
HAL Id: hal-04855934
https://cnrs.hal.science/hal-04855934v1

Preprint submitted on 26 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HEAL: Resilient and Self-* Hub-based Learning
Mohamed Amine Legheraba, Stefan Galkiewicz, Maria Potop-Butucaru,

Sébastien Tixeuil

To cite this version:
Mohamed Amine Legheraba, Stefan Galkiewicz, Maria Potop-Butucaru, Sébastien Tixeuil. HEAL:
Resilient and Self-* Hub-based Learning. 2024. �hal-04855934�

https://cnrs.hal.science/hal-04855934v1
https://hal.archives-ouvertes.fr


HEAL: Resilient and Self-* Hub-based Learning

Mohamed Amine Legheraba1, Stefan Galkiewicz1, Maria Potop-Butucaru1,
and Sébastien Tixeuil1,2

1 Sorbonne University, CNRS, LIP6, F-75005 Paris, France
2 Institut Universitaire de France, Paris, France

Abstract. Decentralized learning enhances privacy, scalability, and fault
tolerance by distributing data and computation across nodes. A popular
approach is Federated learning, which relies on a central aggregator, yet
faces challenges such as server vulnerabilities, scalability issues, privacy
risks and most importantly, the single point of failure. Alternatively Gos-
sip Learning and Epidemic Learning offer fully decentralization through
peer-to-peer exchanges of model updates, ensuring robustness and pri-
vacy, at the price of slower model convergence. In this work, we intro-
duce a novel decentralized learning framework called HEAL. HEAL is the
first cross-layer decentralized learning framework that exploits an opti-
mized self-organizing and self-healing underlying P2P overlay combin-
ing the strengths of Federated Learning, Gossip and Epidemic Learning.
Leveraging the recently proposed Elevator algorithm, HEAL promotes
dynamically chosen nodes to act as aggregators. Through simulations,
we demonstrate that HEAL has similar performances to that of Feder-
ated Learning in crash-free settings, while being fully decentralized and
fault-tolerant. In crash and churn prone environments HEAL outper-
forms Gossip and Epidemic Learning.

Keywords: Decentralized Learning · Federated Learning · Gossip Learn-
ing · Hub Learning · Machine Learning · Peer-to-peer networks · Hub
sampling · Algorithms · Simulations.

1 Introduction

Decentralized learning is an approach to training machine learning models, where
the data and computational tasks are distributed across multiple nodes or de-
vices, rather than centralized in a single location. This paradigm improves pri-
vacy, scalability, and fault tolerance by enabling participants to collaboratively
train models without sharing raw data. Each node processes its local data and
exchanges model updates (e.g., gradients or parameters) with others, using a
centralized coordinator or through peer-to-peer communication. Decentralized
learning is particularly beneficial in scenarios where data is naturally distributed
(such as in edge computing or IoT networks), or when data privacy or resource
constraints make centralization impractical.



2 Authors Suppressed Due to Excessive Length

Related works. The idea of decentralized learning originates from distributed
optimization and parallel computing. However, it was the advent of Federated
Learning [15] that truly brought the concept into the spotlight. In Federated
Learning all participants (nodes or devices) in a network train a machine learn-
ing model locally on their own data. Subsequently, each participant sends its
model to a centralized aggregator, which aggregates the received models and re-
turns the global model to the nodes. This process continues until a satisfactory
accuracy is achieved. While Federated Learning provides an efficient alternative
to traditional (centralized) machine learning, its dependence on a central server
for aggregating models introduces several limitations. This centralization creates
a single point of failure. That is, when the server crashes the generation of the
global model becomes impossible. Furthermore, the single server is an easy target
for adversarial attacks, such as model poisoning or inference attacks [19], which
can compromise the integrity of the global model. Additionally, the server’s role
poses scalability challenges, as it must manage potentially vast numbers of up-
dates from distributed participants, leading to communication and computation
bottlenecks. More importantly, if the server is controlled by a single organization,
it could introduce biases or favor certain participants’ updates, exacerbating in-
equalities in model performance. This phenomenon leads to leaning oligarchy.

