
HAL Id: hal-04840930
https://cnrs.hal.science/hal-04840930v1

Submitted on 16 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Melodic contour supersedes short-term statistical
learning in expressive accentuation

Haiqin Zhang, Emmanuel Chemla, Claire Pelofi, Laurent Bonnasse-Gahot

To cite this version:
Haiqin Zhang, Emmanuel Chemla, Claire Pelofi, Laurent Bonnasse-Gahot. Melodic contour supersedes
short-term statistical learning in expressive accentuation. PLoS ONE, 2024, 19 (11), pp.e0312883.
�10.1371/journal.pone.0312883�. �hal-04840930�

https://cnrs.hal.science/hal-04840930v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Melodic contour supersedes short-term

statistical learning in expressive accentuation

Haiqin ZhangID
1,2*, Emmanuel Chemla2,3, Claire Pelofi4‡, Laurent Bonnasse-Gahot1‡
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Abstract

Sensory systems are permanently bombarded with complex stimuli. Cognitive processing

of such complex stimuli may be facilitated by accentuation of important elements. In the

case of music listening, alteration of some surface features –such as volume and duration–

may facilitate the cognitive processing of otherwise high-level information, such as melody

and harmony. Hence, musical accents are often aligned with intrinsically salient elements in

the stimuli, such as highly unexpected notes. We developed a novel listening paradigm

based on an artificial Markov-chain melodic grammar to probe the hypothesis that listeners

prefer structurally salient events to be consistent with salient surface properties such as

musical accents. We manipulated two types of structural saliency: one driven by Gestalt

principles (a note at the peak of a melodic contour) and one driven by statistical learning

(a note with high surprisal, or information content [IC], as defined by the artificial melodic

grammar). Results suggest that for all listeners, the aesthetic preferences in terms of sur-

face properties are well predicted by Gestalt principles of melodic shape. In contrast, despite

demonstrating good knowledge of novel statistical properties of the melodies, participants

did not demonstrate a preference for accentuation of high-IC notes. This work is a first step

in elucidating the interplay between intrinsic, Gestalt-like and acquired, statistical properties

of melodies in the development of expressive musical properties, with a focus on the appre-

ciation of dynamic accents (i.e. a transient increase in volume). Our results shed light on the

implementation of domain-general and domain-specific principles of information processing

during music listening.

Introduction

Music listening is an inherently active process by which listeners tend to continuously form

musical expectations, which are informed by their long-term exposure throughout the lifetime

(i.e., musical culture) and the short-term context of a musical stimulus [1]. In recent years,
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various models have been used to explain, to a great extent, the mechanisms by which listeners

use musical expectations predict the next notes in a melody [2–4], and how these melodic fea-

tures influence aesthetic preferences. Some of this research has focused on stimuli generated

from symbolic representations (e.g., MIDI files), which allows surface properties to be

extracted from the written score (e.g. note length, dynamic markings) [5]. Other works have

studied the use of expressive, performed accents: accents that are not explicitly specified in the

notated score, but are interpretation decisions made by the performer. The performer might

choose to emphasise a particular note such by playing it at a louder volume (dynamic accent),

or slightly changing the timing or articulation (temporal accent) [5, 6].

Arguably, this expressive accenting is tightly linked to melodic expectations, allowing

important elements to be highlighted and thereby segmenting music into digestible fragments

for cognitive processing [7]. Previous work has shown that performed accents are aligned with

various types of immanent accents –i.e. salient events revealed by analysis of the musical struc-

ture, that naturally enhance particular notes in a given context– and are sometimes explicitly

marked on the music score. For example, temporal and dynamic accents are aligned with

rhythmic groupings [7], and statistically surprising chords are played at a higher volume and

for a longer duration across a large cross-section of the Western classical music corpus [5].

Immanent accents originate from two distinct types of processes: statistical regularities –

which result from an arbitrary and culture-specific sets of rules that are internalised by listen-

ers through long-term passive exposure– and Gestalt principles –which govern structural

properties of auditory sequences at large. Statistical regularities are culture-specific and learnt

through exposure. Musical systems vary around the world, employing different sets of pitches,

harmonies, and transitional probabilities between them [2]. Therefore, listeners exposed to a

particular musical culture acquire, through statistical learning, an internal grammar that

reflects these structural regularities. In contrast, Gestalt principles constitute a simple and

somewhat limited set of rules. For example, the principle of proximity posits that melodies are

more coherent when intervals between pitches are small. An immanent accent results from a

large leap which makes a note less coherent, and thus more salient [8]. Previous work hypothe-

sises that Gestalt principles find roots in the biological design of auditory perception systems

[9] and are therefore expected to be culture-independent.

