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Abstract
Architectured materials, whose discrete configuration provides unique combinations of enhanced struc-
tural properties at low weight, solved a variety of technical challenges in material science, architecture,
aerodynamics and mechanical engineering. This peculiar characteristic, together with a high degree of de-
sign freedom leading to the possibility to tailor their mechanical properties in each direction, makes them
very promising in a vast number of industries including aerospace, automotive, marine and constructions.
However, the use of architectured materials is conditional upon the development of appropriate consti-
tutive models for revealing the complex relations between the parameters of the microstructure and the
macroscopic behavior. Notwithstanding a great variety of analytical and numerical techniques have been
proposed and discussed in recent years, explicit formulas for the effective mechanical properties are de-
rived in a very small number of investigations. To provide a contribution in this limitedly explored research
area, this paper describes the mathematical formulation and modelling technique leading to closed-form
expressions for the effective stiffness of a three-dimensional lattice composed of identical hexatruss cells.
The derived analytical relations, verified by performing experimental tests on a 3D-printed lattice, are
then integrated into a parametric optimization problem for finding the optimal microstructure’s parameters
that meet a given set of stiffness requirements. This strategy offers a less computationally way to solve
optimization problems for architectured materials and, as a practical example, the specific case of the
Spacecraft-Launcher Damping Interface is considered. The developed theory, however, is general enough
to be easily applied to different types of structures in the aerospace industry.

1. Introduction

Architectured materials, defined as a composition of two or more materials and space,1 offer unique combinations of
mechanical properties, like stiffness, strength or toughness, at low weight, providing the coexistence of what used to
be antagonistic performances within a single homogeneous material.

Due to their peculiar configuration, arising from their discrete nature, architectured materials are very promising
for engineering applications in a variety of industries including aerospace, automotive, marine and constructions. For
example, the low density makes them ideal core materials in lightweight and high-performance sandwich panels used
in aerospace components and sporting equipments, while the low compressive strength and Also, high deformation
capacity provide excellent shock mitigation and energy absorption characteristics in impulsive phenomena.

However, the use of architectured materials is conditional upon the development of appropriate constitutive
models for revealing their effective properties. From this point of view, two sets of parameters affect their mechanical
behavior: the first characterises the constituent material, the second is related to the geometric and topological prop-
erties of the microstruture. In addition, the formulation of a continuum model is hindered by the crucial passage from
the microscopic discrete description to the coarse continuous one and, to overcome this problem, energy equivalence
concepts and micro-macro relations in terms of forces and displacements are usually applied. Also, linear elasticity



and material isotropy, in conjunction with the underlying microstructure assumed to be governed by the classical beam
theory,2 are three commonly used simplifications that provide explicit stress-strain relations and help clarifying the
basic mechanical aspects.

Many authors studied the mechanical modelling of architectured materials and a great variety of techniques have
been proposed and exhaustively discussed in recent years.3–6 However, the most known and widely used microme-
chanical model is due to the pioneering contribution of Gibson & Ashby,7, 8 focusing on the deformation mechanism
of a single cell subjected to different types of external loads. The authors, in particular, obtained first-order power-
law relations between the microstructure’s parameters and the macroscopic properties of a wide range of architectured
materials by assuming infinitesimal strains and applying the standard beam theory to model the lattice’ edges.

An alternative approach to solve the crucial passage from micro to macro and to derive the constitutive model
for two-dimensional microstructures subjected to in-plane deformations was adopted by Chen et al.9 and Kumar &
McDowell10 where, as in Gibson & Ashby,7, 8 the discrete lattice is idealised as a sequence of Euler-Bernoulli beams
while, in this case, the macroscopic description follows from an energy-based technique.

In the framework of homogenization theory, Gonella & Ruzzene11 interprets the discrete lattice according to the
finite difference formalism and the equivalent continuum derives from the application of Taylor’s series expansions of
the nodal displacements and rotations, motivated by the multi-scale nature of the considered problem.

Notions of crystals’ theory12 helped Hutchinson & Fleck,13 Elsayed & Pasini,14 Vigliotti & Pasini15 to estimate
the effective stiffness of different types of bi-dimensional lattice materials, represented as a pin-jointed infinite mi-
crotruss structure obtained by tessellating a unit cell into a periodic modular pattern. The suggested approach relies
on the Cauchy-Born assumption16 to express the lattice’s nodal displacements in terms of the macroscopic strain field
applied and to derive the homogenized properties.