To address these limitations, it is essential to explore totally decentralized
architectures which do not rely on a central coordinator. Gossip Learning [17] and
Epidemic Learning[4] are the state of the art approaches for fully decentralized
machine learning. However, the stochastic nature of these protocols can result
in slower convergence compared to Federated Learning-based approaches [6]. It
should be noted that in the case of gossip learning, recent research has been
conducted to enhance its various aspects, such as improving its security against
privacy attacks [3], increasing its efficiency by compressing the models sent [2].
More recent studies focused on examining the impact of poisoning attacks [18]
on various gossip learning strategies.

Interestingly, none of the previous decentralized federated approaches had a
cross-layer design philosophy.

Our contribution In this paper we introduce a novel form of decentralized learn-
ing, HEAL, which combines the benefits of Federated Learning, Gossip and Epi-
demic Learning (summarized in Table 1). HEAL leverages the network overlay
created by the newly introduced Elevator algorithm [13] that promotes in a to-
tally decentralized and adaptive manner a prescribed number of participating
nodes as hubs (nodes connected to the entire network). HEAL will use these hubs
as aggregator nodes for the learning task. Unlike traditional federated learning,
aggregator nodes are not pre-selected and hence HEAL becomes extremely re-
silient to the network dynamicity (nodes crashes and churn). That is, HEAL
self-heals and self-adapts by promoting new hubs while continuing the learning
process without significant losses. We challenged HEAL, Federated Learning,
Gossip Learning and Epidemic Learning with various topologies in static and
dynamic environments (crash and churn prone) on two tasks: a binary classifica-
tion task Logistic Regression [8] on Spambase [7] and on multinomial classifica-



HEAL: Resilient and Self-* Hub-based Learning 3

tion tasks LeNet5 [12] on MNIST [23]. HEAL outperforms Gossip and Epidemic
Learning in both accuracy and convergence time. Moreover, HEAL is resilient
to churn and crashes while Federated Learning cannot cope with these faults.

Decentralized
Federated Learn-
ing

Topology Fault resilience
Churn
re-
silience

Aggregation
speed

Federated Learning Static (Star [15] and
Multi-Star [9]) No No quick at the

server

Gossip Learning
Static (Random Reg-
ular [6]) No No slow local

Dynamic (with
Newscast [17]) Yes Yes slow local

Epidemic Learning
Dynamic (News-
cast [4]) Yes Yes slow local

Dynamic (Fed-
Lay [10]) Yes (only one) No slow local

HEAL (this pa-
per)

Dynamic (Eleva-
tor [13]) Yes Yes quick at the

hubs
Table 1: Comparison of different decentralized learning algorithms.

Paper organization In Section 2 we propose an overview of decentralized learn-
ing strategies. Section 3 introduces the architecture of HEAL and the detailed
description of the HEAL learning strategies. Section 4 presents our extensive
evaluations. Section 5 concludes and proposes open research directions.

2 Overview of Decentralized Learning Techniques

The distinguishing factors among various decentralized learning algorithms in
the literature are: (1) the algorithm employed to propagate and aggregate learn-
ing models within the network, and (2) the network topology on which the
learning occurs. Naturally, these two concepts are interconnected, as certain
propagation methods are better suited to specific topologies.

Decentralized propagation and aggregation of the learning models. There are
various techniques for propagating the learning models within a network, each
with its own set of advantages and disadvantages. The three most commonly
discussed methods in the literature are Federated Learning, Gossip Learning, and
Epidemic Learning. In Federated Learning [15], all models are aggregated at a
central server, facilitating rapid convergence towards a global model. In Gossip
Learning [17], each participant shares its model at a specified time interval with
a randomly chosen neighbor in the network. In Epidemic Learning [4], each
participant shares its model with all their neighbors in each cycle.



4 Authors Suppressed Due to Excessive Length

Network topology vs decentralized learning. In decentralized learning, the net-
work topology significantly influences the performance of the learning task, as
evidenced by various studies in the literature [21]. Different topologies impact
the speed of information propagation and the system’s resilience to node or
link failures. At the extremes, we have the star topology, typically used with
Federated Learning, and the random graph topology, often paired with Gossip
Learning. However, many other topologies exist between these extremes. Addi-
tionally, it is important to distinguish between static topologies (predefined and
unchangeable) and dynamic topologies (which evolve over time).

