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Is there an advantage of displaying heterogeneity in a population where the
individuals grow and divide by fission? This is a wide-ranging question, for
which a universal answer cannot be easily provided. This article thus aims
at providing a quantitative answer in the specific context of growth rate
heterogeneity by comparing the fitness of homogeneous versus heterogeneous
populations. We focus on a size-structured population, where an individual’s
growth rate is chosen at its birth through heredity and/or random mutations.
We use the long-term behaviour to define the Malthus parameter of such a
population, and compare it to the ones of averaged homogeneous populations.
We obtain analytical formulae in two paradigmatic cases: first, constant
rates for growth and division, second, linear growth rates and uniform
fragmentation. Surprisingly, these two cases happen to display similar
analytical formulae linking effective and individual fitness. They allow us to
investigate quantitatively the crossed influence of heredity and heterogeneity,
and revisit previous results stating that heterogeneity is beneficial in the case of
strong heredity.
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2Introduction

Heterogeneity in living populations has been evidenced
and questioned in many different studies, for instance –
among many others – variability in metabolism, genes and
growth rate in bacteria [15, 13, 8], variability in protein
production, morphology and growth rate in yeasts [26, 18],
heterogeneity in telomere lengths in eukaryotic cells [16, 14],
etc.

An important question for ecology is how to relate
these variable traits to the concept of fitness, either at a
population or at an individual level: which trait is beneficial
or detrimental to growth ? Does variability increase or
decrease this fitness?

At the population level, the fitness may be defined as
the Malthusian fitness, that is the exponential growth rate
of the number of individuals, called the Malthus parameter
of the population. At an individual level however, it is
uneasy to find which traits may be directly related to
fitness [23], except in an important and paradigmatic case:
when individuals grow exponentially in size, the individual
growth rate is equal to the Malthus parameter of a clonal
population sharing the same trait [33]. Such an individual
exponential growth, or elongation, is the case for some
bacteria – e.g. E. coli in normal growth condition.

This is one of the reasons why the study of heterogeneity
in individual growth rate is of central importance [20, 11].
Other motivations are the study of heredity through mother-
daughter correlation [5, 34], and it has also been used as an
individual fitness to study mutation effects [33].

These considerations led us to the following question:
What is the effective growth rate or fitness of a population
where individuals display different growth rates ? In
other words, does there exist an equivalent homogeneous
population, i.e. with the same fitness but where all
individuals grow at the same speed? If so, how does
this “effective” rate relates to the growth rates of the
heterogeneous population? This wide-ranging question has
evolutionary interpretations, to understand for instance
whether or not heterogeneity ensures not only more robust
survival [17] or adaptation to a varying environment [22],
but also inherently faster growth, or growth at a lower
energetic cost, or yet if heritable heterogeneity is more or
less advantageous than non-heritable traits [4, 24].

No universal answer can be provided, since it depends
on the various traits of the population and how the
individual growth is related to the population one [13, 19].
In this article, we propose a methodological approach that
we believe could be adapted to other cases, and we apply
it to size-structured populations where reproduction occurs
by division into smaller individuals – as is typically the case
for microbial populations. This context allows us to derive
exact formulae for the effective fitness of the population
as an explicit weighted average of the individual ones, in
two cases: first, constant growth and division rates, with
general and possibly asymmetric size distribution between
daughters; and second, linear growth rate and uniform

size distribution between newborns, with general division
rates. Surprisingly, we obtain almost identical analytical
formulae for the weighted averages in these two cases.
We also derive new explicit analytical formulae for the
steady size distribution [10]. We complete the study
with a numerical investigation of the emblematic case of
exponential individual growth and division into two cells of
equal size, for which no analytical formula can be derived.
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Fig. 1: Schematic representation of a heterogeneous mixing
population: pink cells grow faster than green ones, and
dividing cells can give rise to both types according to a
certain heredity law. For simplicity, equal mitosis (when a
cell divides into two cells of equal size) is represented.

Methods

(a) Definition of the effective fitness
Let us first explain our approach in a general setting. We
consider a population where each individual grows and
reproduces by division, independently from each other,
and possibly in variable ways. Individuals are described
by two traits: a “master” trait x – think of the size, the
physiological age, or any quantity that evolves through the
individual’s life and may influence their rate of division
– and an “individual” trait v, conserved through life, that
characterizes the growth of x – it could represent protein
production rate, growth or ageing rate, phenotypic trait,
gene expression, etc. This last trait thus accounts for the
heterogeneity in growth rates. For simplicity, let us consider
this trait as a discrete variable, taking a finite number of
values M , values that we denote v1 < . . . < vM .

An individual with trait vi gives birth to an individual
with trait vj with a certain probability κij . We call the
heredity kernel the matrix κ= (κij)1≤i,j≤M , which is a
stochastic irreducible matrix in MM (R), i.e. it satisfies

∀ 1≤ i, j ≤M, κij ≥ 0,

M∑
j=1

κij = 1, (0.1)

∀(i, j), ∃m∈ N∗ : κ
(m)
ij :=

(
κm
)
ij
> 0. (0.2)

Assumption (0.1) ensures that for any i, (κij)1≤j≤M is a
probability law, while the irreducibility assumption (0.2)
ensures that any ancestor of trait i has a non-zero probability
to give birth to a descendant of any trait j in a finite
number of divisions. If it fails, asymptotic behaviours may
also be characterised but several Malthusian behaviours



3can emerge for unconnected subpopulations, and some
subpopulations may also extinct.

Under balance assumptions on the laws of growth and
birth, it can be proven that the population reaches what we
can call homeostasis, defined here as a stable distribution of
traits (see Fig. 3 for an illustration). With this formalism, the
question of the influence of heterogeneity and heredity can
thus be formulated as follows: How can we compare this
heterogeneous (in trait vi) population with an homogeneous
one ? We notice that for each trait vi we can define a
homogeneous population by assuming that it shares all the
characteristics of the heterogeneous population, except that
the trait vi is common to all individuals and unchanged at
birth – in other words, the population is given by vi for its
trait, M = 1 and κ= κ11 = 1. This results in the following
definition.

