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FUNDAMENTAL SOLUTIONS FOR PARABOLIC EQUATIONS AND

SYSTEMS: UNIVERSAL EXISTENCE, UNIQUENESS, REPRESENTATION

PASCAL AUSCHER AND KHALID BAADI

Abstract. In this paper, we develop a universal, conceptually simple and systematic method to
prove well-posedness to Cauchy problems for weak solutions of parabolic equations with non-smooth,
time-dependent, elliptic part having a variational definition. Our classes of weak solutions are taken
with minimal assumptions. We prove the existence and uniqueness of a fundamental solution which
seems new in this generality: it is shown to always coincide with the associated evolution family
for the initial value problem with zero source and it yields representation of all weak solutions.
Our strategy is a variational approach avoiding density arguments, a priori regularity of weak
solutions or regularization by smooth operators. One of our main tools are embedding results
which yield time continuity of our weak solutions going beyond the celebrated Lions regularity
theorem and that is addressing a variety of source terms. We illustrate our results with three
concrete applications : second order uniformly elliptic part with Dirichlet boundary condition on
domains, integro-differential elliptic part, and second order degenerate elliptic part.
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1. Introduction

Linear parabolic problems have a long history. The standard method usually begins by solving
the Cauchy problem, with or without source terms, and representing the solutions through what
is called fundamental solution. Abstractly, starting from an initial data u0, the evolution takes
the form ∂tu + Bu = f where time describes an interval (0, T ), the sought solution u and the
source f are valued in some different vector spaces and B is an operator that could also depend on
time. Modeled after the theory of ordinary scalar differential equations, it is assumed some kind of
dissipativity for −B. One issue toward extension to non-linear equations is to not use regularity,
but measurability, of the coefficients. We stick here to the linear ones. The amount of literature
is too vast to be mentioned and we shall isolate only a few representative works for the sake of
motivation.

In the abstract case, when B does not depend on time, that is the autonomous situation, the
approach from semi-group of operators and interpolation has been fruitful, starting from the earlier
works (see Kato’s book [Kat13]) up to the criterion for maximal regularity in UMD Banach spaces
(see L. Weis [Wei01] or the review by Kunstmann-Weis [KW04]). In the non-autonomous case,
results can be obtained by perturbation of this theory, assuming some time-regularity; see, for
example, Kato’s paper [Kat61].

A specific class of such problems is when B originates from a sesquilinear form with coercivity
assumptions. Lions developed an approach in [Lio57] which he systematized in [Lio13]. The nice
thing about this approach is that there is no need for regularity with respect to time; its drawback
is that it is restricted to Hilbert initial spaces.

In parallel, there has been a systematic study of concrete parabolic Cauchy problems of dif-
ferential type starting when the coefficients are regular. In this case, several methods exist for
constructing the fundamental solution. The most effective technique involves a parametrix in com-
bination with the freezing point method [Fri08]. This approach simplifies the problem to one where
the coefficients become independent of space, leading to explicit solutions represented by kernels
Γ(t, x, s, y) with Gaussian decay. When the coefficients are measurable (and possibly unbounded
for the lower order terms), the theory of weak solutions, developed in the 1950s and 1960s, applies.
This theory culminated in the book of Ladyzenskaja, Solonnikov and Ural’ceva [LSU68]. Although
we shall not consider it here, the specific situation of second order parabolic equations with real,
measurable, time-dependent coefficients was systematically treated by Aronson [Aro67, Aro68]: his
construction of fundamental solutions and the proof of lower and upper bounds relied on regularity
properties of local weak solutions by Nash [Nas58] and its extensions, and by taking limits from op-
erators with regular coefficients. A recent result [AN24] follows this approach for non autonomous
degenerate parabolic problems in the sense of A2-weights. In contrast, not using regularity theory,
the article [AE23] developed a framework for a Laplacian (and its integral powers), extending the
Lions embedding theorem (see below) as a first step to obtain new results on fundamental solutions
for equations with unbounded coefficients.

A natural question is whether one can develop a framework, going beyond the one of Lions, that
provides us with

(1) An optimal embedding theorem with integral identities,
(2) The largest classes of weak solutions for which one obtains existence and uniqueness,
(3) Definition, existence and uniqueness of a fundamental solution.
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The answer is yes. The arguments can be developed in a very abstract manner, bearing on functional
calculus of positive self-adjoint operators. We next present a summary of our results as a road
map. Clearly, when it comes to concrete applications, our results do not distinguish equations from
systems, the nature of the elliptic part (local or non-local) and its order, boundary conditions, etc.
We give three examples at the end as an illustration.

The first example deals with second-order uniformly elliptic parts under Dirichlet boundary
conditions on domains. This situation may not seem original but we still give the main consequences
for readers to be able to compare with literature. Our second example is parabolic equations
with integro-differential elliptic part. The typical example is the fractional Laplacian and such
equations arise in many fields from PDE to probability [Lio69, CS07, BJ12]. The usual theory for
the fractional Laplacians yields the fundamental solution as a density of a probability measure. The
fundamental solution for general integro-differential parabolic operators with kernels are considered
in the literature, assuming positivity condition and pointwise bounds. We refer to the introduction
of [KW23] and the references there in. In that article, a proof of the poinswise upper bound is
presented. Here, we do not assume any kind of positivity and we show the existence of a fundamental
solution as an evolution family of operators. At our level of generality, these operators may not
have kernels with pointwise bounds. Still, this family can be used to represent weak solutions
without further assumptions. In any case, it gives a universal existence result. For example, the
fundamental solution used in [KW23] must be the kernel of our fundamental solution operator.
The third example is for degenerate operators as in [AN24], without assuming the coefficients to be
real. It directly gives existence of a fundamental solution not using local properties of solutions. In
a forthcoming article, the second author will use this to give a new proof of the pointwise estimates.

2. Summary of our results

2.1. Embeddings and integral identities. Lions’ embedding theorem [Lio57] asserts that if V
and H are two Hilbert spaces such that V is densely embedded in H, itself densely embedded in
V ⋆, the dual of V in the inner product of H, we have the continuous embedding

L2((0,T);V ) ∩H1((0,T);V ⋆) ↪→ C([0,T];H),

and absolute continuity of the map t 7→ ∥u(t)∥2H , which yields integral identities. The triple
(V,H, V ⋆) is said to be a Gelfand triple. One of our main results is the following improvement.

Theorem 2.1. Consider a positive, self-adjoint operator on a separable Hilbert space H. Let
I = (0,T) be a bounded, open interval of R. Let u ∈ L1(I;H) such that Su ∈ L2(I;H). Assume

that ∂tu = Sf + Sβg with f ∈ L2(I;H) and g ∈ Lρ′(I;H), where β = 2/ρ ∈ [0, 1) and ρ′ is the

conjugate Hölder exponent to ρ. Then u ∈ C(Ī , H) and t 7→ ∥u(t)∥2H is absolutely continuous on Ī
with, for all σ, τ ∈ Ī such that σ < τ , the integral identity

∥u(τ)∥2H − ∥u(σ)∥2H = 2Re

ˆ τ

σ
⟨f(t), Su(t)⟩H + ⟨g(t), Sβu(t)⟩H dt.(2.2)

As a consequence, u ∈ Lr((0,T);D(Sα)) for all r ∈ (2,∞] such that α = 2/r with for a constant
depending only on β,

∥Sαu∥Lr((0,T);H) ≲ ∥Su∥L2((0,T);H) + ∥f∥L2((0,T);H) + ∥g∥Lρ′ ((0,T);H) + inf
τ∈[0,T]

∥u(τ)∥H .(2.3)

Let us comment this result. Its core is the continuity and the integral identity proved in Corollary
5.13 when S is injective and Proposition 7.1 in the general case. If u had belonged to L2(I;H) then
u ∈ L2(I;V ) with V the domain of S. Here we only assume u ∈ L1(I;V ), which is used qualitatively,
and ∂tu is taken in the sense of distributions on I valued in V ∗. We allow an extra second term Sβg
in the time derivative expression of u. In fact, Sβg belongs to SL2(I;H) + L1(I;H) ⊂ L1(I;V ∗)
(see Proposition 5.4 when S is injective and the proof is the same otherwise). Note that it could
be a finite combination of such terms and the integral identity would be modified accordingly. The
Lr estimate (2.3) follows a posteriori : one first proves (2.3) with r = ∞ using (2.2), together with
the interpolation inequality

∥Sαu∥Lr((0,T);H) ≤ ∥Su∥αL2((0,T);H)∥u∥
1−α
L∞((0,T);H)
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for α = β when 0 < β < 1. Then we reuse this inequality for different α ∈ [0, 1). See Proposition
5.4 when S is injective together with the remark that follows it and the proof applies verbatim
when S is not injective.

Theorem 2.1 admits versions on unbounded intervals. On the half-line (0,∞) (resp. on R), it
holds assuming that u ∈ L1((0,T);H) for all T <∞ (resp. u ∈ L1

loc(R;H)) when S is not injective.
In this case, u is bounded in H on (0,∞) (resp. R), see Proposition 7.1. When S is injective,
the local integrability condition of u in H can be dropped using completions of V and V ∗ for the
homogeneous norms ∥Su∥H and ∥S−1u∥H . In this case, not only u is bounded, but it also tends
to zero at infinity (resp. at ±∞) in H, as shown in Proposition 5.7 and Corollary 5.10. As a
consequence, we can eliminate the last term in (2.3).

Our strategy is to prove the embedding first when I = R, proceed by restriction to (0,∞). When
it comes to bounded intervals, although the condition u ∈ L1(I;H) does not appear in (2.3), the
condition Su ∈ L2(I;H) alone does not suffice as an example shows. We added strong integrability
in H but in fact, as the proof shows, it suffices that u exists as a distribution on I valued in V ⋆ and
there exists one t for which u(t) ∈ H. But for applications to Cauchy problems, it is more natural
to have the integrability condition and we stick to that.

Our proof of the embedding already has a PDE flavor using ∂tu+ S2u = S2u+ Sf + Sβg. This
leads us to a thorough study of the abstract heat operator ∂t + S2 (hence the notation ∂tu rather
than u′) which has some interest on its own right. This is done in Sections 3, 4, 5.

2.2. Weak solutions and Cauchy problems. The embedding and its variants allow us to con-
sider the largest possible class of weak solutions to abstract parabolic operators ∂t + B with a
time-dependent elliptic part B associated to a family of bounded and sesquilinear forms on the
domain of S. We do not assume any time-regularity on B apart its weak measurability. This can
be done either with estimates being homogeneous in S if we decide to work on infinite intervals,
(see Section 6.1) or inhomogeneous (See Section 7.0.3; we called the elliptic operator B̃ there).

Let us state the final result in the latter case, that is with inhomogeneous B̃ as in Section 7.0.3,
combining Theorems 7.7 and 8.1 on a finite interval (0,T). We fix ρ ∈ (2,∞) and set β = 2/ρ.

Given an initial condition a ∈ H and source terms f ∈ L2((0,T);H) and g ∈ Lρ′((0,T);H),
h ∈ L1((0,T);H) we wish to solve the Cauchy problem{

∂tu+ B̃u = Sf + Sβg + h in D′((0,T); D),
u(0) = a weakly in D,

(2.4)

where D is a Hausdorff topological dense subspace of the domain of S, equipped with the graph
norm, that is, a core of D(S). The first equation is thus understood in the weak sense against test
functions in D((0,T); D). The meaning of the second equation is by taking the limit ⟨u(t), ã⟩H →
⟨a, ã⟩H for all ã ∈ D along a sequence converging to 0.

Theorem 2.5. There exists a unique weak solution u ∈ L1((0,T);H) with Su ∈ L2((0,T);H) to
the problem (2.4). Moreover, u ∈ C([0,T];H) ∩ Lr((0,T);D(Sα)) for all r ∈ [2,∞) with α = 2/r,
and we have the estimate

sup
t∈[0,T]

∥u(t)∥H + ∥Sαu∥Lr((0,T);H) ≤ C(∥f∥L2((0,T);H) + ∥g∥Lρ′ ((0,T);H) + ∥h∥L1((0,T);H) + ∥a∥H),

where C is a constant independent of f, g, h and a. In addition, we can write the energy equality
corresponding to the absolute continuity of t 7→ ∥u(t)∥2H .

Theorem 7.7 also contains a variant on the interval (0,∞) (case (b) there) where we replace S

by the operator S̃ = (S2 + 1)1/2 and we also obtain decay of the solution at ∞ while the class of
uniqueness is u ∈ L1((0,T);H) for all T <∞ with Su ∈ L2((0,∞);H).

We note that we consider classes of solutions in L1((0,T);H) rather than L∞((0,T);H) as is
customary. This condition suffices to obtain a priori continuity in time by Theorem 2.1. There is a
similar theorem for the backward parabolic adjoint operator −∂s + B̃∗ with final condition ã at T.

The estimates and the energy equality are a consequence of Theorem 2.1. Uniqueness relies on
the energy equality. Existence is obtained by restriction from constructions first on R and then on
(0,∞).
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The role of the core D of D(S) is in fact irrelevant here and is only for the purpose of having
a weak formulation with a small space of test functions. It can be equivalently replaced by D(S)
itself (see Theorem 8.1 and its proof). However, for concrete partial differential equations where
D can be taken as a space of smooth and compactly supported functions of the variable x, we can
work with smooth and compactly supported functions of the variables (t, x).

Homogeneous variants on (0,∞) and R will be found in the text (see Section 6), where we had to
develop an appropriate theoretical functional framework in Sections 3, 4, 5. Actually, we start the
proof by implementing a result of Kaplan (see Lemma 6.4) proving the invertibility of a parabolic
operator on a sort of variational space involving the half-time derivative. This result has been central
to other developments in the field of parabolic problems recently (see e.g., [Nys17, AEN20, AE23]),
while it was more like a consequence of the construction of weak solutions in earlier works of the
literature, including Kaplan’s work [Kap66]. As this result can only be formulated when time
describes R, this explains why we proceed by restriction from this case.

2.3. Fundamental solution. We come to the notion of fundamental solution and evolution family
(or propagators, or Green operators, as suggested by Lions) to represent weak solutions. Although
it seems well known that they are the same, we feel it is essential to clarify the two different
definitions. This distinction eventually leads to easy arguments, even in this very general context.
We assume that ∂t + B is a parabolic operator as above for which one can prove existence and
uniqueness of weak solutions on I with test functions valued in the core D of the Cauchy problems
with the absolute continuity of t 7→ ∥u(t)∥2H as in Theorem 2.5, and similarly for its backward
adjoint.

Definition 2.6 (Fundamental solution for ∂t + B on I). A fundamental solution for ∂t + B is a
family Γ = (Γ(t, s))t,s∈I of bounded operators on H such that :

(1) (Uniform boundedness on H) supt,s∈I ∥Γ(t, s)∥L(H) < +∞.

(2) (Causality) Γ(t, s) = 0 if s > t.
(3) (Measurability) For all a, ã ∈ D, the function (t, s) 7→ ⟨Γ(t, s)a, ã⟩H is Borel measurable on

I2.
(4) (Representation) For all ϕ ∈ D(I) and a ∈ D, the weak solution of the equation ∂tu+Bu =

ϕ ⊗ a in D′(I; D) satisfies for all ã ∈ D, ⟨u(t), ã⟩H =
´ t
−∞ ϕ(s)⟨Γ(t, s)a, ã⟩H ds, for almost

every t ∈ I.

One defines a fundamental solution Γ̃ = (Γ̃(s, t))s,t∈I to the backward operator −∂s+B⋆ analogously

and (2) is replaced by Γ̃(s, t) = 0 if s > t.

Such an object must be unique (see Lemma 6.24 in the case where I = R, whose proof applies
verbatim).

Definition 2.7 (Green operators). Let t, s ∈ I and a, ã ∈ H.

(1) For t ≥ s, G(t, s)a is defined as the value at time t of the weak solution to the equation
∂tu+ Bu = 0 with initial data a at time s.

(2) For s ≤ t, G̃(s, t)ã is defined as the value at time s of the weak solution ũ of the equation
−∂sũ+ B⋆ũ = 0 with final data ã at time t.

We setG(t, s) = 0 = G̃(s, t) if s > t. The operatorsG(t, s) and G̃(s, t) are called the Green operators
for the parabolic operator ∂t + B and the backward parabolic operator −∂s + B⋆, respectively.

Uniqueness and the integral identities allow to obtain the identification of the two objects as
follows, with proof being verbatim the ones of Proposition 6.22 and Theorem 6.25.

Theorem 2.8. The following statements hold.

(1) (Adjoint relation) For all s < t, G(t, s) and G̃(s, t) are adjoint operators.
(2) (Chapman-Kolmogorov identity) For any s < r < t, we have G(t, s) = G(t, r)G(r, s).
(3) (Existence) The family of Green operators (G(t, s))s,t∈I is a fundamental solution.

With this in hand, we may first combine the estimates obtained for both families. See Corollary
6.21 for the ones for the Green operators (again, transposed verbatim). Next, we obtain full
representation for the weak solutions in Theorem 2.5 (again, combining Theorems 7.7 and 8.1).
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Theorem 2.9. Consider the fundamental solution (ΓB̃(t, s))0≤s≤t≤T of ∂t + B̃ as in Theorem 2.5.
For all t ∈ [0,T], we have the following representation of the weak solution u of (2.4) :

u(t) = ΓB̃(t, 0)a+

ˆ t

0
ΓB̃(t, s)Sf(s)ds+

ˆ t

0
ΓB̃(t, s)S

βg(s) ds+

ˆ t

0
ΓB̃(t, s)h(s) ds,

where the two integrals containing f and g are weakly defined in H, while the one involving h
converges strongly (i.e., in the Bochner sense). More precisely, for all ã ∈ H and t ∈ [0,T], we
have the equality with absolutely converging integrals

⟨u(t), ã⟩H = ⟨ΓB̃(t, 0)a, ã⟩H +

ˆ t

0
⟨f(s), SΓ̃B̃(s, t)ã⟩H ds

+

ˆ t

0
⟨g(s), SβΓ̃B̃(s, t)ã⟩H ds+

ˆ t

0
⟨ΓB̃(t, s)h(s), ã⟩H ds.

As before, this is obtained from the variants on (0,∞) and R which in fact come first. We refer
the reader to the text for details.