– Static topologies. Among static topologies, star topology, features a central
server and clients connected to it. This setup is not entirely decentralized, as
the aggregator server is selected at the beginning of the learning process, cre-
ating a single point of failure. The multi-star topology is a variation of the star
topology, involving multiple servers. Typically, all stars are interconnected
in a complete topology, with all other nodes connected to a predefined star.
Next, we have the complete topology, where every participant communicates
directly with all others. While this maximizes information propagation speed
and ensures rapid convergence, it is impractical for large-scale networks. An-
other common topology is the ring topology, where each node is connected
to two neighbors, forming a circular ring. This topology is straightforward
to construct but does not scale well. Finally, in random regular graphs each
participant is randomly connected to k other participants in the network,
with k being a predefined parameter. This topology is highly robust against
failures and churn, but the learning process convergence is slow. Other ran-
dom topologies in the literature include small worlds [22] and power-law
networks [1].

– Self-organised dynamic topologies. To establish a dynamic topology, two
primary approaches are discussed in the literature: Distributed Hash Table
(DHT)-based methods and decentralized peer sampling methods. Among
the DHT-based methods, Chord [20] is a notable example. Additionally,
Fedlay [10] is specifically designed for decentralized learning. For non-DHT
methods, Newscast [11] is commonly used in Gossip Learning and Epidemic
Learning.

An important aspect to consider in dynamic topologies is their resilience to
failures. A specific type of failure is churn, where nodes in a peer-to-peer network
enter and leave without any control. Another particular case of failures involves
attacks targeting specific nodes, such as servers or central nodes. Centralized
topologies are highly sensitive to these types of failures. In a static topology,
there is no possibility to repair the topology in the event of a failure. In a DHT,
some repairs are possible, but not always guaranteed face to high churn. Peer
sampling algorithms are a good compromise to repair the topology when failures
are detected and to be resilient to high churn.

HEAL, uses as underlying topology Elevator [13], a recently proposed decen-
tralized peer-sampling algorithm. This algorithm enables nodes in a peer-to-peer



HEAL: Resilient and Self-* Hub-based Learning 5

network to construct an overlay with h defined hubs, each hub being connected
to all nodes in the network, with h being a parameter of the algorithm. Eleva-
tor is totally distributed, self-organizing and resilient to churn. In Table 1, we
summarized the topologies used with various decentralized learning algorithms,
along with the strengths and weaknesses of each approach.

Supervised Learning
Task (Ex: LeNet5)

HEAL-Learning
Protocol

HEAL-Overlay
(Elevator)

Network Layer
(e.g. TCP/IP)

Application Layer

Model Aggregation Layer

Peer-Sampling Layer

Physical Network Layer

Fig. 1: HEAL architecture

3 HEAL architecture

Federated Learning is vulnerable due to its reliance on a central server, so our
protocol must avoid having a single point of failure. Additionally, to ensure
resilience to failures and churn, the topology should not be predefined but gen-
erated in a peer-to-peer manner. Conversely, to guarantee rapid model conver-
gence, learning models should not be shared via gossip within the network but
aggregated by a network node, which will then create the global model and
distribute it back to the other network nodes. These two aspects may seem
contradictory, but the HEAL-overlay (Elevator) protocol allows us to create a
topology that satisfies both requirements.

HEAL architecture shown in Figure ?? is composed of two layers on top of
the physical network. HEAL-overlay give by the Elevator protocol introduced in
[13] and HEAL-learning protocol described in the sequel.

3.1 HEAL Overlay

In the following we briefly revisit how Elevator operates. For a more detailed
explanation, readers can refer to the article that introduces the algorithm [13].

The Elevator protocol performs the following actions during each cycle: Each
node in the peer-to-peer network retrieves the list of neighbors of their neighbors
(i.e., the neighbors at a distance of two). The node then constructs an ordered list



6 Authors Suppressed Due to Excessive Length

Algorithm 1: HEAL Learning: The Hub algorithm
Data: duration to wait for model: delta_time
Data: list of all hubs (obtained by the HEAL overlay, Elevator protocol):

hubs_list
1 nb_hubs ← hubs_list .size()
2 Loop
3 models ← {}
4 time ← time.now()
5 backwards_list ← {}
6 while time.now() < time + delta_time do
7 peer_model , peer ← receive()
8 models.append(peer_model)
9 backwards_list .append(peer)

10 average_model ← average(models)
11 send(hubs_list , average_model)
12 models_hubs ← {}
13 models_hubs.append(average_model)
14 nb_receive ← 0
15 while nb_receive < nb_hubs do
16 hub_model ← receive()
17 nb_receive ++
18 models_hubs.append(hub_model)

