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Continuum modelling of orthotropic hexatruss
lattice materials: effective stiffness and
experimental validation

Federica Ongaro, Kévin Mathis, Frédéric Masson, and Justin Dirrenberger

Abstract Architected materials are designed with specific configurations that of-
fer enhanced properties, making them ideal for addressing various challenges in
materials science, architecture, aerodynamics, and mechanical engineering. Their
unique quality, coupled with the ability to tailor mechanical properties in every
direction, renders them highly suitable for industries like aerospace, automotive,
marine, and construction. However, the application of architected materials depends
on the development of accurate models to understand the complex relationship be-
tween microstructure characteristics and macroscopic behavior. Despite the proposal
and discussion of numerous analytical and numerical methods in recent years, very
few studies have derived explicit formulas for effective mechanical properties. This
paper contributes to this underexplored area by presenting a mathematical formula-
tion and modeling technique for the effective elastic moduli of a three-dimensional
orthotropic hexatruss lattice. The analytical relations we have established, validated
through comprehensive experimental tests on a 3D-printed lattice, demonstrate the
significant impact of lattice parameters on macroscopic properties. Practically, our
results could simplify the process of parametric optimization for architectured ma-
terials, offering a less resource-intensive approach to optimization since parameter
changes do not necessitate lattice regeneration.
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1 Introduction

1.1 Architectured materials: overview

Architectured materials, composed of two or more materials and/or spaces [Ashby,
2013], offer a unique blend of mechanical properties such as stiffness, strength, and
toughness at a lower density. This combination allows for previously conflicting
performances to coexist within a single homogeneous material.

Their distinctive configuration, resulting from their discrete nature, makes ar-
chitectured materials highly suitable for engineering applications across various
industries, including aerospace, automotive, marine, and construction. For instance,
the light weight of microtrusses or lattice structures is perfect for core materials in
lightweight, high-performance sandwich panels in aerospace components and sports
equipment. Additionally, their low compressive strength coupled with high defor-
mation capacity makes them excellent for shock mitigation and energy absorption in
impulsive events [D’Mello and Waas, 2013].

However, their application hinges on the development of suitable constitutive
models to uncover their effective properties. Two sets of parameters influence their
mechanical behavior: one relates to the material composition, and the other to the
geometric and topological characteristics of the microstructure. Transitioning from
a microscopic discrete description to a coarse continuous model is challenging. To
address this, concepts of energy equivalence and micro-to-macro force and displace-
ment relations are typically employed. Common simplifications like linear elasticity,
material isotropy, and the assumption that the microstructure behaves according to
classical beam theory are often used. These simplifications provide explicit stress-
strain relations and aid in understanding the fundamental mechanical aspects of these
materials.

1.2 State of the art

A significant number of researchers have explored the mechanical modeling of
architectured materials, leading to a diverse array of techniques that have been ex-
tensively discussed in recent literature. Key contributions, offering various methods
and assumptions, can be found in the review papers authored by Christensen [2000],
Kraynik et al. [1998], Warren and Kraynik [1997]. Additionally, the technical details
concerning the analysis of structural lattices and the formulation of their equivalent
constitutive equations have been comprehensively reviewed by [Ostoja-Starzewski,
2002]. This review also includes a comprehensive list of references for further read-
ing and study.

The most recognized and extensively utilized micromechanical model in the field
of architectured materials is attributed to the groundbreaking work of Gibson [1989],
Gibson and Ashby [1999]. Their research primarily concentrated on the deforma-
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tion mechanism of a single cell when subjected to various types of external loads.
Specifically, Gibson and colleagues derived first-order power-law relations that link
the parameters of the microstructure with the macroscopic properties of a broad spec-
trum of architectured materials. This was achieved by assuming infinitesimal strains
and employing standard beam theory to model the edges of the lattice structure.

Chen et al. [1998] and Kumar and McDowell [2004] proposed an alternative
methodology to address the critical transition from microscale to macroscale and
to formulate the constitutive model for two-dimensional microstructures undergoing
in-plane deformations. Similar to the approach by [Gibson, 1989, Gibson and Ashby,
1999], their method also idealizes the discrete lattice as a series of Euler-Bernoulli
beams. The macroscopic description in their approach is derived using an energy-
based technique.

In the context of homogenization theory, Gonella and Ruzzene [2008] adopted
a unique approach by interpreting the discrete lattice through the lens of finite
difference formalism. This method involves applying Taylor’s series expansions
to the nodal displacements and rotations. This technique is particularly motivated
by the multi-scale nature of the problem being addressed, allowing for a more
accurate representation of the behavior of the discrete lattice when transitioning to
an equivalent continuum model.