3. The abstract homogeneous framework

Throughout this article, we are working in a separable complex Hilbert space H whose norm is
denoted by ∥·∥H and its inner product by ⟨·, ·⟩H , and S is a positive and self-adjoint operator on
H. From Sections 3 to 5, we assume that S is injective and shall not repeat this in
statements. The general case when S might not be injective will be considered in Section 7. We do
not assume that 0 ∈ ρ(S), that is, S is not necessarily invertible. The spectrum of S is contained in
R+ = [0,∞). To make our approach accessible, it is useful to present facts from functional calculus
and give the construction of spaces of test functions and distributions in an abstract context given
that 0 might be in the spectrum of S.

3.1. A review of the Borel functional calculus. For general background on self-adjoint oper-
ators and the spectral theorem, we refer to [RS80] and [Dav95].

By the spectral theorem for self-adjoint operators, there is a unique application f 7→ f(S) from
the space of all locally bounded Borel functions on (0,∞) that we denote L∞

loc((0,∞)) into the
space of closed linear maps on H, which sends 1 to the identity, (t 7→ (z − t)−1) to (z − S)−1 for
all z ∈ C \ R+ and its restriction to the space of all bounded Borel functions on (0,∞) denoted
L∞((0,∞)) is a ⋆-algebra homomorphism into L(H), the space of bounded linear maps on H. More
precisely, we have

∀f ∈ L∞((0,∞)) : ∥f(S)∥ ≤ ∥f∥∞ .

Moreover, for all f, g ∈ L∞
loc((0,∞)), we have f(S)g(S) ⊂ (fg)(S) with equality if g(S) ∈ L(H).

We also recall that f(S)∗ = f⋆(S) with f⋆ = f̄ .
We shall use that if φ : (0,∞) → C is a Borel function such that

(3.1) |φ(t)| ≤ Cmin(|t|s , |t|−s),

for some constants C, s > 0 and for all t > 0, then the operators
´ 1/ε
ε φ(aS) da

a are uniformly
bounded for 0 < ε < 1 and converge strongly in L(H), namely for all v ∈ H,

(3.2) lim
ε→0

ˆ 1/ε

ε
φ(aS)v

da

a
=

(ˆ +∞

0
φ(t)

dt

t

)
v,

where the limit is in H. This is the so-called Calderón reproducing formula.
In this entire section, we fix a function Φ ∈ D((0,∞)) such that

´ +∞
0 Φ(t)dtt = 1. Remark that

for all α ∈ R, t 7→ tαΦ(t) ∈ D((0,∞)) and in particular verifies (3.1) for some constants C̃, s̃ > 0
and for all t > 0.

For α ∈ R, let Sα denote the closed operator tα(S), which is also injective, positive and self-
adjoint. We recall that for all α, β ∈ R, we have

Sα+β = SαSβ.
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Denote by D(Sα) the domain of Sα. For any element u ∈ D(Sα), we set

∥u∥S,α := ∥Sαu∥H .

We insist on the fact that ∥·∥S,α denotes the homogeneous norm on the domain of Sα and the

(Hilbertian) graph norm is (∥ · ∥2S,α + ∥ · ∥2H)1/2. The operator

(3.3) Sα : (D(Sα), ∥·∥S,α) → (H, ∥·∥H)

is isometric with dense range.

3.2. An ambient space. We construct an ambient space in which we can perform all calculations.
Consider the vector space

E−∞ :=
⋂
α∈R

D(Sα),

endowed with the topology defined using the norms family (∥·∥S,α)α∈R. We recall the following
moments inequality

∥Sγu∥H ≤ ∥Sαu∥θH∥Sβu∥1−θ
H (u ∈ E−∞),

for all γ = θα + (1 − θ)β and θ ∈ [0, 1] and α and β with same sign [Haa06, Proposition 6.6.4].
Using the moment inequality with the closedness of the powers Sα, one can see that E−∞ endowed
with the countable norms family (∥·∥S,α)α∈Z is in fact a Fréchet space. Notice that for all α ∈ R,
Sα : E−∞ → E−∞ is an isomorphism.

The space E−∞ is to be the test space as evidenced in the following lemma.

Lemma 3.4. E−∞ is dense in (D(Sα), ∥·∥S,α) for all α ∈ R.

Proof. Let v ∈ D(Sα). We regularise v by setting for all ε ∈ (0, 1),

vε :=

ˆ 1/ε

ε
Φ(aS)v

da

a
.

Indeed, we show that vε ∈ E−∞ and Sαvε → Sαv in H as ε → 0. First, for all β ∈ R, since
t 7→ tβΦ(at) ∈ L∞((0,∞)), we have vε ∈ D(Sβ) with Sβvε =

´ 1/ε
ε SβΦ(aS)v da

a . Hence, vε ∈ E−∞.
Furthermore, as v ∈ D(Sα), we have SαΦ(aS)v = Φ(aS)Sαv, so that Sαvε converges to Sαv by
the Calderón reproducing formula. □

Remark 3.5. The approximation is universal, in the sense that if v ∈ D(Sα) ∩ D(Sβ), then the
approximation occurs simultaneously in both semi-norms. In particular, E−∞ is dense in D(Sα)
for the graph norm.

Let E∞ denote the topological anti-dual space of E−∞. The reason for which we are interested
in such a space is that it provides an ambient space containing a copy of a completion of all spaces
(D(Sα), ∥·∥S,α). To clarify this claim, we define

∥φ∥Eα
:= sup

v∈E−∞\{0}

|φ(v)|
∥v∥S,−α

and the vector space

Eα := {φ ∈ E∞ : ∥φ∥Eα
<∞}.

The space
(
Eα, ∥·∥Eα

)
is a Banach space. We set

j : H → E∞, v 7→ j(v) := ⟨v, ·⟩H .
The application j is injective by the density of E−∞ in H in Lemma 3.4.

Lemma 3.6. For all α ∈ R, j|D(Sα) : (D(Sα), ∥·∥S,α) →
(
Eα, ∥·∥Eα

)
is isometric with dense range.
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Proof. If v ∈ D(Sα) then we can write for all ṽ ∈ E−∞, j(v)(ṽ) = ⟨v, ṽ⟩H = ⟨Sαv, S−αṽ⟩H . This
implies that j(v) ∈ Eα and ∥j(v)∥Eα

= ∥Sαv∥H = ∥v∥S,α. Now, if φ ∈ Eα, then φ ◦ Sα has a
bounded extension on H. Using the Riesz representation theorem, there exists v ∈ H such that
φ◦Sα = ⟨v, ·⟩H or equivalently φ = ⟨v, S−α·⟩H . Moreover, we have ∥φ∥Eα

= ∥v∥H . Since the range

of Sα is dense in H, there exists a sequence (vn)n∈N ∈ D(Sα)N such that Sαvn → v in H. Now, we
have for all ṽ ∈ E−∞,

j(vn)(ṽ)− φ(ṽ) = ⟨vn, ṽ⟩H − ⟨v, S−αṽ⟩H = ⟨Sαvn − v, S−αṽ⟩H .
Therefore, ∥j(vn)− φ∥Eα

= ∥Sαvn − v∥H → 0. □

To make clear the identification we will adopt in the next paragraph, we temporarily define the
operator T on the Hilbert space j(H) = H⋆ by setting

D(T ) := j(D(S)) , T := j ◦ S ◦ j−1.

Since j : H → j(H) is a unitary operator by Lemma 3.6 when α = 0, T is unitarily equivalent
to S. It follows that T has the same properties as S. More precisely, T is injective, positive and
selfadjoint and we have for all α ∈ R

D(Tα) := j(D(Sα)) , Tα = j ◦ Sα ◦ j−1, ∥Tα(j(v))∥j(H) = ∥Sαv∥H .

Using Lemma 3.6, we have for all α ∈ R, D(Tα) ⊂ Eα with dense and isometric inclusion for the
homogeneous norm of Tα which means that Eα is a completion of D(Tα) for the homogeneous
norm. Moreover, it follows from (3.3) that Tα : D(Tα) → j(H) is isometric with dense range.
Notice that by combining Lemma 3.4 and Lemma 3.6, j(E−∞) =

⋂
α∈RD(Tα) is dense in all the

spaces Eα. Furthermore, we have for all α ∈ R, Eα ∩ j(H) = D(Tα). The advantage is that all
the spaces mentioned here are contained in E∞, an anti-dual space of a Fréchet space, which is in
particular a Hausdorff topological vector space.

From now on, by making the identification of H with j(H) and S with j ◦ S ◦ j−1 as above, we
assume that H is contained in a Hausdorff topological vector space E∞ that contains a completion
of all the domains of Sα for the homogeneous norms and we denote by DS,α this completion of
D(Sα) in E∞. Moreover, we have that for all α ∈ R, DS,α ∩H = D(Sα). By Lemma 3.4, the space
E−∞ =

⋂
α∈RD(Sα) is dense in all these completions. Moreover, there is a sesquilinear continuous

duality form ⟨w, v⟩ on E∞ ×E−∞ which extends the inner product on H. The functional calculus
of S extends to E∞ by ⟨f(S)w, v⟩ = ⟨w, f∗(S)v⟩ whenever f ∈ L∞

loc((0,∞)) and f(t) = O(ta) at

0 and f(t) = O(tb) at ∞ as f∗(S) : E−∞ → E−∞ is bounded. In particular, Sα : E∞ → E∞ is
an automorphism and we have DS,α = {u ∈ E∞ : Sαu ∈ H}. The restriction of Sα to DS,α agrees
with the unique extension of Sα : (D(Sα), ∥·∥S,α) → (H, ∥·∥H) (see (3.3)). The norm on DS,α is

∥Sα·∥H and we keep denoting it by ∥·∥S,α (and it makes it a Hilbert space). We record the following
lemma.

Lemma 3.7. Let α ∈ R. Then, there are dense inclusions

E−∞ ↪→ D(Sα) ↪→ DS,α ↪→ E∞.

Moreover, the family (DS,α)α∈R is a complex (and real) interpolation family.

Proof. For the first statement, the first two inclusions are already known to be dense. We show
it for the last one. Indeed, if w ∈ E∞, then let Fw be a finite subset of F such that we have
|⟨w, v⟩| ≤ Cw supγ∈Fw

∥Sγv∥H for all v ∈ E−∞. The approximation procedure using the duality
form and using that Φ⋆ = Φ shows that wε converges to w in E∞. We claim that wε ∈ DS,α for all
α (hence, wε ∈ E−∞). Indeed, if we pick v ∈ E−∞, then Sαvε ∈ E−∞ and Sα+γvε ∈ H with norm
controlled by Cε,α+γ∥v∥H . Thus, we have

|⟨Sαwε, v⟩| = |⟨w, Sαvε⟩| ≤ Cw sup
γ∈Fw

∥Sα+γvε∥H ≤ Cw sup
γ∈Fw

Cε,α+γ ∥v∥H ,

from which the claim follows. Finally, the fact that family (DS,α)α∈R is a complex (and real)
interpolation family is proved in [AMN97]. □
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For any real α, the sesquilinear form (u, v) 7→ ⟨Sαu, S−αv⟩H defines a canonical duality pairing
between DS,α and DS,−α which is simply the inner product ⟨·, ·⟩H extended from E−∞ × E−∞ to
DS,α ×DS,−α. In fact, we have for all (u, v) ∈ E−∞ × E−∞,

sup
w∈E−∞\{0}

|⟨u,w⟩H |
∥w∥S,−α

= ∥u∥S,α , sup
w∈E−∞\{0}

|⟨w, v⟩H |
∥w∥S,α

= ∥u∥S,−α .

For (u, v) ∈ DS,α × DS,−α, we denote ⟨u, v⟩H,α := ⟨Sαu, S−αv⟩H . It also coincides with the
sesquilinear duality ⟨u, v⟩ on E∞ × E−∞ when u ∈ DS,α and v ∈ E−∞. We have the following
lemma.

Lemma 3.8. Let α, β ∈ R. If u ∈ DS,α ∩DS,β and v ∈ DS,−α ∩DS,−β, then

⟨u, v⟩H,α = ⟨u, v⟩H,β.

Proof. The approximations uε and vε belong to E−∞ so ⟨uε, vε⟩H,α = ⟨uε, vε⟩H = ⟨uε, vε⟩H,β for all
ε > 0. The result follows when ε tends to 0 as uε converges to u in both spaces DS,α and DS,β and
vε converges to v in both spaces DS,−α and DS,−β. □

3.3. Spaces of test functions and distributions. For I an open interval of R, we denote
by D(I;E−∞) the space of E−∞-valued C∞ functions on I with compact support. The space
D(I;E−∞) is endowed with the usual inductive limit topology and contains span(D(I)⊗E−∞) as
a dense subspace.

We refer to [HvNVW16] for Banach-valued Lp(I;B) spaces. The density lemma below explains
why it is relevant to take D(I;E−∞) as the space of test functions.

Lemma 3.9. D(I;E−∞) is dense in Lp(I;DS,α) for all α ∈ R and p ∈ [1,∞).

Proof. It is enough to consider the case α = 0, that is to prove the density of D(I;E−∞) in Lp(I,H)
since S−α : E−∞ → E−∞ is an isomorphism and therefore S−α : D(I;E−∞) → D(I;E−∞), where
we set (Sαf)(t) = Sα(f(t)) for all t ∈ I and f ∈ D(I;E−∞). It is enough also to prove that
D(I;E−∞) is dense in D(I;H) for the Lp norm since the latter is dense in Lp(I;H). To do so, we
fix f ∈ D(I;H) and regularize it by setting for all ε > 0, and t ∈ I

fε(t) :=

ˆ 1/ε

ε
Φ(aS)f(t)

da

a
=

(ˆ 1/ε

ε
Φ(aS)

da

a

)
f(t).

It is obvious that fε ∈ D(I;E−∞) and by the Calderón reproducing formula fε(t) →
ε→0

f(t) point-

wisely in H. The uniform boundedness in H of the approximate Calderón operators yields the
domination allowing to apply the dominated convergence theorem. □

We can now define a space of distributions in which S plays the role of a differential operator.
Specifically, we denote by D′(I;E∞) the space of all bounded anti-linear maps u : D(I;E−∞) → C.
Bounded means that for any compact set K ⊂ I, there exist two constants CK > 0 and mK ∈ N,
and a finite set AK ⊂ Z such that

∀φ ∈ D(I, E−∞), supp(φ) ⊂ K ⇒
∣∣⟨⟨u, φ⟩⟩D′,D

∣∣ ≤ CK sup
|j|≤mK , α∈AK

sup
t∈K

∥∂jtSαφ(t)∥H .

For convenience, we use the notation with partial derivative in t for the derivative in t thinking of
future applications to concrete PDE. We also use a double bracket notation for dualities between
vector-valued functions and distributions.

For α ∈ R, we can embed L1
loc(I;DS,α) in D′ (I;E∞) through the classical identification :

Jα : L
1
loc(I;DS,α) → D′ (I;E∞)

f 7→ Jαf : φ 7→
ˆ
I
⟨f(t), φ(t)⟩H,α dt =

ˆ
I
⟨Sαf(t), S−αφ(t)⟩H dt.

This is well defined by the following lemma.

Lemma 3.10. For all α, β ∈ R, Jα = Jβ on L1
loc(I;DS,α) ∩ L1

loc(I;DS,β).

Proof. Straightforward corollary of Lemma 3.8. □
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Finally, the identification is achieved thanks to the following lemma.

Lemma 3.11. Jα is injective for all α ∈ R.

Proof. Testing with φ = θ ⊗ a, with θ ∈ D(R) real-valued and a ∈ E−∞, we easily conclude that
Jα(f) = 0 implies ⟨Sαf, S−αa⟩H = 0 a.e. on I. This implies that Sαf = 0 in H a.e. on I, hence
f = 0 in DS,α a.e. on I. □

Consequently, the space Lp(I;DS,α) can be identified to a sub-space of D′(I;E∞). We would
like to apply powers of S to a distribution like we apply them to functions valued in E−∞. The
definition below covers this.

Definition 3.12. For α ∈ R and u ∈ D′(I;E∞), we define the distribution Sαu by setting

⟨⟨Sαu, φ⟩⟩D′,D := ⟨⟨u, Sαφ⟩⟩D′,D, ∀φ ∈ D(I;E−∞).

Remark 3.13. For u ∈ D′(I;E∞), Sαu ∈ Lp(I;H) is equivalent to u ∈ Lp(I;DS,α). Furthermore,

powers of S commute with derivatives in t : for all k ∈ N and α ∈ R, ∂kt S
α = Sα∂kt .

When I = R, we can use the space of tempered distributions adapted to S. Let us start by the
Schwartz class S(R;E−∞) defined by

S(R;E−∞) :=

{
φ ∈ C∞(R;E−∞) : ∀k, ℓ ∈ N, tk∂ℓtφ(t) →

|t|→∞
0 in E−∞

}
,

which is a Fréchet space for a suitable countable family of norms. Moreover, D(R;E−∞) is dense
in S(R;E−∞) by the same argument as for the usual distributions. We denote by S ′(R;E∞) the
topological dual space of S(R;E−∞). It is a subspace of D′(R;E∞) containing Lp(R;DS,α) for all
α ∈ R and p ∈ [1,∞]. For the proofs of this and the theorems below, we refer to [Zui02] for the
classical distributions and the same proofs work here. It can be proven that S(R;E−∞) is dense
in S ′(R;E∞), and more generally, that D(I;E−∞) is dense in D′(I;E∞) for any open set I ⊂ R.
However, this is not important for the discussion that follows, so we leave the verification to the
interested reader.

As in the classical case, we will first define F on L1(R;H), then on S(R;E−∞) and finally on
S ′(R;E∞) by duality.

Definition 3.14. The Fourier transform is defined on L1(R;H) by setting for all f ∈ L1(R;H) and
τ ∈ R

F(f)(τ) := f̂(τ) :=

ˆ
R
e−iτtf(t) dt.

We define F by changing −iτ t to iτ t in the integral.

The Fourier transform on S(R;E−∞) enjoys many properties as we recall below.

Proposition 3.15. The Fourier transform F enjoys the following properties :

(1) F : S(R;E−∞) → S(R;E−∞) is an automorphism verifying for all φ ∈ S(R;E−∞), k ∈ N
and α ∈ R

F(Sαφ) = SαF(φ), ∂kτF(φ) = F((−it)kφ), F(∂kt φ) = (iτ)kF(φ).

(2) For all α ∈ R, F extends to an isomorphism on L2(R;DS,α) which verifies a Plancherel
equality.

We can now transport the Fourier transform F to S ′(R;E∞) by sesquilinear duality.

Definition 3.16. We define the Fourier transform F on S ′(R;E∞) by setting

⟨⟨Fu, φ⟩⟩S′,S := ⟨⟨û, φ⟩⟩S′,S := ⟨⟨u,F(φ)⟩⟩S′,S , u ∈ S ′(R;E∞), φ ∈ S(R;E−∞).

