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Representations of shifted quantum affine algebras
and cluster algebras I. The simply-laced case

C. Geiss, D. Hernandez and B. Leclerc

Abstract

We introduce a family of cluster algebras of infinite rank associated with root systems of
type A, D, E. We show that suitable completions of these cluster algebras are isomorphic
to the Grothendieck rings of the categories OZ of the corresponding shifted quantum affine
algebras. The cluster variables of a class of distinguished initial seeds are certain formal
power series defined by E. Frenkel and the second author, which satisfy a system of functional
relations called QQ-system. We conjecture that all cluster monomials are classes of simple
objects of OZ. In the final section, we show that these cluster algebras contain infinitely
many cluster subalgebras isomorphic to the coordinate ring of the open double Bruhat cell
of the corresponding simple simply-connected algebraic group. This explains the similarity
between QQ-system relations and certain generalized minor identities discovered by Fomin
and Zelevinsky.

2020 Mathematics Subject Classification 17B67 (primary), 13F60, 17B10, 17B37, 82B23, 35J25 (secondary).
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1 Introduction

Let g be a simple Lie algebra over C, and let Uq(ĝ) be the corresponding untwisted quantum
affine algebra for a generic quantum parameter q. In recent years, cluster algebras have become a
powerful new tool for studying the tensor structure of the category of finite-dimensional modules
over Uq(ĝ) [HL1, HL2, HL4, Q, KKOP1, KKOP2, BC1, BC2].

Shifted quantum affine algebras U µ
q (ĝ) are a larger class of algebras introduced by Finkelberg

and Tsymbaliuk [FT] in their study of quantized K-theoretic Coulomb branches of 3d N = 4 SUSY
quiver gauge theories. They depend on an integral coweight µ of g. When µ = 0, the algebra
U0

q (ĝ) is a central extension of Uq(ĝ) and it has essentially the same representation theory. When
µ 6= 0 the representation theory becomes very different, and for instance if µ is anti-dominant, then
U µ

q (ĝ) does not have any non-trivial finite-dimensional representation. In [H], the second author
has started a systematic study of the representation theory of U µ

q (ĝ). He has introduced a category
Oµ containing infinite-dimensional representations, and shown that the Grothendieck group of
Osh :=

⊕
µ∈P∨Oµ has a natural ring structure coming from an operation on representations called

fusion product.
The aim of this paper is to show that the Grothendieck ring K0(OZ) has an explicit cluster alge-

bra structure. Here OZ denotes a full subcategory of Osh defined by certain integrality conditions
on the loop-weights of the representations.

More precisely, in Section 3 we introduce a class of infinite rank cluster algebras Aw labelled
by elements w of the Weyl group W of g. The cluster algebra Ae associated with the unit element
e ∈W was already considered in [HL3], in connection with certain subcategories O+ and O− of
the Hernandez-Jimbo category O of a Borel subalgebra Uq(b) of Uq(ĝ) [HJ]. Its defining quiver Γ

is a doubly-infinite quiver, which in the A, D, E cases coincides with the Auslander-Reiten quiver
of the derived category Db(KQ) of a Dynkin quiver Q of the same type, with added vertical up
arrows corresponding to the Auslander-Reiten translation. For w = w0, the longest element of W ,
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Figure 1: The quiver Γe (with its red subquiver GQ), and the quiver Γw0 in type A3.

an easy way of describing the quiver Γw0 of an initial seed of Aw0 is as follows (see §3.4). Let
GQ denote the finite subquiver of Γ corresponding to the Auslander-Reiten quiver of the abelian
module category mod(KQ). Replace each vertex of GQ by a pair of a red and a green vertex
connected by a down arrow, and rearrange the incident arrows so that 3-cycles of Γ involving at
least two vertices of GQ become 4-cycles in the new quiver Γw0 . This is illustrated in Figure 1 for
an equi-oriented quiver Q of type A3.

A remarkable feature of Γw0 , which plays a central rôle in our constructions, is that if we
perform a sequence of quiver mutations at all red vertices (resp. at all green vertices), we get an
isomorphic quiver in which the middle finite part consisting of red and green vertices has been
shifted one step up (resp. one step down). (These red (resp. green) mutations commute with each
other, so the sequence order is irrelevant.) Iterating infinitely many times this sequence of, say,
green mutations, we can shift down infinitely many times the middle red-green part of Γw0 , and
obtain in the limit the quiver Γe. This will allow us to regard Γe as a “reference seed at infinity”
for the cluster algebra Aw0 . We will give a precise meaning to this in Section 4, where we will
attach certain “stabilized g-vectors” to the cluster variables of Aw0 .