The application of crystal theory, as outlined by [Brillouin, 1953], was instru-
mental for researchers like [Hutchinson and Fleck, 2006, Elsayed and Pasini, 2010,
Vigliotti and Pasini, 2012b], in estimating the effective stiffness of various two-
dimensional lattice materials. These materials were modeled as pin-jointed, infinite
microtruss structures created by tessellating a unit cell into a periodic modular pat-
tern. The approach they employed is based on the Cauchy-Born assumption [Born
and Huang, 1954]. This assumption allows for the expression of the lattice’s nodal
displacements in terms of the macroscopic strain field applied. From this, the ho-
mogenized properties of the lattice material can be derived, effectively linking the
microscale structure to its macroscopic mechanical behavior.

The mechanical behavior of three-dimensional lattice materials has also been
studied using force- and energy equivalence-based techniques. Zhu et al. [1997], for
instance, formulated the Young’s modulus, shear modulus, and Poisson’s ratio of the
tetrakaidecahedral lattice in terms of its relative density. Furthermore, the mechan-
ical performance of the octet-truss lattice has been explored both theoretically and
numerically, as detailed in [Deshpande et al., 2001, Challapalli, 2020]. These studies
not only derived the effective elastic properties of the lattice but also established col-
lapse surfaces for buckling and plastic yielding. The validity of these findings was
further reinforced through experimental observations, ensuring a comprehensive
understanding of the lattice’s mechanical performance.

A broader examination of three-dimensional periodic lattices is presented in
[Vigliotti and Pasini, 2012a, Refai et al., 2020, Albertini et al., 2019, 2021]. These
authors utilized a finite element-based homogenization method to evaluate the macro-
scopic elastic properties of both open- and closed-cell lattices. Their studies focused
on various well-known topologies of the unit cell, such as Body-Centered Cubic
(BCC), Face-Centered Cubic (FCC), and octet structures. This approach allowed
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for a detailed and comprehensive understanding of how different lattice topologies
influence the overall elastic properties of the material.

1.3 Scope and outline of the present paper

Though the above-mentioned authors numerically and theoretically analysed the
mechanical behavior of architectured materials, up to date closed-form expressions
for the effective elastic moduli have been derived in a very limited number of cases.
To make a contribution to this incomplete research area and to provide some useful
tools for practical applications, this paper suggests a modelling technique to derive
explicit relations for the macroscopic elastic properties of orthotropic hexatruss
lattice materials which were initially introduced by Dirrenberger et al. [2013] for the
cubic case, although not yet studied in the literature for the orthotropic case. For the
sake of conciseness, we focused in this work on the stiffness in the three principal
directions, as we could measure them experimentally and were of interest for the
industrial application considered in this work.

The work is organised in 4 sections, including this introduction. Initially, by
modelling the examined lattice as a sequence of three-dimensional Euler-Bernoulli
beams, an energy-based approach coupled with the Cauchy-Born assumption pro-
vide, in Section 2, closed-form expressions for the macroscopic elastic moduli. The
outcome of the experimental campaign to verify the derived analytical equations is
described in Section 3. A very good agreement generally emerges. Finally, Section 4
summarises the main findings. This paper is an extension of the previously available
conference paper [Ongaro et al., 2019].

2 The hexatruss lattice: theoretical modelling and
homogenization of the discrete system

2.1 Problem statement

This paper focuses on the three-dimensional auxetic microstructure presented by
Dirrenberger et al. [2013], generated by tessellating a hexatruss unit cell (Figure
1) through the space along three independent periodic vectors, l1, l2 and l3. In the
global reference system, defined by the unit orthonormal vectors 𝒆1, 𝒆2, 𝒆3 and by
the coordinate system (X, Y, Z), the components of the lattice vectors are

l1 =
[
𝐿1 0 0

]𝑇
, l2 =

[
0 𝐿2 0

]𝑇
, l3 =

[
0 0 𝐿3

]𝑇
, (1)

with 𝐿1, 𝐿2, 𝐿3 the overall dimensions of the cell (the lattice size) in the directions
𝒆1, 𝒆2, 𝒆3, respectively.
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The resulting system can be conceived as a collection of discrete elements con-
nected at nodes locations periodically arranged. In particular, two classes of nodes
can be identified: the internal nodes and the boundary nodes. The first connect el-
ements of only a single cell while the second connect elements of confining cells.
Also, due to the periodicity of the lattice configuration, the boundary nodes are
corresponding along the lattice vectors and, as outlined in the following sections,
such nodes will be subjected to the imposition of appropriate constraints in order to
preserve the periodicity of the deformed lattice.