19 global_model ← average(models_hubs)
20 send(backwards_list , global_model)

Algorithm 2: HEAL Learning: The client algorithm
Data: duration to wait for model: delta_time
Data: The model, same for all node, weights or parameters initialized at

random: model
Data: The local data of the node): data
Data: list of all hubs (obtained by HEAL overlay, Elevator protocol):

hubs_list
Data: number of hub to send the model: number_hub_send

1 Loop
2 model ← trainModel(model , data)
3 hubs ← chooseRandom(hubs_list ,number_hub_send)
4 for hub ∈ hubs do
5 send(hub,model)

6 hubs_models ← list()
// Receiving the global models from the hubs

7 for hub ∈ hubs do
8 model_hub ← receive()
9 hubs_models.append(model_hub)

10 model ← average(hubs_models)



HEAL: Resilient and Self-* Hub-based Learning 7

of the most frequent peers (the frequency map) and contacts the c most frequent
nodes (referred to as preferred). Each contacted node responds by sending the
addresses from its backward list to the contacting node and adds the contacting
node to its backward list. The contacting node’s cache is then reset to an empty
array. Subsequently, the node selects the h most frequent peers and c-h random
peers from the backward lists of all preferred peers to populate its cache.

This protocol enables the rapid formation (in 4 cycles or fewer in practical
settings) of a network topology with h defined hubs and a random distribution
of the remaining incoming connections. The resulting network has a diameter
of 2 and is highly resistant to both failures (including hub failures) and churn.
In the event of all hubs failing, new hubs quickly emerge (typically with one
cycle). These properties are particularly advantageous for decentralized learning,
suggesting that we can implement a learning algorithm on this topology that
achieves performance levels similar to Federated Learning while maintaining
resilience properties as Gossip and Epidemic Learning.

3.2 HEAL Learning Protocol

Regarding the communication algorithm, we utilize the hubs within the network
as aggregators, similar to how the central server aggregates models in Federated
Learning. The key difference is that multiple hubs perform the aggregation, not
just one, and these hubs emerge automatically. We leverage the presence of
multiple hubs to distribute the aggregation workload, with each hub handling
a portion of the network nodes and subsequently aggregating with each other.
Each hub then returns the global model to its clients, and the protocol begins
a new cycle. As with Federated Learning, the learning process continues over
several cycles and concludes when the global model has converged.

In the event of one or more hubs failing during a protocol cycle, the remaining
hubs can temporarily manage the nodes without a dedicated hub until a new hub
emerges, which typically occurs within two cycles. If all hubs fail, the aggregation
process halts but resumes as soon as new hubs appear, again within two cycles.
It’s important to note that Elevator also establishes random connections in the
network, in addition to hub connections. In HEAL, we focus solely on connections
to hubs (and between hubs) for model aggregation. These random connections
could potentially be used to accelerate model convergence or mitigate malicious
behavior, but this is beyond the scope of our current work. For now, we assume
that all network nodes (and hubs) are honest, with plans to investigate malicious
behavior in future research.

One intriguing feature of Elevator is the ability to select the number of hubs
in the network through a parameter shared by all nodes. This is particularly
valuable in HEAL, as it allows us to balance between having fewer hubs for higher
convergence speed and more hubs for greater resilience to failures. Additionally,
HEAL offers the flexibility to choose the number of hubs to which a client sends
its model. A more detailed description of how Learning operates in HEAL follows.



8 Authors Suppressed Due to Excessive Length

Each node in the network executes the HEAL learning protocol, in addition to
HEAL overlay construction via the Elevator protocol (that dynamically assigns
"normal" (client) or "hub"(server) status to the participating nodes):

– If the node is a normal(client) node, it (1) selects a number of hubs(servers)
at random, (2) performs a local training step, (3) sends the trained model
to the hubs, and (4) waits for the global model.

– If the node is a hub, it (1) waits for a delta period to receive models from
normal nodes, (2) aggregates these models by averaging their parameters,
and (3) sends its aggregated model to all other hubs. (4) It then waits to
receive models from other hubs and (5) aggregates all these models to obtain
the global model. (6) Finally, the hub sends the global model back to the
nodes.

Algorithms 1 and 2 present the detailed pseudo-code of HEAL Learning.