Evidence demonstrates that both Gestalt principles and statistical learning based on long-

term exposure to Western music influence pitch predictions in a musical cloze task, where par-

ticipants sing the note that they expect to come next given the beginning of a melody [4]. How-

ever, Gestalt-compatible melodies are also more statistically likely in ecological music

examples, making it difficult to quantify the relative contributions of Gestalt and statistical reg-

ularities to the placement of expressive accents. Here, we sought to investigate whether Gestalt

and short-term statistical learning play equal roles in performed musical expression, and how

they interact with listener preferences for performed accents. To do so, we designed a con-

trolled musical system where Gestalt accents and IC accents do not coincide, and probed

whether listeners prefer stimuli with the Gestalt-compatible dynamic accents, or statistically-

motivated dynamic accents.

The role of statistical learning

Shannon’s principles of efficient communication [10] have profoundly influenced the study of

human communication signals such as language and music. The implementation of efficient

communication principles are well-documented in language and music utterances, in particu-

lar with regard to information content (IC). IC, also referred to as surprisal, is a measure of
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how unexpected an element is given a previous context. IC is formally defined as:

IC ¼ � log
2
pðxjcÞ; ð1Þ

where p is the probability, x refers to the outcome, and c refers to the preceding context. Events

that are less expected in a given context have higher IC values, and are considered more infor-

mative in communication. Efficient communication principles posit that more surprising sti-

muli have a greater amount of resources allocated to it; this principle has been supported by

empirical work showing that surprising words tend to be longer [11].

Computational models show that musical scores exhibit a wide range of IC values for musi-

cal events such as harmonic [12, 13] and pitch transitions [14]. Analyses of corpora of Western

Classical music show that composers tend to assign high-IC chords to longer rhythmic values

[5, 15]. In music, the Uniform Information Density theory posits that temporal emphasis on

high-IC elements ensures that information is presented at a uniform rate throughout a stimu-

lus, averting moments that are either uninteresting (IC too low) or overwhelming (IC too

high) [15]. Uniform Information Density was first developed in the context of language [16].

Previous research in language demonstrates a three-way relationship between information,

length, and frequency: utterances with high information are longer in duration [17], longer

words tend to be less frequent [18], and less frequent words are by definition surprising. The

smooth signal redundancy hypothesis [19] gives an evolutionary reason for this relationship,

positing that an inverse relationship between redundancy and duration of syllables allows

articulatory efforts to be more energy-efficient.

Performances by skilled musicians further increase the emphasis on surprising elements

using performed accents [5]. This can take the form of slowing of tempo on chromatic chords

(i.e., chords that deviate from the current key that are highly unexpected) [20], during less pre-

dictable melodic structures [21], and at departures from harmonic resolutions, when the

predictability goes from high to low [22]. The increased dwell time on uncertain moments also

extends to passive listeners [23].

However, much of the previous work on information-theoretic principles of accentuation

have focused on temporal accents. Here, we investigate another dimension of performed

accents: the dynamic accent consisting of a note played at a higher volume than its neighbours.

Dynamic accents have been shown to be correlated with highly surprising moments in West-

ern music [5] and may facilitate rhythm perception [7, 24]. Yet no studies have directly exam-

ined the relationship between the statistical properties of a novel grammar and the aesthetic

appreciation of accentuation, independent of rhythm.

The role of Gestalt principles

Gestalt principles refer to a small set of simple, intuitive rules that govern some aspects of

melodic structures and hence predict melodic expectations and aesthetic preferences. It is

thought that some Gestalt preferences have roots in biological auditory processing: the prefer-

ence for Gestalt-compatible melodies with successive notes that are close in pitch (i.e. conjunct
melodies) may be related to source separation in auditory scene analysis [25]. Conjunct melo-

dies are also easier to parse into a cohesive stream and facilitate perceptual separation of differ-

ent voices in a polyphony [26]. Furthermore, prominent melodic features such as peaks and

valleys are thought to serve as cognitive landmarks, helping listeners recognise melodies more

easily [27]. Arch-shaped or u-shaped melodic structures, which give rise to these peaks and

valleys, are prevalent in Western melodies [28].