Finally, from a mechanical point of view, the examined microstructure is treated
as an interconnected network of three-dimensional Euler-Bernoulli beams having
circular cross-section of radius 𝑟 and made of a linear elastic, homogeneous and
isotropic material with Young modulus 𝐸𝑠 , Poisson ration 𝜈𝑠 and shear modulus 𝐺𝑠 .exp1 

e1

e2

e3

L3

L1

L2

Fig. 1 The hexatruss unit cell

2.2 Continuum modelling

2.2.1 Overview

At the macroscopic scale, the effective properties of a lattice material can be de-
rived from the geometric and mechanical parameters of the microstructure. However,
analysing large size volumes on a microstructural level to gain an accurate estima-
tion of the local fields is unsuitable and, in some cases, may involve considerable
efforts. Thus, the typical approach to the continuum modelling of architectured ma-
terials includes the selection of a Representative Volume Element (RVE) that is then
subjected to the imposition of appropriate boundary conditions to model different
loading situations.

By decomposing the displacement field on the material points of the RVE, 𝒙 ∈ 𝑉 ,
into the main part E · 𝒙 and the zero-mean fluctuation part 𝒖∗,
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𝒖 := E · 𝒙 + 𝒖∗, ∀𝒙 ∈ 𝑉, (2)

with

E :=

𝐸11 𝐸12 𝐸13
𝐸12 𝐸22 𝐸23
𝐸13 𝐸23 𝐸33

 (3)

the macroscopic strain tensor, periodic conditions enforce the periodicity of the
fluctuation field and the anti-periodicity of the traction field 𝒕 on the RVE’s boundary.
Namely,



𝒖∗
+ = 𝒖∗

− , ∀𝒙+ ∈ 𝜕𝑉+ and matching 𝒙− ∈ 𝜕𝑉− ,

𝚺 · 𝒏+ := 𝒕+ = 𝒕− =: 𝚺 · 𝒏− , ∀𝒙+ ∈ 𝜕𝑉+ and matching 𝒙− ∈ 𝜕𝑉− ,

𝜕𝑉+ ∪ 𝜕𝑉− = 𝜕𝑉,

𝜕𝑉+ ∩ 𝜕𝑉− = ∅,

(4)

where 𝒏+ and 𝒏− stand, respectively, for the unit normal to 𝜕𝑉+ and 𝜕𝑉− ,

𝚺 :=

Σ11 Σ12 Σ13
Σ12 Σ22 Σ23
Σ13 Σ23 Σ33

 (5)

the macroscopic stress tensor.
Periodic boundary conditions will be selected in Section 2.3.3 to investigate the

mechanical response of the examined microstructure, whose periodic configuration
allows us to identify the RVE with the repetitive unit cell of the tessellation [Nemat-
Nasser and Hori, 1993].

2.2.2 The hexatruss unit cell as RVE: geometric description and energetics

The hexatruss unit cell is composed by the eight boundary nodes 1, 2, 3, 4, 5, 6, 7,
8 linked to the internal ones 9, 10, 11, 12, 13, 14 by the line elements

1 − 9, 2 − 9, 6 − 9, 5 − 9 (Face Front)

4 − 10, 3 − 10, 7 − 10, 8 − 10 (Face Back)

1 − 11, 2 − 11, 3 − 11, 4 − 11 (Face Bottom)

5 − 12, 6 − 12, 7 − 12, 8 − 12 (Face Top)

1 − 13, 4 − 13, 8 − 13, 5 − 13 (Face Left)

2 − 14, 3 − 14, 7 − 14, 6 − 14 (Face Right)
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that, in the global reference system (𝒆1, 𝒆2, 𝒆3), are described by the vectors

b𝐴−𝐵 = p𝐵 − p𝐴, (6)

with p𝐴 and p𝐵, respectively, the position vectors of the extreme nodes of the
element, A and B the index listed in Table 1. For sake of clarity, it is worth noting
that, in Equation (6), p𝐴 and p𝐵 are expressed in the global reference system so that,
to differentiate the global variables from the local ones (cf. Section 2.2), uppercase
letters, i.e., indices A and B, are used. For the interested reader, the components of
the b𝐴−𝐵 vectors are listed in Appendix A.

As anticipated in Section 2.1, from a mechanical point of view, the connecting
elements are represented as three-dimensional Euler-Bernoulli beams and this as-
sumption, along with an energy-based approach, lead to closed-form expressions for
the effective elastic moduli of the examined lattice material.