4 Evaluation results

We evaluated our algorithm using simulations on the Gossipy simulator [14]. We
compared Hub Learning against Federated Learning [15], Gaia [9], Gossip Learn-
ing [17], Epidemic Learning [4], Epidemic Learning on a Chord topology [20],
Epidemic Learning on a ring topology, and Fedlay [10]. For the static topolo-
gies (Federated Learning, Gossip Learning, Epidemic Learning, ring, Chord, and
Gaia), we generated the topology using the Python library Networkx [5]. For the
dynamic topologies (Fedlay and Hub Learning with Elevator), we generated the
topology using the PeerSim simulator [16]. In Elevator (used by Hub Learning),
the connections are directional. However, to compare them with other algorithms
(which assume an undirected graph), we modified the underlying graph of the
topology generated to make it undirected. All evaluations were conducted with
a network of 100 nodes. For Elevator, we used 5 hubs, as we found this number
to be a good balance between performance and resilience. For Gaia, we had 5
servers responsible for aggregation (to compare with the 5 hubs) and 19 nodes
(or workers) attached to each server. Each algorithm was evaluated 5 times, and
we present the average results obtained.

We assessed all protocols on two tasks: a binary classification task (Logistic
Regression [8] on Spambase [7], with a learning rate of 0.1) and on multinomial
classification tasks (LeNet5 [12] on MNIST [23], with a learning rate of 0.001).
The weight decay (regularization parameter) was fixed at 0.01. Our algorithm
was evaluated under various conditions: the failure of 20% of nodes, the failure of
a hub, the failure of all 5 hubs, and during churn (where 10% of nodes disappear
at each cycle and are replaced by new nodes).

All simulations were run on 16 vCPU, using 64G of memory, on a cluster
composed of 10 servers, described in Table 2.



HEAL: Resilient and Self-* Hub-based Learning 9

Machine Memory Processors Cores
DELL PowerEdge XE8545 2 To 2 x AMD EPYC 7543 128 threads @ 2.80 GHz
DELL PowerEdge R750xa 2 To 2 x Intel Xeon Gold 6330 112 threads @ 2.00 GHz

Table 2: Description of the cluster

Crash-free, churn-free environment. For simulations without failures and churn,
we ran all algorithms over 1000 cycles, on the 2 learning tasks (Spambase,
MNIST). As shown in Figures 2a and 2b, Federated Learning performs best,
which was expected. Surprisingly, the ring topology performs second best de-
spite lower connectivity. Other topologies based on random graphs perform less
well. HEAL, however, performs very well for both the Spambase and MNIST
datasets.

In Tables 4, 5a and 5b we have compiled the results for all learning algo-
rithms, for the three learning tasks, with the final accuracy, obtained after 1000
cycles, and the time to converge to a certain level of accuracy. Federated Learn-
ing, Gaia, and HEAL have very similar results, with a final accuracy of around
0.88 on Spambase, and 0.95 on MNIST. Gossip-based approaches achieve val-
ues of 0.85 and 0.91 on Spambase and MNIST. Convergence time is very fast
for aggregator-based approaches: on Spambase, Federated Learning converges
to 0.85 in 2 cycles, and HEAL takes 4 cycles. On the other hand, to converge
on 0.90 accuracy, HEAL takes 339 cycles while Federated Learning takes 135
cycles, hinting at possible HEAL optimization, e.g. adjusting the learning rate.
On MNIST, HEAL performs very well, even better than Federated Learning,
and it converges to 0.95 accuracy in 76 cycles.

HEAL parameterized with number of hubs and number chosen hubs We ran sim-
ulations of HEAL, changing the number of hubs over 2000 cycles. On Figure 3a,
we observe that increasing the number of hubs (and the number of hubs to which
clients send their model) has almost no impact on accuracy, which is expected
since hubs aggregate models. There is a slight drop in accuracy when the number
of hubs is increased significantly, due to the fact that only non-hubs are learning,
not hubs. Increasing the number of hubs to which we send our model, from 1 to
nb_hubs/2, slightly increases convergence speed. The results are summarized in
Table 3.

Crashes-prone environment. We analyze the performance of the algorithms when
the network suffers crashes (Table 6). To simulate a brutal failure we discon-
nected 20% of the nodes chosen uniformly at random, just after the start of the
learning process, i.e., in this case, we have disconnected 20 nodes at cycle 10,
and we compared HEAL with Chord, Gaia and Fedlay. HEAL is the algorithm
with the best results, although Gaia remains very close, as seen in Figure 2c.