From Proposition 3.15, we deduce the following proposition regarding the Fourier transform on
S ′(R;E∞).

Proposition 3.17. F : S ′(R;E∞) → S ′(R;E∞) is an automorphism and satisfies the property (1)
and its restriction to L2(R;DS,α) agrees with the operator in (2) as in the statement above.
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For α ∈ R, we denote by Dα
t the time-derivative of order α. More precisely, if u ∈ S ′(R;E∞) is

such that |τ |αFu ∈ S ′(R;E∞), we set

Dα
t u := F−1 (|τ |αFu) .

4. Abstract heat equations

In this section, we study well-posedness of the abstract heat equation ∂tu+ S2u = f where the
role of the Laplacian is played by the square of the self-adjoint operator S. These well-posedness
results will imply embeddings and energy inequalities in the spirit of Lions that will be described
in the next section. The abstract heat operator in R is ∂t + S2. The backward operator −∂t + S2

corresponds to reversing time, and the results are exactly the same and are often proved and used
simultaneously.

4.1. Solving the abstract heat equation using the Fourier method. Working on the real
line makes the Fourier transform in time available and is a key tool to obtain homogeneous estimates
in a simple way.

4.1.1. Uniqueness in homogeneous energy space. We begin with a uniqueness result which is key
to our discussion.

Proposition 4.1 (Uniqueness in homogeneous energy space). Let u ∈ D′(R;E∞) be a solution of
∂tu+ S2u = 0 in D′(R;E∞). If u ∈ L2(R;DS,α) for some α ∈ R, then u = 0.

Proof. As Sα is an isomorphism on E∞ which commutes with time derivatives, v = Sαu satisfies
the same equation, hence we may assume α = 0 and u ∈ L2(R;H). As this is a subset of S ′(R;E∞),
by applying the Fourier transform to this equation, we have for all φ ∈ S(R;E−∞)

(4.2)

ˆ
R
⟨û(τ), (−iτ + S2)φ(τ)⟩H dτ = 0.

Take a sequence (φk)k∈N ∈ D(R;E−∞)N such that φk → û in L2(R;H) and 0 /∈ supp(φk), for all

k ∈ N. Taking τ 7→ (−iτ + S2)−1φk(τ) as a test function in (4.2) and letting k → +∞, we haveˆ
R
∥û(τ)∥2H dτ = 0.

By Plancherel, we have then u = 0. □

Corollary 4.3 (Invertibility on abstract Schwartz functions and tempered distributions). The
operator ∂t + S2 is an isomorphism on S(R;E−∞) and on S ′(R;E∞).

Proof. We begin with the result on S(R;E−∞). The boundedness is clear. The injectivity follows
from the above proposition. The surjectivity is as follows. By Fourier transform, it suffices to
show the surjectivity for iτ + S2. If f̂ ∈ S(R;E−∞), then S−2f̂ ∈ L2(R;H) and by the uniform

boundedness of (iτ + S2)−1S2, g(τ) = (iτ + S2)−1S2(S−2f̂(τ)) ∈ L2(R;H) with iτg(τ) + S2g(τ) =

f̂(τ). Shifting with powers of S, we have g ∈ L2(R;E−∞). Setting û = g, we see that ∂tu = f−S2u,
so ∂tu ∈ L2(R;E−∞) and by iteration, we have u ∈ C∞(R;E−∞). The decay is easily checked
following the argument and using τ -derivatives of the resolvent (iτ + S2)−1.

This applies to the backward operator −∂t + S2. Hence, by duality, we obtain the result on
S ′(R;E∞). □

Remark 4.4. In the sequel, we shall focus on α = 1 in Proposition 4.1 to make H the pivotal space,
but clearly, one can shift to this case by applying powers of S.

4.1.2. Solution and source spaces. We begin with recalling the following result of Lions for the sake
of completeness, but we shall not use this result and prove a stronger one.

Proposition 4.5 (Solving the abstract heat equation à la Lions). If f ∈ L2(R;DS,−1), then there
exists u ∈ L2(R;DS,1) such that ∂tu+ S2u = f in D′(R;E∞).

Proof. It is straightforward application of the Lions representation theorem [Lio13, Théorème 1.1]
in the Hilbert space L2(R;DS,1). □
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As we said, we now argue with in mind that H, or rather L2(R;H), is the pivotal Hilbert space.
Define

V1 := L2(R;DS,1),

V−1 :=
{
u ∈ L2(R;DS,1) : ∂tu ∈ L2(R;DS,−1)

}
.

V1 is the uniqueness space and V−1 is the space to which the solution belongs when the source is
taken in L2(R;DS,−1) according to Lions’ result. However, for the heat equation, Fourier methods
are particularly handy to prove this and also allow more source spaces.

We introduce a hierarchy of intermediate solution and source spaces. For α ∈ [−1, 1], define the
following respective solution and source spaces

Vα :=

{
u ∈ L2(R;DS,1) : D

1−α
2

t u ∈ L2(R;DS,α)

}
,

Wα :=

{
D

1+α
2

t g : g ∈ L2(R;DS,α)

}
.

with

∥u∥Vα
:=

(
∥u∥2L2(R;DS,1)

+ ∥D
1−α
2

t u∥2L2(R;DS,α)

)1/2

,

∥f∥Wα := ∥D− 1+α
2

t f∥L2(R;DS,α).

We can think of Vα = L2(R;DS,1) ∩ Ḣ
1−α
2 (R;DS,α) using homogeneous Sobolev spaces on the real

line but this presentation avoids having to define these spaces. In the same manner, we think of

Wα = Ḣ− 1+α
2 (R;DS,α). Remark that W−1 = L2(R;DS,−1).

The following lemma summarizes some properties of the spaces Vα and Wα and their relation.

Lemma 4.6 (Properties of intermediate spaces). Fix −1 ≤ α ≤ α′ ≤ 1. We have the following
assertions.

(1) Vα is a well-defined subspace of S ′(R;E∞),
(
Vα, ∥·∥Vα

)
is a Hilbert space, and we have

Vα =
{
u ∈ S ′(R;E∞) : Sα(S + |τ |1/2)1−αû ∈ L2(R;H)

}
, ∥u∥Vα

∼ ∥Sα(S + |τ |1/2)1−αû∥L2(R;H).

(2) We have the following chain of continuous and dense inclusions:

S(R;E−∞) ↪→ Vα ↪→ Vα′ ↪→ S ′(R;E∞).

(3) Wα is a subspace of S ′(R;E∞), and
(
Wα, ∥·∥Wα

)
is a Hilbert space. We have a dense

inclusion S0(R;E−∞) ↪→Wα, where S0(R;E−∞) := {f ∈ S(R;E−∞) | f̂(0) = 0}.
(4) Let V ⋆

α denote the anti-dual space of Vα with respect to ⟨·, ·⟩L2(R;H). It is a subspace of

S ′(R;E∞) and V ⋆
α = L2(R;DS,−1) +W−α with the following estimate

∥ω∥V ⋆
α
∼ inf

{
∥f∥L2(R;H) + ∥g∥L2(R;DS,−α)

: ω = Sf +D
1−α
2

t g

}
.

Proof. Let us first prove (1) : Vα is a well-defined subspace of S ′(R;E∞). In fact, if u ∈ L2(R;DS,1),

then, by Proposition 3.17, it follows that |τ |
1−α
2 Sû ∈ L1

loc(R;H). Furthermore, for φ ∈ S(R;E−∞),
we have using Cauchy-Schwarz inequalityˆ

R
|⟨|τ |

1−α
2 Sû, S−1φ⟩H | dτ ≤ ∥Sû∥L2(R;H) ∥|τ |

(1−α)
2 S−1φ∥L2(R;H),

and one can define |τ |
1−α
2 û ∈ S ′(R;E∞) by

⟨⟨|τ |
1−α
2 û, φ⟩⟩S′,S =

ˆ
R
⟨|τ |

1−α
2 Sû, S−1φ⟩H dτ.

Finally, Sα |τ |
1−α
2 û exists in S ′(R;E∞) and agrees with |τ |

1−α
2 Sαû. The Hilbert space property

(in particular, the completeness) is easy. Next, the proof of the set equality and the norms
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equivalence in (1) is easy using the boundedness of the operators S1−α(S + |τ |1/2)−(1−α) and

|τ |
1−α
2 (S + |τ |1/2)−(1−α) on L2(R;H).

For the point (2), the inclusion of S(R;E−∞) in Vα follows easily from (1). To check Vα ↪→ Vα′

if α < α′, write

Sα′
(S + |τ |1/2)1−α′

= Sα′−α(S + |τ |1/2)α−α′
Sα(S + |τ |1/2)1−α,

and use (1) together with the boundedness of Sα′−α(S + |τ |1/2)α−α′
on L2(R;H). The density

of S(R;E−∞) into Vα can be deduced using Lemma 3.9 and that of Vα into Vα′ follows. Finally,
although we do not need this later on, the density of Vα in S ′(R;E∞) hold as S(R;E−∞) is dense
in S ′(R;E∞).

For point (3), since −1 ≤ α ≤ 1, the inclusions are clear together with the Hilbert space
property. The density is as follows. Let f ∈ Wα. By definition, let g ∈ L2(R;DS,α) such that

f̂ = |τ |
1+α
2 ĝ in S ′(R;E∞). Note that the right hand side also belongs to L1

loc(R;DS,α). Take

a sequence (φk)k∈N ∈ S(R;E−∞)N such that φ̂k → ĝ in L2(R;DS,α) and 0 /∈ supp(φ̂k). Take

fk := F−1(|τ |(1+α)/2 φ̂k), then fk ∈ S0(R;E−∞) and fk→f in Wα.
The proof of (4) is standard, using Fourier transform and that powers of S commute with

multiplication by powers of |τ |, and the calculus occurs using the duality between S ′(R;E∞) and
S(R;E−∞). □

4.1.3. The main Theorem. Now, we come to the main result of this subsection.

Theorem 4.7 (Invertibility on intermediate spaces). For all α ∈ [−1, 1], the operator ∂t + S2,
defined on S(R;E−∞), extends to a bounded and invertible operator Aα : Vα → V ⋆

−α, which agrees
with the restriction of ∂t + S2 acting on S ′(R;E∞).

Proof. From Fourier transform, u ∈ Vα if and only if Sû ∈ L2(R;H) and |τ |
1−α
2 Sαû ∈ L2(R;H).

Hence, f = ∂tu + S2u is easily seen to belong to L2(R;DS,−1) + Wα = V ⋆
−α. The density of

S(R;E−∞) in Vα yields the bounded extension operator Aα and notice that Aα = ∂t + S2 on Vα.
To show the invertibility, it suffices to prove that the restriction of the inverse of ∂t + S2 on

S ′(R;E∞) to V ⋆
−α is bounded into Vα. Let w ∈ V ⋆

−α and again, by Fourier transform, write

ŵ = Sf̂ + |τ |
1+α
2 S−αĝ, with f, g ∈ L2(R;H). Define u ∈ S ′(R;E∞) by û(τ) =

(
iτ + S2

)−1
ĝ(τ).

That Sû ∈ L2(R;H) follows from the uniform boundedness (with respect to τ) of S2(iτ + S2)−1

and |τ |
1+α
2 S1−α(iτ + S2)−1 and that |τ |

1−α
2 Sαû ∈ L2(R;H) from that of |τ |(iτ + S2)−1 and

|τ |
1−α
2 S1+α(iτ + S2)−1. Hence u ∈ Vα and the estimate follows by taken infimum over all choices

of f and g. □

Remark 4.8. When α = −1, we recover Proposition 4.5 (Lions’ result) : existence in V−1, and
uniqueness follows from Proposition 4.1. Note however that uniqueness occurs when u ∈ V1 which
is the largest possible space in that scale.

Remark 4.9. The Fourier method is rather elementary once the setup has been designed, but does
not furnish time continuity: we mostly used that ∂t and S commute. Something specific to time
derivatives is the classical embedding theorem of Lions [Lio57] mentioned earlier. This embedding
is not true any longer when V = D(S) and V ⋆ = D(S−1) are replaced with their completions DS,1

and DS,−1 if I is bounded. Indeed, as the embedding DS,1 ↪→ H fails, pick v ∈ DS,1 \H and define
the function u(t) = v, 0 ≤ t ≤ 1. We have u ∈ L2((0, 1);DS,1) and ∂tu = 0 but u /∈ C([0, 1];H).

However, this counterexample is ruled out if I = R or I unbounded and in fact, the continuity
holds. This can be obtained when α = −1 by approximation from Lions’ result but we present
a different approach, which has the advantage of allowing α < 0 to conclude for regularity. Note
however, that when α = 0, continuity cannot hold for all sources in V ⋆

0 by the isomorphism property.
We would have otherwise that any u ∈ V0 is continuous, valued in H, but this is not the case.

4.2. Solving the abstract heat equation using the Duhamel method. Since −S2 generates
a C0 contraction semigroup on H, the Duhamel formula

(4.10) Tf(t) :=

ˆ t

−∞
e−(t−s)S2

f(s) ds
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is a way of constructing solutions to ∂tu+S
2u = f in D′(R;E∞). Remark that the adjoint Duhamel

formula

(4.11) T̃ f̃(s) :=

ˆ ∞

s
e−(t−s)S2

f̃(t) dt

is a way of constructing solutions to the backward equation −∂sũ + S2ũ = f̃ in D′(R;E∞). All
what we shall prove for the (forward) heat equation applies to the backward one. We leave to the
reader the care of checking it. For the moment, we assume f to be a test function.

Lemma 4.12 (A priori properties for the Duhamel solution). If f ∈ S(R;E−∞), then Tf defined
by (4.10) belongs to S ′(R;E∞) and is a solution of ∂tu+ S2u = f in S ′(R;E∞).

Proof. First using the regularity and contractivity of the semigroup,¨
R2

1t>s|⟨e−(t−s)S2
f(s), φ(t)⟩| dsdt ≤ ∥f∥L1(R;H)∥φ∥L1(R;H)

for any f, φ ∈ S(R;E−∞). In particular u is defined for all t by a Bochner integral and belongs to
L∞(R;H). Hence we may apply Fubini’s theorem freely, exchanging integrals and inner products
in the calculation below:

−
ˆ

R
⟨u(t), ∂tφ(t)⟩H dt = −

ˆ
R

ˆ t

−∞
⟨f(s), e−(t−s)S2

∂tφ(t)⟩H dsdt

= −
ˆ

R

ˆ +∞

s
⟨f(s), e−(t−s)S2

∂tφ(t)⟩H dtds

= −
ˆ

R
⟨f(s),

ˆ +∞

s
e−(t−s)S2

∂tφ(t)⟩H dtds

= −
ˆ

R
⟨f(s),−φ(s) +

ˆ +∞

s
S2e−(t−s)S2

φ(t) dt⟩H ds

=

ˆ
R
⟨f(s), φ(s)⟩H ds−

ˆ
R

ˆ +∞

s
⟨e−(t−s)S2

f(s), S2φ(t)⟩H dtds.

Using Fubini once more, this shows that −⟨⟨u, ∂tφ⟩⟩S′,S = ⟨⟨f, φ⟩⟩S′,S − ⟨⟨u, S2φ⟩⟩S′,S , which means
∂tu+ S2u = f in S ′(R;E∞). □

We now gather a number of a priori estimates which are related to solving the heat equation
within L2(R;DS,1).

Lemma 4.13 (A priori estimates for the Duhamel operator). Let f ∈ S(R;E−∞), and define
u = Tf . For the inequalities involving ∥f∥Wα, we additionally assume that f ∈ S0(R;E−∞).

(1) u ∈ C0(R;H) and one has the following uniform bounds

sup
t∈R

∥u(t)∥H ≤ ∥f∥L1(R;H)

sup
t∈R

∥u(t)∥H ≤ 1√
2
∥f∥L2(R;DS,−1)

sup
t∈R

∥u(t)∥H ≤ C(α)∥f∥Wα , α ∈ [−1, 0).

(2) u ∈ L2(R;DS,1) and one has the following energy inequalities

∥u∥L2(R;DS,1)
≤ 1√

2
∥f∥L1(R;H)

∥u∥L2(R;DS,1)
≤ ∥f∥L2(R;DS,−1)

∥u∥L2(R;DS,1)
≤ C ′(α)∥f∥Wα , α ∈ [−1, 1].

(3) u ∈ Vα for all α ∈ [−1, 1] and one has the following bound

∥D
1−α
2

t Sαu∥L2(R;H) ≤ ∥f∥Wα .
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Proof. That u belongs to L∞(R;H) with ∥u∥L∞(R;H) ≤ ∥f∥L1(R;H) has been already observed above.

Note that ∂tu = f−T (S2f) ∈ L∞(R;H). Thus u is Lipschitz, hence continuous. The limit 0 at −∞
is clear from the fact that ∥f(s)∥H has rapid decay and the contraction property of the semigroup.
As for the limit at +∞, we write for fixed and large A and t > A,

u(t) = e−(t−A)S2
u(A) +

ˆ t

A
e−(t−s)S2

f(s) ds.

The first term tends to 0 in H by properties of the semigroup and, for the second term, one uses
again the contraction property and rapid decay of ∥f(s)∥H .

We are left with proving the remaining estimates.

Step 1: ∥u(t)∥H ≤ 1√
2
∥f∥L2(R;DS,−1)

for all t ∈ R. Using Cauchy-Schwarz inequality, we have for

all t ∈ R and a ∈ H,
ˆ t

−∞
|⟨S−1f(s), Se−(t−s)S2

a⟩H | ds ≤ 1√
2

(ˆ t

−∞
∥S−1f(s)∥2H ds

)1/2

∥a∥H ,

where we have used the quadratic equalityˆ ∞

0
∥Se−sS2

a∥2Hds =
1

2
∥a∥2H .

As

⟨u(t), a⟩H =

ˆ t

−∞
⟨S−1f(s), Se−(t−s)S2

a⟩H ds,

we obtain the desired bound for ∥u(t)∥H .

Step 2: ∥u∥L2(R;DS,1)
≤ 1√

2
∥f∥L1(R;H). We observe that by Fubini’s theorem, we have ⟨Su, f̃⟩ =

⟨u, Sf̃⟩ = ⟨f, ũ⟩, where ũ = T̃ (Sf̃). Thus

|⟨Su, f̃⟩| ≤ ∥f∥L1(R;H) ∥T̃ (Sf̃)∥L∞(R;H) ≤
1√
2
∥f∥L1(R;H) ∥f̃∥L2(R;H)

using step 1 for T̃ .