Force- and energy equivalence-based techniques have also been applied to characterise the mechanical behavior
of three-dimensional lattice materials. Zhu et al.,17 for example, expressed the Young’s modulus, shear modulus and
Poisson’s ratio of the tetrakeidecahedral lattice as a function of the relative density, while the mechanical performance
of the octet-truss lattice is investigated in Deshpande et al.18 and Challapalli & Ju19 from a theoretical and numerical
point of view. Both the effective elastic properties and collapse surfaces for buckling and plastic yielding are derived
and verified by means of experimental observations. A more general analysis of three-dimensional periodic lattices is
proposed in Vigliotti & Pasini20 and Refai et al.,21 where the authors employed a finite element-based homogenization
method to determine the macroscopic elastic properties of open- and closed-cell lattices with different known topologies
of the unit cell, as BCC, FCC and octet.

In the last decade, due to the advent of additive manufacturing technologies, several attempts have been made
to further explore the potential advantages of architectured materials and special attention is given to the possibility to
achieve optimised structures of actual use, in terms of tailored combinations of stiffness and strength. For instance,
how to lower the value of the stiffness while increasing the strength, in order to obtain a lattice material that is easily
deformed but resistant to rupture Haghpanah et al.22 Also, as reported in Vigliotti & Pasini23 with reference to the
design of a cantilever bracket subjected to a point load, a proper selection of the microstructure’s parameters allows the
tunability of the macroscopic mechanical properties in different directions. Starting from the geometry and boundary
conditions of the examined component, the authors set up a multiobjective optimization problem (MOO) to determine
the optimal lattice material providing the maximisation of the bracket’s stiffness while reducing its mass. Four lattice
topologies have been considered, kagome, equilateral triangular and rectangular triangular, and, for each one, the opti-
mized parameters have been obtained by reformulating the original MOO problem into a sequence of single objective
optimization problems, solved with a discrete gradient-based method.24 As suggested by the name, gradient-based
optimization techniques use gradient informations to find the optimal solution and, despite being very popular in en-
gineering, have several drawbacks including the difficulty to be efficiently implemented and the fact that only a local
optimum can be identified.24, 25 A different way to solve optimization problems of lattice strutures, providing a better
chance to find the global optimum, consists in adopting non-gradient optimization techniques, such as the evolutionary
optimization algorithms.24, 26 These well established methods mimic the process of natural evolution by following the
four basic steps of reproduction, mutation, recombination and selection25 and, among them, the genetic algorithm27 has
found to be extremely robust, easy to implement and well suited for numerous structural engineering applications.24, 25

An abundance of literature exists in this field, as the work proposed by Vaissier et al.28 focusing on the development of
a genetic algorithm-based framework for the shape and topology optimization of a lattice structure used as a support
in additive manufacturing. Referring the interested reader to Burczynski & Osyczka29 for a more detailed discussion,
two final examples include the application of the genetic algorithm to perform the parametric optimization of chiral
lattices for flexible frames with various specifications and dimensions,30 and the shape optimization of regular lattice
structures, hexagonal, triangular and square, in order to obtain the maximum shear capacity.31

With reference to the applicability of architectured materials to design certain components of the Ariane Launcher,
this work presents a computational tool for the parametric optimization of a three-dimensional lattice composed of iden-
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tical hexatruss unit cells, subjected to a given set of stiffness requirements. The paper is organised in 6 sections, includ-
ing this introduction. Initially, by modelling the examined lattice as a sequence of three-dimensional Euler-Bernoulli
beams, an energy-based approach coupled with the Cauchy-Born assumption provide, in Section 2, closed-form ex-
pressions for the macroscopic stiffness. Such relations, verified by comparison with the outcome of the experimental
campaign described in Section 3, are then integrated in the parametric optimization problem described in Section 4.
Here, in particular, the optimal parameters of the microstructure are derived by optimizing a system of three analytical
equations, i.e., the effective stiffness in the three directions, and this strategy, based on the genetic algorithm, offers a
less computationally expensive way to solve optimization problems for architectured materials since a change in the
parameters does not require a re-generation of the lattice. Finally, Section 5 summarises the main findings.