Definition 0.1 (Effective fitness/trait of a heterogeneous
population). Consider a population composed of M

subpopulations with traits v= (v1, v2, . . . , vM ) transmitted at
birth according to a kernel κ satisfying (0.1)-(0.2). We assume
that growth and birth laws ensure the existence and uniqueness
of a Malthusian growth at exponential rate λ(v,κ) > 0 and the
convergence of the traits distribution towards a steady homeostatic
profile, and similarly, in the case of a unique trait v, the existence
and uniqueness of a Malthusian growth at a rate λv. An effective
fitness or effective trait of the heterogeneous population of
traits v is a trait v such that λv = λ(v,κ) is the Malthus
parameter of a homogeneous population of trait v, i.e. a population
with the same characteristics as the heterogeneous one, but with
homogeneous trait v.

The term “effective trait” makes clear the homogeneity
between the individual trait and their equivalent “effective
fitness”. We also use “effective fitness” in what follows
because the effective trait is, in many cases of interest,
an increasing function of the Malthus parameter – in our
study, it is even proportional to it. It is also a term used
for evolutionary systems, see e.g. [35], and in monotonous
cases the trait distribution can thus be related to the “fitness
landscape” [9, 27].

If the function w 7→ λw is strictly increasing and covers a
sufficiently wide range of values, the definition 0.1 ensures
the existence and uniqueness of the effective fitness v.
To better understand whether heterogeneity is beneficial
or detrimental to the population growth, we propose to
compare v with the distribution of traits vi. As discussed in
many articles [28, 35], the definition of neutrality is difficult
since it requires estimating the costs of heterogeneity
compared to its benefits – in other words, we need not only
to know how frequent individuals with a given trait are in
the population (this can be answered in our framework), but
also to model the individual’s “expense” related to that trait
– and this last point cannot be answered in a universal way,
it depends strongly on the case studied.

Our method thus consists in comparing the effective
trait, which is itself a certain weighted average of the traits,

see below (0.17), with three frequently used means, namely
geometric, arithmetic and harmonic means, and discuss the
influence of heredity and of the traits distribution on their
respective evolution. The same method can also apply to
compare the effective fitness with a model of heterogeneity
cost which would imply any other weighted average.

In the following, we apply our approach to the case of a
population where the individuals are characterised by their
size and display heterogeneous growth.

(b) Heterogeneous growth rates
From now on, we consider the population structuring trait
as being a size variable – i.e., a trait which grows with time
and is partitioned between offspring at division – and where
the heterogeneous trait is the individual growth rate. Size
is called a “master trait” for ecological and biodiversity
studies [1, 21], since for many species – phytoplankton,
marine fauna, bacteria, micro-organisms in general – it has a
positive correlation with many other functional traits. Size-
structured equations appear in many applications, from
bacterial growth [32, 20] to polymerisation models [12].
In the case of bacteria, individual growth rates have
been measured and their distribution reveals an important
indicator for mutation [33] or heredity [5].

We describe the behaviour of such a population by a
system of equations satisfied by the concentrations ni(t, x)

of particles of size x and type i at time t. We assume
that the individuals all share a common growth rate τ(x)

modulated by a trait vi > 0 which depends on their type, so
that type i individuals grow at a rate viτ(x). The division
rate per unit of size is denoted β(x). When embedded
in a time-dependent equation, the division rate “per unit
of size” has to be multiplied by the growth rate, namely
viτ(x), to obtain the division rate “per unit of time” [36, 6],
namely viτ(x)β(x) for type i. This is a pivotal point in our
modelling choices: the variable x – called size, but which
could represent any quantity partitioned by division – is
assumed to structure the division. To guarantee homeostasis
at equilibrium, we assume

β is integrable at x= 0, lim
x→∞

xβ(x) =+∞. (0.3)

Finally, the division of a cell or particle of size y gives
rise to two particles of respective size x and y − x

with a probability law b(y,dx) = b(y, y − dx). This law is
often called in the literature the fragmentation kernel. The
fragmentation kernel b must satisfy Supp (b(y, ·))⊂ [0, y]

(the daughters are smaller than the mother) and∫y
0
b(y,dx) = 1,

∫y
0
xb(y,dx) =

y

2
. (0.4)

The first equality ensures that b(y,dx) is a probability law,
while the second ensures that the division preserves the
overall size – the sum of the daughter sizes equals the
mother size. We refer to Fig. 1 for an illustration of the
model. All these assumptions lead to the following system



4of equations:

∂
∂tni(t, x) + vi

∂
∂x

(
τ(x)ni(t, x)

)
=−viτ(x)β(x)ni(t, x)

+ 2

∫∞
x

τ(y)β(y)b(y, x)

M∑
j=1

κjivjnj(t, y) dy ,

τ(0)ni(t, 0) = 0, ni(0, x) = nin
i (x).

(0.5)
This system is a particular case of the heterogeneous

growth-fragmentation system studied in [31]. In this article,
under assumptions on the parameters that we recall in
Appendix A, it is proven that there exists a unique Malthus
parameter λ= λ(v,κ) > 0, a unique nonnegative steady
profile N = (Ni)1≤i≤M and a unique nonnegative adjoint
state ϕ= (ϕi)1≤i≤M (the adjoint is obtained by duality
when formulating the equation in the sense of distributions)
such that for all i∈ {1, . . . ,M}

ni(t, x)e
−λt −→

t→∞
ρNi(x), (0.6)

where the multiplicative factor ρ is expressed as

ρ=

M∑
j=1

∫∞
0

nj(0, x)ϕj(x) dx . (0.7)

The triplet (λ,N ,ϕ) is characterised as being the unique
solution to the following system, derived from (0.5) (and its
adjoint equation) by replacing ni(t, x) by eλtNi(x):

vi(τNi)
′(x) + λNi(x) =−viτ(x)β(x)Ni(x)

+ 2

∫∞
x

τ(y)β(y)b(y, x)

M∑
j=1

κjivjNj(y) dy ,

τ(0)Ni(0) = 0, Ni ≥ 0,

M∑
j=1

∫∞
0

Nj(s) ds= 1,

(0.8)



− viτ(x)ϕ
′
i(x) + λϕi(x) =−viτ(x)β(x)ϕi(x)

+ 2viτ(x)β(x)

∫x
0
b(x, y)

M∑
j=1

κijϕj(y) dy ,

ϕi ≥ 0,

M∑
j=1

∫∞
0

Nj(s)ϕj(s) ds= 1.