Step 3: ∥u∥L2(R;DS,1)
≤ ∥f∥L2(R;DS,−1). We already know from step 2 that ∥u∥L2(R;DS,1)

is finite. To

obtain the desired bound, we use again Fubini’s theorem several times and obtain

∥Su∥2L2(R;H) =

ˆ
R
⟨Su(t), Su(t)⟩H dt

=

ˆ
R

ˆ t

−∞

ˆ t

−∞
⟨S2e−(t−s)S2

S−1f(s), S2e−(t−s′)S2
S−1f(s′)⟩H dsds′dt

=

ˆ
R

ˆ
R

ˆ +∞

max(s,s′)
⟨S4e−(2t−(s+s′))S2

S−1f(s), S−1f(s′)⟩H dtdsds′

=
1

2

ˆ
R

ˆ
R
⟨S2e−(2max(s,s′)−(s+s′))S2

S−1f(s), S−1f(s′)⟩H dsds′

=

ˆ
R

ˆ
s≤s′

⟨S2e−(s′−s)S2
S−1f(s), S−1f(s′)⟩H dsds′

=

ˆ
R
⟨Su(s′), S−1f(s′)⟩H ds′.

Using Cauchy-Schwarz inequality, we deduce that

∥Su∥2L2(R;H) ≤ ∥Su∥L2(R;H) ∥f∥L2(R;DS,−1)
.

Therefore

∥u∥L2(R;DS,1)
≤ ∥f∥L2(R;DS,−1)

.
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Step 4: ∥u(t)∥H ≤ C(α)∥f∥Wα, α ∈ [−1, 0). For all a ∈ E−∞, we define

∀t ∈ R; φa(t) := 1(−∞,0](t)e
tS2
a.

Remark that when a ∈ H, φa ∈ L2(R, DS,1), hence φa ∈ L2(R, E−∞). For t ∈ R,

⟨u(t), a⟩H =

ˆ 0

−∞
⟨esS2

f(s− t), a⟩H ds

=

ˆ
R
⟨f(s− t), φa(s)⟩H ds

= ⟨τtg,D
1+α
2

t S−αφa⟩L2(R;H),L2(R;H).

In the calculation, we used f̂(0) = 0 (see Lemma 4.6, point (3)) and wrote f = D
1+α
2

t S−αg with
g ∈ L2(R;H), defined τtg(s) = g(s − t) and used that translations commute with Dt. If we show
that

∥D
1+α
2

t S−αφa∥L2(R;H) = C(α) ∥a∥H ,

then

|⟨u(t), a⟩H | ≤ C(α) ∥g∥L2(R;H) ∥a∥H ,

and we may conclude using the density of E−∞ in H. To see this, applying Fourier transform to
φa, we get

∀τ ∈ R; φ̂a(τ) = (−iτ + S2)−1a,

so that
|τ |1+α

∥∥S−α(−iτ + S2)−1a
∥∥2
H

= |τ |−1⟨ψ(|τ |−1/2S)a, a⟩H
with ψ(t) = t−2α(1 + t4)−1. Using simple computations and Calderón’s identityˆ ∞

−∞
ψ(|τ |−1/2S)a

dτ

|τ |
=

ˆ ∞

0

t−2α

1 + t4
dt

t
a,

we obtain ˆ
R
|τ |1+α

∥∥S−αφ̂a(τ)
∥∥2
H

dτ =

ˆ ∞

0

t−2α

1 + t4
dt

t
∥a∥2H ,

and conclude using Plancherel identity that C(α)2 = 1
2π

´∞
0

t−2α

1+t4
dt
t .

Step 5: ∥u∥L2(R;DS,1)
≤ C ′(α)∥f∥Wα, α ∈ [−1, 1]. Since f ∈ S(R;E−∞), we know a priori that

u ∈ L2(R;DS,1) from Step 2 and u agrees with the solution given by Fourier transform of Theorem
4.7. Hence, we can use Fourier transform to compute. We have

û(τ) = (iτ + S2)−1 |τ |
1+α
2 S−αg(τ).

where f = D
1+α
2

t S−αg with g ∈ L2(R;H). Hence

∥Sû(τ)∥2H = ⟨(τ2 + S4)−1|τ |1+αS2−2αĝ(τ), ĝ(τ)⟩H
= ∥(|τ |−1/2S)1−α(1 + (|τ |−1/2S)4)−1/2ĝ(τ)∥2H
≤ C ′(α)2∥ĝ(τ)∥2H

with C ′(α) = supt>0 t
1−α(1 + t4)−1/2 <∞ when −1 ≤ α ≤ 1.
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Step 6: ∥D
1−α
2

t Sαu∥L2(R;H) ≤ ∥f∥Wα, α ∈ [−1, 1]. We proceed as in step 5, and compute

∥|τ |
1−α
2 Sαû(τ)∥2H = ⟨(τ2 + S4)−1|τ |2ĝ(τ), ĝ(τ)⟩H ≤ ∥ĝ(τ)∥2H .

The conclusion follows. □

Remark 4.14. As noted in the proof, we can identify the Duhamel solution with the Fourier solution.
So this gives an indirect proof that the Duhamel solution belongs to S(R;E−∞) for f ∈ S(R;E−∞).

4.3. Regularity of solutions. We can now deduce existence and uniqueness results together with
regularity. We begin with the simplest case.

Theorem 4.15 (Regularity for source in L1). Let f ∈ L1(R;H). Then there exists a unique
u ∈ L2(R;DS,1) solution of the equation ∂tu + S2u = f in S ′(R;E∞). Moreover u ∈ C0(R;H)
with

sup
t∈R

∥u(t)∥H ≤ ∥f∥L1(R;H) and ∥u∥L2(R;DS,1)
≤ 1√

2
∥f∥L1(R;H) .

Proof. Uniqueness in L2(R;DS,1) is provided by Proposition 4.1.
The existence of such a regular solution with the estimates follow from Lemmas 4.12 and 4.13,

when f ∈ S(R;E−∞).
Density of S(R;E−∞) in L1(R;H) allows us to pass to the limit both in the weak formulation of

the equation and in the estimates. That the limit stays in C0(R;H) follows from the closedness of
this space for the sup norm. □

We turn to the second result extending Proposition 4.5 (the case β = −1).

Theorem 4.16 (Regularity for source in W−β). Let β ∈ (0, 1] and fix f ∈W−β. Then there exists
a unique u ∈ L2(R;DS,1) solution of ∂tu + S2u = f in S ′(R;E∞). Moreover u ∈ V−β ∩ C0(R;H)
and there exists a constant C = C(β) > 0 independent of f such that

sup
t∈R

∥u(t)∥H + ∥u∥V−β
≤ C ∥f∥W−β

.

Proof. It is a repetition of that of Theorem 4.15, gathering uniqueness of Proposition 4.1, estimates
of Lemma 4.13 with β = −α, and density from Lemma 4.6. □

Remark 4.17. For β ≤ 0, there is a solution in V−β by Theorem 4.7, but it does not belong to
C0(R;H).

5. Embeddings and integral identities

The study of the abstract heat equation leads to embeddings for functions spaces in the spirit of
Lions and then to integral identities expressing absolute continuity.

5.1. Embeddings.

Corollary 5.1 (Extended Lions’ embedding). For α ∈ [−1, 0), we have Vα ↪→ C0(R;H).

Proof. Fix α ∈ [−1, 0) and let u ∈ Vα. We have ∂tu ∈ Wα and S2u ∈ L2(R;DS,−1) = W−1, hence
f = ∂tu + S2u ∈ W−1 +Wα = V ⋆

−α. As Vα ⊂ L2(R;DS,1), by Proposition 4.1, u is the unique
solution in L2(R;DS,1) of the equation

∂tũ+ S2ũ = f in S ′(R;E∞).

Using linearity and Theorem 4.16 for β = −α and β = 1, we deduce that u ∈ C0(R;H) and we
have

sup
t∈R

∥u(t)∥H ≤ C(α) ∥∂tu∥Wα
+

(
1 +

1√
2

)∥∥S2u
∥∥
L2(R;DS,−1)

≤ C̃(α) ∥u∥Vα
.

□
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Remark 5.2. The case α = −1 is the homogeneous version of Lions result mentioned before. For
α ∈ [0, 1], there is no chance to have an embedding Vα ↪→ C0(R;H). In fact, the embedding

Ḣ1/2(R;H) ↪→ L∞(R;H) fails (case α = 0), as the scalar embedding H1/2(R) ↪→ L∞(R) for the
classical inhomogeneous Sobolev space of order 1/2 already fails.

We complete the embeddings by exploring further the cases α ∈ [0, 1] although this does not
require the heat operator ∂t + S2.

Lemma 5.3 (Hardy-Littlewood-Sobolev embedding). Let α ∈ (0, 1] and let r = 2/α ∈ [2,∞).
Then, we have Vα ↪→ Lr(R;DS,α) and there is a constant C = C(r) > 0 such that for all u ∈ Vα,

∥u∥Lr(R;DS,α)
≤ C(r)∥D

1−α
2

t u∥L2(R;DS,α).

Consequently, we have Lr′(R;DS,−α) ↪→W−α, where r
′ is the Hölder conjugate of r.

Proof. The inequality holds for u ∈ S(R;E−∞) using the Sobolev embedding in R extended to DS,α-

valued functions as the inverse of D
1−α
2

t is the Riesz potential with exponent 1−α
2 . We conclude by

density and a duality argument. □

The next result shows that V0 and V1 ∩ L∞(R;H) share similar embeddings.

Proposition 5.4 (Mixed norm embeddings). For r ∈ (2,∞) and α = 2/r, we have V1∩L∞(R;H) ↪→
Lr(R;DS,α) and V0 ↪→ Lr(R;DS,α), with

∥u∥Lr(R;DS,α)
≤ ∥u∥αL2(R;DS,1)

∥u∥1−α
L∞(R;H)

and
∥u∥Lr(R;DS,α)

≤ ∥u∥αL2(R;DS,1)
∥D1/2

t u∥1−α
L2(R;H)

.

Consequently, Lr′(R;DS,−α) ↪→ L2(R;DS,−1) + L1(R;H) and Lr′(R;DS,−α) ↪→ L2(R;DS,−1) +W0.

Proof. For the first inequality, use the moment inequality

∥Sαu(t)∥H ≤ ∥Su(t)∥αH∥u(t)∥1−α
H ≤ ∥Su(t)∥αH∥u∥1−α

L∞(R;H)

and integrate its r-power.
For the second inequality, start with the moment inequality expressed in Fourier side when

u ∈ S(R;E−∞), for fixed τ ,

∥|τ |
1−α
2 Sαû(τ)∥H ≤ ∥Sû(τ)∥αH∥|τ |1/2û(τ)∥1−α

H .

Next, take its square, integrate in τ , use Hölder inequality, Plancherel identity and density to
conclude.

The consequences are standard by density and duality and we skip details. □

Remark 5.5. Note that the first inequality and its dual version in the statement hold whenever R
is replaced by any interval. However, the second one and its dual version have a meaning only on
R.

Remark 5.6. Let α ∈ (0, 1]. Let S2 = −∆x, more precisely S = (−∆x)
1/2, where ∆x is the usual

Laplace operator defined as a self-adjoint operator on L2(Rn). When 2α < n, Sobolev embedding
in Rn gives us

D(Sα) ⊂ Lq(Rn), with ∥v∥Lq ≤ C∥Sαv∥L2 , q =
2n

n− 2α
.

This is true for 0 ≤ α ≤ 1 if n ≥ 3, or α ∈ (0, 12) if n = 1 or α < 1 if n = 2. Thus DS,α ↪→ Lq(Rn).
When r = 2/α, we have then Vα ↪→ Lr(R;Lq(Rn)). The constraints are equivalent to

1

r
+
n

2q
=
n

4
and 2 ≤ r, q <∞.

Thus, we recover the mixed space Lr
tL

q
x that appears in the classical theory [LSU68, chp. 3] and

deduce for them the classical embedding ∥u∥Lr
tL

q
x
≤ C∥∇xu∥2/rL2

tL
2
x
∥u∥1−2/r

L∞
t L2

x
from the first inequality

in Proposition 5.4. This argument is inspired from the one in [AE23].
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5.2. Integral identities. The Lions’ embedding using domains of S and S−1 comes with integral
identities. We now prove they hold using completions of the domains of S and S−1, and allowing
more general right hand sides.

Proposition 5.7 (Integral identities: the real line case). Let u ∈ L2(R;DS,1) and let ρ ∈ (2,∞].

Assume that ∂tu = f + g with f ∈ L2(R;DS,−1) and g ∈ Lρ′(R;DS,−β), where β = 2/ρ ∈ [0, 1) and

ρ′ is the Hölder conjugate of ρ. Then u ∈ C0(R;H), t 7→ ∥u(t)∥2H is absolutely continuous on R and
for all σ < τ ,

∥u(τ)∥2H − ∥u(σ)∥2H = 2Re

ˆ τ

σ
⟨f(t), u(t)⟩H,−1 + ⟨g(t), u(t)⟩H,−β dt.(5.8)

In particular, if ρ = ∞, then we infer that

sup
t∈R

∥u(t)∥H ≤
√

2 ∥u∥L2(R;DS,1)
∥f∥L2(R;DS,−1)

+ (1 +
√
2) ∥g∥L1(R;H) .(5.9)

Remark that with our notation, Re⟨f(t), u(t)⟩H,−1 = Re⟨u(t), f(t)⟩H,1.

Proof. The assumption u ∈ L2(R;DS,1) is equivalent to S2u ∈ L2(R;DS,−1), hence u verifies the
equation

∂tu+ S2u = S2u+ f + g =: h.

Using Theorem 4.16 when ρ <∞ and Theorem 4.15 when ρ = ∞, we know that u ∈ L2(R;DS,1)∩
C0(R;H). It remains to prove the identity.

Let fk, gk ∈ S(R;E−∞) with fk → S2u+ f in L2(R;DS,−1) and gk → g in Lρ′(R;DS,−β) and set
hk = fk + gk. Let uk ∈ L2(R;DS,1) be the unique solution of the equation ∂tuk + S2uk = hk given
by Corollary 4.3. We have uk ∈ S(R;E−∞).

The regularity of uk allows us to write for all σ < τ ,

∥uk(τ)∥2H − ∥uk(σ)∥2H = 2Re

ˆ τ

σ
⟨∂tuk(t), uk(t)⟩H dt.

Since ∂tuk = −S2uk + hk by the equation, we have for all σ < τ ,

∥uk(τ)∥2H − ∥uk(σ)∥2H = 2Re

ˆ τ

σ
⟨fk(t)− S2uk(t), uk(t)⟩H + ⟨gk(t), uk(t)⟩H dt.

To pass to the limit when k → ∞, we observe that uk → u in L2(R;DS,1) and in C0(R;H) in all
cases, and also in Lρ(R;DS,β) when ρ < ∞. In particular fk − S2uk → f in L2(R;DS,−1). We
obtain (5.8) at the limit.

In the case ρ = ∞, letting σ → −∞ and taking τ at which ∥u(τ)∥H = sup ∥u(t)∥H = X, we
obtain

X2 = ∥u(τ)∥2H ≤ 2

ˆ ∞

−∞
∥S−1f(t)∥H∥Su(t)∥H dt+ 2X

ˆ ∞

−∞
∥g(t)∥H dt.

Solving the inequality for X, we obtain the conclusion. □

We stress that the above result is false on bounded intervals as evidenced by the counter-example
in Remark 4.9. But it remains valid on half-lines. On (0,∞) say, it can be shown either using the
backward heat equation or an extension method. We describe the second method below.

Corollary 5.10 (Integral identities: the half-line case). Let I be an open half-line of R. Let
u ∈ L2(I;DS,1) and let ρ ∈ (2,∞]. Assume that ∂tu = f + g with f ∈ L2(I;DS,−1) and g ∈
Lρ′(I;DS,−β), where β = 2/ρ ∈ [0, 1). Then u ∈ C0(Ī , H), t 7→ ∥u(t)∥2H is absolutely continuous on
Ī and (5.8) holds for all σ, τ ∈ Ī such that σ < τ .

Proof. We assume that I = (0,∞) because it is always possible to go back to this case. We will
construct an even extension ue of u and odd extensions go, fo of g, f to R. These extensions belong
to the same spaces as u, f, g but in R and ∂tue = fo + go. Thus, Proposition 5.7 applies to ue. We
obtain the conclusion by restricting to Ī.
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We start by defining for all a ∈ E−∞ the distribution ⟨u, a⟩ on (0,∞) by setting

∀ϕ ∈ D((0,∞);C), ⟨⟨u, a⟩, ϕ⟩D′,D := ⟨⟨u, ϕ⊗ a⟩⟩D′,D =

ˆ ∞

0
⟨Su(t), S−1a⟩H ϕ̄(t) dt.

Hence ⟨u, a⟩ is locally integrable and agrees with ⟨u, a⟩(t) = ⟨Su(t), S−1a⟩H almost everywhere.
We have

d

dt
⟨u, a⟩ = ⟨g, a⟩H,−α + ⟨f, a⟩H,−1 in D′((0,∞);C).

The assumptions on u, f, g imply that ⟨u, a⟩ ∈ W 1,1(0, T ) for any T > 0. It follows that ⟨u, a⟩ can
be identified with a absolutely continuous function on [0,∞). We define ue ∈ D′(R;E∞) by

⟨⟨ue, ϕ⊗ a⟩⟩D′,D :=

ˆ ∞

0
⟨u, a⟩(t)(ϕ̄(t) + ϕ̄(−t)) dt.

using that distributions D′(R;E∞) are uniquely determined on tensor products ϕ⊗a with ϕ ∈ D(R)
and a ∈ E−∞. We have ue = u in D′((0,∞);E∞) by taking ϕ supported in (0,∞). Next, integration
by parts shows that

⟨⟨ue,
d

dt
(ϕ⊗ a)⟩⟩D′,D = −

ˆ ∞

0
(⟨S−βg(t), Sβa⟩H + ⟨S−1f(t), Sa⟩H)(ϕ̄(t) + ϕ̄(−t)) dt

= −
ˆ

R
(⟨go(t), a⟩H,−β + ⟨fo(t), a⟩H,−1)ϕ̄(t) dt,

where go and fo are the odd extensions of g and f , respectively. Hence ∂tue = go+fo in D′(R;E∞).
Lastly,

⟨⟨Sue, ϕ⊗ a⟩⟩D′,D = ⟨⟨ue, S(ϕ⊗ a)⟩⟩D′,D =

ˆ ∞

0
⟨Su(t), a⟩H(ϕ̄(t) + ϕ̄(−t)) dt

=

ˆ
R
⟨(Su)e(t), a⟩H ϕ̄(t) dt,

where (Su)e is the even extension of Su, so that Sue = (Su)e in D′(R;E∞). □

The conclusion of Corollary 5.10 can be polarized, given two functions u, ũ that verify the
assumptions of Corollary 5.10 with the same exponent ρ ∈ (2,∞] and β = 2/ρ. Thanks to the
extendability seen in the previous proof, the same also works with open, half-infinite intervals and
the conclusion is as follows.