2. The hexatruss lattice: theoretical modelling and homogenization of the discrete sys-
tem

2.1 Overview

This paper focuses on the three-dimensional auxetic microstructure presented by Dirrenberger et al.,32 generated by
tessellating a hexatruss unit cell (Fig. 1) through the space along three independent periodic vectors l1, l2, l3. In the
global reference system, defined by the unit orthonormal vectors e1, e2, e3 and by the coordinate system (X, Y, Z), the
components of the lattice vectors are

l1 =
[

L1 0 0
]T
, l2 =

[
0 L2 0

]T
, l3 =

[
0 0 L3

]T
, (1)

with L1, L2, L3 the overall dimensions of the cell (the lattice size).
The resulting system can be conceived as a collection of discrete elements connected at nodes locations peri-

odically arranged. In particular, two classes of nodes can be identified: the internal nodes and the boundary nodes.
The first connect elements of only a single cell while the second connect elements of confining cells. Also, due to the
periodicity of the lattice configuration, the boundary nodes are corresponding along the lattice vectors and, as outlined
in the following sections, such nodes will be subjected to the imposition of kinematic constraints in order to preserve
the periodicity of the deformed lattice.

Finally, from a mechanical point of view, the examined microstructure is treated as an interconnected network of
three-dimensional Euler-Bernoulli beams having circular cross-section of radius r and made of a linear elastic isotropic
material with Young’s modulus Es, Poisson’s ration νs and shear modulus Gs, as explained in the next section.

exp1 

e1

e2

e3

L3

L1

L2

Figure 1: The hexatruss unit cell

2.2 The three-dimensional Euler-Bernoulli beam element

Let us focus on the e-th Euler-Bernoulli beam element illustrated in Figure 2.
In the global reference (e1, e2, e3), the configuration of the considered element is known by specifying the

coordinates of its end nodes, I and J. However, to analyse the generic component it is more convenient using a local
reference system, specific to the considered beam and closely dependent to its geometry. Such reference is defined by
three orthonormal unit vectors ηe

1, ηe
2, ηe

3 (Fig. 2), and by the coordinate reference system (x, y, z).
It should be noted that, hereinafter, the local notation will be adopted and the extreme nodes of the beam will

be denoted by the indices i and j. Similarly, lowercase letters will be used to differentiate the local variables from the
global ones.
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Figure 2: The Euler-Bernoulli beam element in the local reference system: (a) degrees of freedom, (b) forces and
couples

Regarding the kinematics of the three-dimensional Euler-Bernoulli beam, each node has six degrees of freedom:
three translations, ue, ve and we, and three rotations, ϕx, ϕy and ϕz. Thus, the following 12x1 vector completely
describes the element nodal displacements:

de :=
[

de
i

de
j

]
=

[
ue

i ve
i we

i ϕe
xi ϕe

yi ϕe
zi ue

j ve
j we

j ϕe
x j ϕe

y j ϕe
z j

]T
. (2)

In terms of energetics, the elastic strain energy of the Euler-Bernoulli beam element takes the form

we :=
1
2

(de)T · kede, (3)

with ke the element stiffness matrix expressed in the local reference system.33

Finally, similarly to Equation (2), the forces and couples acting at the extreme nodes of the beam (Fig. 2b),

fe :=
[

fe
i

fe
j

]
=

[
f e
xi f e

yi f e
zi me

xi me
yi me

zi f e
x j f e

y j f e
z j me

x j me
y j me

z j

]T
, (4)

are derived from the classical relation
fe := ke de. (5)

2.3 The hexatruss unit cell: description and energetics

The typical approach to the continuum modelling of architectured materials includes the selection of a Representative
Volume Element (RVE) that, in investigating materials with a periodic microstructure as in the present paper, coincides
with the repetitive unit cell of the tessellation.34

In the examined case, in particular, the unit cell is composed by the eight boundary nodes 1, 2, 3, 4, 5, 6, 7, 8
linked to the internal ones 9, 10, 11, 12, 13, 14 by the line elements (Fig. 3)