(0.9)

To define the effective fitness/trait v introduced in
Definition 0.1, we consider (0.8) for M = 1 and a given v > 0,

namely find (λv, Nv, ϕv) solutions to
v(τNv)

′(x) + λvNv(x) =−vτ(x)β(x)Nv(x)

+ 2v

∫∞
x

τ(y)β(y)b(y, x)Nv(y) dy ,

τ(0)Nv(0) = 0, Nv ≥ 0,

∫∞
0

Nv(s) ds= 1,

(0.10)


− vτ(x)ϕ′

v(x) + λϕv(x) =−vτ(x)β(x)ϕv(x)

+ 2vτ(x)β(x)

∫x
0
b(x, y)ϕv(y) dy ,

ϕv ≥ 0,

∫∞
0

Nv(s)ϕv(s) ds= 1.

(0.11)

The effective trait v is such that λv = λ; it is uniquely
defined thanks to the linearity property of w 7→ λw , and
we have the bounds v ∈ [v1, vM ], see Theorem 3.2. in [31]

and Proposition B.1 in Appendix. The method described in
Section (a) consists in comparing v to the distribution of
(vi)1≤i≤M . However, all the quantities Ni, Nv, λ, λv being
defined in an implicit way as solutions to equations (0.8)
or (0.10), theoretical comparisons in the general case are
difficult, so that only numerical investigation has been
carried out till now, see [28].

We considered two paradigmatic cases for the growth
rate.

Case A: the growth rate τ(x) is constant, so that without
loss of generality we take τ(x)≡ 1 and the growth rate for
type i is vi > 0. We obtain analytical formulae for constant
fragmentation rates β(x)≡ β > 0 and general fragmentation
kernel b(y, x):

τ(x)≡ 1, β(x)≡ β, b general. (0.12)

Case B: the growth rate depends linearly on the size, so
that without loss of generality we take τ(x)≡ x and the
growth rate for type i is x 7→ vix with vi > 0. We derive
analytical formulae for general fragmentation rates β(x) in
the case of a uniform fragmentation kernel b(y, x) = 1

y1x≤y.

In such a case, the fragmenting particle has a uniform
probability to break at any place of the interval (0, y):

τ(x) = x, β(x) general, b(y, x) =
1

y
1x≤y. (0.13)

Results

Let us detail the results obtained for size-structured
heterogeneous populations reproducing by division. We
first derive explicit formulae in Cases A and B defined
above, and use them to compare the effective fitness with
averaged fitness. We also perform numerical simulations for
non-explicit cases, in order to conjecture whether or not the
results of the explicit cases can be generalised.

We recall the expression of the arithmetic, geometric and
harmonic means of v= (v1, . . . , vM ), respectively:

mA(v) =
v1 + . . .+ vM

M
,

mG(v) = M
√
v1 × . . .× vM ,

mH(v) =
M

1
v1

+ . . .+ 1
vM

,

(0.14)

and their comparison: mH ≤mG ≤mA.

(c) Case A: Constant growth
Assuming a constant rate of size growth is a reasonable
approximation for many applications, e.g. E. coli in
fast growth conditions [2]. It is also one of the most
mathematically-studied cases [29]. Constant division rate
is a much more specific assumption, however important
as it corresponds to a "neutral" case, where size does not
influence the division process. Assuming (0.12), we can



5rewrite (0.8) and (0.9)

viN
′
i(x) + λNi(x) =−viβNi(x)

+ 2β

∫∞
x

b(y, x)

M∑
j=1

κjivjNj(y) dy ,

Ni(0) = 0, Ni ≥ 0,

M∑
j=1

∫∞
0

Nj(s) ds= 1,

(0.15)



− viϕ
′
i(x) + λϕi(x) =−viβϕi(x)

+ 2viβ

∫x
0
b(x, y)

M∑
j=1

κijϕj(y) dy ,

ϕi ≥ 0,

M∑
j=1

∫∞
0

Nj(s)ϕj(s) ds= 1.

(0.16)

In the homogeneous case M = 1, a direct computation
(where we recall that

∫x
0 b(x,dy) = 1) shows that the adjoint

vector ϕv ≡ 1 is constant, and we also have λv = vβ [30].
Moreover, we have explicit solutions for Nv(x) for the two
emblematic cases of the fragmentation kernel:
• If b(x, y) = δy=2x (division into two equally-sized

daughters), it has been proven in [30, Lemma 2.1] that the
triplet solution to (0.10)-(0.11) is given by the following
analytical expression:

λv = βv, ϕv ≡ 1, Nv(x) =C

+∞∑
n=0

(−1)nαne
−2n+1βx,

with C a normalization constant and

α0 := 1, αn :=
2n

(2n − 1) . . . (21 − 1)
, n≥ 1.

• If b(x, y) = 1
y1x≤y (uniform division), we compute that

the triplet solution to (0.10)-(0.11) is given by

λv = βv, ϕv ≡ 1, Nv(x) = 4β2xe−2βx.

The formula λv = βv implies that the effective trait
of the heterogeneous case is explicitly given by v := λ

β .
Integrating (0.15) and summing for all i, we also obtain

v=

M∑
i=1

vi

∫∞
0

Ni(x) dx=
λ

β
. (0.17)

This formula expresses the effective trait as being the
average of the traits vi weighted by

∫∞
0 Ni dx, i.e. by the

relative amount of the population i in the total population.
It implies that v ∈ [v1, vM ] and illustrates well the fact
that the effective trait is a certain weighted average of the
traits v1, · · · , vM ; in our case study, it is weighted by the
proportion of cells sharing each trait in the population.