Corollary 5.11 (Polarized integral identities). Assume that u, ũ satisfy the same assumptions
as in Corollary 5.10 on two open infinite intervals I and J with non empty intersection. Then
t 7→ ⟨u(t), ũ(t)⟩H is absolutely continuous on Ī ∩ J̄ and we have for all σ, τ ∈ Ī ∩ J̄ such that σ < τ

⟨u(τ), ũ(τ)⟩H − ⟨u(σ), ũ(σ)⟩H =

ˆ τ

σ
⟨f(t), ũ(t)⟩H,−1 + ⟨g(t), ũ(t)⟩H,−β dt

+

ˆ τ

σ
⟨u(t), f̃(t)⟩H,1 + ⟨u(t), g̃(t)⟩H,β dt.

Remark 5.12. We note that by linearity, the above identities hold with g replaced by a sum of several
terms in Lρ′(R;DS,−β) for different pairs (ρ, β) and similarly for the polarized version. However,
the inequality (5.9) should be modified accordingly.

On a bounded interval there is a statement with an extra L1(I;H) hypothesis on u.

Corollary 5.13 (Integral identities: the bounded case). Let I be a bounded, open interval of R. Let
u ∈ L2(I;DS,1) ∩ L1(I;H) and let ρ ∈ (2,∞]. Assume that ∂tu = f + g with f ∈ L2(I;DS,−1) and

g ∈ Lρ′(I;DS,−β), where β = 2/ρ ∈ [0, 1). Then u ∈ C(Ī , H), t 7→ ∥u(t)∥2H is absolutely continuous
on Ī and (5.8) holds for all σ, τ ∈ Ī such that σ < τ .
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Proof. Assume that I = (0,T). If we take χ a smooth real-valued function that is equal to 1
near 0 and 0 near T and set v = χu on (0,∞) then we can see that v ∈ L2((0,∞);DS,1) and

∂tv ∈ L2((0,∞);DS,−1) + Lρ′((0,∞);DS,−β) + L1((0,∞);H). We may apply Corollary 5.10 with
the above remark, and by restriction we have the conclusion on any subinterval [0,T′] with T′ < T.
If we now do this with a smooth real-valued function that is equal to 0 near 0 and 1 near T, and
apply Corollary 5.10 on (−∞,T) we have by restriction the conclusion for u on any subinterval
[T′,T] with 0 < T′. We conclude on [0,T] by gluing. □

6. Abstract parabolic equations

In this section, we study parabolic equations of type

∂tu+ Bu = f,

where ∂t+B is a parabolic operator with a time-dependent elliptic part B under “divergence struc-
ture”. Here, we do not assume any time-regularity on B apart its weak measurability. We provide
a complete framework to prove well-posedness and to construct propagators and fundamental so-
lution operators avoiding density arguments from parabolic operators with time regular elliptic
part. We also avoid time regularization like Steklov approximations. Uniqueness implies that our
construction agrees with others under common hypotheses.

6.1. Setup. Throughout this section, we fix an operator

T : D(T ) ⊂ H → K

which is injective, closed and densely defined from D(T ) ⊂ H to another complex separable Hilbert

space K. The operator T ⋆T is an injective, positive self-adjoint operator on H, so is S := (T ⋆T )1/2.
Moreover, by the Kato’s second representation theorem [Kat13], we have

D(S) = D(T ) and ∀u, v ∈ D(T ), ⟨Su, Sv⟩H = ⟨T ⋆Tu, v⟩H = ⟨Tu, Tv⟩K .
As a result, DS,1 is a completion of D(T ) for the norm ∥T ·∥K .

Next, (Bt)t∈R is a fixed family of bounded and coercive sesquilinear forms on D(T )×D(T ) with
respect to the homogeneous norm on D(T ) and with uniform bounds (independent of t). To be
precise, Bt : D(T )×D(T ) → C is a sesquilinear form verifying

|Bt(u, v)| ≤M ∥u∥S,1 ∥v∥S,1 , ν ∥u∥2S,1 ≤ Re(Bt(u, u)),(6.1)

for some M,ν > 0 and for all t ∈ R and u, v ∈ D(S). This is the equivalent to saying that for all

t ∈ R, there exists a bounded and strictly accretive linear map A(t) on ran(T ) such that

∀u, v ∈ D(T ), Bt(u, v) = ⟨A(t)Tu, Tv⟩K .(6.2)

We assume in addition that the family (Bt)t∈R is weakly measurable, i.e., t 7→ Bt(u, v) is a mea-
surable function on R, for all u, v ∈ D(T ).

We keep denoting by Bt the unique extension of Bt to DS,1 × DS,1. Remark that the family
(Bt)t∈R is automatically weakly measurable for the reason that for all u, v ∈ DS,1 the function
t 7→ Bt(u, v) is a pointwise limit of a sequence of measurable functions.

Note that the adjoint forms B⋆
t defined by B⋆

t (u, v) = Bt(v, u) have the same properties and are
associated to A(t)∗.

As ˆ
R
|Bt(u(t), v(t))|dt ≤M ∥u∥L2(R;DS,1)

∥v∥L2(R;DS,1)
,

the operator B defined by

⟨⟨Bu, v⟩⟩ =
ˆ

R
Bt(u(t), v(t)) dt when u, v ∈ L2(R;DS,1)

is a bounded operator from L2(R;DS,1) to L
2(R;DS,−1) with

∥Bu∥L2(R;DS,−1)
≤M ∥u∥L2(R;DS,1)

.
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Next, the partial derivative is a well-defined tempered distribution given by

⟨⟨∂tu, φ⟩⟩S′,S = −⟨⟨u, ∂tφ⟩⟩S′,S .

When u ∈ L2(R;DS,1), one can compute the right hand side as

⟨⟨u, ∂tφ⟩⟩S′,S = ⟨⟨Su, S−1∂tφ⟩⟩S′,S =

ˆ
R
⟨Su(t), S−1∂tφ(t)⟩H dt.

Definition 6.3 (The forward parabolic operator associated to the family (Bt)t∈R). The operator

∂t + B : L2(R;DS,1) → S ′(R;E∞)

defined using the weak formulation

∀u ∈ L2(R;DS,1), ∀φ ∈ S(R;E−∞), ⟨⟨∂tu+ Bu, φ⟩⟩S′,S := −⟨⟨u, ∂tφ⟩⟩S′,S +

ˆ
R
Bt(u(t), φ(t)) dt

is called the parabolic operator associated to the family (Bt)t∈R. The definition is the same as
above when R is substituted by an open interval I ⊂ R, replacing S ′(R;E∞) by D′(I;E∞) and
S(R;E−∞) by D(I;E−∞). In both cases, we formally write ∂t + B = ∂t + T ⋆A(t)T .

Remark that this definition needs no assumption u ∈ L1
loc(R;H) but if it is the case one can use

also ⟨⟨u, ∂tφ⟩⟩S′,S =
´

R⟨u(t), ∂tφ(t)⟩H dt (see Section 8). For u, v ∈ S(R;E−∞), an integration by
parts then yields

⟨⟨∂tu+ Bu, v⟩⟩S′,S = ⟨⟨−∂tv + B⋆v, u⟩⟩S′,S ,

where −∂t+B⋆ is the backward parabolic operator associated to the adjoint family of forms (B⋆
t )t∈R

defined similarly.
We wish to find (weak) solutions u ∈ L2(R;DS,1) to ∂tu+ Bu = f for appropriate source terms.

The challenge here is that we cannot use Fourier Transform anymore, nor a semi-group. We could
start with Lions representation theorem but we choose a different route, introducing a variational
parabolic operator.

We denote by Ht the Hilbert transform with symbol iτ/ |τ |. More precisely, if u ∈ S ′(R;E∞) is
such that we have iτ/ |τ | Fu ∈ S ′(R;E∞), then we set

Htu := F−1

(
i
τ

|τ |
Fu
)
.

We define a bounded sesquilinear form BV0 : V0 × V0 → C by

∀u, v ∈ V0, BV0(u, v) :=

ˆ
R
⟨HtD

1/2
t u(t), D

1/2
t v(t)⟩H +Bt(u(t), v(t)) dt.

By the Riesz representation theorem, there exists a unique H ∈ L(V0, V ⋆
0 ) such that

⟨⟨Hu, v⟩⟩V ⋆
0 ,V0 := BV0(u, v), u, v ∈ V0.

We have
(∂t + B)|V0 = H , (−∂t + B⋆)|V0 = H⋆,

where H⋆ : V0 → V ⋆
0 is the adjoint of H. Indeed, we have the almost everywhere equality

⟨HtD
1/2
t u(t), D

1/2
t v(t)⟩H = −⟨u(t), ∂tv(t)⟩H = −⟨Su(t), S−1∂tv(t)⟩H

when u, v ∈ S(R;E−∞) so that H and ∂t + B agree on S(R;E−∞) and we conclude by density in
V0. Thus, we may call H the variational parabolic operator associated to B as it comes from the
sesquilinear form BV0 and V0 plays the role of a variational space.

6.2. Existence and uniqueness results. We now prove our main results.
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6.2.1. Source term in V ⋆
0 : Kaplan’s method. The following lemma is essentially due to Kaplan

[Kap66]. It expresses hidden coercivity of the variational parabolic operator H. We reproduce the
argument for completeness.

Lemma 6.4 (Kaplan’s lemma: invertibility on the pivotal variational space). For each f ∈ V ⋆
0 ,

there exists a unique u ∈ V0 such that Hu = f . Moreover,

∥u∥V0
≤ C(M,ν) ∥f∥V ⋆

0
.

Proof. By the Plancherel theorem and the fact that the Hilbert transform Ht commutes with D
1/2
t

and S, it is a bijective isometry on V0. As it is skew-adjoint, for all δ ∈ R, 1+δHt is an isomorphism
on V0 and ∥(1 + δHt)u∥2V0

= (1 + δ2)∥u∥2V0
. The same equality holds on V ⋆

0 .
Let δ > 0 to be chosen later. The modified sesquilinear form BV0(·, (1 + δHt)·) is bounded on

V0 × V0 and for all u ∈ V0

Re BV0(u, (1 + δHt)u) = Re

ˆ
R
⟨HtD

1/2
t u,D

1/2
t (1 + δHt)u⟩H +Bt(u(t), (1 + δHt)u(t)) dt

= Re

ˆ
R
δ⟨HtD

1/2
t u(t), HtD

1/2
t u(t)⟩H +Bt(u(t), u(t)) + δBt(u(t), Htu(t)) dt.

where we have used that Ht is skew-adjoint, hence

Re

ˆ
R
⟨HtD

1/2
t u(t), D

1/2
t u(t)⟩H dt = 0.

We obtain

Re(BV0(u, (1 + δHt)u)) ≥ δ∥D1/2
t u∥2L2(R;H) + (ν − δM) ∥u∥2L2(R;DS,1)

.

Choosing δ = ν
1+M , it becomes

Re(BV0(u, (1 + δHt)u)) ≥
ν

1 +M
∥u∥2V0

, ∀u ∈ V0.

Fix f ∈ V ⋆
0 . The Lax-Milgram lemma implies that there exists a unique u ∈ V0 such that

BV0(u, (1 + δHt)·) = (1 + δHt)
⋆ ◦ f.

Furthermore, we have the estimate

∥u∥V0
≤ 1 +M

ν
∥(1 + δHt)

⋆ ◦ f∥V ⋆
0
.

Using the fact that (1 + δHt)
⋆ is an isomorphism on V ⋆

0 with operator norm equal to
√
1 + δ2, we

have that for each f ∈ V ⋆
0 there exists a unique u ∈ V0 such that BV0(u, ·) = f with

∥u∥V0
≤ 1 +M

ν
×

√
1 +

(
ν

1 +M

)2

∥f∥V ⋆
0
.

□

Now, we come to the uniqueness result below.

Proposition 6.5 (Uniqueness in energy space). Let I be an interval which is a neighbourhood of
−∞. If u ∈ L2(I;DS,1) is a solution of ∂tu+ Bu = 0 in D′(I;E∞), then u = 0.

Proof. We have u ∈ L2(I;DS,1) and ∂tu = −Bu ∈ L2(I;DS,−1). Using Corollary 5.10, we have

u ∈ C0(I;H) and verifies for σ, τ ∈ Ī such that σ < τ ,

∥u(τ)∥2H − ∥u(σ)∥2H = −2Re

ˆ τ

σ
Bt(u(t), u(t)) dt ≤ 0 .

When σ → −∞, we deduce that u(τ) = 0, for all τ ∈ I. □

Remark 6.6. When I = R, one can directly prove Proposition 6.5 using uniqueness in Lemma 6.4. In
fact, if u ∈ L2(R;DS,1) is a solution of ∂tu+Bu = 0 in D′(R;E∞) then ∂tu = −Bu ∈ L2(R;DS,−1),
so u ∈ V−1 ⊂ V0 and Hu = 0, therefore u = 0 by Lemma 6.4.
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6.2.2. Source term in W−β, β ∈ (0, 1]. Let us start with the following theorem.

Proposition 6.7 (Existence and uniqueness for W−β source). Let β ∈ (0, 1] and let f ∈ W−β.
Then, there exists a unique u ∈ L2(R;DS,1) solution to ∂tu + Bu = f in D′(R;E∞). Moreover,
u ∈ C0(R;H) ∩ V−β and there exists C = C(M,ν, β) > 0 such that

sup
t∈R

∥u(t)∥H + ∥u∥V−β
≤ C ∥f∥W−β

.

Proof. Since W−β ↪→ V ⋆
β ↪→ V ⋆

0 , Lemma 6.4 provides us with a solution u = H−1f ∈ V0 with the

estimate ∥u∥V0
≤ C(M,ν) ∥f∥V ⋆

0
, so in particular, ∥u∥L2(R;DS,1)

≤ C(M,ν, β) ∥f∥W−β
. Uniqueness

in L2(R;DS,1) is provided by Proposition 6.5. Writing the equation as

∂tu+ S2u = S2u− Bu+ f in D′(R;E∞),

we may combine Theorems 4.15, 4.16 together with Bu ∈ L2(R;DS,−1), to see that u ∈ C0(R;H)∩
V−β with

sup
t∈R

∥u(t)∥H + ∥u∥V−β
≤ C(M,ν, β)

(
∥u∥L2(R;DS,1)

+ ∥f∥W−β

)
.

Therefore,
sup
t∈R

∥u(t)∥H + ∥u∥V−β
≤ C(M,ν, β) ∥f∥W−β

.

□

Corollary 6.8 (Boundedness properties of H−1). Fix ρ ∈ [2,∞) and set β = 2/ρ ∈ (0, 1]. Then,

H−1 : Lρ′(R;DS,−β) → V−β ∩ C0(R;H) is bounded.

The same holds for (H⋆)−1.

Proof. Combine Proposition 6.7, Lemma 5.3 and Proposition 5.4. □

Remark 6.9. For fixed f ∈ Lρ′(R;DS,−β), we have H−1f ∈ V−β ⊂ V0. In particular, using Proposi-
tion 5.4, we have H−1f ∈ Lr(R;DS,α) for any r ∈ (2,∞) where α = 2/r and there exists a constant
C = C(M,ν, β) > 0 such that∥∥H−1f

∥∥
Lr(R;DS,α)

≤ C ∥f∥Lρ′ (R;DS,−β)
.

The same is true for (H⋆)−1.

6.2.3. Source term in L1(R;H). The previous theorems rely on Lemma 6.4 to prove the existence,
so they do not apply anymore when f ∈ L1(R;H) since L1(R;H) ⊈ V ⋆

0 . Yet, we can solve with
such source terms using a duality scheme.

Proposition 6.10 (Existence and uniqueness for source in L1). Let f ∈ L1(R;H). Then there
exists a unique u ∈ L2(R, DS,1) solution to ∂tu+ Bu = f in D′(R;E∞). Moreover, u ∈ C0(R;H) ∩
L2(R;DS,1) and there exists a constant C = C(M,ν) > 0 such that

(6.11) sup
t∈R

∥u(t)∥H + ∥u∥L2(R;DS,1)
≤ C ∥f∥L1(R;H) .

Proof. Uniqueness is provided by Proposition 6.5. To prove the existence, we remark that Corollary
6.8 for the backward operatorH⋆ in the case ρ = 2 implies that (H⋆)−1 is bounded from L2(R;DS,−1)
into C0(R;H). We define

T : L1(R;H) → D′(R;E∞), ⟨⟨T f, φ⟩⟩D′,D := ⟨⟨f, (H⋆)−1φ⟩⟩L1(R;H),L∞(R;H),

and we have

(6.12) ∥T f∥L2(R;DS,1)
≤ C(M,ν) ∥f∥L1(R;H) .

Next, let f in D(R;E−∞). We write for all φ ∈ D(R;E−∞), observing that D(R;E−∞) ⊂ V ⋆
0 ,

⟨⟨T f, φ⟩⟩D′,D = ⟨⟨HH−1f, (H⋆)−1φ⟩⟩V ⋆
0 ,V0 = ⟨⟨H−1f, φ⟩⟩D′,D.
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Hence, T f = H−1f ∈ C0(R;H) and

(6.13) ∀φ ∈ D(R;E−∞), −⟨⟨T f, ∂tφ⟩⟩D′,D +

ˆ
R
Bt(T f(t), φ(t)) dt =

ˆ
R
⟨f(t), φ(t)⟩H dt.

Using (5.9), we obtain

(6.14) sup
t∈R

∥T f(t)∥H ≤
√
2M ∥T f∥L2(R;DS,1)

+ (1 +
√
2) ∥f∥L1(R;H) ≤ C(M,ν) ∥f∥L1(R;H) .

Now, let us pick f ∈ L1(R;H). Let (fk)k∈N ∈ D(R;E−∞)N such that fk → f in L1(R;H). By
(6.12) and (6.14), we have T fk → T f in L2(R;DS,1)∩C0(R;H). Using (6.13) with T fk for a fixed
φ ∈ D(R;E−∞) and letting k → ∞ imply that ∂t(T f) + B(T f) = f in D′(R;E∞). □

6.2.4. Source term is a bounded measure on H. First, we define the space of bounded H-valued
measures on R, denoted M(R;H), as the topological anti-dual space of C0(R;H) with respect to
the sup-norm. We denote by ⟨⟨·, ·⟩⟩M,C0 the anti-duality bracket. We equip the space M(R;H)
with the operator norm, that is

∥µ∥M := sup
φ∈C0(R;H)\{0}

|⟨⟨µ, φ⟩⟩M,C0 |
∥φ∥L∞(R;H)

.

