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Abstract

Originally formalized with symbolic representations, syntactic trees may also be
effectively represented in the activations of large language models (LLMs). Indeed,
a “Structural Probe” can find a subspace of neural activations, where syntactically-
related words are relatively close to one-another. However, this syntactic code
remains incomplete: the distance between the Structural Probe word embeddings
can represent the existence but not the type and direction of syntactic relations. Here,
we hypothesize that syntactic relations are, in fact, coded by the relative direction
between nearby embeddings. To test this hypothesis, we introduce a “Polar Probe”
trained to read syntactic relations from both the distance and the direction between
word embeddings. Our approach reveals three main findings. First, our Polar Probe
successfully recovers the type and direction of syntactic relations, and substantially
outperforms the Structural Probe by nearly two folds. Second, we confirm that this
polar coordinate system exists in a low-dimensional subspace of the intermediate
layers of many LLMs and becomes increasingly precise in the latest frontier models.
Third, we demonstrate with a new benchmark that similar syntactic relations are
coded similarly across the nested levels of syntactic trees. Overall, this work shows
that LLMs spontaneously learn a geometry of neural activations that explicitly
represents the main symbolic structures of linguistic theory.

1 Introduction

Human languages have long been proposed to systematically follow tree-like structures (Chomsky,
1957; Tesnière, 1953). In a sentence, words that are far apart can be syntactically linked. For example
"cats" is the subject of "chase" in the sentence “The cats in cities chase the mice”. In dependency
grammar, the edges of such trees are directed and labelled to indicate the type of syntactic relation
between words (“cats” is the subject of “chase”, Fig. 1B).

Despite their conceptual soundness and alignment with human behavior (Robins, 2013), syntactic trees
have long been the crux of a core challenge in cognitive science (Smolensky, 1987): trees are symbolic
representations, which can superficially appear incompatible with the vectorial representations of
neural networks. This opposition between symbols and vectors has been a major challenge to the
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unification of linguistic theories on the one hand, and neuroscience and connectionist AI on the other
hand.

Recently, Hewitt and Manning (Hewitt and Manning, 2019) proposed an important concept for this
issue, by suggesting that the existence of syntactic link between two words may be represented by
the distance between their corresponding embeddings. Specifically, their “Structural Probe” consists
in finding a subspace of contextualized word embeddings such that the squared euclidean distance
between words represents their distance in the dependency tree. They showed that the Structural
Probe is most powerful in the intermediate layers of language models: these layers contain a subspace
where syntactically-related words are closer together.

This Structural Probe, however, can only reveal one aspect of dependency trees: namely, the existence
of syntactic relations, between word pairs. However, whether and how the direction and the type of
syntactic relations are represented in language models remains unknown.

Here, we hypothesize that syntactic relations are represented by a polar coordinate system, where
the existence and type of syntactic relations are represented by distances and direction, respectively
(Fig. 1). To test this hypothesis, we introduce a “Polar Probe”: a linear transformation trained such
that pairs of words linked by the same dependency type are collinear, while remaining orthogonal to
different dependency types.
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Figure 1: Dependency trees hypothesized in linguistics and in neural networks. A. According to the
dependency grammar framework, the sentences can be described as linear sequences of words connected by an
acyclic graph. B. More precisely, such acyclic graph is both labeled and directed, where each edge has a direction,
representing the hierarchy of the syntactic relation, and a label, representing the type of syntactic relation. C.
The Structural Probe (Hewitt and Manning, 2019) finds a a linear transform (gray plane) of the language model’s
activations (here simplified as a 3D space), such that the distance between word embeddings is predicted by
their dependency tree. In the Structural Probe subspace, however, it is not possible to distinguish whether
"The cat chases the mouse" or "The mouse chases the cat." D. Our Polar Probe finds a linear transformation
where the angle between syntactically-related word additionally represents the type and direction of these
syntactic relations, and the distance codes its presence. The colored arrows indicate orthogonal directions in the
Polar-Probe subspace.

2 Methods

The goal of this work is to find a linear readout of the activations of pretrained language models
which explicitly represents both the presence and the types of syntactic relations between words.