1 − 9, 2 − 9, 6 − 9, 5 − 9 (Face Front)

4 − 10, 3 − 10, 7 − 10, 8 − 10 (Face Back)
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1 − 11, 2 − 11, 3 − 11, 4 − 11 (Face Bottom)

5 − 12, 6 − 12, 7 − 12, 8 − 12 (Face Top)

1 − 13, 4 − 13, 8 − 13, 5 − 13 (Face Left)

2 − 14, 3 − 14, 7 − 14, 6 − 14 (Face Right)

that, in the global reference system (e1, e2, e3), are described by the vectors

bA−B = pB − pA, (6)

being pA and pB, respectively, the position vectors of the extreme nodes of the element, A and B the index listed in
Table (1). For sake of clarity, it is worth noting that, in Equation (6), pA and pB are expressed in the global reference
system so that, to differentiate the global variables from the local ones (cf. Section 2.2), uppercase letters, i.e., indices
A and B, are used.

As anticipated in Section 2.1, the connecting elements are represented as three-dimensional Euler-Bernoulli
beams and this assumption, along with an energy-based approach, provide, in the following section, closed-form
expressions for the effective elastic moduli of the examined lattice.

Table 1: The indices A and B identifying the unit cell elements

B A
9 1, 2, 6, 5
10 4, 3, 7, 8
11 1, 2, 3, 4
12 5, 6, 7, 8
13 1, 4, 8, 5
14 2, 3, 7, 6

Finally, in terms of energetics, for any given deformation the elastic energy representative of the whole discrete
structure, W, can be evaluated from that of the beams composing the unit cell of the periodic array. Specifically, after
writing Equation (3) in the global reference system and summing the energetic contribution of each beam, it emerges

W =
1
2

DT ·KD, (7)

with

D :=


D1
D2
· · ·

D14

 =
[

U1 V1 W1 ΦX1 ΦY1 ΦZ1 · · · ΦZ14

]T
(8)

the global displacements vector, collecting the displacements and rotations of all nodes of the unit cell and K the global
stiffness matrix, assembled by adopting standard techniques of the finite element method.33

2.4 Continuum modelling: effective stiffness

The continuum form of W can be derived by adopting the Cauchy-Born relation,20, 23 providing a viable approach to
express the displacements of each node of the unit cell as a function of the macroscopic strain field applied,

E :=

 ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

 . (9)

Specifically, if we introduce the vector DR collecting the displacements of the generic R-th node within the cell and the
corresponding position vector pR, the Cauchy-Born relation, in its general form, can be expressed as

DR = D0 + E · (pR − p0) , (10)

with D0 and p0, in turn, the displacements vector and position vector of an appropriately selected unit cell’s independent
node. Also, by enforcing the equilibrium conditions on the nodal forces,20 it is possible to calculate the displacements
D0 in terms of E.
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Figure 3: The beams composing the hexatruss unit cell: (a) Face Front and Face Back, (a) Face Right and Face Left,
(c) Face Top and Face Bottom

Notwithstanding alternative choices of the independent node are possible, in the proposed study the boundary
node 4 has been selected as independent node, leading to

DR = D4 + E · (pR − p4) , R = 1, 2, ..., 14. (11)

This assumption, in conjunction with Equation (11), provide an easy way to impose kinematic conditions on the
boundary nodes of the cell that, as anticipated in Section 2.1, coincide with the application of periodic boundary
conditions in order to enforce the periodicity of the deformed configuration.

Substituting Equation (11) into (7) and dividing the expression that turns out from the calculation by the volume
of the unit cell, V = L1L2L3, give the strain energy density in the continuum approximation, w. It emerges that w is a
quadratic form of the infinitesimal strains εi j,

w = w
(
εi j

)
, i, j = 1, 2, 3, (12)

and, as in classical continuum mechanics, enables to derive the components of the macroscopic stiffness tensor of the
lattice,

Ei jhk =
∂2w

∂εi j ∂εhk
, i, j, h, k = 1, 2, 3. (13)

and the corresponding effective elastic constants. In terms of effective Young’s moduli, main focus of the present paper,
Equation (13) gives