It is a Banach space containing a subspace isometric to L1(R;H).
For µ ∈ M(R;H), supp(µ) is the complement of the largest open set of R on which µ is equal to

0. More precisely, we say that µ equals 0 on an open set Ω ⊂ R if for all ϕ ∈ C0(R, H) with support
contained in Ω, ⟨⟨µ, ϕ⟩⟩M,C0 = 0. Let N denotes the set of all such open sets. We have

supp(µ) := R \
⋃
Ω∈N

Ω.

An important example are Dirac measures. For any s ∈ R and a ∈ H, we denote by δs ⊗ a the
Dirac measure on s carried by a which is defined by

⟨⟨δs ⊗ a, ϕ⟩⟩M,C0 = ⟨a, φ(s)⟩H , φ ∈ C0(R;H).

We first state the classical lemma below for later use.

Lemma 6.15. Let µ ∈ M(R;H). Then there exists a sequence (fε)ε>0 in L
1(R;H) such that fε ⇀ µ

(weak-⋆ convergence) and supε>0 ∥fε∥L1(R;H) ≤ ∥µ∥M .

Proof. We obtain the sequence (fε)ε>0 by convoluting µ with a scalar mollifying sequence (φε)ε>0

and we easily check that we have all the required properties. □

Proposition 6.16 (Existence and uniqueness for bounded measure source). Let µ ∈ M(R;H).
Then there exists a unique u ∈ L2(R;DS,1) solution to ∂tu + Bu = µ in D′(R;E∞). Moreover,
u ∈ L∞(R;H) f and there is a constant C = C(M,ν) > 0 such that

(6.17) ∥u∥L2(R;DS,1)
+ ∥u∥L∞(R;H) ≤ C(M,ν) ∥µ∥M .

If I ⊂ R \ supp(µ) an unbounded open interval, then u ∈ C0(I,H) and t 7→ ∥u(t)∥2H is absolutely

continuous on I. Moreover, if I is a neighbourhood of −∞, then u = 0 on I.

Proof. Uniqueness is provided by Proposition 6.5. To prove the existence, we use lemma 6.15 to
pick (fn)n∈N ∈ L1(R;H)N such that fn ⇀ µ and supn∈N ∥fn∥L1(R;H) ≤ ∥µ∥M . By Proposition 6.10,

for all n ∈ N, there is a unique un ∈ L2(R;DS,1) solution of the equation ∂tun + Bun = fn in
D′(R;E∞) and we have (6.11), implying

(6.18) ∥un∥L2(R;DS,1)
+ ∥un∥L∞(R;H) ≤ C(M,ν) ∥µ∥M .

Using the Banach-Alaoglu theorem, there exists u ∈ L2(R;DS,1) ∩ L∞(R;H) such that, up to
extracting a sub-sequence, un ⇀ u weakly in L2(R;DS,1) and weakly-⋆ in L∞(R;H) for the duality
pairing L∞-L1. We have (6.17) and easily pass to the limit in the equation to obtain the desired
solution.
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Now, if I ⊂ R is an unbounded open interval such that I ∩ supp(µ) = ∅, then by Corollary 5.10,

u ∈ C0(I,H) and t 7→ ∥u(t)∥2H is absolutely continuous on I. If I is a neighbourhood of −∞, then
u = 0 by Proposition 6.5 on I. □

The next corollary is crucial to construct fundamental solution and Green operators.

Corollary 6.19 (Existence and uniqueness for Dirac measure source). Let s ∈ R and a ∈ H.
Then there exists a unique u ∈ L2(R;DS,1) solution to ∂tu+Bu = δs ⊗ a in D′(R;E∞). Moreover,
u ∈ C0(R \ {s};H), equals 0 on (−∞, s) and limt→s+ u(t) = a in H, and there is a constant
C = C(M,ν) > 0 such that

sup
t∈R\{s}

∥u(t)∥H + ∥u∥L2(R;DS,1)
≤ C ∥a∥H .

Furthermore, u|(s,∞) is the restriction of an element in V−1.

Proof. Applying the previous result Proposition 6.16, we have existence and uniqueness of u with
the estimates and u ∈ C0(R \ {s};H), equals 0 on (−∞, s) and has a limit u(s+) when t→ s+.

That u|(s,∞) is a restriction to (s,∞) of an element in V−1 follows from the fact that ∂tu = f
in D′((s,∞);E∞) with f = −Bu on (s,∞) and the method of Corollary 5.10, by taking the even
extension of u and the odd extension of f with respect to s.

It remains to show u(s+) = a. Let ã ∈ E−∞ and θ ∈ D(R) with θ(s) = 1 and set φ = θ ⊗ ã.
Using the absolute continuity of t 7→ ⟨u(t), φ(t)⟩H on both [s,∞) and (−∞, s] using Corollary 5.11,
we have

−⟨u(s+), ã⟩H =

ˆ ∞

s
−Bt(u(t), φ(t)) + ⟨u(t), ∂tφ(t)⟩H dt

+⟨u(s−), ã⟩H =

ˆ s

−∞
−Bt(u(t), φ(t)) + ⟨u(t), ∂tφ(t)⟩H dt

By the equation for u on R, and since u ∈ L1
loc(R;H), we obtainˆ ∞

−∞
Bt(u(t), φ(t))− ⟨u(t), ∂tφ(t)⟩H dt = ⟨⟨δs ⊗ a, φ⟩⟩M,C0 = ⟨a, ã⟩H .

Summing up, −⟨u(s+), ã⟩H + ⟨u(s−), ã⟩H = −⟨a, ã⟩H . As u(s−) = 0, this yields ⟨u(s+), ã⟩H =
⟨a, ã⟩H and we conclude by density of E−∞ in H. □

6.3. Green operators. The notion below of Green operators was first introduced by J.-L. Lions
[Lio13].

Definition 6.20 (Green operators). Let t, s ∈ R and a, ã ∈ H.

(1) For t ̸= s, G(t, s)a is defined as the value at time t of the solution u ∈ L2(R;DS,1) of the
equation ∂tu+ Bu = δs ⊗ a in Corollary 6.19.

(2) For s ̸= t, G̃(s, t)ã is defined as the value at time s of the solution u ∈ L2(R;DS,1) of the
equation −∂su+ B⋆u = δt ⊗ ã in Corollary 6.19.

The operators G(t, s) and G̃(s, t) are called the Green operators for the parabolic operator ∂t + B
and the backward parabolic operator −∂t + B⋆, respectively.

The properties discussed in the last section can be summarized in the following corollary.

Corollary 6.21 (Estimates for Green operators). There is a constant C = C(M,ν) > 0 such that
one has the following statements.

(1) For all t < s ∈ R, G(t, s) = 0 and for all a ∈ H, t 7→ G(t, s)a ∈ C0([s,∞);H) with
G(s, s)a = a and it is a restriction to (s,∞) of an element in V−1, and for any r ∈ [2,∞),
a ∈ H and s ∈ R, we have G(·, s)a ∈ Lr((s,∞);DS,α) where α = 2/r with

sup
t≥s

∥G(t, s)∥L(H) ≤ C and

ˆ +∞

s
∥G(t, s)a∥rS,α dt ≤ Cr ∥a∥rH .



FUNDAMENTAL SOLUTIONS FOR PARABOLIC SYSTEMS 27

(2) For all s > t ∈ R, G̃(s, t) = 0 and for all ã ∈ H, s 7→ G̃(s, t)ã ∈ C0((−∞, t];H) with

G̃(t, t)ã = ã and it is a restriction to (−∞, t) of an element in V−1, and for any r ∈ [2,∞),

t ∈ R, we have G̃(s, ·)a ∈ Lr((−∞, t);DS,α) where α = 2/r with

sup
t≥s

∥G̃(s, t)∥L(H) ≤ C and

ˆ t

−∞
∥G̃(s, t)ã∥rS,αds ≤ Cr∥ã∥rH .

Proof. The properties follows from construction in Corollary 6.19 and the interpolation inequalities
in Proposition 5.4 for 2 < r <∞. □

Moreover, expected adjointness and Chapman-Kolmogorov relations hold.

Proposition 6.22 (Adjointess and Chapman-Kolmogorov identities). The following statements
hold.

(1) For all s < t, G(t, s) and G̃(s, t) are adjoint operators.
(2) For any s < r < t, we have G(t, s) = G(t, r)G(r, s).

Proof. We first prove point (1). We fix t, s ∈ R such that s < t. For a, ã ∈ H, we can apply the

integral identity of Corollary 5.11 to u := G(·, s)a and v = G̃(·, t)ã between s and t. Note that by
duality the integrand vanishes almost everywhere, hence

⟨G(t, s)a, ã⟩H = ⟨G(t, s)a, G̃(t, t)ã⟩H = ⟨G(s, s)a, G̃(s, t)ã⟩H = ⟨a, G̃(s, t)ã⟩H .
The adjunction property follows. For point (2), we apply the same equality between r and t and

use that the adjoint of G(t, r) is G̃(r, t) from point (1), to obtain

⟨G(t, s)a, ã⟩H = ⟨G(t, s)a, G̃(t, t)ã⟩H = ⟨G(r, s)a, G̃(r, t)ã⟩H = ⟨G(t, r)G(r, s)a, ã⟩H .
□

6.4. Fundamental solution. We define the fundamental solution as representing the inverse of
∂t + B.

Definition 6.23 (Fundamental solution for ∂t +B). A fundamental solution for ∂t +B is a family
Γ = (Γ(t, s))t,s∈R such that :

(1) supt,s∈R ∥Γ(t, s)∥L(H) < +∞.

(2) Γ(t, s) = 0 if s > t.
(3) For all a, ã ∈ E−∞, the function (t, s) 7→ ⟨Γ(t, s)a, ã⟩H is Borel measurable on R2.
(4) For all ϕ ∈ D(R) and a ∈ E−∞, the solution u ∈ L2(R;DS,1) of the equation ∂tu+Bu = ϕ⊗a

in D′(R;E∞) satisfies for all ã ∈ E−∞, ⟨u(t), ã⟩H =
´ t
−∞ ϕ(s)⟨Γ(t, s)a, ã⟩H ds, for almost

every t ∈ R.

One defines a fundamental solution (Γ̃(s, t))s,t∈R to the backward operator −∂s + B⋆ analogously

and (ii) is replaced by Γ̃(s, t) = 0 if s > t.

Lemma 6.24 (Uniqueness of fundamental solutions). There is at most one fundamental solution
to ∂t + B in the sense of Definition 6.23.

Proof. Assume Γ1, Γ2 are two fundamental solutions to ∂t +B. Fix a and ã in E−∞. The function
(t, s) 7→ ⟨Γk(t, s)a, ã⟩H is bounded and measurable for k ∈ {1, 2} by (1) and (3), hence Fubini’s

Theorem with (2) and (4) yield for all ϕ, ϕ̃ ∈ D(R),¨
R2

ϕ̃(s)ϕ(t)⟨Γ1(t, s)a, ã⟩H dsdt =

¨
R2

ϕ̃(s)ϕ(t)⟨Γ2(t, s)a, ã⟩H dsdt.

Therefore, we obtain ⟨Γ1(t, s)a, ã⟩H = ⟨Γ2(t, s)a, ã⟩H for almost every (t, s) ∈ R2. At this stage,
the almost everywhere equality can depend on a and ã. Applying this for test elements a, ã ∈ E−∞
describing a countable set in E−∞ that is dense in H and using that the operators Γ1(t, s), Γ2(t, s)
are bounded on H by (1), one deduces that Γ1 and Γ2 agree almost everywhere. □
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6.5. The Green operators are the fundamental solution operators. The two notions are
well defined and we show that they lead to the same families. We borrow partially ideas from
[AE23].

Theorem 6.25 (Green operators and fundamental solution operators agree). The family of Green
operators is the fundamental solution (up to almost everywhere equality) and (4) holds for all t ∈ R.

Proof. As there is at most one fundamental solution, it suffices to show that the family of Green
operators satisfies the requirements (1)-(4) in Definition 6.23.

The Green operators verify (1) and (2) of the Definition 6.23 by Corollary 6.21. For the mea-
surability issue (3), remark that for all a, ã ∈ E−∞, we have (t, s) 7→ ⟨G(t, s)a, ã⟩H is separately
continuous on R2 \ {(t, t), t ∈ R}, so Borel measurable on R2. We only have to prove (4), namely
that for any ϕ ∈ D(R) and a, ã ∈ E−∞, if u is the weak solution for the source term ϕ⊗ a, we have
for all (not just almost all) t ∈ R,

(6.26) ⟨u(t), ã⟩H =

ˆ t

−∞
ϕ(s) ⟨G(t, s)a, ã⟩H ds.

Fix t ∈ R. Introduce ũ = G̃(·, t)ã. Using the absolute continuity of s 7→ ⟨u(s), ũ(s)⟩H on (−∞, t]
with its zero limit at −∞, and seing ϕ⊗ a ∈ L1(R;H), we have by Corollary 5.11

⟨u(t), ã⟩H = ⟨u(t), ũ(t)⟩H =

ˆ t

−∞
⟨ϕ(s)a, ũ(s)⟩H ds.

For s ≤ t, using Proposition 6.22 in the last equality below

⟨ϕ(s)a, ũ(s)⟩H = ϕ(s)⟨a, G̃(s, t)ã⟩H = ϕ(s)⟨G(t, s)a, ã⟩H
and we are done. □

6.6. Representation with the fundamental solution operators. Having identified Green
operators to fundamental solution operators, the latter inherits the properties of the former. From
now on, we use the more traditional notation Γ(t, s). We can now state a complete representation
theorem for all the distributional solutions seen in the last subsections, with specified convergence
issues.

Theorem 6.27. Let s ∈ R, a ∈ H, g ∈ Lρ′(R;H), where ρ ∈ [2,∞] and β = 2/ρ. Then the unique
solution u ∈ L2(R;DS,1) of the equation

∂tu+ Bu = δs ⊗ a+ Sβg in D′(R;E∞)

obtained by combining Propositions 6.7, 6.10 and Corollary 6.19 can be represented pointwisely by
the equation

u(t) = Γ(t, s)a+

ˆ t

−∞
Γ(t, τ)Sβg(τ) dτ,

where the integral is weakly defined in H when ρ < ∞ and strongly defined when ρ = ∞ (i.e., in
the Bochner sense). More precisely, for all ã ∈ H, we have the equality with absolutely converging
integral

(6.28) ⟨u(t), ã⟩H = ⟨Γ(t, s)a, ã⟩H +

ˆ t

−∞
⟨g(τ), SβΓ̃(τ, t)ã⟩H dτ.

Remark 6.29. Remark that by Proposition 5.4, one could even reduce to proving the result when
ρ = 2 and ρ = ∞.

Proof. It is enough to prove (6.28). By uniqueness and linearity, we start by writing u = u1 + u2
where uk is the solution of the equation considering only the kth term in the right-hand side of the
equation. Recall that we have identification of G and Γ. Fix t ∈ R.

The first term involving a is u1(t) = Γ(t, s)a by construction and identification.



FUNDAMENTAL SOLUTIONS FOR PARABOLIC SYSTEMS 29

The argument for u2 is as follows. According to the proof of Theorem 6.24 the weak solution v
obtained from source ϕ⊗ c, where ϕ ∈ D(R) and c ∈ E−∞, satisfies for any ã ∈ E−∞ and t ∈ R,

⟨v(t), ã⟩H =

ˆ t

−∞
ϕ(τ)⟨Γ(t, τ)c, ã⟩H dτ

=

ˆ t

−∞
⟨(ϕ⊗ c)(τ), Γ̃(τ, t)ã⟩H dτ.

For any ρ ∈ [2,∞], we haveˆ t

−∞
|⟨h(τ), Γ̃(τ, t)ã⟩H,−β| dτ ≤ C∥h∥Lρ′ (R;DS,−β)

∥ã∥H

by using Cauchy-Schwarz inequality in H and Hölder inequality invoking estimates for G̃ in Propo-
sition 6.22. Writing ⟨(ϕ⊗ c)(τ), Γ̃(τ, t)ã⟩H as ⟨(ϕ⊗ c)(τ), Γ̃(τ, t)ã⟩H,−β, we can conclude for u2 by

density of the span of tensor products ϕ⊗c in Lρ′(R;DS,−β), and density of E−∞ in H. For ρ = ∞,
we may also verify the strong convergence. □

We record the following operator-valued Schwartz kernel result.

Proposition 6.30. Let ϕ, ϕ̃ ∈ D(R) and a, ã ∈ H. Then,

⟨⟨H−1(ϕ⊗ a), ϕ̃⊗ ã⟩⟩D′,D =

¨
ϕ(s)⟨Γ(t, s)a, ã⟩H ϕ̃(t) dsdt.

In other words, one can see ⟨Γ(t, s)a, ã⟩H as the Schwartz kernel of the sesquilinear map (ϕ, ϕ̃) 7→
⟨H−1(ϕ⊗ a), ϕ̃⊗ ã⟩D′,D on D(R)×D(R).

Proof. By density of E−∞ in H and boundedness of the Green operators, we may use (6.26) for
a, ã ∈ H and we obtain,

⟨⟨H−1(ϕ⊗ a), ϕ̃⊗ ã⟩⟩D′,D =

ˆ
R
⟨H−1(ϕ⊗ a)(t), ã⟩H ϕ̃(t) dt

=

ˆ
R

(ˆ t

−∞
ϕ(s)⟨Γ(t, s)a, ã⟩H ds

)
ϕ̃(t) dt

=

¨
ϕ(s)⟨Γ(t, s)a, ã⟩H ϕ̃(t) dsdt,

where we have used Fubini’s theorem and Γ(s, t) = 0 for s > t in the last line. □

6.7. The Cauchy problem and the fundamental solution. In this section, we consider the
Cauchy problem on the interval (0,∞). The coefficients Bt are defined on (0,∞) and satisfy (6.1)
there. We fix ρ ∈ [2,∞] and set β = 2/ρ. The Cauchy problem with initial condition a ∈ H and

g ∈ Lρ′((0,∞);H) consists in finding a weak solution to{
∂tu+ Bu = Sβg in D′((0,∞);E∞),
u(0) = a in E∞.