2.1 Problem statement

Dependency grammar represents the syntax of a sentence as a symbolic tree. Accordingly, let:

• wi be the ith word in a sentence,

• d : wi, wj 7→ Z+ indicate the syntactic distance between two words,
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• C be the set of syntactic types,

• t : wi, wj 7→ C indicate the type of syntactic relation between directly-connected words.

• u : wi, wj 7→ {wi, wj} indicate the head word (and thus direction) of the syntactic relation
between directly-connected words.

Language models based on neural networks represent sentences as sequences of word vectors
(a.k.a word embeddings)1. As these embeddings propagate through the layers of the network,
they incorporate information about the sentence they belong within, becoming contextualized word
embeddings.

Let hℓ
i ∈ Rk be the ith contextualized word embedding of wi obtained at the output of layer ℓ of a

neural network. For simplicity, we will drop the layer index ℓ in what follows, keeping in mind that
different layers yield different representations.

Retrieving syntactic trees from a neural network requires to obtain three read-out functions d̂ :
Rk,Rk 7→ Z+, û : Rk,Rk → Rk and t̂ : Rk,Rk 7→ C such that the following conditions are met:

d̂(hi,hj) ≈ d(wi, wj), t̂(hi,hj) ≈ t(wi, wj), û(hi,hj) ≈ u(wi, wj),

While d̂, t̂ and û could be any complex functions, the goal of the present work is to identify a simple,
interpretable “code” of how syntactic trees may be represented in vectorial systems. Following the
classic definition of a representation as a linearly readable information, we focus on linear operators
(DiCarlo and Cox, 2007; Kriegeskorte and Bandettini, 2007; King and Dehaene, 2014).

2.2 Structural Probe

In (Hewitt and Manning, 2019), the authors propose to solve d̂ as a distance in a subspace of the
contextualized word embeddings. Their “Structural Probe” is a linear transform, BS : Rk 7→ Rk′

,
which projects word embeddings such that their relative distances correspond to their distances in the
syntactic tree. Formally, if si,j ∈ Rk is the (directed) “edge embedding” between words wi and wj :

si,j = hi − hj ∈ Rk, (1)

Then, the predicted distance d̂ ∈ R+ between two words can be computed directly as a function of
this and no other information coming from the individual word embeddings2 :

d̂(hi,hj) := ∥BSsij∥2. (2)

Given a set of sentences, the authors extract the set ΩS of pairs of words belonging to the same
sentence and optimize BS to minimize the absolute difference between the distances within the
syntactic tree and the distances between the probed word embeddings:

LS =
1

|ΩS |
∑

(wi,wj)∈ΩS

|d(wi, wj)− d̂(wi, wj)| (3)

Following the development of the Structural Probe, squared Euclidean distances between probed
word embeddings are not designed to represent both the presence of dependency relations and their
types and directions simultaneously. (Hewitt and Manning, 2019) thus only propose a representational
system to solve d̂, but not t̂ and û. Whether and how the directed and labeled syntactic tree is encoded
in neural networks, thus remains unknown.

1Sequences are built from “tokens”, which sometimes correspond to subwords. When this is the case, one
can simply average the subword embeddings to obtain word embeddings (Hewitt and Manning, 2019).

2See (Chen et al., 2021) for an explanation of how hyperbolic spaces are best measured through square
Euclidean distances.
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2.3 Angular Probe

Here, we hypothesize that neural networks use the orientation of the relations formed by connected
word pairs to represent the type and direction of their syntactic dependency.

To test this hypothesis, we first introduce an “Angular Probe” consisting of a linear transform
BA : Rk′ 7→ Rk′′

. By abuse of notation, we denote as t(si,j) ≡ t(wi, wj) the syntactic type of the
corresponding edge. For the Structural Probe, the function d to be recovered is defined on all pairs
of words; here the function t to be recovered is only defined on pairs of syntactically linked words,
hence we only consider word pairs (wi, wj) which are indeed syntactically linked.

We use contrastive learning to align relations of the same type and ensure that different types are
pointing to different directions. This approach is designed such that a linear readout could explicitly
categorize dependency types.