In Section 5, following [FH3], we introduce rings of formal power series endowed with an
action of the Weyl group W . In fact, for our purposes it is convenient to consider a ring Π′ a bit
larger than the ring Π of [FH3], and to extend to Π′ the action of W defined in [FH3]. Then
in Section 6, following [FH4], we define elements Qw(ϖi),a ∈ Π′ by acting with W on certain
generators of Π′. Here w ∈W , a ∈ C∗, and ϖi denotes a fundamental weight of g. We then quote
from [FH4] an important system of algebraic identities satisfied by the elements Qw(ϖi),a ∈ Π′,
named QQ-system. This QQ-system (also called full QQ-system) has a long history, starting from
work of Bazhanov-Lukyanov and Zamolodchikov [BLZ] on quantum KdV systems, continuing
with work of Masoero-Raimondo [MR] on the corresponding opers introduced by Feigin and
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Frenkel, and pursued in related work of Frenkel and the second author on XXZ-type models [FH2,
FH4], and in work of Koroteev, Sage and Zeitlin on q-opers [KSZ] (we refer the reader to [FKSZ,
§6.2] and [FH4] for a detailed historical account). For us the QQ-system served as a guiding
principle for designing appropriate initial cluster seeds.

After these preparations, we introduce in Section 7.1 a topological subring KZ of a component
of Π′. By construction, KZ is topologically generated by certain elements Qw(ϖi),qr . Here (i,r)
runs through the canonical set of labels of the vertices of Γw0 , and Qw(ϖi),qr is a suitable rescaling
of a component of Qw(ϖi),qr , which satisfies a coefficient-free version of the QQ-system relations
(Proposition 7.2). We can then formulate and prove our first main theorem (Theorem 7.4), which
describes an explicit injective ring homomorphism F :Aw0 → KZ such that the topological closure
of the image is equal to KZ. The images under F of the cluster variables of the initial seed with
quiver Γw0 are all of the form Qw(ϖi),qr , and the initial exchange relations at red or green vertices
are mapped by F to instances of the QQ-system relations.

In Section 9.1, we recall following [FT] and [H] the necessary background on shifted quantum
affine algebras and their category Osh, and we explain that the ring KZ is isomorphic to the Gro-
thendieck ring K0(OZ). It follows from Theorem 7.4 that Aw0 can also be regarded as a subring
of K0(OZ), whose topological closure is equal to K0(OZ). Our main conjecture (Conjecture 9.16)
then states that every cluster monomial of Aw0 is the class of a simple object of OZ. In the rest
of Section 9 we collect evidences supporting this conjecture. In particular we prove that it holds
when g = sl2. In this simple case, one can give an explicit list of cluster variables and clusters,
and show that every simple object in OZ has a unique factorization into a fusion product of prime
simple objects, thus generalizing the seminal results of [CP]. We also note that, for every g, one
can regard the cluster algebra Ae as a subalgebra of Aw0 isomorphic to the Grothendieck ring
of the subcategory CZ of finite-dimensional modules of OZ. Then, putting together results of
[HL3, KKOP2, H], we see that the conjecture holds for all cluster monomials of Ae, that is for
finite-dimensional modules of OZ.

As explained in [H], there are strong relations between the category Osh and the Hernandez-
Jimbo category O for Uq(b). For instance their parametrizing set of simple objects are identical.
Yet, it does not seem possible to extend to the full category O the results of [HL3] for its subcat-
egories O+ and O−. One reason is that in the case of Uq(b), the tensor product of a positive and
a negative prefundamental representations is never simple, in contrast with what happens in Osh.
Another notable difference is indicated in Remark 9.29.

A large part of our construction works equally well whether g is of simply-laced type or not.
However, when g is simply-laced, we have additional results relating the cluster structure of KZ to
the cluster structure of the coordinate ring of the open double Bruhat cell of a simply-connected
algebraic group G with Lie algebra g. Moreover, the combinatorial description of the quiver of
an initial seed of KZ is significantly simpler when g is simply-laced. This is why in this paper we
restrict our attention to the simply-laced case, and defer the non simply-laced case to a forthcoming
paper.

In Section 10, where the assumption that g is simply-laced is necessary, we show that the
cluster algebra Aw0 is generated by an infinite family of cluster subalgebras, all isomorphic to the
Berenstein-Fomin-Zelevinsky cluster algebra structure on the coordinate ring of the open double
Bruhat cell Gw0,w0 . More precisely, for each choice of an orientation Q of the Dynkin diagram
of g, or equivalently, for each choice of a Coxeter element c of W , we have a one-parameter family
of such subalgebras parametrized by q2Z, which are related with each other by the sequences of
mutations at green or red vertices mentioned above. It then follows from Theorem 7.4 that one
can identify the cluster algebra C[Gw0,w0 ] with each member of an infinite series of finite rank
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cluster subalgebras of C⊗KZ, in such a way that the generalized minors ∆v(ϖi),w(ϖi), which are
the cluster variables of the standard initial seeds of C[Gw0,w0 ], get identified with elements of KZ
of the form Qw(ϖi),qr . In these identifications, the generalized minor identities of [FZ1, Theorem
1.17] translate into instances of QQ-system relations.

