . . xrnn and αr ∈ k[u, v].

Let d be the multidegree of f2 for the lexicographic order, with x1 ≥ · · · ≥ xn. First, we show

that d = 0; for this, assume that d ̸= 0 and write c(u, v) =
∑ℓ

k=0 ck(u)v
k. Then ℓ > 0 (see

Remark 4.9). Let us calculate in a explicit way the equality φ(D)(v) = Dφ(v):

φD(v) =
ℓ∑

k=0

ck(u+ t)fk2 = cℓ(u+ t)αℓ
rx

ℓd + strictly lower degree terms,

and, since cℓ(u+ t)αℓ
r ̸= 0, it follows that φD(v) is of multidegree ℓd. On the other hand,

D
(
φ(v)

)
= D(f2) =

∑
r

δ(αr)x
r +

∑
r

n∑
j=1

ijbj(u, v, x)αrx
r−ej

= δ(αd)x
d + strictly lower degree terms,

where {ej} is the canonical basis of the lattice Zn and δ ∈ Der
(
k[u, v]

)
is restriction of D to

k[u, v]. It follows that D
(
φ(v)

)
is at most of multidegree d.

From the equation φD(v) = Dφ(v) we deduce ℓ ≤ 1 and hence ℓ = 1. It follows that
c1(u + t)αd = δ(αd) and αd is a Darboux polynomial for δ, and therefore it is a constant. But
c1(u+ t) ̸= 0, so αd = 0 which is a contradiction.

Applying the same reasoning to φ−1 ∈ Aut(D) we deduce that (f1, f2) ∈ Aut(δ), and it
follows from Theorem 1.2 that (f1, f2) = φ|k[u,v] = Idk[u,v]. □
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Proposition 4.11. Let δ ∈ Der
(
k[u, v]

)
be a simple derivation and let I = {a1, . . . , an} ⊂ k[u, v]

be a linearly independent subset. If the linear span of I is such that ⟨I⟩k ∩ Im(δ) = {0}, then the
derivation DI ∈ Der

(
[u, v, x1, . . . , xn]

)
obtained by extending δ as DI(xj) = aj for j = 1, . . . , n

is simple.

Proof. We proceed by induction on n = #I; denote Dn = DI . If n = 0, then D0 = δ is simple
by hypothesis. Suppose now that DI is a simple derivation of k[u, v, x1, . . . , xn] for #I ≤ n,
and consider I = {a1, . . . , an+1} as in the hypothesis. Then DI restricts to a simple derivation
Dn ∈ Der

(
k[u, v, x1, . . . , xn]

)
by hypothesis.

By Shamsuddin’s criterion (see Proposition 4.8) Dn+1 is not simple if and only if there ex-
ists f ∈ k[u, v, x1, . . . , xn] such that Dn(f) = an+1 . If f ∈ k[u, v, x1, . . . , xn] is such that
Dn(f) = an+1, write f =

∑
r∈Zn

≥0
αrx

r, with αr ∈ k[u, v], and let d be the multidegree of

f ∈ k[u, v][x1, . . . , xn] for the lexicographic order. Then

an+1 = Dn(f) =
∑
r

δ(αr)x
r +

∑
r

αr

n∑
j=1

ijajx
r−ej

= δ(αd)x
d + strictly lower degree terms.

(2)

By considering the term of degree d in Equation (2), we deduce that δ(αd) = an+1 if d = 0 or
δ(αd) = 0 otherwise. In the first case, we deduce that an+1 belongs to ⟨I⟩k∩ Im(δ) and an+1 = 0
which is a contradiction.

If δ(αd) = 0, then αd ∈ k because δ is simple. Consider j0 = max{j : (d)j ̸= 0}, and let
d′ = d − ej0 . By definition of j0, for all j = 1, 2, . . . , n and for all multi-indexes r such that
0 ≤ r < d we have d′ ̸= r − ej . We deduce that the term of degree d′ in Equation (2) is

δ(αd′) + αdij0aj0

and this term is equal to an+1 if d′ = 0 or 0 otherwise. In both cases, we have a contradiction
with the hypothesis ⟨I⟩k ∩ Im(δ) = {0}. □

The following example exhibits a derivation δ ∈ Der
(
k[u, v]

)
such that δ admits linearly inde-

pendent subsets I as in the hypothesis of Proposition 4.11, with arbitrary cardinal. Moreover,
for the family of simple derivations that we produce the bound given in Theorem 4.7 is reached.