HEAL under churn environment and hub-targeted attacks. We further analyzed
the performance of HEAL under network churn conditions. To simulate churn,



10 Authors Suppressed Due to Excessive Length

h s Accuracy 0.85 0.90 0.95
1 1 0.9667 21 37 90
2 1 0.9531 11 22 127
3 1 0.9607 11 19 64
7 1 0.9638 14 26 67
9 1 0.9653 16 29 69
13 1 0.9664 18 31 81
17 1 0.9665 20 33 88
21 1 0.9674 20 35 86
25 1 0.9657 25 35 87

(a) With s = 1

h s Accuracy 0.85 0.90 0.95
5 2 0.9589 7 15 52
7 3 0.9641 6 10 33
9 4 0.9647 6 11 36
13 6 0.9628 5 10 34
17 8 0.9601 5 10 37
21 10 0.9594 5 11 45
25 12 0.9607 5 10 47

(b) With s = h
2

Table 3: HEAL final accuracy (on cycle n°2000) and number of rounds to obtain
this level of accuracy, for a network of 100 nodes, a number of hubs h and a
varying number of hubs s designated for each node, without failures, on the
MNIST dataset.

we disconnected 10% of the nodes at each cycle and replaced them with an
equal number of new nodes, each connected to 20 nodes uniformly at random,
between cycles 50 and 150. We also analyzed the performance of the main learn-
ing algorithms after a targeted attack on the hubs during the execution of the
simulation. We tested two scenarios, one where we disconnected one of the 5
hubs, and another where we disconnected all 5 hubs at the same time. In both
case the failure happened in the round 10. In Figure 3b, we have compared the
execution of HEAL without failures, and with different failure scenarios (crash
of 20 nodes, crash of one hub, crash of all 5 hubs, churn). As can be seen, there
is no significant impact when 20 nodes or hubs crash. Indeed, thanks to the
Elevator overlay, even when all the hubs are shutdown, 5 new nodes are elected
very quickly as hubs, and the training job continues as if no catastrophic event
had happened. During churn, model accuracy falls slightly, but rises again very
quickly once churn is over, back to the level without failures.

5 Conclusion

In this paper we introduced HEAL protocol for decentralized learning that com-
bines the convergence speed of Federated Learning with the resilience to churn
and failures of Gossip and Epidemic Learning.

Our simulation results (summarized in Table 4, 5 and 6) show that, on the
MNIST dataset, HEAL (with 5 hubs) achieves an accuracy 136% more than
Gossip Learning, 106% more than Epidemic Learning and 99% of the accuracy
of the baseline Federated Learning. HEAL achieves an accuracy of 0.95 in 76
cycles, which is one cycle slower than Gaia, and much faster than random graph
methods, which achieve this value in 5 times as many cycles. By setting HEAL
with 7 hubs and the number of hubs to which each node sends its model at 3,



HEAL: Resilient and Self-* Hub-based Learning 11

0 200 400 600 800 1000
Cycles

0.0

0.2

0.4

0.6

0.8
Ac

cu
ra

cy

Average Accuracy chord
Average Accuracy hub_learning
Average Accuracy epidemic_learning
Average Accuracy federated_learning
Average Accuracy gaia
Average Accuracy gossip_learning
Average Accuracy fedlay
Average Accuracy ring

(a) For the Spambase dataset, no
failures

0 200 400 600 800 1000
Cycles

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Average Accuracy chord
Average Accuracy hub_learning
Average Accuracy epidemic_learning
Average Accuracy federated_learning
Average Accuracy gaia
Average Accuracy gossip_learning
Average Accuracy fedlay
Average Accuracy ring

(b) For the MNIST dataset, no
failures

0 25 50 75 100 125 150 175 200
Cycles

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Average Accuracy chord
Average Accuracy hub_learning
Average Accuracy gaia
Average Accuracy fedlay

(c) For the MNIST dataset, when
20% of the nodes fail at round 10.

Fig. 2: Accuracy of various communication protocols, with a network of 100
nodes, during 1000 cycles. HEAL overlay has 5 hubs, each node sends its model
to one hub.