(6.31)

Remark 6.32. Note that when f ∈ L2((0,∞);K), there exists g ∈ L2((0,∞);H) such that T ∗f =
Sg, hence the β = 1 case covers the classical Lions equation.

Definition 6.33. A weak solution to (6.31) is a function u ∈ L2((0,∞);DS,1), with

(i) u solves the the first equation in D′((0,∞);E∞), that is, for all φ ∈ D((0,∞);E−∞)ˆ ∞

0
−⟨u(t), ∂tφ(t)⟩H,1 +Bt(u(t), φ(t)) dt =

ˆ ∞

0
⟨g(t), Sβφ(t)⟩H dt.

(ii) ∀ã ∈ E−∞, ⟨u(t), ã⟩H → ⟨a, ã⟩H , along a sequence tending to 0.

A weaker formulation testing against functions φ ∈ D([0,∞);E−∞) with right hand side con-
taining the additional term ⟨a, φ(0)⟩H is often encountered. In the end it amounts to the same
solutions thanks to a priori continuity in H, which only uses the upper bound on Bt.
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Proposition 6.34. Any weak solution to (i) belongs to C0([0,∞);H) and t 7→ ∥u(t)∥2H satisfies
the energy equality for any σ, τ ∈ [0,∞] such that σ < τ ,

∥u(τ)∥2H + 2Re

ˆ τ

σ
Bt(u(t), u(t)) dt = ∥u(σ)∥2H + 2Re

ˆ τ

σ
⟨g(t), Sβu(t)⟩H dt.

Proof. We assume u ∈ L2((0,∞);DS,1) and the equation implies that ∂tu ∈ L2((0,∞);DS,−1) +

Lρ′((0,∞);DS,−β). We may apply Corollary 5.10. □

The main result of this section is the following theorem which puts together all the theory
developed so far.

Theorem 6.35. Consider the above assumptions on Bt, ρ, β and g, a.

(1) There exists a unique weak solution u to the problem (6.31). Moreover, u ∈ C0([0,∞);H)∩
Lr((0,∞);H) for any r ∈ (2,∞) with α = 2/r (if ρ < ∞, then u is also the restriction to
(0,∞) of an element in V−β) and

sup
t∈[0,∞)

∥u(t)∥H + ∥u∥L2((0,∞);DS,1)
+ ∥u∥Lr((0,∞);DS,α)

≤ C
(
∥g∥Lρ′ (R;H) + ∥a∥H

)
,

where C = C(M,ν, ρ) > 0 is a constant independent of g, a.
(2) There exists a unique fundamental solution Γ = {Γ(t, s)}0≤s≤t<∞ for ∂t +B in the sense of

Definition 6.23 in (0,∞). In particular, for all t ∈ [0,∞), we have the following represen-
tation of u :

u(t) = Γ(t, 0)a+

ˆ t

0
Γ(t, s)Sβg(s) ds,(6.36)

where the integral is weakly defined in H when ρ < ∞ and strongly defined in H when
ρ = ∞ (i.e., in the Bochner sense). More precisely, for all ã ∈ H and t ∈ [0,∞), we have
equality with absolutely converging integral

⟨u(t), ã⟩H = ⟨Γ(t, 0)a, ã⟩H +

ˆ t

0
⟨g(s), SβΓ̃(s, t)ã⟩H ds.(6.37)

Proof. We start with the existence of such a solution. We extend g by 0 on (−∞, 0] and keep the
same notation for the extensions. We also extend the family (Bt)t to R by setting Bt = ν⟨S·, S·⟩H
on R \ (0,∞) and we keep calling B the operator associated to this family.

Using Proposition 6.7 when ρ < ∞ or Proposition 6.10 when ρ = ∞ and Corollary 6.19, there
exists a unique ũ ∈ L2(R;DS,1) solution of the equation

∂tũ+ Bũ = δ0 ⊗ a+ Sβg in D′(R;E∞).

Moreover, ũ ∈ C0(R \ {0} ;H), ũ = 0 on (−∞, 0) with limt→0+ ũ(t) = a in H and if ρ < ∞ then
the restriction to (0,∞) of ũ is an element in V−β. Furthermore, we have ũ ∈ Lr(R;DS,α) for any
r ∈ (2,∞) with α = 2/r by Proposition 5.4 and we have the estimate

∥ũ∥L∞(R;H) + ∥ũ∥L2(R;DS,1)
+ ∥ũ∥Lr(R;DS,α)

≤ C(M,ν, ρ)
(
∥Sβg∥Lρ′ (R;H) + ∥a∥H

)
.

In addition, (6.28) in Theorem 6.27 implies (6.37) and (6.36) for ũ(t) for all t ∈ R with the
fundamental solution defined on R. The candidate u := ũ|(0,∞) satisfies all the required properties
of the theorem, proving existence and representation.

Next, we check uniqueness in the space L2((0,∞);DS,1). We assume that u is a solution to (6.31)
with a = 0, f = 0 and g = 0. By Proposition 6.34,

2Re

ˆ ∞

0
Bt(u(t), u(t)) dt = 0.

Using the coercivity of Bt, we deduce that u = 0 on (0,∞). Definition, existence and uniqueness
of the fundamental solution in (0,∞) is verbatim as in Section 6.4. □

Remark 6.38. Uniqueness in the previous proof does not work if we are working on a bounded
interval (0,T) because Corollary 5.10 fails in this case.
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Remark 6.39. Of course, by linearity, we can replace Sβg by a linear combination of terms in
Lρ′((0,∞);DS,−β) for different ρ.

7. Inhomogeneous version

One would like to treat parabolic operators with elliptic part being B plus lower order terms
allowing T to be not injective (e.g., differential operators with Neumann boundary conditions).
Here is a setup for doing this effortlessly given the earlier developments.

7.0.1. Setup for the inhomogeneous theory. As before, consider T and S = (T ∗T )1/2 without as-
suming that T is injective. One can still define a Borel functional calculus associated to S as in
Subsection 3.1 by replacing (0,∞) by [0,∞). In the right hand side of the Calderón reproducing

formula (3.2), v is replaced by its orthogonal projection onto ran(S). The most important fact is
that for any α ≥ 0, we can still define Sα as the closed operator tα(S), which is also positive and
self-adjoint but not necessarily injective, having the same null space as S.

Let T̃ : D(T̃ ) = D(T ) → H ⊕K the operator defined by T̃ u := (λu, Tu) where λ ∈ R+. Assume

λ > 0. Then T̃ is injective and S̃λ = (T̃ ∗T̃ )1/2 = (λ2+S2)1/2 is a self-adjoint, positive and invertible

operator on H, with domain D(S̃λ) = D(T̃ ) = D(T ) = D(S).

Using that S̃λ = (λ2 + S2)1/2, we have that for λ > 0 and α ≥ 0,

DS̃λ,α
= D(Sα) , ∥ · ∥S̃λ,α

≃ ∥ · ∥S,α + ∥ · ∥H .

For α < 0, we know that the sesquilinear form (u, v) 7→ ⟨S̃α
λu, S̃

−α
λ v⟩H defines a canonical duality

pairing between DS̃λ,α
and DS̃λ,−α. Therefore, for any u ∈ DS̃λ,α

, there exists (w, w̃) ∈ H2 such

that
⟨S̃α

λu, S̃
−α
λ v⟩H = ⟨w, S−αv⟩H + ⟨w̃, v⟩H ,

for all v ∈ D(S−α). In this sense, we write DS̃λ,α
= S−αH+H with norm equivalent to the quotient

norm
∥u∥S̃λ,α

≃ inf
u=S−αw+w̃

(∥w∥H + ∥w̃∥H).

From now on and as before, we set S̃ := S̃1 = (1 + S2)1/2. In conclusion, the “inhomogeneous”

fractional spaces for S become the “homogeneous” fractional spaces for S̃, so that applying the
above theory with S̃ leads to the inhomogeneous theory for S (even if S is non injective).

Finally, we set

Ẽ−∞ :=
⋂
α∈R

D(S̃α).

7.0.2. Embeddings and Integral identities. We begin by noting that Proposition 5.4 holds verbatim
with the same proof, even if S is not necessarily injective. As for continuity and integral identities,
we have to modify the statement as follows.

Proposition 7.1. Let T ∈ (0,∞]. Let u ∈ L1((0,T);D(S)) with
´ T
0 ∥Su(t)∥2H dt < ∞ if T < ∞,

or u ∈ L1((0,T′);D(S)) for all T′ < ∞, with
´∞
0 ∥Su(t)∥2H dt < ∞ if T = ∞. Assume that ∂tu =

Sf + Sβg in D′((0,T); Ẽ∞), where f ∈ L2((0,T);H) and g ∈ Lρ′((0,T);H), with β = 2/ρ ∈ [0, 1).
When T < ∞, then u ∈ C([0,T];H), and the function t 7→ ∥u(t)∥2H is absolutely continuous on
[0,T]. For all σ, τ ∈ [0,T] such that σ < τ , the following integral identity holds:

∥u(τ)∥2H − ∥u(σ)∥2H = 2Re

ˆ τ

σ
⟨f(t), Su(t)⟩H dt+

ˆ τ

σ
⟨g(t), Sβu(t)⟩H dt.

If T = ∞, then the same conclusion holds on any bounded interval, and u is bounded in H.

Proof. Using Proposition 5.4, we can express Sf + Sβg = Sf̃ + h, with f̃ ∈ L2((0,T);H) and
h ∈ L1((0,T);H).

We start with the case T < ∞. Consider the orthogonal decomposition H = ran(S) ⊕ nul(S),

and write u = u1 + u2, where u1 ∈ L1((0,T); ran(S)) satisfies
´ T
0 ∥Su1(t)∥2H dt < ∞, and u2 ∈

L1((0,T); nul(S)). Similarly, we decompose f̃ = f̃1 + f̃2 and h = h1 + h2. We have ∂tu1 =

Sf̃1 + h1 and ∂tu2 = h2 where both equalities hold in D′((0,T); Ẽ∞). We obtain that ∂tu2 ∈
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L1((0,T); nul(S)), hence u2 ∈ W 1,1((0,T); nul(S)) ↪→ C([0,T]; nul(S)). Using Corollary 5.13 with

S|ran(S) which is injective, we conclude that u1 ∈ C([0,T]; ran(S)). Finally, we obtain the energy

equality using orthogonality.
When T = ∞, the conclusion is already valid on [0,∞). To see the behavior at ∞, we can use

the same decomposition and u1 ∈ C0([0,T]; ran(S)) from Corollary 5.10. As for u2 we have by
direct integration, that for all t ≥ 0, ∥u2(t)∥H ≤ infτ≥0 ∥u2(τ)∥H + ∥h2∥L1((0,∞);nul(S)). □

7.0.3. The Cauchy problem. In this section, we are interested in the Cauchy problem on segments
and half-lines, in a non-homogeneous manner. Recall that S̃λ = (λ2 + S2)1/2 with D(S̃λ) = D(T )

and we assume λ ≥ 0 for the moment. Let 0 < T ≤ ∞. First, let us consider (B̃t)t∈(0,T) a weakly
measurable family of bounded sesquilinear forms on D(T )×D(T ). More precisely, we assume that

(7.2) |B̃t(u, v)| ≤M∥S̃λu∥H∥S̃λv∥H ,
for some M > 0 and for all u, v ∈ D(T ) and t ∈ (0,T). In addition, we assume that the family

(B̃t + κ)t∈(0,T) is uniformly coercive for some κ ∈ R+, i.e.,

(7.3) Re(B̃t(v, v)) + κ ∥v∥2H ≥ ν∥S̃λv∥2H ,

for some ν > 0 and for all v ∈ D(T ) and t ∈ (0,T). Notice that B̃t + κ satisfies the lower bound in

(6.1) with S̃ replacing S and the upper bound with M + κ on (0,T). We denote by B̃ the operator

associated to the family (B̃t)t∈(0,T). One may represent B̃t as T̃
∗Ã(t)T̃ , where Ã(t) is bounded on

H ⊕ ran(T). If we decide to represent Ã(t) in 2 × 2 matrix form, then B̃ writes as B plus lower
order terms with bounded operator-valued coefficients.

On segments, say (0,T), we can consider the Cauchy problem for all possible values of λ ≥ 0
and κ ≥ 0. On half-lines, say (0,∞), we restrict the range of the parameters. This leads to the
following cases (we will not attempt to track λ and κ quantitatively).

(a) T <∞.
(b) T = ∞, λ > 0 and κ = 0.

See Remark 7.9 and Remark 7.8 for more when T = ∞.
We fix ρ ∈ [2,∞] and set β = 2/ρ. Given an initial condition a ∈ H and g ∈ Lρ′((0,T);H), we

wish to solve the Cauchy problem{
∂tu+ B̃u = S̃βg in D′((0,T); Ẽ∞),

u(0) = a in Ẽ∞.
(7.4)

Recall that S̃βg can be written as Sβg1 + g2, with gi ∈ Lρ′((0,T);H), i = 1, 2.

Definition 7.5. A weak solution to (7.4) is a function u ∈ L1((0,T);D(S)) with
´ T
0 ∥Su(t)∥2H dt <

∞ if T <∞ or u ∈ L1((0,T′);D(S)) for all T′ <∞ with
´∞
0 ∥Su(t)∥2H dt <∞ if T = ∞ and such

that

(i) u solves the first equation in D′((0,T); Ẽ∞), that is, for all φ ∈ D((0,T); Ẽ−∞)ˆ T

0
−⟨u(t), ∂tφ(t)⟩H + B̃t(u(t), φ(t)) dt =

ˆ T

0
⟨g(t), S̃βφ(t)⟩H dt.

(ii) ∀ã ∈ Ẽ−∞, ⟨u(t), ã⟩H → ⟨a, ã⟩H along a sequence tending to 0.

The difference with the homogeneous situation is the global or local L1(H) condition.

Again, a weaker formulation testing against functions φ ∈ D([0,T); Ẽ−∞) with right hand side
containing the additional term ⟨a, φ(0)⟩H can be considered. In the end it amounts to the same

solutions thanks to a priori continuity in H, which only uses the upper bound on B̃t.

Lemma 7.6. In case (a), any weak solution to (i) belongs to C([0,T];H), and t 7→ ∥u(t)∥2H satisfies
the energy equality for any σ, τ ∈ [0,T] such that σ < τ ,

∥u(τ)∥2H + 2Re

ˆ τ

σ
B̃t(u(t), u(t)) dt = ∥u(σ)∥2H + 2Re

ˆ τ

σ
⟨g(t), S̃βu(t)⟩H dt.
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In case (b), we have the same conclusion on any bounded interval.

Proof. Case (b) follows directly from case (a). To prove the latter, using Proposition 5.4 with

S̃ replacing S, we can write S̃βg = S̃f̃ + h̃ with f̃ ∈ L2((0,T);H) and h̃ ∈ L1((0,T);H). This

can be expressed as Sf + h with f̃ ∈ L2((0,T);H) and h̃ ∈ L1((0,T);H). We conclude on using
Proposition 7.1. □

The main result of this section is the following theorem which puts together the inhomogeneous
version of all the theory developed so far.

Theorem 7.7. Consider the above assumptions on B̃t, λ, κ, f, g and a.

(1) There exists a unique weak solution u to the problem (7.4). Moreover, u ∈ C([0,T];H) ∩
Lr((0,T);D(S̃α)) for all r ∈ [2,∞] with α = 2/r, with u(∞) = 0 in case (b) where T = ∞,
and we have the estimate

sup
t∈[0,T]

∥u(t)∥H + ∥S̃αu∥Lr((0,T);H) ≤ C(∥g∥Lρ′ ((0,T);H) + ∥a∥H),

where C = C(M,ν, ρ, κ,T) > 0 is a constant independent of g and a.

(2) There exists a unique fundamental solution ΓB̃ = (ΓB̃(t, s))0≤s≤t≤T for ∂t + B̃ in the sense
of Definition 6.23 in (0,T) (by convention, set Γ(∞, s) = 0 if T = ∞). In particular, for
all t ∈ [0,T], we have the following representation of u :

u(t) = ΓB̃(t, 0)a+

ˆ t

0
ΓB̃(t, s)S̃

βg(s) ds,

where the integral is weakly defined in H when ρ < ∞ and strongly defined when ρ = ∞
(i.e., in the Bochner sense). For all ã ∈ H and t ∈ [0,T],

⟨u(t), ã⟩H = ⟨ΓB̃(t, 0)a, ã⟩H +

ˆ t

0
⟨g(s), S̃βΓ̃B̃(s, t)ã⟩H ds.

Proof. We begin with existence.
Existence in case (b). Apply Theorem 6.35 with S̃ replacing S and as the right hand side belongs

to Lρ′((0,∞);DS̃,−β). This shows the existence of a weak solution v in L2((0,∞);D(S̃)), which

also belongs to C0([0,∞);H) and Lr((0,∞);D(S̃α)).

Existence in case (a). Extend g by 0 and B̃t by ν⟨S̃·, S̃·⟩H on (T,∞) if T < ∞ and use the same

notation. Let κ′ > κ. Apply Theorem 6.35 with S̃ replacing S and with right hand side in
Lρ′((0,∞);DS̃,−β) to the auxiliary Cauchy problem{

∂tv + (B̃ + κ′)v = S̃β(e−κ′tg) in D′((0,∞); Ẽ∞),

v(0) = a in Ẽ∞,

and obtain a weak solution v in L2((0,∞);D(S̃)). The function u := eκ
′tv restricted to [0,T] gives

us a weak solution with the desired properties.
Next, we prove uniqueness. Assume u is a weak solution to (7.4) with a = 0 and g = 0.

Uniqueness in case (b). We have u ∈ L1((0,T′);D(S)) for all T′ < ∞ and
´∞
0 ∥Su(t)∥2H dt < ∞.

Applying Lemma 7.6, we have u ∈ C([0,T′];H) for all T′ > 0, u(0) = 0 and∥∥u(T′)
∥∥2
H
+ 2Re

ˆ T′

0
B̃t(u(t), u(t)) dt = 0.

Using the coercivity of B̃t, we deduce that u = 0 on (0,T′) and therefore, u = 0 on [0,∞).

Uniqueness in case (a). We have u ∈ L1((0,T);D(S)) with
´ T
0 ∥Su(t)∥2H dt < ∞. Let κ′ > κ. Set

v = e−κ′tu on (0,T) so that v ∈ L1((0,T);D(S)) with
´ T
0 ∥Sv(t)∥2H dt <∞ and ∂tv+(B̃+κ′)v = 0

in D′((0,T); Ẽ∞). Applying Lemma 7.6, we have v ∈ C([0,T];H), v(0) = 0 and

∥v(T)∥2H + 2Re

ˆ T

0
B̃t(v(t), v(t)) + κ′ ∥v(t)∥2H dt = 0.
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Using the coercivity of B̃t + κ′ resulting from (7.3), we deduce that v = 0 and therefore, u = 0 on
[0,T].