Example 4.12. Consider the derivation δ = ∂
∂u + (1 + uv) ∂

∂v ∈ Der
(
k[u, v]

)
— notice that δ it

is simple by Shamsuddin’s Criterion.

Let us show that Im(δ) ∩ k[v] = k. Assume that there exists f =
∑

i,j αi,ju
ivj ∈ k[u, v] such

that δ(f) ∈ k[v]. By a direct computation, we have that:

δ(f) =
∑
i,j

αi,j(iu
i−1vj + juivj−1 + jui+1vj).

Let (i0, j0) be the multidegree of f for lexicographic order with v ≥ u. If j0 ̸= 0, then δ(p)
is of multidegree (i0 + 1, j0), and we cannot have δ(p) ∈ k[v]. If j0 = 0 then f ∈ k[u] and
δ(f) ∈ k[v] implies δ(f) ∈ k and our assertion follows.

Notice in particular that there exist linearly independent subsets I as in the hypothesis of
Proposition 4.11, of arbitrary finite cardinal.
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Corollary 4.13. For every n ≥ 2, there exists a simple derivation D ∈ Der
(
k[x1, . . . , xn]

)
such

that dimAut(D)0 = n− 2.

Proof. The case n = 2 is the content of Theorem 1.2. If n > 2, consider δ as in Example
4.12 and let I = {b1, . . . , bn} ⊂ k[v] a linearly independent subset of cardinal n, such that
⟨I⟩k ∩ Im(δ) = {0}. Then the derivation DI = δ +

∑
i bi(v)

∂
∂xi

. is simple by Proposition 4.11.

Moreover, since DI commutes with ∂
∂x1

, . . . , ∂
∂xn

for n ≥ 1, it follows that Aut(DI)
0 contains the

subgroup Gn
a of translations on the x coordinates. Hence Aut(DI)

0 = Gs
a by Theorem 4.7, and

the result follows. □

5. Derivations invariant under the action of a group of translations

Let D be a simple derivation such that Aut(D) contains a non trivial subgroup of translations.
In this section we give some insight on how to exploit this fact in order to describe Aut(D).

5.1. Isotropy groups with non trivial subgroups of translations.

Lemma 5.1. Let H ⊂ Aut(An), H ∼= Gs
a, 1 ≤ s ≤ n−1, be a subgroup of automorphisms acting

in a globally trivial way, and consider an equivariant isomorphism An ∼= As×V as in Definition
3.7. Then the normalizer of H in Aut(An) has the form

NAut(An)(H) =
{
(x, v) 7→

(
Ax+ g1(v), g2(v)

)
: A ∈ GLs(k), g1 : V → As, g2 ∈ Aut(V )

}
.

Proof. We describe an automorphism f ∈ Aut(An) ∼= Aut(As × V ) as a pair of morphisms
(f1, f2), with f1 : As × V → As, f2 : As × V → V . Then H =

{
(ta, IdV ) : a ∈ ks

}
, and if f =

(f1, f2) ∈ NAut(An)(H), we have that σf : H → H, σf (ta, IdV ) = f(ta, IdV )f
−1 is a morphism of

algebraic groups. It follows that there exists Af ∈ GLs(k) such that σf (ta, IdV ) = (tAfa, IdV )
for all a ∈ ks — recall that char(k) = 0.

From the equality

f(ta, IdV ) = (tAfa, IdV )f : As × V → As × V

we deduce that

f1
(
x+ a, v) = f1

(
x, v

)
+Afa , f2(x+ a, v) = f2

(
x, v

)
for all a ∈ ks , v ∈ V.

Let f1(x, v) =
(
f11(x, v), . . . f1s(x, v)

)
and consider the maps f1j as polynomials in k[V ][x].