Melodic contour is a strong contributing Gestalt factor to immanent accents. Thomassen

[8] found that contour is the best predictor of whether listeners perceive an accent on a note:
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peaks and valleys of a melody are often perceived as accented even when the absolute volume

of the note is unchanged. Explicit accentuation is also correlated with pitch, where accents are

more likely to be perceived on highest pitch of a melody (termed the treble accent) [8], or the

highest pitch in a spoken phrase [29]. In song, the peak of melodic contour often coincides

with and highlights lexical stresses [30]. A peak-shaped melodic contour is therefore highly

salient in auditory processing. Just as in the case of high-IC notes, musicians tend to add per-

formed accents that further reinforce immanent accents from the melodic contour and attract

the listener’s attention, for example by dwelling longer than the written note value at melodic

peaks and valleys [7, 31].

This study

In this project, we compare listener preferences in response to the dynamic accentuation of

notes with high and low IC values, or notes in different melodic contours, formed by the pitch

relationship between the notes preceding and following it. Evidence that musicians add per-

formed accents based on both statistical and Gestalt principles is rapidly accumulating. How-

ever, previous work has relied on existing Classical music material, which does not allow for

addressing potential confounds such as familiarity, nor interactions with well-controlled IC

values. By implementing a novel, highly-controlled musical grammar in our melody corpus,

our project builds on previous work in the following ways:

i) We effectively isolate melodic contour and IC from other factors like harmony, rhythmic

groupings, and metrical position, and make melodic contour and IC statistically indepen-

dent. In ecological examples, the frequent co-occurrence of high-IC and Gestalt-compatible

moments makes the contributing role of one musical factor difficult to isolate from the

others.

ii) We investigate whether aesthetic accentuation preferences related to statistical learning can

develop over the course of a short listening period.

iii) We control for long-term cultural biases by using a novel corpus of melodies based on a

non-Western scale and an arbitrary but carefully controlled artificial grammar. Additionally,

we evaluate the effect of musical training on the development of short-term preferences.

iv) We control for possible confounds related to performer skill (e.g. singing a high note may

induce accents related to effort) by investigating aesthetic preferences from the perspective

of the listener in a controlled musical setting.

Our results indicate that Gestalt principles, particularly melodic contour, are the main driv-

ers of aesthetic preferences. For Western-trained musicians, we also found that statistical fea-

tures, here implemented as the IC values of notes in the melodies, have no influence on

aesthetic preferences in an unfamiliar musical system after 15 minutes of exposure.

Altogether, this work implements domain-specific principles of information processing to

establish that Gestalt principles are the principal determinants of accentuation preferences in

listeners. This result further highlights the relevance of a cognitive approach for various aspects

of music perception, including aesthetic preference.

Materials and methods

Construction of melodies from an artificial grammar

We generated novel melodies using an artificial grammar based on a first-order Markov chain

to manipulate IC and melodic contour while tightly controlling all other melodic properties.
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Seven different pitches were used in the construction of the melodies (six distinct pitches of

the hexascale described below, in addition to the first scale degree repeated one octave higher).

Sequences consisting of a string of numbers between 1 and 7 were modularly constructed

as illustrated in Fig 1, with each cell following a predefined first-order Markov chain. The two

IC cells (Fig 2) each contained a ‘context’ note and two possible ‘target’ notes which occur

immediately after the context note. One of the target notes occurred with high probability

(0.95) given the context, and the other with low probability (0.05). The start, intermediate, and

end cells served to provide filler notes to create more ecological melodies, as well to vary the

metrical position of the target notes and increase the variety of melodies generated.

Each IC cell had a different context note. Furthermore, in the IC-α cell, a target note

descending relative to the context was high-IC while the ascending target note was low-IC; the

inverse was true for the IC-β cell. This construction allowed different surrounding contours to

be tested, and allowed the influence of contour and IC on accent preferences to be separated.

By ensuring that the possible context-target note pairs never occurred outside the IC cells, the

IC of the target note was controlled. Furthermore, the relative frequencies of each target note

over the entire corpus did not greatly differ (S1 Fig), to avoid confounding IC with the fre-

quency of the note. As noted in Fig 1, the order of the IC cells was reversed at random, which

varies the metrical position of target notes (S2 Fig) while increasing the variety of the melodies.

The grammar (Fig 2) was designed so that the interval between two consecutive notes did

not exceed four scale degrees, since large leaps are salient events according to Gestalt princi-

ples. Repeated notes were also potentially salient events and were avoided in the grammar.

Furthermore, the interval between context and target notes was always only one scale degree.

The length of the melody ranged between 9 and 14 notes, typically with 2–3 notes in each cell.

The distribution of lengths of the melodies used in the exposure phase, as well as the break-

down of lengths by module, are included in the supplementary materials (S3 Fig). An example

of how a melody was generated by taking one of the possible paths through the Markov gram-

mar is shown in Fig 2.