Specifically, in terms of energy, for any given deformation the elastic energy
representative of the whole discrete structure, 𝑊 , can be evaluated from that of
the beams composing the unit cell of the periodic array. Namely, after writing the
equation for the elastic strain energy of the Euler-Bernoulli beam in the global
reference system and summing the energetic contribution of each beam, it emerges

𝑊 =
1
2

D𝑇 · KD, (7)

with

D :=


D1
D2
· · ·
D14

 =
[
𝑈1 𝑉1 𝑊1 Φ𝑋1 Φ𝑌1 Φ𝑍1 · · · Φ𝑍14

]𝑇 (8)

the global displacements vector, collecting the displacements and rotations of all
nodes of the unit cell and K the global stiffness matrix, assembled by adopting
standard techniques of the finite element method [Ferreira, 2009].

2.2.3 Elastic energy and effective moduli of the equivalent continuum

The continuum form of 𝑊 can be derived by adopting the Cauchy-Born relation
[Vigliotti and Pasini, 2012c,a], providing a viable approach to express the displace-
ments of each node of the unit cell as a function of the macroscopic strain field
applied, E.

Specifically, if we introduce the vector D𝑅 collecting the displacements of the
generic R-th node within the cell and the corresponding position vector p𝑅, the
Cauchy-Born relation, in its general form, can be expressed as

D𝑅 = D0 + E · (p𝑅 − p0) , (9)
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with D0 and p0, in turn, the displacements vector and position vector of an appro-
priately selected unit cell’s independent node. Also, by enforcing the equilibrium
conditions on the nodal forces [Vigliotti and Pasini, 2012b], it is possible to calculate
the displacements D0 in terms of E.

Notwithstanding alternative choices of the independent node are possible [Vigliotti
and Pasini, 2012a], in this work the boundary node 4 has been selected as independent
node, leading to

D𝑅 = D4 + E · (p𝑅 − p4) , 𝑅 = 1, 2, ..., 14. (10)

This assumption provides an easy way to impose kinematic conditions on the bound-
ary nodes of the cell,

D1 = D4 + E · l3, D2 = D4 + E · (l1 + l3) ,
D3 = D4 + E · l1, D5 = D4 + E · (l2 + l3) ,

D6 = D4 + E · (l1 + l2 + l3) ,
D7 = D4 + E · (l1 + l2) , D8 = D4 + E · l2,

(11)

that coincide, as anticipated in Section 2.2.1, with the application of periodic bound-
ary conditions in order to enforce the periodicity of the deformed configuration.

Substituting Equation (10) into (7) and dividing the expression that turns out from
the calculation by the volume of the unit cell, 𝑉 = 𝐿1𝐿2𝐿3, give the strain energy
density in the continuum approximation, 𝑤. It emerges that 𝑤 is a quadratic form of
the infinitesimal strains 𝐸𝑖 𝑗 ,

𝑤 = 𝑤
(
𝐸𝑖 𝑗

)
, 𝑖, 𝑗 = 1, 2, 3, (12)

and, as in classical continuum mechanics, evaluating the Hessian of the strain energy
density with respect to the deformation components enables to derive the entries

𝐶𝑖 𝑗𝑘𝑙 =
𝜕2𝑤

𝜕𝐸𝑖 𝑗 𝜕𝐸𝑘𝑙

, 𝑖, 𝑗 , 𝑘, 𝑙 = 1, 2, 3 (13)

of the fourth-order tensor of effective elastic moduli of the lattice, 𝑪, that relates the
macroscopic stress, Σ𝑖 𝑗 , and strain, 𝐸𝑖 𝑗 , components as follows:

Σ𝑖 𝑗 = 𝐶𝑖 𝑗𝑘𝑙𝐸𝑘𝑙 , 𝑖, 𝑗 , 𝑘, 𝑙 = 1, 2, 3. (14)

Using Voigt’s notation, the effective elastic moduli depending on the geometrical
and mechanical parameters of the microstructure can be derived:

𝐶𝑖 𝑗 = 𝐶𝑖 𝑗 (𝐸𝑠 , 𝜈𝑠 , 𝐿1, 𝐿2, 𝐿3, 𝑟, 𝑑1, 𝑑2, 𝑑3) , 𝑖, 𝑗 = 1, 2, ..., 6, (15)

with 𝐸𝑠 and 𝜈𝑠 the mechanical characteristics of the constituent material, 𝑟 the radius
of the beams’ cross-section, 𝐿𝑘 and 𝑑𝑘 , 𝑘 = 1, 2, 3.

The effective moduli to be considered correspond to the principal directions of
the cell 𝒆1, 𝒆2, 𝒆3:
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𝐶𝑋 := 𝐶 (𝒆1) , 𝐶𝑌 := 𝐶 (𝒆2) , 𝐶𝑍 := 𝐶 (𝒆3) , (16)

where, for sake of clarity, the subscripts 𝑋 ,𝑌 , 𝑍 have been used to denote the effective
principal stiffness, 𝐶( ·) , with reference to the axes 𝒆1, 𝒆2, 𝒆3.