Specifically, the objective for the Angular Probe is to ensure that given two edge embeddings s and s′

of syntactic types c = t(s) and c′ = t(s′), the linear transforms BAs and BAs
′ are colinear if c = c′,

and orthogonal if c ̸= c′.

Formally, the Angular Probe is the linear transform which minimizes the contrastive loss:

LA =
1

ΩA

∑
s,s′∈ΩA

(∡(BAs,BAs
′)− 1 [t(s) = t(s′)])

2
, (4)

• ΩA is the set of edge embeddings of syntactically connected words,

• ∡ : x,y 7→ x·y
∥x∥∥y∥ is the cosine similarity,

• 1 : X 7→
{
1 if X is true
0 otherwise

is the indicator function.

We can then construct a prototypical vector for each dependency type, by averaging all the probed
edge embeddings belonging to that type:

Vc =
∑

s∈Ω
(c)
A

BAs, Ω
(c)
A = {s ∈ ΩA|t(s) = c}. (5)

The Angular Probe gives us the following function to retrieve the syntactic type of any given edge:

t̂(hi,hj) := argmax
c

|∡(BAsij ,Vc)| . (6)

We also get the function û to predict the head word (and direction) of the syntactic relation given a
predicted type t̂:

û(hi,hj) :=

{
hi if ∡(BAsij ,Vt̂(hi,hj)

) ≥ 0

hj if ∡(BAsij ,Vt̂(hi,hj)
) < 0

(7)

2.4 Polar Probe

The Angular Probe and the Structural Probe have independent objectives applied to two different
datasets: LS relies on ΩS , which includes all word pairs from any sentence, whereas LA relies on
ΩA, which contains only pairs of words that are syntactically linked.

Consequently, we define the Polar Probe as a single linear transformation BP : Rk 7→ Rk′′
which

results from the joint optimization of both the the Angular and Structural objectives.

This Polar Probe defines the final functions to identify syntactic distances and relation types:
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d̂(hi,hj) := ∥BP sij∥2 (8)

t̂(hi,hj) := argmax
c

|∡(BP sij ,Vc)| (9)

û(hi,hj) :=

{
hi if ∡(BP sij ,Vt̂(hi,hj)

) ≥ 0

hj if ∡(BP sij ,Vt̂(hi,hj)
) < 0

(10)

Therefore, the Polar Probe minimizes the following loss function, with λ a hyper-parameter weighing
the Angular objective.

argmin
BP

LS + λLA (11)

2.5 Data

Natural dataset. We consider natural sentences extracted from the English Web Treebank dataset
(Silveira et al., 2014)3. This corpus contains 254,820 words from 16,622 sentences, sourced from
a diverse array of web media genres, including weblogs, newsgroups, emails or reviews. All the
sentences in the dataset are manually annotated according to the Universal Dependencies frame-
work (Nivre et al., 2017), where each word is a node, each syntactic link is a labelled directed edge,
and the syntactic tree is acyclic.

Sentences containing email or web addresses are excluded from the dataset. Such filter removes noisy
sentences not interesting from a syntactic point of view. We follow the default splitting provided by
the English Web TreeBank resulting in a total of 11827 sentences for training, 1851 for validation,
and 1869 for testing.

Controlled dataset. To precisely evaluate our approach on well-controlled sentences, we designed
a dataset, extending previous work (Lakretz et al., 2021b), comprising 100 sentences built with
a long-nested structure (e.g., “The book that the boy besides the car reads fascinates my teacher”).
In these sentences, a subordinate clause branches off the main phrase. There is also a constituent

‘besides the car’ that forms a branch inside the subordinate clause, adding further complexity to the
syntactic structure.

This controlled dataset is designed to clarify how the Polar Probe reconstructs the syntactic tree in
complex conditions, but conditions well theorized in linguistics. In particular, we can create several
variations of these long-nested sentences.