Fig 1. Melody modules. The two potential modular constructions of melodies used in the exposure phase.

https://doi.org/10.1371/journal.pone.0312883.g001

Fig 2. Example of melody construction. Grey arrows show all the possible paths defined by Markov chains in each cell. Red arrows indicate one

possible path of a potential melody, in which there is a low-IC transition and valley-shaped contour at the first target note and a low-IC transition and

peak-shaped contour at the second target note.

https://doi.org/10.1371/journal.pone.0312883.g002
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Numerical sequences generated from the grammar were mapped to pitches using a sliding

window as illustrated in Fig 3. Pitches used were determined by an asymmetrical hexascale (i.

e, scale composed of 6 notes), known to elicit rapid statistical learning after only a short expo-

sure [32]. The tonic pitch (scale degree 1) determined the position of the sliding window and

thus the pitch of all subsequent scale degrees. The tonic pitch was consistent throughout the

experiment for each participant, but could be changed between participant groups. The map-

ping varied between participants to control for differences in interval sizes between scale

degrees.

Melodies were generated in Python as lists of pitches before being converted to MIDI files

using the music21 library [33]. MIDI melodies were rendered as mp3 files, where each pitch

was a tone on the piano, using command line tools on MacOS.

Participants

80 participants were recruited from the Prolific.co website. Recruitment was restricted to USA

or UK residents since the study was conducted in English. Participants answered three sound-

check questions consisting of identifying the melody that contains one accented note from a

set of two otherwise identical melodies. Only participants who answered at least two out of the

three questions correctly were invited to proceed to the experiment. Of the 78 participants (40

males, median age: 37 years; standard deviation: 11.5) who completed the experiment, 2 were

excluded for continuing the experiment despite failing the soundcheck questions, 3 were

excluded for not learning the artificial grammar (as described in the grammar learning test

below), and 1 was excluded for systematically answering the forced choice questions before the

end of the stimulus (S4 Fig). Between 10 and 13 participants were assigned to each tonic listen-

ing condition as detailed in the pitch assignment above.

Information about musical experience was collected in a voluntary survey at the end of the

experiment (S5 Fig). Musicians were defined as participants who reported having followed 5

or more years of formal music lessons (at a private studio, at a Conservatory, or at a Univer-

sity). All other participants were defined as non-musicians.

Informed consent. The title page of the online experiment read as follows: “Welcome!

Please read the following instructions carefully. You will be asked to listen to a series of melo-

dies and answer some questions about what you hear. We will also collect demographic infor-

mation about you and your musical background. Your participation is voluntary and you can

exit the experiment at any time (however, you need to complete the experiment to receive

compensation). The data collected is completely anonymous. By clicking ‘continue’ and pro-

ceeding, you provide your consent to participate.” Participant recruitment occurred from May

31 to June 3, 2024, and all recruited participants completed the experiment during that period.

A compensation of 8 GBP was awarded to each participant upon completion, aligning with the

Fig 3. Assigning scale degrees to musical pitches. Examples of A: a scale-degree-to-pitch assignment scheme determined before the beginning of the

experiment based on the position of the sliding window, and B: a sequence of scale degrees being translated into pitches according to the scheme in A.

https://doi.org/10.1371/journal.pone.0312883.g003
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recommended rates on Prolific.co. The median completion time for the experiment was 31

minutes. The experiment is covered under the authorization provided to the project “Le lan-

gage et les capacités cognitives connexes—Linguae n˚20–733” by the Comité d’Évaluation

Éthique de l’INSERM.

Online experiment

The online experiment was written in JavaScript using the jsPsych library [34]. Participants

were directed to the cognition.run website (an online experimental platform for jsPsych),

where all pre-generated audio files used in the experiment were uploaded.

Exposure phase. The exposure phase consisted of passive listening trials, and two types of

active trials: liking-rating, and attention trials. In each passive listening trial, participants lis-

tened to a random set of four exposure melodies generated according to the grammar outlined

above. No response was solicited and the experiment proceeded automatically to the next trial

at the end of the stimulus. Other types of trials were interspersed randomly throughout the

exposure phase; on average, for every two passive listening trials (equating to eight melodies),

there was one active trial. A total of 180 melodies were presented during the passive trials.

The occasional liking-rating and attention trials served to maintain participant engagement,

but participant responses were not used in the analysis. In attention trials, participants were

asked to identify the shorter melody from a set of 2 melodies. The difficulty of the attention tri-

als ranged from ‘easy’ (7 vs 14 notes), ‘intermediate’ (7 vs 9 notes), and ‘hard’ (12 vs 14 notes)

(S6 Fig). The longer melodies (12–14 notes) were generated using the same grammar as expo-

sure melodies. The shorter melodies (7–9 notes) were generated using the forced choice gram-

mar described below. In liking-rating trials, participants listened to one exposure melody and

were asked to rate how pleasant they found the melody on a scale of 1–7 (S7 Fig).