It emerges that the microstructural parameters strongly affect the effective prop-
erties listed in Equation (16) and also in this case explicit relations, reported in
Appendix B, can be obtained:

𝐶𝑋 =
𝜕2𝑤

𝜕𝐸11 𝜕𝐸11
= 𝐶𝑋 (𝐸𝑠 , 𝜈𝑠 , 𝐿1, 𝐿2, 𝐿3, 𝑟, 𝑑1, 𝑑2, 𝑑3) ,

𝐶𝑌 =
𝜕2𝑤

𝜕𝐸22 𝜕𝐸22
= 𝐶𝑌 (𝐸𝑠 , 𝜈𝑠 , 𝐿1, 𝐿2, 𝐿3, 𝑟, 𝑑1, 𝑑2, 𝑑3) ,

𝐶𝑍 =
𝜕2𝑤

𝜕𝐸33 𝜕𝐸33
= 𝐶𝑍 (𝐸𝑠 , 𝜈𝑠 , 𝐿1, 𝐿2, 𝐿3, 𝑟, 𝑑1, 𝑑2, 𝑑3) .

(17)

From this point of view, the advantage of the proposed theory is that an explicit
relation between the microstructural parameters and the macroscopic moduli can
be obtained. In a practical context, this offers three advantages. Firstly, a full un-
derstanding of the interplay between the macroscopic properties and the underlying
microstructure, suggesting an alternative route to the time-consuming experimental
investigations for predicting the macroscopic stiffness. Secondly, an assistance for
the designer in the selection of the microstructural parameters, dimension of the unit
cell, radius of the beams’ cross-section, position of the internal nodes, in order to
reach a prescribed value of macroscopic stiffness. Finally, the possibility to formu-
late a more efficient and less computationally expensive optimization problem in
order to derive the microstructural parameters satisfying a given set of stiffness re-
quirements. In particular, the optimization problem that would be established would
coincide with the optimization of the analytical expressions in Equation (17) so that,
to evaluate the optimal parameters, the re-generation and corresponding analysis of
the lattice are not required at each iteration.

3 Validation of the theoretical results by experimental
confrontation

In this section, the analytical results proposed in Equation (17) are verified by
comparison with those obtained by performing experimental tests.

To further establish the validity of the proposed modelling approach, the theoret-
ical findings in Equation (17) are compared with the outcome of the experimental
tests presented in the following.

Also in this case, for simplicity, we will refer to 𝐸𝑋, 𝐸𝑌 and 𝐸𝑍 as the apparent
Young moduli of the lattice along the principal directions of the unit cell, 𝒆1, 𝒆2 and
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𝒆3, making the assumption that the effective elastic moduli in principal directions
defined in Section 2.2.3 are similar in value to the experimentally measured Young
moduli, therefore assuming a Poisson ratio close to zero, which is reasonable in the
principal direction for an hexatruss lattice Dirrenberger et al. [2013].

3.1 Description of the samples

The mechanical tests have been conducted on 3D-printed 3×3×3 unit cell hexatruss
lattices and, to obtain an estimation of the effective stiffness in the directions 𝒆1, 𝒆2
and 𝒆3, three configurations have been investigated (Figure 2):

- Configuration 𝐶1: to consider the direction 𝒆1 and derive 𝐸𝑋,
- Configuration 𝐶2: to consider the direction 𝒆2 and derive 𝐸𝑌 ,
- Configuration 𝐶3: to consider the direction 𝒆3 and derive 𝐸𝑍 .

Aiming at obtaining a good quality of the printed samples, a unit cell with overall
dimensions

𝐿1 = 9.6 mm, 𝐿2 = 11.52 mm, 𝐿3 = 7.68 mm (18)

has been selected, leading to
- Configuration𝐶1 (length × width × height): 34.56 mm × 23.04 mm × 28.8 mm,
- Configuration𝐶2 (length × width × height): 28.8 mm × 23.04 mm × 34.56 mm,
- Configuration𝐶3 (length × width × height): 28.8 mm × 34.56 mm × 23.04 mm.