• Short: “The book fascinates my teacher”
• Relative clause: “The book that the boy reads fascinates my teacher”
• Long-nested: “The book that the boy besides the car reads fascinates my teacher”

Thanks to this dataset we can study whether the Polar Probe maps embeddings of different
syntactically-identical sentences to consistent latent locations and orientations. In addition, with the
different “sentence levels”,word position and syntactic role can be disentangled to compare the Polar
Probe’s activations accross levels, as shown in Fig: 5.

2.6 Training

We train the Polar Probe on the neural activations of Mistral-7B-v0.1 and Llama-2-7b-hf (Touvron
et al., 2023; Jiang et al., 2023), in response to sentences of the “Natural Dataset” described above.
Both models are Auto-Regressive Language Models, they aim to identify future words from input
sentences. Furthermore, these models read all the words simultaneously, building representations
which depend on the whole sequence of tokens.

We trained the Polar Probes with gradient descent, using the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 0.005, and a batch size of 200 sentences. The duration of the training is
30 epochs, we perform model selection using the validation set. Hyperparameter λ is set to 10.0,
ensuring an optimal balance between the Angular and Structural objective.

3https://universaldependencies.org/treebanks/en_ewt/index.html
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Figure 2: The Polar Probe reliably identifies dependency types. A. PCA visualization of edges linearly read
by the Polar Probe. The color of each edge corresponds to one of three different dependency types (‘nsubj’,
‘obj’, ‘det’): the linear readouts point in systematic directions. B. AUC and Balanced Accuracy metrics obtained
for dependency type classification. C. Pairwise cosine similarity (0=orthogonal, 1=collinear) matrices obtained
without a probe (left) the Structural Probe (middle) and the Polar Probe (right).

2.7 Evaluation

We evaluate each probe either on its ability to faithfully represent (i) the unlabelled and undirected
dependency tree (“structure”), (ii) the type and direction of dependencies and (iii) both of these
elements.

Dependency structure. Following (Hewitt and Manning, 2019), we evaluate whether the probes
accurately predicts the existence of each syntactic relation by using the Undirected Unlabeled
Attachment Score (UUAS). UUAS quantifies the proportion of dependency relations (directly con-
nected words) in the dependency tree that are correctly identified by the probe, irrespective of their
dependency types and direction.

Dependency type. To evaluate the accuracy of the predicted dependency types, we use three distinct
metrics: Area Under the Curve (AUC), Dependency Type Accuracy and Dependency Type Balanced
Accuracy.

For AUC, we compute the cosine similarity between each edge si and all other edges sj , that are
either from the same dependency type, or not. This procedure ends with a distance vector x ∈ Rm of
m edge pairs and a binary vector of y ∈ 1

m. We can finally input these two vectors into scikit-learn’s
roc_auc_score (Pedregosa et al., 2011).

For Accuracy and Balanced Accuracy, we classify dependency types by comparing relations to
prototypical relations. For this, from the training set, we pool 10,000 relations and define a prototype
s̃k for each dependency type k, by computing the centroid of all relations belonging to the same type
k. Then, we predict dependency types from the cosine similarity between each relation si and each
prototype Vc, using scikit-learn’s KNeighborsClassifier.(Pedregosa et al., 2011). Finally, we
use scikit-learn accuracy_score or balanced_accuracy_score to limit the effect of imbalance
between dependency types.
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Combined dependency type and structure. Finally, to provide a metric which evaluates both
dependency structures and dependency types, we compute the Labeled Attachment Score (LAS).
LAS is defined as the proportion of correctly predicted labeled and directed edges in a sentence.

Baselines. We compare the Polar Probe to a variety of baselines: (i) Structural Probe, (ii) “Polar
Probe Random LLM”: a Polar Probe trained on top of a random language model and (iii) “No Probe”:
the raw activations of the Language Model without any transformation.

3 Results

Reliable coding of dependency types. We first analyze the Polar Probe on the 16th layer of Llama-
2-7b-hf, Mistral-7B-v0.1 and BERT-large (Touvron et al., 2023; Jiang et al., 2023; Devlin et al., 2019)
on the English Web Treebank (EWT) sentences (Silveira et al., 2014) annotated with dependency
trees. We evaluate, on an independent test set with 10000 relations, whether pairs of words linked by
similar syntactic relations point towards similar orientations in the probe’s representational space
(Fig. 2).