Grammar learning test. During the learning test phase, participants listened to 16 melo-

dies. After each melody, they were asked to rate how similar the melodies were to the melodies

that they had heard in the exposure phase, on a scale of 1–7. Eight of the melodies presented

were ‘grammatical’, drawn from the same pool as was used in the exposure phase. The other 8

were ‘agrammatical’, following the same construction as the grammatical melodies but with

the pitch assignment of scale degrees 5 and 6 inverted.

Forced choice tests. Melodies in both forced-choice tests follow a similar construction as

the exposure melodies. However, only one IC cell (chosen at random) is employed, and the

intermediate cell is eliminated. As a result, there is only one target note in the melody, and the

overall melody is shorter (7–9 notes), facilitating comparison between the two forced-choice

alternatives. Furthermore, the target note was always found near the middle of the melody

S8 Fig.

Participants completed both types of tests (described below) in randomised order; in total,

each participant answered 16 questions of each type. The types of forced-choice tests are illus-

trated in Fig 4.

Accent preference test. Participants were presented with two melodies that were identical,

with the target note accented in one instance and no accent in the other. They were then asked

to choose which melody they preferred. In half of the questions, the target note was high-IC,

while the other half had low-IC notes.

IC preference test. Participants again chose between two otherwise identical melodies that

differed in the target note. In one instance, the target note was high-IC given the context; in

the other, it was low-IC. For half of the questions, the target note was accented, while the other

half had no accent.
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Data analysis

Within-subjects t-tests comparing similarity ratings for grammatical melodies and agrammati-

cal ones were run separately for musicians and nonmusicians to assess the extent of grammar

learning.

To examine the relative roles of IC and melodic contour in predicting whether listeners

chose the accented versions of the melody in the accent preference forced-choice task, we fit a

generalised mixed-effects model to responses in the accent preference test, with musicianship,

melodic contour, and IC as variables. Melodic contours were defined as one of the following:

valley (both preceding and succeeding pitches are higher than the target note), peak (both pre-

ceding and succeeding pitches are lower), ascending (preceding pitch is lower and succeeding

pitch is higher), or descending (preceding pitch is higher and succeeding pitch is lower).

To examine whether accenting the target note influences the choice of high- vs, low-IC ver-

sion of the melody in the IC preference forced-choice task, we fit a generalised mixed-effects

model with accent as a dependent variable.

Statistical analyses were performed using the Statsmodels package for Python [35] and lme4

package for R [36].

Results

Transition matrix

The IC of each context-note transition was computed over the generated corpus to ensure that

target notes matched the expected IC values. The low-IC context-target pairs (5! 4 and 3!

Fig 4. Forced choice test. Examples of the four types of forced-choice tests given to participants.

https://doi.org/10.1371/journal.pone.0312883.g004
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4) had IC values of approximately 1, while high-IC context-target pairs (5! 6 and 3! 2) had

IC values of approximately 5–6 (Fig 5).

Grammar learning

75 of 78 participants (96%) gave lower mean similarity ratings for ungrammatical melodies

compared to grammatical melodies. A within-subjects t-test shows an overall lower rating for

ungrammatical melodies than for grammatical melodies for both musicians (t = 11.126, p<
0.001) and non-musicians (t = 19.530, p< 0.001) (Fig 6).

Forced choice accent test

The percentage of low-IC melodies in which the accented version was chosen was compared

to the percentage of high-IC melodies in which the accented version was chosen by subtracting

the former from the latter. The percentage of accented versions chosen when the contour was

a peak versus a non-peak was computed in the same way. Across all participants, a 1-sample t-
test showed significantly more accented melodies were chosen when there was a peak

(t = 2.600, p = 0.011) and no significant difference in the percentage of accented melodies cho-

sen between high- and low-IC conditions (t = -0.0533, p = 0.958) (Fig 7).