In terms of radius of the beams’ cross-section, 𝑟 , and position of the internal nodes,
parameters 𝑑1, 𝑑2 and 𝑑3, the following values have been adopted:

𝑟 = 0.45 mm,

𝑑1 = 2.8 mm, 𝑑2 = 2.2 mm, 𝑑3 = 3.3 mm.
(19)

Regarding the constituent material, two different polymers have been used to print
the samples: PLA (Polylactic Acid) and PET (Polyethylene Terephthalate) having,
on order, Young modulus of

𝐸𝑃𝐿𝐴 = 1.3 GPa, 𝐸𝑃𝐸𝑇 = 0.8 GPa, (20)

values obtained by conducting traction tests according to the ASTM D638-14 stan-
dard [ASTM, 2014]. Also, as suggested in the literature [Seitz, 1993, Ferreira et al.,
2017], a Poisson ratio of

𝜈𝑃𝐿𝐴 = 0.33, 𝜈𝑃𝐸𝑇 = 0.43 GPa (21)

has been respectively assumed.
Finally, to account for possible errors associated with the 3D-printing process,

three copies of each configuration have been printed and tested.
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(a)

expC1 

L3L2

L1

(b)

expC2 

L3

L2

L1

(c)

expC3 

L3

L2 L1

Fig. 2 The three different configurations of the samples involved in the mechanical tests: (a)
configuration C1, (b) configuration C2, (c) configuration C3

3.2 Type of tests

To characterise the 3D-printed samples, the following mechanical tests have been
performed (Figure 3):

- uniaxial compression tests at room temperature,
- displacement-controlled tests at a displacement rate of 0.5 mm/min,
- only elastic deformations involved, 𝜀𝑚𝑎𝑥 = 1 %,
- no interfaces between the sample and the test bench,
- no constraints applied to movement (lateral displacements allowed)

and the testing machine Instron 5881 has been employed.

3.3 Methodology adopted

As anticipated in Section 3.2.1, the aim of the tests was to evaluate the effective
stiffness of the hexatruss lattice in the three principal directions of the unit cell,
𝒆1, 𝒆2 and 𝒆3, obtained by analysing the force-displacement and stress-strain curves
experimentally obtained.
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exp3 

Fig. 3 Experimental validation: compression tests

The force-displacement curves, in particular, have been derived by recording,
during the test, both the displacement, Δ𝐿𝐶𝑖 , 𝑖 = 1, 2, 3, and resulting load, 𝐹𝐶𝑖 ,
𝑖 = 1, 2, 3, applied to the sample. By knowing the sample geometry, it was then
possible to generate the stress-strain curves, being the engineering strain, 𝜀𝐶𝑖 , and
the engineering stress, 𝜎𝐶𝑖 , given by

𝜀𝐶𝑖 :=
Δ𝐿𝐶𝑖

𝐿𝐶𝑖

and 𝜎𝐶𝑖 :=
𝐹𝐶𝑖

𝐴𝐶𝑖

, 𝑖 = 1, 2, 3, (22)

with 𝐿𝐶𝑖 and 𝐴𝐶𝑖 , in turn, the initial height of the sample and its initial cross-sectional
area normal to the loading direction.

Finally, since we are working in a linear elastic regime, the slope of the stress-
strain curves provides the Young moduli 𝐸𝐶1, 𝐸𝐶2, 𝐸𝐶3 corresponding to the three
configurations tested 𝐶1, 𝐶2, 𝐶3:

𝐸𝐶1 :=
𝜎𝐶1
𝜀𝐶1

, 𝐸𝐶2 :=
𝜎𝐶2
𝜀𝐶2

, 𝐸𝐶3 :=
𝜎𝐶3
𝜀𝐶3

. (23)

As stated, for simplicity, they are assumed to coincide with the effective Young
moduli of the lattice along its principal directions 𝒆1, 𝒆2, 𝒆3:

𝐸𝐶1 ≡ 𝐸𝑋, 𝐸𝐶2 ≡ 𝐸𝑌 , 𝐸𝐶3 ≡ 𝐸𝑍 . (24)

3.4 Results and discussion

The outcome of the experimental campaign is gathered in Appendix C as Figures
4 and 5, in terms of force-displacement curves, and in Figures 6 and 7, in terms of
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stress-strain curves. The derived Young moduli are reported in Tables 1 and 2, where
the comparison between the experimental results and the theoretical predictions in
Equation (17) is also included.

It should be noted that the curves illustrated in Figures 4-7 and the experimental
values listed in Tables 1 and 2 represent, for each configuration, the average response
of the three samples tested (cf. Section 3.2.1). Also, in Tables 1 and 2, the analytical
values are obtained by substituting into Equation (17) the parameters listed in Equa-
tions (18), (19) and the material properties, that coincide with the geometrical and
mechanical characteristics of the unit cell adopted in the experimental tests.

As it can be seen, it generally emerges a good agreement between the theoretical
and experimental results and, as expected, the theoretical values overestimate the
experimental ones of averagely 2-3 %. From this point of view, the difference is
mainly related to the quality of the 3D-printed samples that, differently from the
analytical model where the beams are assumed to be perfectly homogeneous and
without defects, in some cases present some imperfections, i.e., small parts missing,
not perfectly homogeneous or beams not perfectly connected at the nodes.