A similar connection between generalized minor identities and QQ-system relations has al-
ready been pointed out by Koroteev and Zeitlin [KZ]. They have shown that the QQ-systems
occurring in the theory of q-opers [KSZ, FKSZ] emerge as the relations between generalized mi-
nors of certain sections G (z), called (G,q)-Wronskians, of a principal G-bundle on the projective
line. Imitating their result, we present in §10.4 an analogous construction of quantum (G,c)-
Wronskians (gc(z)) in the Grothendieck ring KZ. Here c ∈W is a fixed Coxeter element, z ∈ q2Z,
and gc(z) is an element of the algebraic group G(KZ) satisfying quantum Wronskian identities of
the form:

∆ck(ϖi),c`(ϖi)(gc(z)) = ∆ck−1(ϖi),c`(ϖi)(gc(q2z)), (i ∈ I, 1≤ k ≤ mi, 0≤ `≤ mi, z ∈ q2Z), (1)

(see Section 10 below for unexplained notation). In our setting, the formulas defining gc(z) and
the fact that they solve the system of equations (1) appear as direct consequences of the cluster
algebra structure of KZ, with its sequence of cluster subalgebras isomorphic to C[Gw0,w0 ].
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stay at the Mathematisches Forschungsinstitute Oberwolfach. We want to thank MFO for excellent
working conditions. C.G. and B.L. acknowledge partial support from ERC grant QAffine, and
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[FH4] before their publication. Finally, we thank an anonymous referee for reading the manuscript
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2 Basic definitions

2.1 Cartan matrix and Dynkin diagram of a simple Lie algebra

Let g be a simple Lie algebra over C, with Cartan generators ei, fi,hi (i ∈ I). We denote by n := |I|
the rank of g. Let C = (ci j)i, j∈I be the Cartan matrix of g, which encodes the Serre presentation.
In this paper we will assume that g is of simply-laced type, that is of type A, D, E in the Cartan-
Killing classification. This means that C is a symmetric matrix. The Dynkin diagram of g is the
unoriented graph with vertex set I and incidence matrix 2Id−C.

2.2 Weights, roots, and Weyl group

Let h :=⊕i∈IChi denote the Cartan subalgebra of g, and let h∗ be its dual vector space. We denote
by (ϖi | i ∈ I) the basis of h∗ dual to (hi | i ∈ I), and call its elements the fundamental weights. We
denote by αi (i ∈ I) the simple roots of g, defined by

αi = ∑
j∈I

c jiϖ j, (i, j ∈ I). (2)

They span respectively the root lattice and the weight lattice:

Q :=
⊕
i∈I

Zαi ⊂ P :=
⊕
i∈I

Zϖi ⊂ h∗.
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Figure 2: The basic quiver Γ in type A3.

Let Q+ :=
⊕

i∈I Z≥0αi. The weight lattice P is endowed with a partial ordering given by:

λ ≥ µ ⇐⇒ λ −µ ∈ Q+, (λ ,µ ∈ P).

The Weyl group W of g is generated by the simple reflexions si, which act on h∗ by

si(λ ) = λ −λ (hi)αi, (i ∈ I, λ ∈ h∗). (3)

In particular, we have

si(ϖ j) = ϖ j−δi jαi, si(α j) = α j− ci jαi, (i, j ∈ I).

Let w0 be the longest element of W . It induces an involution ν : I→ I defined via the equality

w0(αi) =−αν(i), (i ∈ I).

2.3 Basic infinite quiver

Following [HL2], we attach an infinite quiver to the Cartan matrix C. Put Ṽ = I×Z. We introduce
a quiver Γ̃ with vertex set Ṽ . The arrows of Γ̃ are given by

(i,r)→ ( j,s) ⇐⇒ (ci j 6= 0 and s = r+ ci j).

It is easy to check that the oriented graph Γ̃ has two isomorphic connected components. We pick
one of them and call it Γ. The vertex set of Γ is denoted by V . We call Γ = ΓC the basic infinite
quiver of C. An example in type A3 is shown in Figure 2.
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Figure 3: The quivers Γe, Γs1,0 and Γs1,−2 in type A1.