A generalised mixed-effects linear model was fit using the limited-memory BFGS (L-BFGS)

algorithm with IC, contour, musicianship, and interaction between IC and musicianship as

categorical fixed effects and the participant as a random effect. The model shows that a peak

contour significantly predicts whether an accented version of a melody is chosen (p = 0.001)

(Fig 8). Other coefficients are not significantly different from 0 (p> 0.05). Removing (i) con-

tour from the model resulted in a significantly worse fit, while versions of the model in which

we (ii) removed IC as a fixed effect and (iii) removed musicianship as a fixed effect did not

Fig 5. IC of context-note transitions computed over the corpus. Axes indicate scale degrees, solid boxes indicate

high-IC target notes, dotted boxes indicate low-IC target notes.

https://doi.org/10.1371/journal.pone.0312883.g005
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significantly change model performance (Table 1). Detailed configurations and results from

these models are available in the supplementary materials.

Forced choice IC test

A generalised mixed-effects model was fit using the same method as above, with musicianship,

the presence of an accent on the target note, and interaction between the two as fixed effects,

Fig 6. Within subject ratings of melody similarity to corpus for grammatical and agrammatical melodies for musicians and nonmusicians.

Faint lines indicate individual participants, bold lines indicate mean ratings, error bars indicate 95% confidence interval.

https://doi.org/10.1371/journal.pone.0312883.g006

Fig 7. Differences in the percentage of forced-choice tests in which the accented version of the melody was chosen

for conditions of high vs low-IC and peak vs no peak. Points indicate individual participants. White bars indicate the

mean.

https://doi.org/10.1371/journal.pone.0312883.g007
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to assess the effect of various predictors on whether a high-IC melody was chosen over a low-

IC one that was identical except on the target note. None of the predictors affected whether the

high-IC melody was chosen (p> 0.05) (Fig 9).

Discussion

This project aimed to investigate the role of melodic expectations in aesthetic preference dur-

ing music listening. We tested the hypothesis that listener preferences for whether a note has a

dynamic accent would be determined by both the note’s IC and surrounding melodic contour.

Thus, we probe two different mechanisms of musical expectations –statistical regularities and

Gestalt principles– on how they determine accentuation preferences. First, we exposed partici-

pants to a set of unfamiliar melodies generated from an artificial grammar in which designated

target notes had either high or low surprisal given the context, and formed different melodic

contours with the surrounding notes. The grammar was designed to control for many factors

that may influence accent preferences: the melody was isochronous, metrical position of the

Fig 8. Mixed-effects model showing the effect of IC, musicianship, and melody contour on whether an accented version of a melody is chosen.

Participants are included as a random effect. Points show coefficients; error bars show CI 95.

https://doi.org/10.1371/journal.pone.0312883.g008

Table 1. Comparison statistics for full and reduced generalised mixed-effects models.

Model parameters BIC χ2 p-value (vs. full model)

Full 1533.067

(i) -contour 1524.027 12.348 0.00628

(ii) -IC 1527.268 1.330 0.249

(iii) -musicianship 1526.347 0.409 0.522

https://doi.org/10.1371/journal.pone.0312883.t001
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target note was identical for both options of the forced choice test, and the accent always

occurred in the middle of the melody. The overall frequency of all target notes was comparable

(± 5% difference), so that only the IC of the note and its surrounding contour varied as a func-

tion of the context.

We then evaluated participants’ accentuation preferences on new melodies generated from

the same grammar, in two forced-choice tasks where accent or IC are manipulated. All four

possible melodic contours were present in both tasks. We ran generalised mixed-effects mod-

els to explain the influence of accent, IC, and melodic contour, and formal musical training on

the forced-choice results.

Rapid grammar learning

Artificial grammars governing the melodies were designed to be simple enough to learn while

being distinct in style from common Western melodies. Notes in the melodies belonged to an

asymmetrical hexascale (i.e. composed of 6 notes), where the pattern of intervals between each

scale degree is distinct from that of the major and minor scales used in Western music.

Although the scale structure is unfamiliar, Pelofi and Farbood [32] showed that its asymmetry

allows novel artificial grammars governing melodies to be acquired after only a short exposure

phase. To further facilitate learning, only pitches from the 12-tone equal temperament system

were used to construct the hexascale.

Consistent previously reported results [32], the majority of participants (96%), regardless of

musical ability, were able to differentiate between grammatical and agrammatical melodies –in

Fig 9. Mixed-effects model showing the effect of musicianship and accenting the target note on choosing a high-IC version of a melody.

Participants are included as a random effect. Points show coefficients; error bars show CI 95.

https://doi.org/10.1371/journal.pone.0312883.g009
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which the pitch assignments for two of the scale degrees were reversed– after only a short

exposure. The grammar learning results allow us to analyse the forced choice tests under the

assumption that participants had retained sufficient knowledge of the artificial grammar.

Melodic contour influences accent preferences for all listeners

During the forced-choice test phase, to facilitate the task of choosing between two melodies,

the artificial grammar was modified to omit the intermediate cell and one of the IC cells to

make the two forced-choice melodies shorter and easier to compare.