Finally, definition, existence and uniqueness of the fundamental solution ΓB̃ can be obtained
easily by proceeding as in Section 6.4. □

Remark 7.8. If T = ∞ with κ > 0, then we can construct a weak solution but it does not satisfy´∞
0 ∥Su(t)∥2H dt <∞.

Remark 7.9. For T = ∞, λ = 0, κ = 0 and S̃βg replaced by Sβg, we can apply Theorem 6.35
provided that T is injective. However, when T (hence S) is not injective then the proof of Theorem
7.7 provides us with a global solution but not with limit 0 at ∞. In fact, the zero limit at ∞ fails.
Take u0 ∈ nul(S) \ {0} and set u(t) = u0 for all t ≥ 0. We have u ∈ L2((0,T′);H) for all T′ < ∞
with

´∞
0 ∥Su(t)∥2H dt = 0 <∞. Moreover, u is a weak solution to the abstract heat equation{

∂tu+ S2u = 0 in D′((0,∞); Ẽ∞),

u(0) = u0 in Ẽ∞,

with limt→∞ u(t) = u0.

Remark 7.10. Consider the special case B̃ = B + ω, ω > 0, on (0,∞), keeping the condition
(6.1) for B with T (and S) injective. We have (b) with λ = 1, constant sup(M,ω) in (7.2) and
constant inf(ν, ω) in (7.3). The theorem above applies and gives us fundamental solution operators
ΓB+ω(t, s), defined for 0 ≤ s ≤ t < ∞. Call ΓB(t, s) the one obtained in the previous section.
Uniqueness for the Cauchy problem for ∂t + B + ω holds in L2((0,T), D(S)) for all T < ∞ and

this shows that ΓB+ω(t, s) = e−ω(t−s)ΓB(t, s). Working on R, then we obtain the equality for
−∞ < s ≤ t <∞.

8. The final step towards concrete situations

The reader might wonder how to apply our theory in concrete situations, where the abstract
spaces of test functions D(I;E−∞) or D(I; Ẽ−∞) might not be related to usual spaces of test
functions. The following result gives us a sufficient condition showing that one can replace E−∞ or
Ẽ−∞ by an arbitrary dense set in the domain of S, sometimes called a core of D(S) = D(T ).

Theorem 8.1. Let D be a Hausdorff topological vector space with continuous and dense inclusion
D ↪→ D(S), where D(S) is equipped with the graph norm. Assume a priori that weak solutions
belong to L1

loc(I;H), and replace the test function space by D(I; D) in their definition, with in the
latter case, ∂tu computed via :

∀φ ∈ D(I; D), ⟨⟨∂tu, φ⟩⟩ = −
ˆ
I
⟨u(t), ∂tφ(t)⟩H dt.

Then our well-posedness results are the same: this means that existence with estimates, uniqueness
(requiring additionally u ∈ L1

loc(I;H) in the uniqueness class), and energy equalities hold.

The proof relies on the following density lemma. Denote by ∥u∥D(S) = (∥u∥2H + ∥Su∥2H)1/2 the
Hilbertian graph norm and ⟨·, ·⟩

D(S)
the corresponding inner product.

Lemma 8.2. Let D be as in the above theorem. For all open interval I ⊂ R, D(I; D) is a dense
subspace of D(I;D(S)) in the following sense : for all φ ∈ D(I;D(S)), there exists a sequence
(φk)k≥0 ∈ span(D(I)⊗D)N such that

(1) For all k ≥ 0, supp(φk) ⊂ supp(φ).
(2) For all k ≥ 0 and t ∈ I,

∥φk(t)∥D(S) ≤ 3 ∥φ(t)∥D(S) , ∥∂tφk(t)∥D(S) ≤ 3 ∥∂tφ(t)∥D(S) .

(3) For all t ∈ I, ∥φk(t)− φ(t)∥D(S) + ∥∂tφk(t)− ∂tφ(t)∥D(S) → 0 as k → ∞.

(4) For all β ∈ [0, 1], t ∈ I and k ≥ 0, ∥Sβφk(t)∥H ≤ 3 ∥φ(t)∥D(S) and ∥Sβ(φk(t)−φ(t))∥H → 0
as k → ∞.
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Proof. The space (D(S), ∥·∥D(S)) is separable as it is isometric to a subspace of H × H which

is separable. Let (wj)j∈N ∈ D(S)N be a Hilbertian basis of
(
D(S), ∥·∥D(S)

)
. As D is dense

in D(S) then for all j ≥ 0, one can find a sequence (vkj )k∈N ∈ DN such that for all k ≥ 0,

∥wj − vkj ∥D(S) ≤ 1
2j+k . For h =

∑
j≥0 αjwj ∈ D(S), one can see using Cauchy-Schwarz inequality

and Plancherel that ∥
∑k

j=0 αj(v
k
j − wj)∥D(S) ≤

∑k
j=0

|αj |
2j+k ≤ 4

3·2k ∥h∥D(S), so that hk =
∑k

j=0 αjv
k
j

satisfies ∥hk − h∥D(S) ≤ 4
3·2k ∥h∥D(S) + ∥

∑
j≥k+1 αjwj∥D(S) and ∥hk∥D(S) ≤ (43 + 1)∥h∥D(S). Now,

fix φ ∈ D(I;D(S)) and set for all k ≥ 0 and t ∈ I,

φk(t) :=

k∑
j=0

⟨φ(t), wj⟩D(S)
vkj .

Clearly, the sequence (φk)k∈N ∈ span(D(I)⊗D)N with (1), and (2) and (3) follow from the above
estimates. Finally, (4) follows from the moments inequality combined with (2) and (3). □

Proof of Theorem 8.1. The case usingD(I; Ẽ−∞) being similar, it only suffices to show that with the
a priori requirement that weak solutions also belong to L1

loc(I;H), the formulations of the equations
against test functions in D(I;E−∞) and in D(I; D) are equivalent, because then they have the same
solutions. In fact, they are equivalent to a formulation against test functions in D(I;D(S)). Indeed,
if u ∈ L2(I;DS,1) ∩ L1

loc(I;H) then by Lemma 3.10, we have for all φ ∈ D(I;E−∞),

⟨⟨u, ∂tφ⟩⟩D′,D =

ˆ
I
⟨u(t), ∂tφ(t)⟩H,1 dt =

ˆ
I
⟨Su(t), S−1∂tφ(t)⟩H dt =

ˆ
I
⟨u(t), ∂tφ(t)⟩H dt.

Applying that D(I;E−∞) is dense D(I;D(S)) as in Lemma 8.2 and dominated convergence, we
can see that the weak formulation for all φ ∈ D(I;D(S)) holds. Of course we can conversely
restrict to test functions D(I;E−∞), showing that the formulations testing with φ ∈ D(I;E−∞) or
φ ∈ D(I;D(S)) are equivalent. This would be the same starting from another dense set D. Finally,
the initial data property in the Cauchy problems testing against elements in E−∞ is equivalent to
testing against arbitrary elements in H by density as u(t) belongs almost everywhere to H. This
would be the same replacing E−∞ by another dense set D in D(S) as it would also be dense in
H. □

9. Three applications

9.1. Parabolic Cauchy problems on domains with Dirichlet boundary condition. Let
n ≥ 1 and Ω ⊂ Rn an open set. We denote by L2(Ω) the Hilbert space of square integrable functions
on Ω with respect to the Lebesgue measure dx with norm denoted by ∥·∥2 and its inner product by
⟨·, ·⟩. As usual, we denote by D(Ω) the class of smooth and compactly supported functions on Ω.
We set H1(Ω) :=

{
u ∈ L2(Ω) : ∇xu ∈ L2(Ω)

}
and it is a Hilbert space for the norm ∥u∥H1(Ω) :=

(∥u∥22 + ∥∇xu∥22)1/2. Finally, H1
0 (Ω) is defined as the closure of D(Ω) in (H1(Ω), ∥·∥H1(Ω)).

We denote by −∆D the unbounded operator on L2(Ω) associated to the positive symmetric
sesquilinear form on H1

0 (Ω)×H1
0 (Ω) defined by

(u, v) 7→
ˆ
Ω
∇xu(x) · ∇xv(x) dx.

Let A : I × Ω → Mn(C) be a matrix-valued function with complex measurable entries and such
that

(9.1) |A(t, x)ξ · ζ| ≤M |ξ| |ζ| , ν |ξ|2 ≤ Re(A(t, x)ξ · ξ)
for some M,ν > 0 and for all ζ, ξ ∈ Cn and (t, x) ∈ I × Ω. We let −divx be the adjoint of
∇x : H1

0 (Ω) → L2(Ω)n and use the customary notation B = −divxA(t, ·)∇x.
Fix T > 0, ρ ∈ (2,∞), set β = 2/ρ ∈ (0, 1) and let ρ′ be the Hölder conjugate of ρ. For

f ∈ L2((0,T);L2(Ω)n), g ∈ Lρ′((0,T);L2(Ω)), h ∈ L1((0,T);L2(Ω)) and ψ ∈ L2(Ω), consider the
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following Cauchy problem{
∂tu− divx(A(t, ·)∇xu) = −divxf + (−∆D)

β/2g + h in D′((0,T)× Ω),
u(t) → ψ in D′(Ω) as t→ 0+.

(9.2)

The first equation is interpreted in the weak sense according to the following definition.

Definition 9.3. A weak solution to the first equation in (9.2) is a (complex-valued) function

u ∈ L1((0,T);H1
0 (Ω)) with

´ T
0 ∥∇xu(t)∥22 dt <∞ such that for all φ ∈ D((0,T)× Ω),ˆ T

0

ˆ
Ω
− u(t, x)∂tφ(t, x) +A(t, x)∇xu(t, x) · ∇xφ(t, x) dxdt

=

ˆ T

0

ˆ
Ω
f(t, x) · ∇xφ(t, x) + g(t, x)(−∆D)

β/2φ(t, x) dx+ h(t, x)φ(t, x) dxdt.

The consequence of our theory is

Theorem 9.4 (Cauchy problem on (0,T)). Let f, g, h, ψ be as above.

(1) There exists a unique weak solution to the Cauchy problem (9.2) as defined above. Moreover,
u ∈ C([0,T];L2(Ω)) with u(0) = ψ, the application t 7→ ∥u(t)∥22 is absolutely continuous on

[0,T] and we can write the energy equalities. Furthermore, u ∈ Lr((0,T);D((−∆D)
α/2))

for any α ∈ (0, 1] with r = 2/α ∈ [2,∞) and we have

sup
t∈[0,T]

∥u(t)∥2 + ∥(−∆D)
α/2u∥Lr((0,T);H)

≤ C(∥f∥L2((0,T);L2(Ω)n) + ∥g∥Lρ′ ((0,T);L2(Ω)) + ∥h∥L1((0,T);L2(Ω)) + ∥ψ∥2),

where C = C(M,ν, ρ,T) > 0 is a constant independent of the data f, g, h and ψ.
(2) There exists a unique fundamental solution Γ = (Γ(t, s))0≤s≤t≤T for ∂t − divxA(t, ·)∇x. In

particular, for all t ∈ [0,T], we have the following representation of u(t) :

u(t) = Γ(t, 0)ψ +

ˆ t

0
Γ(t, τ)(−divxf)(τ) dτ +

ˆ t

0
Γ(t, τ)(−∆D)

β/2g(τ) dτ +

ˆ t

0
Γ(t, τ)h(τ) dτ,

where the two integrals with f and g are weakly defined in L2(Ω) while the other one con-

verges strongly (i.e., in the Bochner sense). More precisely, we have for all ψ̃ ∈ L2(Ω) and
t ∈ [0,T],

⟨u(t), ψ̃⟩ = ⟨Γ(t, 0)ψ,ψ̃⟩+
ˆ t

0
⟨f(s),∇xΓ̃(s, t)ψ̃⟩ds

+

ˆ t

0
⟨g(s), (−∆D)

β/2Γ̃(s, t)ψ̃⟩ds+
ˆ t

0
⟨Γ(t, s)h(s), ψ̃⟩ds.

Proof. As D(Ω) is dense in H1
0 (Ω) with respect to the graph norm of the injective self-adjoint

operator S = (−∆D)
1/2 by definition, we are in the context of Theorem 8.1 in Section 8, which

corresponds to Theorem 7.7 for each f, g, h by linearity and using that −divxf = (−∆D)
1/2f̃ with

f̃ ∈ L2((0,T);L2(Ω)), with Bt : H
1
0 (Ω)×H1

0 (Ω) → C being the sesquilinear form defined via

∀u, v ∈ H1
0 (Ω) : Bt(u, v) :=

ˆ
Ω
A(t, x)∇xu(x) · ∇xv(x) dx.

□

Remarks 9.5. (1) With the modification in the definition of weak solutions, the statement ap-
plies for the Cauchy problem on (0,∞) and u has limit 0 at ∞. (Use Theorems 8.1 and
6.35).

(2) Remark that the theory applies for complex coefficients. In particular, we do not assume any
local regularity for weak solutions and fundamental solutions are merely bounded operators.
Bounds on their kernels need additional assumptions.
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(3) If Ω is bounded (or only bounded in one direction), then Poincaré inequality holds on H1
0 (Ω)

[EHMT24, Proposition 3.25], and it follows that D(S) = DS,1 = H1
0 (Ω) with equivalent

norms. In particular, the inhomogeneous and homogeneous theories developed in Section 6
are the same for this concrete case.

(4) We may want to replace the spaces Lr((0,T);D((−∆D)
α/2)) by mixed Lebesgue spaces

Lr((0,T);Lq(Ω)). The embeddings of the domains of the fractional powers (−∆D)
α/2 into

Lebesgue spaces Lq(Ω) depend on the geometry of the domain. See the discussion in [AE23].

9.2. Parabolic integro-differential operators. The second application is for integro-differential
parabolic operators ∂t + B where B is associated with a sesquilinear form Bt satisfying (6.1) for

t ∈ I (I open interval) with T = S = (−∆)γ/2 for some γ > 0. The most notable example from the
references mentioned in the introduction is that of B arising from the family of forms

Bt(u, v) :=

¨
Rn×Rn

K(t, x, y)
(u(x)− u(y))(v(x)− v(y))

|x− y|n+2γ
dx dy,

for some γ ∈ (0, 1) and u, v ∈W γ,2(Rn). We assume here K : I × Rn × Rn → C to be a measurable
kernel that satisfies the accretivity condition for some λ > 0,

0 < λ ≤ ReK(t, x, y) ≤ |K(t, x, y)| ≤ λ−1 (a.e. (t, x, y) ∈ I × Rn × Rn).(9.6)

The Sobolev space W γ,2(Rn) is the space of measurable functions u on Rn with norm ∥u∥γ given
by

∥u∥2γ =

ˆ
Rn

|u(x)|2 dx+

¨
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2γ
dx dy,

and it is well known thatW γ,2(Rn) agrees with the domain of (−∆)γ/2 and that the last term in the

expression above is comparable to ∥(−∆)γ/2u∥22. Using this observation, (9.6) and Cauchy-Scwharz

inequality, we can check (6.1) with T = S = (−∆)γ/2.
From now on, we can apply the theory developed so far and obtain well-posedness results on

I × Rn but we shall not repeat the statements and leave that to the reader. May be the most
notable outcome is that there always exists a unique fundamental solution, and this seems new at
this level of generality.

Theorem 9.7. Let γ > 0. The integro-differential parabolic operator ∂t+B on I×Rn has a unique
fundamental solution.

9.3. Degenerate parabolic operators. The third application concerns degenerate parabolic op-
erators on Rn. We fix a weight ω in the Muckenhoupt class A2(Rn, dx), meaning that ω : Rn → R
is a measurable and positive function satisfying

[ω]A2 := sup
Q⊂Rn

( 
Q
ω(x) dx

)( 
Q
ω−1(x) dx

)
<∞,

where the supremum is taken over all cubes Q ⊂ Rn. For background on Muckenhoupt weights and
related results, we refer to [Ste93, Ch. V].

We denote by L2
ω(R

n) := L2(Rn,dω) the Hilbert space of square-integrable functions with respect
to dω, with norm denoted by ∥·∥2,ω and inner product ⟨·, ·⟩2,ω. It is known that

D(Rn) ⊂ L2
ω(R

n) ⊂ L1
loc(R

n,dx) ⊂ D′(Rn)

and the first inclusion is dense.
We define the weighted Sobolev spaceH1

ω(R
n) (orW 1,2

ω (Rn)) as the space of functions f ∈ L2
ω(R

n)
for which the distributional gradient ∇xf belongs to L2

ω(R
n)n, and equip this space with the norm

∥f∥H1
ω
:= (∥f∥22,ω + ∥∇xf∥22,ω)1/2 making it a Hilbert space. It is also known that D(Rn) is dense

in H1
ω(R

n) (see [Kil94, Thm. 2.5]).
Let I ⊂ R be an open interval. Let A : I × Rn → Mn(C) be a matrix-valued function with

complex measurable coefficients such that

|A(t, x)ξ · ζ| ≤Mω(x) |ξ| |ζ| , ν |ξ|2 ω(x) ≤ Re(A(t, x)ξ · ξ),
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for some constants M,ν > 0 and for all ξ, ζ ∈ Cn and (t, x) ∈ I × Rn.
For each t ∈ I, we define the sesquilinear form Bt : H

1
ω(R

n)×H1
ω(R

n) → C by

Bt(u, v) :=

ˆ
Rn

A(t, x)∇xu(x) · ∇xv(x) dx,

for all u, v ∈ H1
ω(R

n). The assumptions on A yield

|Bt(u, v)| ≤M ∥∇xu∥2,ω ∥∇xv∥2,ω , ν ∥∇xu∥22,ω ≤ Re(Bt(u, u)).

This is (6.1) with T = ∇x : H1
ω(R

n) → L2
ω(R

n)n. We note that T is injective since dω has infinite
mass as a doubling measure on Rn. We denote by ∂t−ω−1(x)divxA(t, x)∇x the degenerate parabolic
operator associated with the family (Bt)t∈I . At this point, we can apply the theory developed above
to obtain well-posedness results on I × Rn, for the Cauchy problems with test functions in I × Rn

using Theorem 8.1, assuming weak solutions to a priori be in L1
loc(I;L

2(Rn)) if I is unbounded.

Theorem 9.8. The operator ∂t−ω−1(x)divxA(t, x)∇x on I×Rn has a unique fundamental solution.
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