The proof of Proposition B.1 shows that to have
information on the Malthus parameter, we may study either
the direct problem (0.10) or the adjoint one (0.11). Explicit
solutions in the homogeneous case however suggest that
this second option – looking for solutions to (0.9) rather
than (0.8) – may be easier and thus constitute a better
chance to get information on λ. For this reason, we looked
for constant solutions ϕi(x)≡ ϕi which reduces (0.16) to a
matrix system; this revealed equivalent to integrating (0.15)

and look for (λ,N, ϕ), with N := (
∫∞
0 Nj dx)1≤j≤M and

ϕ= (ϕi) constant, positive solution of
λNi =−βviNi + 2β

M∑
j=1

κjivjNj , 1≤ i≤M,

λϕi =−βviϕi + 2βvi
M∑
j=1

κijϕj , 1≤ i≤M.

Denoting the diagonal matrix Diag(v) := (vjδi,j)1≤i,j≤M ,

we write the system under the form of a matrix equation{
λN= β

(
−Id+ 2κT

)
Diag(v)N

λϕ= βDiag(v) (−Id+ 2κ)ϕ.
(0.18)

Perron-Frobenius theorem applied to

β
(
−Id+ 2κT

)
Diag(v) + 2βvM

provides us with a unique eigentriplet (λ̃ > 0,N> 0, ϕ > 0),
where λ̃ is the dominant eigenvalue of the matrix. Then
(λ1 = λ̃− 2βvM ,N, ϕ) is also solution to (0.18), and λ1 >

0 since it satisfies (0.17). We thus have found a positive
solution (λ1, ϕ) to (0.16). By Theorem A.1, we have
uniqueness of a positive eigensolution, so that we can
conclude that λ1 = λ is the dominant eigenvalue, i.e. the
Malthus parameter of the system, and ϕ= (ϕi)1≤i≤M

constant is its adjoint eigenvector. This provides us with
an efficient way of computing λ numerically, by using for
instance the linalg.eig function of Python’s Numpy package,
and it enables us to build a tractable characterization of λ as
the unique positive root of a polynomial in some particular
cases (see Theorem D.1, Appendix).

Let us now detail some particular cases where the
formula is still more explicit.

Bimodal case In the case of two populations (M = 2), we
define κ by

κ :=

(
1− k1 k1
k2 1− k2

)
.

with k1, k2 ∈ (0, 1). We obtain the following formula for
the effective fitness (see Proposition C.1 in Appendix for
detailed calculations):

v=
λ

β
= ( 12 − k1)v1 + ( 12 − k2)v2

+

√(
( 12 − k1)v1 − ( 12 − k2)v2

)2
+ 4k1k2v1v2 (0.19)

From this expression we deduce cases where λ

superimposes with the geometric and arithmetic means of
the traits:
• If κ is uniform, i.e. k1 = k2 =

1
2 , the effective fitness is the

geometric mean of the traits:

v=mG(v1, v2) =
√
v1v2.

• If k1 = k2 =
1
4 , the effective fitness is the arithmetic mean

of the traits:

v=mA(v1, v2) =
v1 + v2

2
.

https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html#numpy-linalg-eig


6We illustrate this result on Fig. 2, and we will see for the
general case how to interpret the case k1 = k2 =

1
4 .

1 2 3 4 5 6 7 8
Trait v∗
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(k1, k2) = (0.5, 0.5)

(k1, k2) = (0.25, 0.25)
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Fig. 2: (Case A, M = 2). Variation of the effective fitness
of a population with two traits: one trait fixed, equal to
v0 = 4, and the other one, v∗, varying in [1, 8], for different
κ (full lines). Red dashed lines correspond to the arithmetic,
geometric and harmonic means of v0 and v∗, with mH ≤
mG ≤mA. When κ is uniform, i.e. k1 = k2 = 0.5 (purple), the
effective fitness coincides with mG(v0, v

∗); when k1 = k2 =

0.25 (orange), v coincides with mA(v0, v
∗).

Formula (0.19) appears as a complicated average of v1
and v2, which is not so easy to interpret in the general case.

Testing other types of kernel (by distinguishing whether
or not k1 and k2 are greater than 1

2 ) indicates that none of
the classical means (arithmetic, geometric and harmonic)
is, for every kernel κ and every set of traits, a bound of
the effective fitness, see Fig. 5. The bounds v ∈ (v1, v2) are
optimal: assuming v1 < v2, we know that the species 2
having the highest growth rate tends to dominate in the case
with perfect heredity (i.e. if the species 2 always give rise to
individuals of the same species 2): we observe in (0.19) that
if k2 → 0 (perfect heredity) then v→ v2 for any value of k1.
This is not sufficient to have reciprocally v→ v1 if k1 → 0:
indeed, if k1 → 0 we have v→max(v1, (1− 2k2)v2), so that
v→ v1 if and only if v1 ≥ (1− 2k2)v2. Fig. 4 illustrates this
behaviour.

Finally, the case with no heredity can be modeled by
coefficients κij = κj , which in our case gives 1− k1 = k2
and the formula

v= ( 12 − k1)(v1 − v2) +
√

( 12 − k1)2(v1 − v2)2 + 4k1k2v1v2.

For k1 = k2 =
1
2 (uniform kernel) we recover the geometric

mean, for k1 → 0 (and k2 → 1) we have v→ v1, for k1 → 1

(and k2 → 0) we have v→ v2.
In order to better illustrate how the weights (

∫
N1,

∫
N2)

are influenced by κ, thus giving rise to a Malthus parameter
closer to v1 or v2, we plotted in Fig. 6 a 3D visualisation of
N1 and N2 as functions of x and of a parameter of the kernel
κ. As expected, we see that in all cases, the faster population
dominates when its heredity is stronger.