Fig. 2.A shows a Principal Component Analysis (PCA) projection of the dependency relation
embeddings from the test set, once linearly read by the Polar Probe. For readability, we restrict
ourselves to three of the most common types of dependencies in the dataset. As expected, the three
types of dependency consistently point in different directions.

We then compute the cosine similarity between all pairs of edge embeddings probed with the Polar
Probe (Fig. 2.C (right)), indeed showing that relations of the same types are collinear, while relations
of different types are orthogonal. This is much clearer for the Polar Probe than for baselines (Fig. 2.C).

Comparison with baselines. In Fig. 2.B, we summarize with AUC and Balanced Accuracy the
extent to which the orientations of these edge embeddings reliably represent the syntactic types.

On average across dependency types, the Polar Probe reaches a AUC score of 95%, well above the
Structural Probe (AUC=74%), the No Probe (AUC=80%) and the Polar Probe trained on a Randomly
Initialized LLM (AUC=50%). The same relative results across probes are conserved for the Balanced
Accuracy score. Importantly, these results confirm that the Polar Probe outperforms the Structural
Probe in predicting dependency types from the probe embeddings. The latter is therefore something
not emergent in the Structural Probe.

Unexpectedly, “No Probe” predicts syntactic types well above chance, and significantly better than
the Structural. This hints to the fact that syntactic types are already represented in the raw activations.
A likely explanation for this is that words belonging to the same part-of-speech (such as verbs, nouns)
are clustered in the embedding space, thus partially guiding the inference of syntactic dependencies.

Moreover, training a Polar Probe on a random initialization of a language model does not accomplish
the contrastive objective better than chance. Resulting in near chance-level Balanced Accuracy and
AUC scores. This confirms that the linear probe needs a rich underlying representation space to work,
and cannot learn to cluster the different syntactic types on its own.

Layer-wise analysis. To evaluate how the Angular and Structural performance interact in the
Polar Probe, and whether the mechanism generalizes to both Mistral-7B-v0.1, Llama-2-7b-hf and
BERT-large, we evaluate the layers of the three models on Labeled Attachment Score (LAS) (Fig. 3).
(See Supplementary for BERT-large and Mistral-7B-v0.1)

Interestingly, BERT-large, Mistral-7B-v0.1 and Llama-2-7b-hf all peak at layer 16, which is the same
layer reported in (Hewitt and Manning, 2019). At layer 16, the models achieve a LAS on the test set
of 70.2, 60.6 and 62.9 respectively. As recently reported in (Eisape et al., 2022) for the Structural
Probe, these results suggest that the Polar Probe also works best with Masked Language Models.
The Polar Probe, despite its conceptual simplicity matches performance with a more intricate and
modular labeled probe (Müller-Eberstein et al., 2022).

Structural evaluation. The Polar Probe is optimized with both a Structural and an Angular
objective. This means that the optimization of such probe might affect the original performance of
the Structural Probe. To verify that the gap in performance, we compute the UUAS between the
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predicted tree and the annotated tree for both the Structural and Polar probe (Fig. 3). The results
confirm that the Polar Probe preserves (but does not improve) the syntactic distances between the
linear readout of the probed word embeddings.
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Figure 3: The Polar Probe outperforms the Structural Probe at identifying labeled and directed dependen-
cies. A. For dependency existence, the Polar Probe matches the UUAS performance of the Structural probe,
peaking at layer 16. B. For dependency type, the Polar Probe outperforms in Label Accuracy the Structural
(LAS) Probe by around 80% accross the different layers of Llama-2-7b-hf. C. For both dependency existence
and type, the Polar Probe outperforms in LAS the Structural Probe by around 90% accross the different layers of
Llama-2-7b-hf.