However, taking into account the very close comparison in Tables 1 and 2, it can
be said that the experimental tests confirm the validity of our modelling strategy.
This can also be observed in Figures 6 and 7, where the experimental stress-strain
curves are compared with the theoretical ones. The latter, in particular, are obtained
from the analytical values of Table 1, Figure 6, and Table 2, Figure 7.

Table 1 PLA samples, Young’s moduli. Comparison between the theoretical and experimental
results

Experiments Theoretical results

𝐸𝑋 (MPa) 2.72 ± 0.34 3.09
𝐸𝑌 (MPa) 4.55 ± 0.25 4.79
𝐸𝑍 (MPa) 1.32 ± 0.11 1.34

Table 2 PET samples, Young’s moduli. Comparison between the theoretical and experimental
results

Experiments Theoretical results

𝐸𝑋 (MPa) 1.81 ± 0.10 1.90
𝐸𝑌 (MPa) 2.71 ± 0.17 2.95
𝐸𝑍 (MPa) 0.90 ± 0.04 0.92
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4 Conclusions

Architectured materials, due to their discrete configuration, present enhanced me-
chanical properties such as stiffness, strength, and toughness at a lower density. This
unique attribute, combined with the ability to customize their mechanical properties,
renders them highly promising for a wide range of engineering applications, in-
cluding aerospace, automotive, marine, and construction sectors. Unlike traditional
homogeneous materials, architectured materials necessitate specialized constitutive
models to elucidate the intricate relationship between microstructural parameters
and macroscopic properties. Although various techniques and methods have been
proposed in recent literature, only a few studies offer closed-form expressions for
the effective mechanical properties. These expressions are crucial for designers to
select materials that best meet specific requirements.

Addressing this research gap, this paper focuses on the analysis of a three-
dimensional orthotropic lattice composed of hexatruss cells. Using linear elasticity
and modeling the microstructure as a series of three-dimensional Euler-Bernoulli
beams, an energetic approach yields explicit expressions for effective stiffness. The
Cauchy-Born assumption simplifies the problem mathematically by representing the
nodal degrees of freedom in terms of the applied macroscopic strain components.
This transforms the elastic energy of the discrete system into a quadratic function
of these components, allowing for the derivation of the macroscopic stiffness ten-
sor and corresponding elastic moduli, akin to classical mechanics. The theoretical
predictions are validated through mechanical tests on 3D-printed lattices.

A notable advantage of the theoretical approach in this paper is its extensibility to
different types of periodic lattices, which can be achieved by tessellating various unit
cells or using different beam models, such as the Timoshenko beam. Moreover, the
analytical expressions derived can lead to a more efficient parametric optimization
problem for architectured materials. Unlike existing literature, this approach does
not necessitate the computationally intensive and time-consuming regeneration and
analysis of the lattice when parameters are altered.

Appendix A

In the global reference system (𝒆1, 𝒆2, 𝒆3), the components of the b𝐴−𝐵 vectors
introduced in Section 2.3 are
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b1−9 =


𝐿1/2
𝐿2/2
−𝑑1

 , b2−9 =


−𝐿1/2
𝐿2/2
−𝑑1

 , b6−9 =


−𝐿1/2
−𝐿2/2
−𝑑1

 , b5−9 =


𝐿1/2
−𝐿2/2
−𝑑1

 ,
b4−10 =


𝐿1/2
𝐿2/2
𝑑1

 , b3−10 =


−𝐿1/2
𝐿2/2
𝑑1

 , b7−10 =


−𝐿1/2
−𝐿2/2
𝑑1

 , b8−10 =


𝐿1/2
−𝐿2/2
𝑑1

 ,
b1−11 =


𝐿1/2
𝑑2

−𝐿3/2

 , b2−11 =


−𝐿1/2
𝑑2

−𝐿3/2

 , b3−11 =


−𝐿1/2
𝑑2

𝐿3/2

 , b4−11 =


𝐿1/2
𝑑2

𝐿3/2

 ,
b5−12 =


𝐿1/2
−𝑑2

−𝐿3/2

 , b6−12 =


−𝐿1/2
−𝑑2

−𝐿3/2

 , b7−12 =


−𝐿1/2
−𝑑2
𝐿3/2

 , b8−12 =


𝐿1/2
−𝑑2
𝐿3/2

 ,
b1−13 =


𝑑3

𝐿2/2
−𝐿3/2

 , b4−13 =


𝑑3

𝐿2/2
𝐿3/2

 , b8−13 =


𝑑3

−𝐿2/2
𝐿3/2

 , b5−13 =


𝑑3

−𝐿2/2
−𝐿3/2

 ,
b2−14 =


−𝑑3
𝐿2/2
−𝐿3/2

 , b3−14 =


−𝑑3
𝐿2/2
𝐿3/2

 , b7−14 =


−𝑑3

−𝐿2/2
𝐿3/2

 , b6−14 =


−𝑑3

−𝐿2/2
−𝐿3/2

 ,
(25)

with 𝐿1, 𝐿2, 𝐿3, in turn, the dimensions of the unit cell in the directions 𝒆1, 𝒆2, 𝒆3
and 𝑑1, 𝑑2, 𝑑3 the parameters specifying the position of the internal nodes.