0 1 2 3 4 5
Size

N1∫
N1

N2∫
N2

Nv

N1 + N2

m(N1,N2)∫
m(N1,N2)

Fig. 3: (Case A, M = 2). Comparison of the homeostatic size
distributions N = (N1, N2) in a heterogeneous population
with traits v= (0.5, 2.5) and heredity kernel defined by
(k1, k2) = (0.3, 0.5), with the size distribution Nv in a
homogeneous population. Note that in this case the profile
Nv is independent of v. All the distributions have been
normalized to be compared with each other. mA stands for
the arithmetic mean and m for the mean weighted by

∫
N1

and
∫
N2, that is such that v=m(v) (see (0.17)).
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Fig. 4: (Case A, M = 2). Effective fitness v of a heterogeneous
population with traits v= (0.5, 2.5) with respect to the
heredity kernel κ, described by its coefficients k1 = κ12
and k2 = κ21. In particular, the map is not symmetric and
we retrieve that v→ v2 when k2 → 0 while v does not
necessarily go to v1 when k1 → 0.
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Fig. 5: (Case A, M = 2). Variation of the effective fitness
of a population with one trait fixed, equal to v0 = 4, and
another trait, v∗, varying in [1, 8], for different kernels κ

(full lines). Red dashed lines correspond to the arithmetic,
geometric and harmonic means of v0 and v∗, with mH ≤
mG ≤mA. The first two cases display symmetric roles for
the two traits, first with high self-reproducing heredity (less
mixture), second when heredity consists in favoring the
other species (more mixture). The third and forth cases favor
one of the trait – v∗ for the third figure, 4 for the fourth.
We see that for some kernels κ, the effective fitness can be
smaller or larger than any classical mean of the traits. When
heredity is strong (first case), the effective fitness is larger
than the standard means.
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Fig. 6: (Case A, M = 2). Homeostatic size distributions N =

(N1, N2) in a heterogeneous population with traits v=

(0.5, 2.5) and heredity kernel defined by k1 = k2 (top) or
k1 = 1− k2 (bottom), with respect to k1.

General multimodal case For the general multimodal
case, we may solve numerically (0.18) to obtain the
dominant eigenvalue λ, but there is no fully explicit formula
as for M = 2.

In the specific case where there is no heredity (the
distribution of the daughter traits is independent to the
mother trait), we express λ as the unique positive root of
a polynomial (see Theorem D.1 and its proof in Appendix
for more details). In the case of a uniform kernel κij =
1
M we no longer have that the effective fitness equals the
geometric mean; we can prove that depending on the trait
distribution it may be larger or smaller, see Fig 2 for a
numerical illustration.

In the case κii =
1
2 + 1

2M and κij =
1

2M however, we can
prove that the effective fitness, as for M = 2, is equal to the
arithmetic mean: to do so, we notice that

v=
1

M

M∑
i=1

vi, ϕj =
vj

1
M

M∑
i=1

vi

is a solution to (0.16), and conclude by uniqueness. We also
notice that ∫

Nj =
1

v

M∑
i=1

vi

∫
Ni=

1

M
.

This case may be interpreted as one daughter keeping the
trait of its mother, whereas the other daughter picks its own
uniformly among all traits: then division creates all species
in a uniform manner, irrespective to the species division
rate, while keeping the amount of the dividing species
unchanged. This may be considered as “more uniform than
the uniform kernel”, in the sense that for the uniform kernel
the species with higher growth rate divide more often, and
when dividing gives rise to all species uniformly, thus it
disappears more from the population than the species with
lower growth. At equilibrium, this leads to a respective
amount which is lower for the fast-dividing species than for
the slowly-dividing species, as may be seen explicitly for the
case M = 2 by the formula∫

N1 =

√
v2
v1

∫
N2.

(d) Case B: linear growth rate
Many bacteria, among other species, display a linear growth
rate τ(x) = x. In the homogeneous case, a simple integration
of (0.10) multiplied by x shows that λv = v: the individuals
grow exponentially at the same rate as the Malthusian
parameter characterising the growth of the population.
Moreover, the adjoint function is ϕv(x)≡ x. This remarkable
fact remains true for any fragmentation kernel and rate,
as soon as balance assumptions between coefficients
ensure homeostasis. Unfortunately, these properties are not
satisfied in general for heterogeneous populations. We thus
restrict ourselves to the uniform division kernel b(y, x) =



8
1
y1x≤y. The systems (0.8)–(0.9) become

vi
(
xNi(x)

)′
+ λNi(x) =−vixβ(x)Ni(x)

+ 2

M∑
j=1

κjivj

∫∞
x

β(y)Nj(y) dy ,

Ni ≥ 0,

M∑
j=1

∫∞
0

Nj(x) dx= 1,

(0.20)



− vixϕ
′
i(x) + λϕi(x) =−vixβ(x)ϕi(x)

+ 2viβ(x)

M∑
j=1

κij

∫x
0
ϕj(y) dy ,

ϕi ≥ 0,

M∑
j=1

∫∞
0

Nj(s)ϕj(s) dx= 1.

(0.21)

In [7], an explicit solution for the homogeneous case with
β(x) = βxn−1 with n≥ 1 is given by

Nv(x) =Ce−
β
nxn

.

We notice that this formula remains true for any division
rate β(x), for which we obtain, for a certain normalization
constant C,

Nv(x) =Ce−
∫x
0
β(s)ds.

We thus look for solutions Ni(x) of the form

Ni(x) :=C

(∫
Ni

)
e−

∫x
0
β(s)ds, (0.22)

with C =
(∫

e−
∫x
0
β(s)ds dx

)−1
. Denoting the effective

fitness v= λ, by plugging (0.22) into (0.20) and dividing by
Ce−

∫x
0
β(s)ds, we obtain the system

v

∫
Ni =−vi

∫
Ni + 2

M∑
j=1

κjivj

∫
Nj . (0.23)

This is exactly the matrix equation (0.18) in the case β =

1, so that all the same conclusions as for Case A hold.
We can thus write the effective fitness v as a weighted
average of the traits vi : summing all the equations (0.23),
we obtain once again (0.17). Note that whereas the shape
of the solution is preserved for the eigenfunctions Ni, the
adjoint eigenfunctions ϕi are no longer defined by linear
functionals.

(e) Is heterogeneity detrimental or
beneficial?

In all of the previous analyses, we have shown that
the question of whether heterogeneity is detrimental or
beneficial cannot be answered rigorously without deciding
which is the correct average to model the costs associated
with each trait. However, let us explore here how the
number of traits and their variance can affect the effective
fitness of the population.

Influence of the number of traits We fix the interval V of
the traits and we test the influence of the number M of traits

on the value of the effective fitness. In the framework of
Cases A or B, for various M , we compute an approximation
of the effective fitness vM for a given kernel κM when
the set of traits is uniformly distributed over V . The two
first plots of Fig. 7 show that, for a kernel "more uniform
than uniform", the effective fitness does not depend of
the number M of traits. The last plots shows that even
when the kernels (κM )M≥2 are independent and identically
distributed random matrices, the effective fitness seems vMκM

converges to some value v∞ as M grows.
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Fig. 7: (Case A, M > 2). Variation of the effective fitness of a
population defined by traits VM regularly spaced in V and
the kernel κM , with respect to M . Obtained with V = [1, 7].