E1 ≡ E1111 =
∂2w

∂ε11 ∂ε11
, E2 ≡ E2222 =

∂2w
∂ε22 ∂ε22

, E3 ≡ E3333 =
∂2w

∂ε33 ∂ε33
, (14)

with E1, E2, E3, on order, the effective Young’s moduli in the directions e1, e2 and e3.
As expected, the effective constants are strongly affected by the geometrical and mechanical properties of the

microstructure and, from this point of view, the advantage of the proposed theory is that an explicit relation between
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the microstructure’s parameters and the macroscopic properties can be obtained. Specifically, it emerges

E1 = E1 (L1, L2, L3, r, d1, d2, d3) ,
E2 = E2 (L1, L2, L3, r, d1, d2, d3) ,
E3 = E3 (L1, L2, L3, r, d1, d2, d3) .

(15)

To maintain the paper focused and not unnecessarily long, the complete expressions of E1, E2, E3 is reported in Ap-
pendix A.

3. Model validation: the experimental campaign

As seen in the previous section, the effective properties of the hexatruss lattice can be predicted by knowing the
constitutive laws and spacial distribution of its components.

Before addressing the optimization problem in order to find the optimal microstructure’s parameters satisfying
a given set of stiffness constraints (cf. Section 4), the proposed analytical results in Equation (15) are verified by
comparison with those obtained by performing the experimental tests described in the following.

3.1 Description of the samples

As illustrated in Figure (4), the experimental tests have been conducted on a 3D-printed 3×3×3 unit cell hexatruss
lattice and, to obtain an estimation of the effective stiffness in the directions e1, e2 and e3, coinciding with the three
principal directions of the unit cell, the configurations listed below have been investigated (Fig. (5)):

- Configuration C1: to consider the direction e1 and derive E1,
- Configuration C2: to consider the direction e2 and derive E2,
- Configuration C3: to consider the direction e3 and derive E3.

Aiming at obtaining a good quality of the printed samples, a unit cell with overall dimensions (L1 × L2 × L3) of
9.6 mm × 11.52 mm × 7.68 mm has been selected, leading to

- Configuration C1 (length × width × height): 34.56 mm × 23.04 mm × 28.8 mm,
- Configuration C2 (length × width × height): 28.8 mm × 23.04 mm × 34.56 mm.
- Configuration C3 (length × width × height): 28.8 mm × 34.56 mm × 23.04 mm,

while, in terms of radius of the beams, r, and position of the internal nodes, d1, d2, d3, the following values have been
adopted: r = 0.45 mm, d1 = 2.8 mm, d2 = 2.2 mm, d3 = 3.3 mm.

In addition, to account for possible errors associated with the 3D-printing process, three copies of each configu-
ration have been printed and tested.

Finally, regarding the constituent material, two different polymers have been used to print the samples: PLA
(Polylactic Acid) and PET (Polyethylene Terephthalate) having, on order, Young’s modulus of

EPLA = 1.3 GPa, EPET = 0.8 GPa, (16)

values obtained by conducting traction tests according to the ASTM standards.35

exp3 

Figure 4: Polymeric samples: compression tests

7



(a)

expC1 

L3L2

L1

(b)

expC2 

L3

L2

L1

(c)

expC3 

L3

L2 L1

Figure 5: The three different configurations of the samples involved in the mechanical tests: (a) configuration C1, (b)
configuration C2, (c) configuration C3

3.2 Methodology

3.2.1 Type of tests

In order to mechanically characterise the 3D-printed samples, compression tests have been considered and, to validate
the theoretical approach in Section 2, force-displacement and stress-strain curves have been analysed. Specifically, the
following type of test have been performed:

- uniaxial compression tests at room temperature,
- displacement-controlled tests at a displacement rate of 0.5 mm/min,
- only elastic deformations involved, εmax = 1 %,
- no interfaces between the sample and the test bench

and the testing machine Instron 5881 has been employed.