Appendix B

The complete expressions of the effective elastic moduli in the directions 𝒆1, 𝒆2 and
𝒆3 have been derived using Matlab, and are respectively,

𝐶𝑋 = 𝑝12

((
𝐴𝐿2

1 𝑝5 + 48𝐼
(
𝑝6 + 4𝑑2

2 𝑝
5/2
1

))
𝑝

5/2
3 + 64 𝑑6

3𝐴 (𝑝1𝑝2)5/2 + 𝑑4
3 𝑝4 (16𝐴 + 192𝐼)

)
𝐸𝑠 ,

𝐶𝑌 = 𝑝12

(
4𝑑2

3
(
48𝐼 + 𝐴𝐿2

2
)
(𝑝1𝑝2)5/2 + 48𝐼 𝑝7 + 𝐴 (𝑝8 + 𝑝9)

)
𝐸𝑠 ,

𝐶𝑍 = 𝑝12

(
192𝑑2

3 𝐼 (𝑝1𝑝2)5/2 + 𝐴 𝑝1 𝑝2 𝑝3 𝑝10 + 48𝐼 𝑝11

)
𝐸𝑠 ,

(26)

where, to simplify the notation, 𝐴 := 𝜋𝑟2, 𝐼 := 𝜋𝑟4/4, 𝐸𝑠 the Young’s modulus of
the lattice’s constituent material and
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𝑝1 = 4𝑑2
1 + 𝐿2

1 + 𝐿2
2, 𝑝2 = 4𝑑2

2 + 𝐿2
1 + 𝐿2

3, 𝑝3 = 4𝑑2
3 + 𝐿2

2 + 𝐿2
3,

𝑝4 = 𝑝
5/2
1 𝑝

5/2
2

(
𝐿2

2 + 𝐿2
3
)
, 𝑝5 = 𝑝

5/2
2

(
4𝑑2

1 + 𝐿2
2
)
+ 𝐿2

1

(
𝑝

5/2
1 + 𝑝

5/2
2

)
+ 𝑝

5/2
1

(
𝐿2

3 + 4𝑑2
2
)
,

𝑝6 =

(
𝑝

5/2
2

(
4𝑑2

1 + 𝐿2
2
)
+ 𝐿2

3𝑝
5/2
1

)
,

𝑝7 =

(
4𝑑2

2𝐿
2
1𝑝

5/2
1 +

(
4𝑑2

1 + 𝐿2
1
)
𝑝

5/2
2

)
𝑝

5/2
3 + 𝐿2

3𝑝
5/2
1

(
𝑝

5/2
2 + 4𝑑2

2 𝑝
5/2
3

)
,

𝑝8 = 16𝑑4
2
(
4𝑑2

2 + 𝐿2
1 + 𝐿2

3
)
𝑝

5/2
1 𝑝

5/2
3 + 𝐿4

2𝑝
5/2
2

(
𝑝

5/2
1 + 𝑝

5/2
3

)
,

𝑝9 = 𝐿2
2𝑝

5/2
2

(
𝐿2

3𝑝
5/2
1 +

(
4𝑑2

1 + 𝐿2
1
)
𝑝

5/2
3

)
, 𝑝10 = 16𝑑4

1 𝑝
3/2
2 𝑝

3/2
3 + 𝐿2

3𝑝
3/2
1

(
𝑝

3/2
2 + 𝑝

3/2
3

)
,

𝑝11 =

(
4𝑑2

2 𝑝
5/2
1 + 𝐿2

1

(
𝑝

5/2
1 + 4𝑑2

1 𝑝
5/2
2

))
𝑝

5/2
3 + 𝐿2

2𝑝
5/2
2

(
𝑝

5/2
1 + 4𝑑2

1 𝑝
5/2
3

)
,

𝑝12 =
16𝐴√𝑝1 +

√
𝑝2 +

√
𝑝3

(𝐿2𝐿3)2 (𝑝1𝑝2𝑝3)5/2 .

(27)
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Fig. 4 PLA samples, compression tests: experimental force-displacement curves for (a) configura-
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