Varying the variance σ of the set of traits V for fixed
number of traits M and fixed mean trait v̄. We test
the influence of the variance between traits by fixing the
number M of traits and considering the sets of traits vσ =

(vσ1 , . . . , v
σ
M ), for several values of σ, distributed over the

interval Vσ such that:

vσM − vσ1 = σ, m(vσ) = v̄, ∀σ > 0, (0.24)

for m one of the means defined by (0.14). When m=mA is
the arithmetic mean, the vσi are distributed uniformly in Vσ ,
while for m=mG and mH this is the log(vσi ) and 1

vi
which

are equally spaced, respectively.
It was observed by Olivier [28] that for a linear growth

rate, in the absence of heredity and for v̄ defined as the mean
trait at birth

v̄=
M∑
i=1

viκi,

reducing the variance σ among individual traits enhances
the overall growth of the population (i.e. increases the
Malthus parameter, or equivalently the effective fitness).
The same type of result is stated by Lin and Amir [20]:
they besides consider the case of heredity with positive
correlations (reported e.g. in E. coli) reporting that the
variability in growth rate is detrimental to population
growth providing that the mother and daughter cells’
growth rates are not too strongly positively correlated. This
may be directly observed on the formula (0.19): if k1, k2 →
0, v tends to v2, the largest possible value for v. Similarly, in



9the general case, we can see on (0.23) that if κMi → δi=M ,

we have v→ vM and Ni
NM

→ 0 for i <M (see Fig. 6). The
population with higher growth rate reproduces itself more,
and thus dominates the other subpopulations.

To specifically assess the influence of the mother-
daughter correlations in growth rate in how variability
affects population growth, we consider kernels κ= κ(α) of
the form

κij(α) =

{
α, if i= j,
1−α
M−1 , if i ̸= j,

, ∀(i, j)∈ {1, . . . ,M},

(0.25)
for different values of α∈ [0, 1). We extend the results of
Olivier [28] and Lin and Amir [20] (linear growth rate and
equal mitosis) to the Case A (constant coefficients, Fig. 8). In
Supplementary Information, we simulated the case of equal
mitosis with linear growth rate and constant or linear β.
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Fig. 8: (Case A, M = 10). Variation of the effective fitness of a
population of M = 10 traits distributed as described in (0.24)
with m=mA for the figure on top, m=mG for the figure in
the middle and m=mH for the figure on the bottom. The
parameters are v̄= 4, and kernel κ(α) satisfying (0.25), with
respect to σ and for different values of α.

The numerical results, plotted on Fig. 8 and Fig. 9 (and
Fig. 10) are the following:
• When the variance σ of the set of traits is fixed, the

effective fitness vα increases with α, i.e with the mother-
daughter correlations in growth rate α.

• Cell-to-cell variability in growth rate, when leaving
the arithmetic mean unchanged, either decreases or
increases population growth depending on whether
or not α is lower or greater than a threshold α0.
Numerical simulations on Fig. 9 illustrate that for M > 2,
the threshold value is α0 :=

1
2 + 1

2M and vα0 = vA the
arithmetic mean.
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Fig. 9: Variation of the effective fitness of a population whose
traits are distributed as described in (0.24) with m=mA,
with the kernel κM , with respect to σ for M = 10 and M =

100. The last four pairs of figures correspond to kernels
κ= κ(α) satisfying (0.25) (with α equal, from top to bottom,
to 0.8, 0.2, 1

2 + 1
2M and 1

M . Variability is beneficial for α

large enough, i.e mother/daughter cells’ growth rates are
strongly positively correlated. M = 10 for the figure on top
and M = 100 for the figure on the bottom.

Conclusion

In this article, we have examined the impact of
heterogeneous growth on the fitness of a population. To this
end, we have put forth and discussed a general framework
that could be adapted to other situations. This framework
involves comparing a heterogeneous population, taken
in a constant environment without competition, with a
fitness-identical homogeneous population. In two relatively
general case studies, namely constant growth and division
and general division kernel (case A), and linear growth



10with uniform division kernel and general division rate
(case B), explicit formulae of the effective fitness as a
weighted average of the traits were obtained. The weights
are represented by the relative number of individuals
exhibiting a given trait. It is noteworthy that in both cases,
these weights are expressed as quantities dependent on the
total population, rather than on the dividing population or on
the population at birth. We have then explored numerically
these two cases. To reach a conclusion regarding the impact
of heterogeneity, and whether it is beneficial or detrimental,
further exploration of the associated costs is necessary. This
entails investigating when and how the cost of each trait
is supported by individuals. For example, is it supported
by cells uniformly all along their life, i.e. proportional to∫
Ni, or is it proportional to the individuals’ sizes, i.e.

proportional to
∫
xNi, or yet is it supported only by dividing

cells, then involving quantities like
∫
τ(x)β(x)Ni(x) dx ,

or is it something else, such as another moment or any
other weight? Only by exploring this question can we give
a definitive answer to the problem at hand.
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12Appendices

A Assumptions for a Malthusian behaviour
Theorem A.1. Assume that case A (0.12) or case B (0.13) holds for τ, β and b, and that b satisfies (0.4), β satisfies (0.3) and κ

satisfies (0.1)–(0.2). Then there exists a unique Malthus parameter λ= λ(v,κ) > 0, a unique nonnegative steady profile (Ni)1≤i≤M ∈
W 1

1 (R+)M and a unique nonnegative adjoint state (ϕi)∈ (L∞
loc(0,+∞))M solution to (0.8)–(0.9). If in addition to that, for all i∈

{1, . . . ,M}, we have 0≤ nin
i (x)≤CNi(x) for some C > 0, then the long time behaviour of the unique solution n= (n1, . . . , nM )∈

C (R+, L1(Φ1(x)dx))× · · · × C (R+, L1(ΦM (x)dx)) to (0.5) is given by

ni(t, x)e
−λt −→

t→∞
ρNi(x), L1(R+, ϕi(x)dx

)
, for all i∈ {1, . . . ,M},

where the multiplicative factor ρ is

ρ=

M∑
j=1

∫∞
0

nin
j (x)ϕj(x) dx .