Dimensionality analysis. How many dimensions are necessary to successfully represent the full
syntactic tree with the proposed polar coordinate system? To address this question, we varied k′′,
namely the dimensionality of the space of the Polar Probe (Fig. 4). Analogously to the rank analysis
of Structural Probe (Hewitt and Manning, 2019), we observe a peak around k′′ = 128. Contrary
to theoretical predictions (Smolensky, 1987), these results suggest that the space representing the
complete syntactic tree needs not be unreasonably large. For dependency types, this phenomenon
could be relatively intuitive, as the unit circle (i.e. only 2 dimensions) can easily separate many
different dependency types, such that a weakly non-linear readout would isolate these categories.
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Figure 4: The optimal dimensionality for the Polar Probe is an order of magnitude small than model’s
layer size. Polar Probe performance as a function of dimensionality, measured by A. UUAS, B. Dependency
Type Accuracy and C. LAS for Llama-2-7b-hf as a function of k′′, the dimensionality of the probe’s space. The
optimal dimensionality for the Polar Probe is 128, achieving the highest LAS.

Controlled sentences. Natural sentences are highly variable in structure and content. To verify
more precisely the behavior of the Polar Probe, we evaluate it on the “Controlled Dataset” and its
different sentence levels: Short, Relative Clause and Long-Nested.

First, we observe that in the space of the Polar Probe, the representation of dependency trees appears
to be consistent across sentences’ length and substructures. For example, as shown in Fig. 5, the
PCA visualization of Polar Probe word embeddings belonging to the main phrase is virtually identical
whether it is attached to a relative clause or to a long-nested structure. This invariance supports the
notion that dependency trees are represented by a systematic coordinate system that can be recovered
with the Polar Probe.
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We also observe that dependency types are robustly identified, whether they are part of the main
phrase or not.

Overall, these results visually confirm that the Polar Probe reliably represents the dependency structure
and dependency types of complex syntactic structures. The latter agrees with the extensive Structural
and Angular evaluations performed.

det nsubj obj nmod acl case

Figure 5: Visualization of the dependency tree uncovered by the Polar Probe on a set of sentences with
increasingly complex hierarchical structures. A. We display a PCA visualization of the distributions of word
embeddings (once linearly read out by the Polar Probe), for the different syntactic levels in the “Controlled
Dataset”. Each individual distribution corresponds to a specific role of the word in the sentence. The centroids
are linked with colored lines, displaying the true syntactic tree of the corresponding sentence. B. Most frequent
syntactic tree prediction by the Polar Probe for the different syntactic levels. The relations between words are
color coded according to the type of syntactic dependency. The incorrectly predicted relations are represented
with dashed arrows. That is, either a dependency relation existence (no arrow), or a dependency type (with
arrow) was erroneously identified.

4 Discussion

Summary. We show that within the activation space of language models, there exists a subspace,
where syntactic trees are fully represented by a polar coordinate system. There, the presence and
type of a syntactic relation between two words is represented by their distance and relative direction,
respectively. Importantly, the Polar Probe preserves the structural properties of the Structural Probe
(Hewitt and Manning, 2019), but better represents the type of syntactic relations.

Limitations. The present work presents four main limitations. First, we only investigate the English
language. Yet, human languages use different grammatical rules, and may, consequently, be structured
according to different types of trees. Interestingly, as language models become increasingly able to
process a wide spectrum of languages (Costa-jussà et al., 2022), the present framework opens the
exciting possibility to explore universal (or divergent) grammatical representations in artificial neural
networks, following (Müller-Eberstein et al., 2022; Chi et al., 2020).

Second, syntactic structures are not necessarily restricted to the description of relations between
words. In particular, morphology predicts that words themselves may be represented as trees of
morphemes. Consequently, whether and how the present framework generalizes to the different scales
of linguistic structures remains to be further investigated.

Third, like the Structural Probe, the Polar Probe is based on a supervised task: we optimize a linear
transformation that maximally retrieves a known syntactic structure from the neural activations.
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Developing an unsupervised probe would be important to help discovers unsuspected syntactic
structures. In addition, we here focused on dependency structures. Yet, other formalisms, based on
phrase structures (Chomsky, 1957; Joshi and Schabes, 1997; Cinque and Rizzi, 2009; Chomsky,
2014) could offer alternative trees, and could be equally probed through the present framework. This
approach could thus offer the possibility of experimentally testing which of these linguistic theories
best account for the representations of human languages in neural networks.