Melodic contour, as determined by the notes preceding and following the target note, were

also expected to influence accent preferences. We found that in all participants, accented ver-

sions of the melody were more likely to be chosen when the accented target note is at a peak.

This behaviour reinforces perceptual findings showing that the perceived volume is higher at

the peak of a melody [8], and that perceived volume changes are enhanced by congruent

changes in melodic contours (i.e., decreasing volume as the pitch descends) [37].

These results indicate that all listeners show sensitivity to melodic contour, preferring peaks

to be accented. Such a preference is in line with previous work showing that higher pitches are

perceived as more salient [8], and that salient notes tend to be accented [7, 31]. We show here

that the preference for an accent on a melodic peak generalises even to novel melodies in unfa-

miliar genres. This finding is consistent with the tendency to accentuate melodic peaks found

in analyses of music corpuses. However, our work brings a new dimension to corpus and per-

formance analyses by focusing on the preferences of the listener rather than the performer or

composer. We show that during passive listening in unfamiliar musical contexts, participants

prefer accentuation practices that mirror Gestalt principles.

As expected, this preference based on contour is observed in both musicians and nonmu-

sicians. Preferences regarding melodic contour are based on Gestalt principles that, by defi-

nition, should be common to all listeners regardless of previous musical exposure. In

contrast to our statistical learning paradigm which requires a refined pitch perception ability

to distinguish the intervals between successive notes, recognition of melodic contour

demands less advanced musical abilities. Previous studies suggest that contour may have a

more fundamental place in neural processing than intervals: both infants and adults without

musical training are able to process contour information [38, 39], and contour is also present

in speech prosody [40].

IC does not influence accent preferences

Since the effect of target note IC on accentuation preferences was expected to be small, if any,

due to the short exposure phase, we probed it in several ways.

The first type of forced choice task asked participants to select from identical melodies in

which one melody had an accented target note and the other was unaccented. If IC plays a role

in accentuation preferences, participants would be expected to select the accented version

more often when the target note was high-IC. According to conventional performance prac-

tices, high-IC notes are frequently accented, and analysis of corpuses shows a direct correlation

between the volume and the IC of a note [5]. We found a null effect of IC in predicting whether

the accent was chosen, and showed that musicians and nonmusicians did not show different

accent preferences. There was also no interaction between IC and musicianship.

In the second type of forced-choice task, participants selected between two melodies which

differed in one note, with the differing target note being either high- or low-IC. In half of the

tasks, both melodies were accented, and in the other half, both melodies were unaccented.

More grammatically familiar melodies are generally rated as more pleasurable [41]– a result
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that would predict a preference for low-IC melodies if both melodies were unaccented. How-

ever, if there is a role for short-term IC in expressive accentuation, participants would prefer

the high-IC melody if it was accented, since a dynamic accent is compatible with the high sur-

prisal value of the note. In our results we found no effect of the accent in predicting whether

the high-IC melody was chosen.

We reason that in musicians, the exposure period was likely not long enough to alter the

accent preferences engrained through long-term musical training. Although we controlled for

the effect of long-term statistical learning from musical exposure by minimizing any resem-

blance to Western musical structures, expert listeners may have nevertheless attempted to

choose melodies where the accentuation was most compatible with common musical practice.

Across all participants, the potential influence of Western music should be cancelled out by

the different experimental conditions. The tonic of the melody (and thus the intervals between

each scale degree, since the melody uses an asymmetric scale) was varied for each participant,

and the scale structure differs from Western diatonic scales. While it is possible that musicians

were influenced by note combinations in the melody outlining common chords, the different

tonic conditions should cancel out potential influences. However, individual participants may

have preferred the melodies most in line with common practice in their given experimental

condition.

Knowledge of music theory that would accompany musical training may have also influ-

enced musicians to listen to the corpus through a more analytical perspective. For example, in

the post-experiment survey, musicians reported listening for specific notes and patterns to dis-

tinguish between the melodies while non-musicians made no comments or reported that they

relied on gut feeling. The influence of this analytical perspective may also extend to aesthetic

preferences in music training.

Sensitivity to IC modulations in musicians requires further investigation, but may be facili-

tated during prolonged exposure by a combination of enhanced statistical learning skills and

better music analysis abilities. Musical training has been shown to enhance statistical learning

of rhythms [42], as well as recall of melodies regardless of whether the melodies follow Western

music rules [43]. Melodic memory in musicians is also susceptible to be supplemented with

contextual details which may aid recall [44]. Together, the different types of enhanced musical

memory may help facilitate the learning of IC values in novel melodies in the long run.