Then fij(x+ a, v) = fij(x, v) + (Afa)j and an easy calculation on the coefficients shows that

f1(x, v) = Afx+ g1(v) , g1 : V → ks

On the other hand, since f2 : As×V → V is a Gs
a-invariant morphism and that p2 : As×V → V

is the geometric quotient, it follows that there exists g2 : V → V such that f2(x, v) = g2 ◦
p2(x, v) = g2(v).

Finally, applying the same reasoning to the inverse f−1 ∈ NAut(An)(H), we deduce that
g2 ∈ Aut(V ). □
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Proposition 5.2. Let D be a simple derivation and H ⊂ Aut(D) a normal subgroup, H ∼= Gs
a,

s ≥ 1, that acts in a globally trivial way. Consider an equivariant isomorphism An ∼= As × V as
in Definition 3.7 and let D = D|k[V ]

: k[V ] → k[V ] (see Proposition 4.1). If we identify Aut(D)

as a subgroup of Aut(As × V ) and Aut(D) as a subgroup of Aut(V ), then

Aut(D) ⊂
{(
Ax+ g1(v), g2(v)

)
: A ∈ GLs(k) , g1 : V → As , g2 ∈ Aut(D)

}
.

Proof. By Lemma 5.1, follows that

Aut(D) ⊂
{(
Ax+ g1(v), g2(v)

)
: A ∈ GLs(k) , g1 : V → As , g2 ∈ Aut(V )

}
,

so it remains to prove that if f =
(
Ax + g1(v), g2(v)

)
∈ Aut(D), then g2 ∈ Aut(D) — that is,

after identification of Aut(An) with Aut
(
k[x1, . . . , xn]

)
, that Dg2(p) = g2D(p) for all p ∈ k[V ].

But by definition, we have that

Dg2(p) =D
(
p
(
g2(v)

))
= D

(
p
(
f2(x, v)

))
= D

(
p
(
f(x, v)

))
= Df(p)

g2D(p) =fD(p),

where we consider p ∈ k[V ] ⊂ k[V ][x], and the result follows. □

Remark 5.3. If X,Y are affine algebraic varieties, then Hom(X,Y ) inherits a structure of
ind-variety (see for example [FuKr2018, Lemma 3.1.4]). In the notations of Proposition 5.2, we
identify Aut(An) = Aut(As×V ) as a subset of Hom(As×V,As)×Hom(As×V, V ), and restrict the
projection over the second coordinate to Aut(D). Then p2

(
Aut(D)

)
identifies with a subgroup

of Aut(D), in such a way that the corresponding map φ : Aut(D) → Aut(D), is a morphism of
ind-groups. It follows that

Aut(D)0 ⊂
{(
Ax+ g1(v), g2(v)

)
: A ∈ GLs(k) , g1 = V → As , g2 ∈ Aut(D)0

}
.

Theorem 5.4. Let D be a simple derivation such that Aut(D) contains a non trivial normal
subgroup H ∼= As, s ≥ 1, such that H acts on a globally trivial way. Consider an equivariant
isomorphism An ∼= As × V as in Proposition 5.2 and let D = D|k[V ]

. Assume moreover that the

restriction D : k[V ] → k[V ] is such that Aut(D) is algebraic.

Then Aut(D) is algebraic; in particular, Aut(D) = Aut(D)0.

Proof. By Proposition 5.2, if f ∈ Aut(D) then f(x, v) =
(
Ax + g1(v), g2(v)

)
, with A ∈ GLs(k)

and g2 ∈ Aut(D). By induction on the number of compositions, we deduce that for ℓ ∈ N

f ℓ(x, v) =
(
Aℓx+

ℓ−1∑
i=0

Aℓ−ig1
(
gi2(v)

)
, gℓ2(v)

)
.

Consider the equivariant isomorphism ψ : An → As × V and the isomorphism of ind-groups
Aut(An) → Aut(As × V ) given by conjugation by ψ. Then ψ−1(IdAs , g2)ψ : An → An is an
algebraic automorphism, and it follows that, under identification by ψ, the family

{(
Aℓx +∑ℓ−1

i=0 A
ℓ−ig1(g

i
2(v)), g2(v)

)
: An → An : ℓ ≥ 0

}
has bounded degree, and therefore f is algebraic.