Finally, we assume that syntactic trees can be best read out using Euclidean probes. However,
alternative assumptions, such as hyperbolic representations, have been a fruitful tool to interpret deep
learning models’ representations in both text and image modalities (Dhingra et al., 2018; Nickel and
Kiela, 2017; Desai et al., 2023). We speculate that this direction could provide a valuable avenue for
extending the current work.

5 Related work

Syntax in artificial neural networks. Overall, this study complements previous research on syntax
in artificial neural networks. Originally, (Smolensky, 1987) demonstrated that vectorial systems could,
in principle, represent symbolic structures with tensor products but did not provide an empirical
demonstration that neural networks did, in fact, demonstrate this property. More recently, language
models were tested on their capacity to process syntactic structures by evaluating their behavior
on grammatical and ungrammatical sentences (Lakretz et al., 2020, 2021a; Hewitt and Manning,
2019; Hale et al., 2022; Evanson et al., 2023; Linzen et al., 2016). Finally, several groups explored
how this capacity was instantiated in the neural activations (Huang et al., 2017; Palangi et al., 2017;
Soulos et al., 2019; Lakretz et al., 2019), culminating in (Hewitt and Manning, 2019)’s Structural
Probe. Since the discovery of the Structural Probe different adaptations have been developed, notably
including hyperbolic (Chen et al., 2021), orthoghonal (Limisiewicz and Mareček, 2021), nonlinear
(Eisape et al., 2022; White et al., 2021) variants. The present work completes this long effort by
showing how an interpretable syntactic code based on both distances and orientations spontaneously
emerges in language models.

Syntax in biological neural networks. This link between linguistics and artificial neural networks
holds significant potential for neuroscience. In particular, until the latest rise of large language
models, many experimental neuroimaging studies aimed to identify the neural bases of syntax in the
human brain (Hale et al., 2022). For example, (Pallier et al., 2011) showed with functional Magnetic
Resonance Imaging (fMRI) that several regions of the superior temporal lobe and prefrontal cortex
responded proportionally to constituent size. Critically, language models are now becoming standard
bases to predict and explain the brain responses to natural language processing: The activations of
these artificial neural networks have indeed been shown to linearly map onto fMRI, intracranial and
MEG recordings of the brain in responses to the same words and sentences (Jain and Huth, 2018;
Caucheteux and King, 2022; Reddy and Wehbe, 2021; Caucheteux et al., 2021; Pasquiou et al., 2022,
2023). However, this mapping remains difficult to interpret, and the neural code for syntax in the
brain remains a major unknown. The present work thus provides a testable hypothesis to understand
how syntactic trees may be explicitly represented in the brain.

Broader impact. Combined with the works outlined above, our results open the exciting possibility
that the polar coordinate system may, in fact, explain how syntax is encoded in the human brain. Criti-
cally, this framework may generalize beyond syntactic tree structures, and apply to any compositional
problem, including compositional semantics, object-feature binding in vision, and representation of
knowledge graphs. Above all, while many have long opposed symbolic and connectionist formalisms,
this work contributes to show how these two systems of representations may be largely compatible
with one another, as long predicted (Smolensky, 1990; Smolensky et al., 2022). This reconciliation
thus holds great promises to understand the brain mechanisms of language and composition.
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Figure 6: Polar Probe performance on the EN-EWT dataset for Language Models with different families and
sizes
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Figure 7: Comparative analysis of Polar Probe performance on the EN-EWT dataset as a function of sentence
length (left) and sentence depth (right). The scores are shown across various model sizes (ranked by model size),
with darker lines indicating larger models.
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Figure 8: Polar Probe performance across different sentence structures and dependency types in a controlled
dataset. The three categories (Short, Relative clause, and Long-nested) show the performance breakdown by
Unlabeled Attachment Score (UUAS), Labeled Attachment Score (LAS), and specific dependency relations in
the main phrase. Error bars represent the standard error across relations.
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