The potential effect of longer-term statistical learning in accentuation preferences among

nonmusicians may depend on several factors. Electrophysiological evidence suggests that non-

musicians are less sensitive to intervals, particularly in unfamiliar melodies [45]. However,

other work shows that nonmusicians are proficient in statistical learning [46, 47], although in

some cases participants show electrophysiological responses to surprise without explicitly

aware of the statistical structure [46]. In our study, nonmusicians were able to learn the gram-

mar sufficiently well to distinguish grammatical and agrammatical melodies. Since agrammati-

cal melodies are by definition highly surprising, we expected nonmusicians to also be able to

tell the difference between the high- and low-IC melodies. For both musicians and nonmusi-

cians, the question remains as to whether the ability to distinguish surprise in a melody may

translate to an accentuation preference given enough long-term exposure.

The relative importance of Gestalt principles and statistical learning in

accentuation

In summary, musicians and nonmusicians did not show different preferences in any task. In

separating the influences of Gestalt principles from short-term statistical learning, we show

Gestalt principles, specifically a peak-shaped melodic contour, dominate accentuation
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preferences in melodies regardless of musical experience. Conversely, accentuation prefer-

ences based on statistical learning likely were not detected in this study.

We established that all listeners are able to learn a novel grammar in a short listening

period, consistent with statistical learning studies in language which found that babies are able

to learn statistical relationships between syllables after only 2 minutes of exposure [48], and

adult participants predicting the melodies based on statistical relationships [4]. However, we

find that mere familiarity with the grammar is not sufficient to change aesthetic preferences,

showing that short-term statistical learning remains subordinate to Gestalt principles and

existing statistical knowledge. In addition to being biologically ingrained as previously dis-

cussed, Gestalt principles are also continually reinforced throughout a listener’s lifetime via

passive exposure to Western music which is largely consistent with Gestalt principles. Previous

work shows that both musicians and nonmusicians are sensitive to musical structures [49],

and we therefore expect melodies consistent with Gestalt principles to be highly over-repre-

sented in the priors of both groups. We cannot rule out that statistical learning could play a

larger role in accent preferences with longer-term exposure to the novel corpus while curtail-

ing exposure to Western music. However, such an experiment would require a long-term

commitment from participants to obtain sufficient exposure to a novel musical grammar.

Limitations and future steps

The grammar used in this experiment was designed to be very simple, in order to give partici-

pants the best chance of learning the IC values of the target notes over a short listening period.

A side effect of this simple grammar is that many melodies closely resemble each other. Indeed,

listening to many repetitions of similar melodies may become unpleasant when the exposure

phase is 15–20 minutes long, and the ratings of melody pleasantness (S7 Fig) throughout the

exposure phase reflect a decrease in liking throughout the experiment. This decreased liking is

not consistent with previous studies on grammar learning [50], which further supports the

hypothesis that the simplicity of the melodies derived from the grammar could not ensure an

ecologically-valid music listening experience.

To obtain more ecologically-valid experimental conditions, a more complex or higher-

order Markov chain grammar could be used to generate melodies. However, increasing com-

plexity would likely have to be counter-balanced by a much longer exposure phase to ensure

that participants learn the grammar and corresponding IC values sufficiently well before their

aesthetic preferences can be evaluated.

We acknowledge that musical training entrenches a number of performance norms which

may overshadow much of the new preferences developed through exposure to the artificial

grammar. The influence of Western performance norms is likely to be especially prominent in

high-level or professional musicians who report relying on explicit analysis in addition to intu-

ition to develop interpretations of music. The potential influence of Western music is sup-

ported by musician participants reported resorting to analysis of the melodic contour or the

pitch to determine whether the melody should be accented, rather than relying on the implic-

itly learned statistical information in the artificial grammar.

Conclusion

This study implements a novel, highly-controlled paradigm to investigate long-standing musi-

cal principles regarding aesthetic preferences for accents that have thus far been primarily vali-

dated in analyses of existing musical corpora. Expressive accentuation preferences are

investigated from the less commonly studied listener’s perspective, providing promising evi-

dence that Gestalt principles generalise to novel musical styles to influence aesthetic
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preferences in listeners both with and without extensive Western musical training. Our evi-

dence also shows that short-term statistical learning is insufficient to induce strong accent

preferences. The results also build on previous work on the interaction between Gestalt princi-

ples and statistical learning in aesthetics, inviting further work exploring the effects of both

phenomena on aesthetic preferences in different domains.
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