□

Corollary 5.5. Let D ∈ Der
(
k[x1, . . . , xn]

)
such that Aut(D)0 = Gn−2

a , n ≥ 2, and assume

moreover that Aut(D)0 acts by translations. Then Aut(D) = Aut(D)0.
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Proof. This is a direct application of Theorem 5.4, together with the fact that a simple derivation
of k[u, v] has trivial isotropy (Theorem 1.2). □

Example 5.6. Notice that in particular, Corollary 5.5 shows that the derivations DI exhibited
in Example 4.12 are such that Aut(DI) is algebraic (see also Corollary 4.12).

5.2. Simple derivations of k[x1, . . . , xn] in small dimension and their automorphisms.

In this section we study the automorphisms group of a simple derivation of k[x1, . . . , xn], with
n = 3, 4, the cases n = 1, 2 being well known:

(1) A derivation D ∈ Der
(
k[x]

)
is simple if and only if it is locally nilpotent, and in this case

Aut(D) = {etD : t ∈ k}.

(2) Any simple derivation of k[x, y] has trivial isotropy (see Theorem 1.2).

Simple derivations of k[x1, x2, x3].
Let D be a simple derivation of k[x1, x2, x3]. Our objective is to show that Aut(D) is either

isomorphic to Ga or possible a countable discrete group: More precisely, Aut(D)0 is unipotent
and of dimension 0 or 1 by Theorem 4.7; the following theorem shows that in this last case,
Aut(D) = Aut(D)0, its action being by translations.

Theorem 5.7. Let D ∈ Der
(
k[x1, x2, x3]

)
be a simple derivation such that dimAut(D)0 = 1.

Then Aut(D) = Aut(D)0. Moreover, there exist coordinates such that

Aut(D) =
{
(x1 + a, x2, x3) : a ∈ k}

D =
∑

ai(x2, x3)
∂

∂xi

(3)

Proof. If u ∈ Aut(D)0 is a non trivial automorphism, then by Proposition 3.1, u has no fixed
point but, by a result of Kaliman (see [Kal2004]), a non trivial unipotent automorphism u ∈
Aut(A3) without fixed point is conjugated to a translation. It follows from Proposition 5.2 that
there exist coordinates as in Equation (3) but for Aut(D)0. Hence, it remains to prove that
Aut(D) = Aut(D)0; this is the content of Corollary 5.5. □

A family of simple derivations of k[x1, x2, x3, x4].
Next, we consider the four dimensional affine space and describe the automorphisms group of

a simple derivation D ∈ Der
(
k[x1, x2, x3, x4]

)
that admits a linear coordinate.

Lemma 5.8. Let D ∈ Der
(
k[x1, . . . , xn]

)
be a simple derivation that admits a linear coordinate

s. Let ϕ ∈ Aut(D)0 and ∆ be a locally nilpotent derivation such that ϕ = e∆ (see Remark 2.5).
Then ∆(s) ∈ k. In particular, then either ϕ(s) = s or ϕ is a translation along the direction of s.

Proof. Since ϕ ∈ Aut(D), then [D,∆] = 0 and therefore D
(
∆(s)

)
= 0, so ∆(s) ∈ k.

If ∆(s) = 0, then ϕ(s) = s. On the other hand, if ∆(s) = c ̸= 0, then ∆(c−1s) = 1, i.e. c−1s
is a slice for ∆. Hence, k[x1, . . . , xn] = ker(∆)[c−1s]. Since c−1s is a coordinate we may, up to
conjugation, assume x1 = c−1s. Thus ker(∆) = k[x2, . . . , xn], i.e. ϕ is translation along the s
coordinate. □
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Now we specialize Lemma 5.8 to the case where n = 4. We begin by a useful result.

Lemma 5.9. Let D ∈ Der
(
k[x1, x2, x3, x4]

)
be a simple derivation that admits a linear coordi-

nate. Then every nontrivial element of Aut(D)0 is conjugate to a translation.