0 250 500 750 1000 1250 1500 1750 2000
Cycles

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0 50 100 150 200
0.80

0.85

0.90

0.95

1.00

h=1, s=1
h=2, s=1
h=3, s=1
h=5, s=1
h=7, s=1
h=9, s=1
h=13, s=1
h=17, s=1
h=21, s=1
h=25, s=1
h=5, s=2
h=7, s=3
h=9, s=4
h=13, s=6
h=17, s=8
h=21, s=10
h=25, s=12

(a) HEAL with different numbers of hubs
(h), from 1 to 25, and different numbers
of hubs to which nodes send their model
(s), 1 or h

2
, no failures, 2000 cycles

0 25 50 75 100 125 150 175 200
Cycles

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

normal
churn
crash20peers
crash1hub
crash5hub

(b) HEAL accuracy for all contexts (no
failures, crash of 20 peers, crash of 1 hub,
crash of all hubs, churn), with 5 hubs,
each node sent its model to one hub, 200
cycles.

Fig. 3: Accuracy of HEAL for the MNIST dataset, with 100 nodes



12 Authors Suppressed Due to Excessive Length

Method Spambase MNIST (LeNet)
Federated Learning 0.9087 0.9742

Gaia 0.8826 0.9442
Gossip Learning 0.8322 0.7098

Epidemic Learning 0.9548 0.9111
Ring 0.9076 0.9499
Chord 0.9063 0.9542
FedLay 0.9056 0.9639
HEAL 0.9001 0.9687

Table 4: Final accuracy by communication method and dataset used. HEAL
overlay with 5 hubs, each node sends its model to one hub (fault and churn free
scenario).

Method 0.85 0.90
Federated Learning 2 135
Gaia (5 servers) 6 N/A
Gossip Learning N/A N/A
Epidemic Learning 12 25
Ring 13 141
Chord 12 27
FedLay 12 26
HEAL (5 hubs, each
node sent it model to
one hub)

4 339

(a) On the Spambase dataset.

Method 0.85 0.90 0.95
Federated Learning 22 37 91
Gaia (5 servers) 13 28 75
Gossip Learning N/A N/A N/A
Epidemic Learning 90 137 372
Ring 74 157 569
Chord 98 159 451
FedLay 89 136 422
HEAL (5 hubs, each
node sent it model to
one hub)

15 27 76

HEAL (7 hubs, each
node sent it model to
three hubs)

5 10 33

(b) On the MNIST dataset.

Table 5: Number of rounds required to achieve different accuracy levels across
datasets, for a network of 100 nodes, without failures. N/A indicates that the
protocol didn’t achieve the accuracy level at the end of the simulation (1000
cycles).



HEAL: Resilient and Self-* Hub-based Learning 13

Method Context of crash Accuracy

Gaia (5 servers) crash of 20% of the nodes at cycle
n°10 0.9637

Chord crash of 20% of the nodes at cycle
n°10 0.9520

FedLay crash of 20% of the nodes at cycle
n°10 0.9572

HEAL (5 hubs, each node sent it
model to one hub)

crash of 20% of the nodes at cycle
n°10 0.9658

HEAL (5 hubs, each node sent it
model to one hub) crash of 1 hub 0.9638

HEAL (5 hubs, each node sent it
model to one hub) crash of 5 hub 0.9629

HEAL (5 hubs, each node sent it
model to one hub)

churn of 10% between cycle 50 and
cycle 150 0.9528

Table 6: Final accuracy (on cycle n°200) by propagation method, after a context
of failures, on the MNIST dataset.

it is possible to reduce it to 33 cycles, which is 2.3 times faster than Gaia (the
second best result). Our protocol continues to operate in the presence of faults,
and in each fault scenario, the final accuracy is at most equal to 98% of the
accuracy in a fault-free context.

HEAL paves the way for a new approach to decentralized learning, featuring
a cross-layer approach. Our future work will focus on adapting HEAL to het-
erogeneous environments, enhancing its robustness against various attacks (e.g.
poisoning attacks, model attacks, etc).