3.2.2 Objectives

The aim of the tests was to evaluate the effective stiffness of the hexatruss lattice in the three principal directions e1,
e2, e3, measured in terms of effective Young’s moduli denoted, respectively, by E1, E2 and E3. The latter, in particular,
have been derived by:

i) recording, during the test, both the displacement, ∆L, and resulting load, F, applied to the sample;
ii) generating, with the sample geometry, a stress-strain curve, being the engineering strain, ε, and the engineering

stress, σ, given by

ε :=
∆L
L0

and σ :=
F
A0
, (17)

with L0 and A0, in turn, the initial height of the sample and its initial cross-sectional area normal to the loading direction;
iii) finally, focusing on the slope of the linear portion of the stress-strain curve that coincides, in the elastic

regime, with the Young’s modulus E of the considered material. Namely,

E =
σ

ε
. (18)

3.3 Results and discussion

The outcome of the experimental campaign is presented in Tables 2 and 3, where the comparison between the experi-
mental results and the theoretical predictions in Equation (15) is also provided.

For sake of clarity, it should be noted that the analytical values reported in Tables 2 and 3 are obtained by
substituting in Equation (15) the quantities

r = 0.45 mm,
L1 = 9.6 mm, L2 = 11.52 mm, L3 = 7.68 mm,

d1 = 2.8 mm, d2 = 2.2 mm, d3 = 3.3 mm
(19)
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and
Es ≡ EPLA = 1.3 GPa, (Table 2),
Es ≡ EPET = 0.8 GPa, (Table 3), (20)

coinciding with the geometrical, the first, and mechanical, the second, parameters defining the unit cell adopted in the
experimental tests.

As it can be seen, it generally emerges a good agreement between the theoretical and experimental results and, as
expected, the theoretical values overestimate the experimental ones. From this point of view, the difference is mainly
related to the quality of the 3D-printed samples that, differently from the analytical model where the beams are assumed
to be perfectly homogeneous and without defects, in some cases present some imperfections, i.e., small parts missing,
not perfectly homogeneous or beams not perfectly connected at the nodes.

However, taking into account the very close comparison in Tables 2 and 3, it can be said that the experimental
tests validate the theoretical expressions in Equation (15) and can thus be employed to formulate the optimization
problem in the next section.

Table 2: PLA samples, Young’s moduli. Comparison between the theoretical and experimental results

Experiments Theoretical results
E1 (MPa) 2.72 3.09
E2 (MPa) 4.55 4.79
E3 (MPa) 1.32 1.34

Table 3: PET samples, Young’s moduli. Comparison between the theoretical and experimental results

Experiments Theoretical results
E1 (MPa) 1.81 1.90
E2 (MPa) 2.71 2.95
E3 (MPa) 0.90 0.92

4. Parametric optimization

4.1 Problem description

As anticipated in Section 1, in this paper the parametric optimization of the hexatruss lattice is performed with ref-
erence to the design of the Ariane Launcher and, in particular, the specific case of the Spacecraft-Launcher Damping
Interface (LALS) is considered. An extended set of requirements is expected for the LALS, in terms of geometry,
maximal density, stiffness, mechanical damping and load withstanding. Leaving the other aspects for future research
investigations, here, for simplicity, only the maximal density,

ρreq ≤ ρmax = 1.9 g/cm3 (21)

and stiffness,
Ereq

1 = 8 MPa ± 0.8 MPa,

Ereq
2 = 15 MPa ± 3 MPa,

Ereq
3 = 0.4 MPa ± 0.08 MPa

(22)

requirements are considered, being ρreq and Ereq
1 , Ereq

2 , Ereq
3 , respectively, the required values of the density and of the

effective Young’s moduli in the directions e1, e2, e3.
Our aim consists in finding the optimal parameters of the microstructure that meet the specifications listed in

Equations (21),(22) and, to do so, the following multiobjective optimization problem has been formulated:

Find P = {L1, L2, L3, r, d1, d2, d3}

9



To minimize f (P) :=


E1 (P) − Ereq

1

E2 (P) − Ereq
2

E3 (P) − Ereq
3

Subjected to



G1 ≡ r ∈ [rmin, rmax]

G2 ≡ L1, L2, L3 ∈ [Lmin, Lmax]

G3 ≡


d1 ∈

[
dmin

1 , dmax
1

]
d2 ∈

[
dmin

2 , dmax
2

]
d3 ∈

[
dmin

3 , dmax
3

]
with P the design variables, defined in Section 2, that have to be optimized, f (P) the objective function, expressed
in terms of the analytical relations derived in Equation (15), G1, G2 and G3 the constraints introduced to limit the
parameters’ value to a range of realistic significance. Specifically, G1 and G2 are related to manufacturing limits, rmin

and Lmin, and to the multiscale approach of the present paper, where the length of scale of the microstructure is assumed
to be much smaller than the length of scale of the component, rmax and Lmax. Finally, G3 assures the suitability of the
microstructure, where all the hexatruss cells must have all the nodes in the correct position.