Proof. Let ϕ ∈ Aut(D)0 and let ∆ be a locally nilpotent derivation such that ϕ = e∆. By
Lemma 5.8, if suffices to prove that if s is a linear coordinate for D such that ∆(s) = 0, then ϕ
is a translation. By Proposition 3.11 we know that Ga = {et∆; t ∈ k} acts over A4 in a locally
trivial, and in particular a proper, way. Then, the result follows from [Kal2018, Thm. 01]. □

Theorem 5.10. Let D ∈ Der
(
k[x1, x2, x3, x4]

)
be a simple derivation that admits a linear

coordinate. If dimAut(D)0 > 0 then Aut(D)0 acts by translations. Moreover, if dimAut(D)0 =
2, then Aut(D) is algebraic.

Proof. Recall that, by Theorem 4.7, Aut(D)0 is a unipotent group of dimension 1 or 2. In the
case of dimension 1 the theorem is a direct consequence of Lemma 5.9.

Now, we suppose that dimAut(D)0 = 2. It is well know that in this case Aut(D)0 = U1×U2,
Ui

∼= Ga, — recall that char k = 0. Consider two generators u1, u2 of U1 and U2 respectively.
Again by Lemma 5.9 we may suppose that u1 is a translation with respect to x1; therefore, we de-
duce from Lemma 5.1 that u2 =

(
ax1+g1(x2, x3, x3), g2(x2, x3, x4), g3(x2, x3, x4), g4(x2, x3, x4)

)
;

moreover, since u1 and u2 commute, we deduce that a = 1. Then the geometric quotient
q1 : A4 → X1 := A4/⟨U1⟩ exists and is isomorphic to A3, and D induces a simple derivation
D ∈ Der

(
k[X1]

)
= Der

(
k[x2, x2, x4]

)
. As u1 and u2 commute, we deduce that U2 acts on X1,

in such a way that U2 ⊂ Aut(D). It follows from Theorem 5.7 that either the action of U2 over
X1 is trivial or given by translations.

If U2 acts trivially, it follows that u2 =
(
x1 + g1(x2, x3, x3), x2, x3, x4

)
. But if (p2, p3, p4) ∈

V(g1) ⊂ A3, it follows that (0, p2, p3, p4) is a fixed point of u2, and we obtain a contradiction.
Hence U2 acts by translations over X1. Changing coordinates in X1 = A3, we can assume that
u2 =

(
x1 +w(x2, x3, x4), x2 + 1, x3, x4). Let W ∈ k[x2, x3, x4] be such that ∂/∂x2(W ) = w, and

consider the coordinates (z, x2, x3, x4), where z = x1−W +x2. Then u1 = (z+1, x2, x3, x4) and
u2 = (z + 1, x2 + 1, x3, x4), and it follows that in these new coordinates, Aut(G)0 is included in
the group of translations.

In order to finish the proof, we apply Corollary 5.5. □

We finish by showing that the absence of linear coordinates is not an obstruction for a simple
derivation to have algebraic automorphisms group.

Example 5.11. In [Jor1984], the author shows that the derivations Dn ∈ Der
(
k[x1, . . . , xn]

)
given by

Dn = (1− x1x2)
∂

∂x1
+ x31

∂

∂x2
+

n∑
i=3

xi−1
∂

∂xi

are simple for all n ≥ 2. In [Ya2022], the author shows that if n ≥ 3, then Aut(Dn) ∼= Ga,
acting by translations in the last coordinate — recall that Aut(D2) = {Id}. We affirm that
Im(Dn) ∩ k = {0} — in particular, the family Dn, n ≥ 2, gives examples of simple derivations
without linear coordinates such that their automorphism group is algebraic.
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Indeed, Im(Dn) is the linear span of G = {Dn(x
d) : d ∈ Nn}.

Let (ei)1≤i≤n be the canonical basis of Zn, a direct computation shows that: Dn(x
e1) =

1−x1x2 is the only polynomial which contains monomials 1 and x1, x2 with non zero coefficient
in G and so 1 /∈ Im(Dn).
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