References

1. Barabási, A.L., Bonabeau, E.: Scale-free networks. Scientific american 288(5), 50–9
(2003)

2. Danner, G., Hegedűs, I., Jelasity, M.: Decentralized machine learning using com-
pressed push-pull averaging. In: Proceedings of the 1st International Workshop on
Distributed Infrastructure for Common Good. pp. 31–36 (2020)

3. Danner, G., Jelasity, M.: Fully distributed privacy preserving mini-batch gradi-
ent descent learning. In: Distributed Applications and Interoperable Systems: 15th
IFIP WG 6.1 International Conference, DAIS 2015, Held as Part of the 10th Inter-
national Federated Conference on Distributed Computing Techniques, DisCoTec
2015, Grenoble, France, June 2-4, 2015, Proceedings 15. pp. 30–44. Springer (2015)

4. De Vos, M., Farhadkhani, S., Guerraoui, R., Kermarrec, A.M., Pires, R., Sharma,
R.: Epidemic learning: Boosting decentralized learning with randomized commu-
nication. Advances in Neural Information Processing Systems 36 (2024)

5. Hagberg, A., Swart, P.J., Schult, D.A.: Exploring network structure, dynamics, and
function using networkx. Tech. rep., Los Alamos National Laboratory (LANL), Los
Alamos, NM (United States) (2008)



14 Authors Suppressed Due to Excessive Length

6. Hegedűs, I., Danner, G., Jelasity, M.: Decentralized learning works: An empiri-
cal comparison of gossip learning and federated learning. Journal of Parallel and
Distributed Computing 148, 109–124 (2021)

7. Hopkins Mark, Reeber Erik, F.G., Jaap, S.: Spambase. UCI Machine Learning
Repository (1999), DOI: https://doi.org/10.24432/C53G6X

8. Hosmer Jr, D.W., Lemeshow, S., Sturdivant, R.X.: Applied logistic regression. John
Wiley & Sons (2013)

9. Hsieh, K., Harlap, A., Vijaykumar, N., Konomis, D., Ganger, G.R., Gibbons, P.B.,
Mutlu, O.: Gaia:{Geo-Distributed} machine learning approaching {LAN} speeds.
In: 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). pp. 629–647 (2017)

10. Hua, Y., Pang, J., Zhang, X., Liu, Y., Shi, X., Wang, B., Liu, Y., Qian, C.: Towards
practical overlay networks for decentralized federated learning. arXiv preprint
arXiv:2409.05331 (2024)

11. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., Van Steen, M.: Gossip-
based peer sampling. ACM Transactions on Computer Systems (TOCS) 25(3), 8–es
(2007)

12. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
computation 1(4), 541–551 (1989)

13. Legheraba, M.A., Potop-Butucaru, M., Tixeuil, S.: Elevator: Self-* and persis-
tent hub sampling service in unstructured peer-to-peer networks. arXiv preprint
arXiv:2406.07946 (2024)

14. Makgyver: Gossipy (2024), https://github.com/makgyver/gossipy, python module
for simulating gossip learning and decentralized federated learning. Accessed: 2024-
11-21

15. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial intelligence and statistics. pp. 1273–1282. PMLR (2017)

16. Montresor, A., Jelasity, M.: PeerSim: A scalable P2P simulator. In: Proc. of the
9th Int. Conference on Peer-to-Peer (P2P’09). pp. 99–100. Seattle, WA (Sep 2009)

17. Ormándi, R., Hegedűs, I., Jelasity, M.: Gossip learning with linear models on fully
distributed data. Concurrency and Computation: Practice and Experience 25(4),
556–571 (2013)

18. Pham, A., Potop-Butucaru, M., Tixeuil, S., Fdida, S.: Data poisoning attacks in
gossip learning. In: International Conference on Advanced Information Networking
and Applications. pp. 213–224. Springer (2024)

19. Rodríguez-Barroso, N., Jiménez-López, D., Luzón, M.V., Herrera, F., Martínez-
Cámara, E.: Survey on federated learning threats: Concepts, taxonomy on attacks
and defences, experimental study and challenges. Information Fusion 90, 148–173
(2023)

20. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
computer communication review 31(4), 149–160 (2001)

21. Vogels, T., Hendrikx, H., Jaggi, M.: Beyond spectral gap: The role of the topology
in decentralized learning. Advances in Neural Information Processing Systems 35,
15039–15050 (2022)

22. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’networks. nature
393(6684), 440–442 (1998)

23. Yann LeCun, C.C., Burges, C.J.: Mnist database of handwritten digits (2010),
https://yann.lecun.com/exdb/mnist/, accessed: 2024-12-13

https://github.com/makgyver/gossipy
https://yann.lecun.com/exdb/mnist/

	HEAL: Resilient and Self-* Hub-based Learning