In the case M = 1, a proof of Theorem A.1 is written in [29], chapter 4.2, for cases which include the assumptions of
case A, i.e. a constant growth rate τ(x) = 1, a constant division rate β(x) = 1 and a general division kernel b satisfying (0.4).
A generalisation to M ≥ 2 can be easily made from this result.

In [31], a proof of Theorem A.1 is written for cases which almost include the assumptions of Case A and B, except
that it assumed a division in equal sizes b(x, y) = δx= y

2
. The mitosis case was studied preferentially due to the fact that

interestingly, if τ(x) = x, having M ≥ 2 allowed to avoid the oscillatory behaviour observed in the case M = 1 [3]. However,
the proof from [31] can be generalized to include Cases A and B.

B Existence and uniqueness of the effective fitness
Proposition B.1 (Existence and uniqueness of the effective fitness). Let M ≥ 2 an integer, 0< v1 < · · ·< vM given traits.
Assume τ , β and b are such that the existence and uniqueness of the triplet (λ,Ni, ϕi) with λ= λv,κ > 0, (Ni)1≤i≤M ∈
W 1,1(R+)M and (ϕi)1≤i≤M ∈ (L∞

loc(0,+∞))M solution to (0.8)–(0.9) is guaranteed. Then there exists a unique effective trait
v ∈ [v1, vM ] as defined by Definition 0.1. In Cases A and B, it satisfies

v=

M∑
i=1

vi

∫∞
0

Ni(x) dx . (A 1)

Proof. Consider the eigenproblem (0.10) (0.11) for M = 1, and with parameters τ, β, b. For a given v > 0, existence and
uniqueness of the triplet (λv, Nv, ϕv) follows as a particular case of the eigenproblem studied in several articles [30, 25, 29,
7]. We notice that for homogeneity reasons we have λv = vλ1, hence the existence and uniqueness of v such that λv = λv,κ:
we simply define v :=

λv,κ

λ1
. Though the proof of the inclusion v ∈ [v1, vM ] is already briefly sketched in [31, Theorem 2.3],

we detail it here for sake of completeness. More precisely, we prove that

v≥ v1,

i.e. that
λv,κ ≥ λv1 ,

where (λv1 , Nv1 , ϕv1) is the solution to (0.10) (0.11) with v= v1. We multiply (0.8) by ϕv1(x), integrate the result with
respect to x and sum for i= 1 . . .M to get

λv,κ

M∑
i=1

∫∞
0

Ni(x)ϕv1(x) dx=−vi

M∑
i=1

∫∞
0

(τNi)
′(x)ϕv1(x) dx− vi

M∑
i=1

∫∞
0

τ(x)β(x)Ni(x)ϕv1(x) dx

+2

M∑
i=1

∫∞
0

ϕv1(x)

∫∞
x

τ(y)β(y)b(y, x)

M∑
j=1

κjivjNj(y) dy dx

Then we integrate by part the first term of the right hand side, use Fubini for the third term and we obtain

λv,κ

M∑
i=1

∫∞
0

Ni(x)ϕv1(x) dx= λv1

M∑
i=1

vi
v1

∫∞
0

Ni(x)ϕv1(x) dx

which implies the result since vi ≥ v1 for all i. The proof for v≤ vM is similar.



13In particular, in Case A, λw = βw and in Case B, λw =w. The effective fitness is then defined in Case A by

v=
λv,κ
β

and in Case B by
v= λv,κ.

Finally, in case A, we sum and integrate (0.15) with respect to i and x, which implies

λv,κ = β

M∑
i=1

vi

∫∞
0

Ni(x) dx ,

In case B, we plug Ni(x) =Ni(0)e
−

∫x
0
β(s)ds into (0.20), then we sum on all i and integrate to obtain (A 1).

C Proof of the formula for the weighted average for M = 2

Proposition C.1 (General kernel – M = 2). Assume M = 2 and that case A (0.12) holds for τ, β and b, and that b satisfies (0.4).
Let k1, k2 ∈ (0, 1) and κ a kernel defined by

κ :=

(
1− k1 k1
k2 1− k2

)
.

Then κ satisfies (0.2)(0.1), and the adjoint vector (ϕ1, ϕ2) solution to (0.9) is constant with respect to x and the associated Malthus
parameter λ> 0 is

λ= β
(
1

2
− k1

)
v1 +

(
1

2
− k2

)
v2 +

√(( 1
2
− k1

)
v1 −

( 1
2
− k2

)
v2

)2
+ 4k1k2v1v2 =: βv; (A 1)

where v is the effective fitness associated with (0.5).

Proof. We look for a constant solution ϕ := (ϕ1, ϕ2)∈ R2, with ϕ1, ϕ2 > 0, to the adjoint problem (0.9), i.e.
(
λ+ βv1

)
ϕ1 = 2β

(
v1(1− k1)ϕ1 + v1k1ϕ2

)
,(

λ+ βv2
)
ϕ2 = 2β

(
v2k2ϕ1 + v2(1− k2)ϕ2

)
.

(A 2)

With the notation α := ϕ2

ϕ1
, this resumes to find (λ, α)∈ (0,∞)2 satisfying

2βv1

(( 1
2
− k1

)
+ k1α

)
= λ,

2βv2

(
k2 +

( 1
2
− k2

)
α
)
= λα.

(A 3)

We deduce the following equation of degree 2 on α

k1v1α
2 +

(( 1
2
− k1

)
v1 −

( 1
2
− k2

)
v2

)
α− k2v2 = 0

with real solutions (since k1, k2 > 0)

α± =
( 12 − k2)v2 − ( 12 − k1)v1 ±

√(
( 12 − k1)v1 − ( 12 − k2)v2

)2
+ 4k1k2v1v2

2k1v1
.

Since α− < 0 and α+ > 0, this implies α= α+, and thus we obtain (0.19). It remains to prove that this defines a positive λ.