In formulating the optimization problem, the maximal density requirement has been neglected, being easily
satisfied just by employing architectured materials (cf. Section 4.3).

4.2 Solution method

The parametric optimization problem previously described has been solved by using the genetic algorithm and, in par-
ticular, the in-built MATLAB function gamultiobj has been employed. Such function is based on the genetic algorithm
and allows the user to efficiently solve a multiobjective optimization problem with several optimization variables, as in
the present case.

Being a detailed description of the working principle of the genetic algorithm well beyond the scope of the
present paper, in Figure 6 only a schematic representation of the method is reported. As illustrated in Figure 6, the
genetic algorithm starts by creating an initial random population of potential solutions, P(t), whose individuals are then
ranked according to their fitness, i.e., their value of the objective function that, for a minimization problem, has to be
as smaller as possible. If the termination condition is not satisfied, for example, if the maximum number of iterations
is not reached, the three operators of reproduction, crossover and mutation are applied to P(t) in order to create a new
generation of individuals, P(t + 1). The reproduction operator, in particular, selects the ’most fit’ individuals of P(t) to
form a matching pool so that, similarly to the principles of natural evolution, the individuals with the best traits have a
higher probability to survive. The second operator, crossover, generates the individuals of P(t + 1) by randomly mixing
the best traits of the individuals in the matching pool while, for maintaining diversity in the population, the mutation
operator alters the traits of some individuals in P(t + 1) in order to create, hopefully, a better individual. Similarly to
P(t), the generation P(t + 1) is then ranked and the process described above is repeated until the termination condition
is met and the algorithm converges to the optimal solution of the problem.

4.3 Results and discussion

The results of our investigations are reported in Table 5, where titanium Ti64 with Young’s modulus Es = 97 GPa,
Poisson’s ratio νs = 0.3 and density ρs = 4.5 g/cm3 has been assumed as constituent material of the microstructure. 6
different cases have been considered by changing the size of the population or the bounds of the parameters’ value, as
summarised in Table 4 where, for conciseness, the limits `1 and `2 are given by:

`1 :=



3 mm ≤ L1, L2, L3 ≤ 20 mm
0.13 mm ≤ r ≤ 0.5 mm
0 < d1 < L3/2
0 < d2 < L2/2
0 < d3 < L1/2

`2 :=



3 mm ≤ L1, L2, L3 ≤ 15 mm
0.13 mm ≤ r ≤ 0.5 mm
0 < d1 < L3/2
0 < d2 < L2/2
0 < d3 < L1/2

(23)
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Figure 6: The genetic algorithm: working principle

As a general observation, it can be said that Table 5 suggests the possibility, for the hexatruss lattice, to satisfy
the three stiffness requirements expected for the LALS. This is a great advantage of the examined microstructure since
the values of the required stiffness in the three directions are very different from each other, making their simultaneous
satisfaction very challenging. Slightly different solutions emerge in the investigated cases. However, comparing the
values of L1, L2, L3 and of d1, d2, d3, reveals that, in each example, the following relations hold:

L2 ≈ 1.42 L1, L3 ≈ 0.46 L1, (24)

d2 ≈ 0.45 d1, d3 ≈ 1.4 d1. (25)

In a practical context, this finding, in conjunction with Equation (15), could assist the designer in the selection of the
microstructure’s parameters in order to reach a prescribed value of macroscopic stiffness. Finally, as anticipated in
Section 4.1, all the configurations listed in Table 5 have a density of ρ ≈ 0.1 g/cm3, value that is well beyond the
required limit in Equation (21).

Table 4: Parametric optimization of the hexatruss: considered cases

Case Limits Population’s size
1 `1 2000
2 `1 4000
3 `1 6000
4 `1 8000
5 `2 8000
6 `2 4000

5. Conclusions

Because of their discrete configuration, architectured materials offer unique combinations of improved mechanical
properties, like stiffness, strength or toughness, at low weight. This unusual characteristic, in conjunction with the
possibility to tailor their mechanical properties in each direction, makes them very promising in a vast number of
engineering fields including aerospace, automotive, marine and constructions. Differently from the traditional homo-
geneous materials, architectured materials require appropriate constitutive models for revealing the complex relations
between the microstructure’s parameters and the macroscopic properties. A great deal of effort has gone in this direc-
tion and, in the literature, a variety of techniques have been recently proposed and discussed. Different methods and
assumptions have been suggested, however, only in a very limited number of investigations, closed-form expressions
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Table 5: Parametric optimization of the hexatruss lattice: results

case 1 case 2 case 3 case 4 case 5 case 6
L1 (mm) 12.16 12.22 12.04 12.13 10.2 10.1
L2 (mm) 17.17 17.43 17.03 17.36 14 14.1
L3 (mm) 5.63 5.68 5.58 5.64 4.7 4.7
r (mm) 0.19 0.19 0.19 0.19 0.15 0.15
d1 (mm) 2.54 2.80 2.6 2.74 1.42 1.9
d2 (mm) 1.18 1.32 1.2 1.2 0.66 0.89
d3 (mm) 3.6 4.0 3.66 3.73 1.96 2.68

E1 (MPa) 8 8 8 8 8 8
E2 (MPa) 15 15 15 15 15 15
E3 (MPa) 0.4 0.4 0.4 0.4 0.4 0.4
ρ (g/cm3) 0.1 0.1 0.1 0.1 0.09 0.09

for the effective mechanical properties are provided. Such relations, if available, would facilitate the designer in the
selection of the material that best suits a given requirement.

To help filling this research gap, this paper deals with the analysis of a three-dimensional lattice made of iden-
tical hexatruss cells. In the framework of linear elasticity and by modelling the microstructure as a sequence of
three-dimensional Euler-Bernoulli beams, an energetic approach leads to explicit expressions for the effective elas-
tic properties. To obtain a more mathematically tractable problem, the Cauchy-Born assumption is used to represent
the nodal degrees of freedom as a function of the applied macroscopic strain components. This allows to write the
elastic energy of the discrete system as a quadratic function of them and, as in classical mechanics, enables to derive
the macroscopic stiffness tensor of the lattice and the corresponding elastic moduli. The predicted results are then
verified by comparison with the outcome of the experimental tests performed and it emerges a very good agreement.

With reference to the specific case of the Spacecraft-Launcher Damping Interface (LALS), a parametric opti-
mization of the hexatruss lattice is also reported. The aim is to obtain the optimal parameters of the microstructure
satisfying a given set of stiffness requirements expected for the LALS. To do so, a multiobjective optimization prob-
lem has been formulated by including the analytical equations previously derived and the genetic algorithm has been
selected to solve the problem. This approach, easily applied to different types of structures in the aerospace industry,
offers an efficient and less computationally expensive way to derive the optimal parameters since the re-generation and
corresponding analysis of the lattice is not required at each iteration.

Appendix A

E1 =
16A
√

p1 +
√

p2 +
√

p3

L2
2L2

3 p5/2
1 p5/2

2 p5/2
3

((
EAL2

1 p5 + 48EI
(
p6 + 4d2

2 p5/2
1

))
p5/2

3 + 64d6
3EAp5/2

1 p5/2
2 + 16d4

3EAp4 + 192d2
3EI p4

)
,

E2 =
16A
√

p1 +
√

p2 +
√

p3

L2
2L2

3 p5/2
1 p5/2

2 p5/2
3

(
4d2

3

(
48EI + EAL2

2

)
p5/2

1 p5/2
2 + 48EI p7 + EA ((p8 + p9)) ,

E3 =
16A
√

p1 +
√

p2 +
√

p3

L2
2L2

3 p5/2
1 p5/2

2 p5/2
3

(
192d2

3EI p5/2
1 p5/2

2 + EAp1 p2 p3 p10 + 48EI p11

)
,

(26)

where, to simplify the notation, EA := Esπr2, EI := Esπr4/4, Es the Young’s modulus of the lattice’s constituent
material and
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(27)
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