If s := ( 12 − k1)v1 + ( 12 − k2)v2 ≥ 0, then λ> 0. If s < 0, λ > 0 if and only if(
(
1

2
− k1)v1 + (

1

2
− k2)v2

)2

<

(
(
1

2
− k1)v1 − (

1

2
− k2)v2

)2

+ 4k1k2v1v2

⇐⇒ (
1

2
− k1)(

1

2
− k2)v1v2 <k1k2v1v2

⇐⇒ k1 + k2 >
1

2

which is verified for s < 0 (indeed k1 + k2 ≤ 1
2 implies that k1 and k2 are lower than 1

2 and thus that s≥ 0). We have
proven that λ defined by (0.19) is always positive, so by uniqueness of a solution (λ, ϕ) to (0.9), it is the Malthus parameter
associated with (0.8)-(0.9).



14D The effective fitness as the (unique) positive root of a polynomial in
the multimodal case with no heredity

For a given M and a set of traits {v1, . . . , vM}, we introduce the following notations

S0 := 1, Sk :=
∑

I⊂{1,··· ,M}
#I=k

∏
ℓ∈I

vℓ, k ∈ {1, . . . ,M}. (A 1)

Note that we call heredity the fact that the trait of the dividing individual influences the trait of its offspring, either
positively, favoring its own trait, or negatively, favoring other traits. Hence the non-hereditary case consists in an heredity
kernel which does not depend on the parental trait, namely satisfying the following assumption:

κij = κj , ∀(i, j)∈ {1, . . . ,M}2. (A 2)

For such kernels, we obtain the following explicit expression for the effective fitness.

Theorem D.1 (Effective fitness as the unique positive root of an explicit polynomial). Assume M > 0 and that case A (0.12)
holds for τ, β and b, and that b satisfies (0.4). Let κ= (κij) satisfy (0.1)-(0.2),let us moreover assume that the kernel κ satisfies (A 2),
i.e. that there is no heredity at division. Let (λ, ϕi, Ni) be the unique solution to (0.8)-(0.9). Then we have λ= βv where the effective
fitness v is the unique positive root of the following polynomial, whose coefficients only depend on (vi)1≤i≤M and κ

P (u) =

M∑
n=0

(
SM−n − 2

M∑
j=1

κj
∑

I⊂{1,...,M}\{j}
#I=M−n

∏
k∈I

vk

)
un (A 3)

with the conventions given by ∏
x∈∅

x= 1,
∑
x∈∅

x= 0. (A 4)

In addition, the adjoint vector ϕ= (ϕ1, . . . , ϕM ) solution to (0.9) is constant with respect to x and is defined up to renormalization by

ϕi : x 7→ vi
vi + v

, i∈ {1, . . . ,M}. (A 5)

Proof. Looking for a non-zero solution to (0.16) that is constant with respect to x is equivalent to looking for (λ, ϕ)∈
(0,+∞)× (0,+∞)M solution to

λϕi =−βviϕi + 2βvi

M∑
j=1

κjϕj , i∈ {1, . . . ,M}. (A 6)

Using v= λ
β , (A 6) is equivalent to

v + vi

2vi
ϕi =

M∑
j=1

κjϕj , ∀i∈ {1, . . . ,M},

⇐⇒


v + v1

2v1
ϕ1 =

M∑
j=1

κjϕj ,

ϕi =
vi(v + v1)

v1(v + vi)
ϕ1, ∀i∈ {2, . . . ,M},

⇐⇒


ϕ1 = 2

M∑
j=1

κj
vj

(v + vj)
ϕ1,

ϕi =
vi(v + v1)

v1(v + vi)
ϕ1, ∀i∈ {2, . . . ,M},

We multiply the first line by
∏

1≤k≤M (v + vk)and obtain
P (v)ϕ1 = 0,

ϕi =
vi(v + v1)

v1(v + vi)
ϕ1, ∀i∈ {2, . . . ,M},

(A 7)



15where P is the polynomial defined by:

P (u) = 2

M∑
j=1

(
κjvj

M∏
k=1
k ̸=j

(u+ vk)
)
−

M∏
k=1

(u+ vk),

= 2

M∑
j=1

κj

M∏
k=1

(u+ vk)− 2u

M∑
j=1

κj

M∏
k=1
k ̸=j

(u+ vk)−
M∏
k=1

(u+ vk),

=
M∏
k=1

(u+ vk)− 2u

M∑
j=1

κj

M∏
k=1
k ̸=j

(u+ vk),

=

M∑
n=0

(
SM−n − 2

M∑
j=1

κj
∑

I⊂{1,...,M}\{j}
#I=M−n

∏
k∈I

vk

)
un.

From the first equality of (A 7), either ϕ1 = 0 or P (v) = 0. If ϕ1 = 0, the second line of (A 7) implies that for all j ∈ {1, . . . ,M}
we also have ϕj = 0, i.e. ϕ≡ 0. By contradiction, P (v) = 0. Then, if (βv, Φ) is a constant solution to (0.16), then P (v) = 0 and
Φi =

vi(v+v1)
v1(v+vi)

Φ1. Conversely, for any v > 0 such that P (v) = 0, then there exists λ= βv and ϕ= (ϕ1, . . . , ϕM )∈ (0,+∞)M

such that (A 6) is satisfied. By uniqueness of the adjoint problem (0.16), this proves that P has at most one positive root.
Recalling the conventions (A 4), the term in front of uM is

S0 − 2

M∑
j=1

κj
∏
k∈∅

vk = 1− 2
M∑
j=1

κj =−1,

and the constant term is

SM − 2

M∑
j=1

κj
∑
I∈∅

∏
k∈I

vk = SM .

Therefore, we have
P (+∞) =−∞, P (0)> 0,

so that P has at least one positive root v.
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(a) Cases A and B
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(b) Equal mitosis, τ ≡ x, β ≡ 1
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(c) Equal mitosis, τ ≡ x, β ≡ x

Fig. 10: Variation of the effective fitness of a population of M = 10 traits distributed as described in (0.24) with m=mA for
the figures on top, m=mG for the figures in the middle and m=mH for the figures on the bottom. The parameters are
v̄= 4, and kernel κ(α) satisfying (0.25), with respect to σ and for different values of α.
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