3 Quivers and cluster algebras

Let Uq(ĝ) denote the quantum affinization of the Lie algebra g. In [HL3], the cluster algebra AΓ

defined by the basic infinite quiver Γ was introduced, and it was shown that a completion of AΓ is
isomorphic to the Grothendieck rings of two tensor subcategories O+

Z and O−Z of the category O

of representations of the Borel subalgebra Uq(b̂) of Uq(ĝ) defined in [HJ]. More recently, it was
shown in [H] that AΓ is isomorphic to the Grothendieck ring of the subcategory CZ of Osh whose
objects are the finite-dimensional representations of OZ, see below Theorem 9.18. The aim of this
section is to introduce a wider class of cluster algebras Aw labelled by w ∈W , where Ae := AΓ

corresponds to the unit element e of W .

3.1 Type A1

The construction is very simple when g = sl2, but since it is the basis of the general construction
we first present it in some detail.

In this case, the quiver Γ = Γe is simply an equi-oriented quiver of type A∞. Let r ∈ 2Z. To
obtain the new quiver Γs1,r, we just change the orientation of the arrow (1,r)← (1,r− 2) and
replace it by a down arrow (1,r)→ (1,r− 2). For instance, the quivers Γe, Γs1,0 and Γs1,−2 are
displayed in Figure 3.

Note that the new quiver Γs1,r is again of type A∞, but that it is no longer equi-oriented.
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Note also that if we perform on Γs1,r a quiver mutation at vertex (1,r) then we get exactly the
quiver Γs1,r+2. Similarly, if we perform on Γs1,r a quiver mutation at vertex (1,r−2) then we get
the quiver Γs1,r−2. Hence, by induction, all the quivers Γs1,r (r ∈ 2Z) are mutation-equivalent.
Therefore they define the same cluster algebra, which we denote by As1 .

Next, we remark that, for a finite n ∈ Z>0, two arbitrary quivers of type An are mutation-
equivalent. Hence there is a single cluster algebra of cluster-type An, up to isomorphism. In
contrast, the quivers Γ and Γs1,r cannot be obtained from each other through a finite sequence of
mutations, hence the cluster algebras Ae and As1 are different.

However, if we perform in Γs1,r an infinite sequence of mutations at successive vertices

(1,r−2),(1,r−4),(1,r−6), . . . ,

we will obtain in the limit the quiver Γ of the cluster algebra Ae. On the other hand, in contrast
with a finite sequence of mutations, this infinite sequence of mutations cannot be reversed (what
should be the first mutation of the reversed sequence ?).

To emphasize the special role of the two vertices (1,r) and (1,r−2) of Γs1,r, we will paint the
source vertex (1,r) in red and the sink vertex (1,r−2) in green. In order to generalize to higher
rank root systems, it is better to think of Γs1,r as being obtained from Γ in three steps:

(i) insert a new vertex ∗ between (1,r) and (1,r−2);

(ii) replace the arrow (1,r)← (1,r−2) by a pair of arrows (1,r)→∗← (1,r−2);

(iii) change the labels of the lower half as follows :

∗ 7→ (1,r−2), (1,r−2k) 7→ (1,r−2k−2), (k ≥ 1).

3.2 Type A,D,E with w = si

Let us now take g of type A,D,E, and let us define the cluster algebras Asi associated with the
simple reflections si. We start by defining the quivers Γsi,r.

Definition 3.1 Let (i,r) ∈ V , the vertex set of Γ = Γe. The quiver Γsi,r is obtained from Γe by
performing the following operations:

(i) insert a new vertex ∗ between vertices (i,r) and (i,r−2);

(ii) replace the arrow (i,r)← (i,r−2) by a pair of arrows (i,r)→∗← (i,r−2);

(iii) for j with ci j < 0, replace the arrow (i,r)→ ( j,r+ ci j) by an arrow ∗→ ( j,r+ ci j);

(iv) change the labels of the vertices on the lower half of column i as follows:

∗ 7→ (i,r−2), (i,r−2k) 7→ (i,r−2k−2), (k ≥ 1).

For example, the quivers Γs1,0 and Γs2,−1 in type A3 are displayed in Figure 4. The proof of
the following lemma is elementary, but it is a key property for our constructions.

Lemma 3.2 Let g be of type A,D,E.

(i) If we mutate the quiver Γsi,r at vertex (i,r), then we obtain the quiver Γsi,r+2.

(ii) If we mutate the quiver Γsi,r at vertex (i,r−2), then we obtain the quiver Γsi,r−2.
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Figure 4: The quivers Γs1,0 and Γs2,−1 in type A3.

Proof — This is a straightforward application of the rules of quiver mutation. Given the explicit
description of Γsi,r, we see that we can reduce the proof to an independent verification for every
rank 2 root subsystem containing αi, and this is immediate. An illustration in type A3 is given
in Figure 5, where the left quiver is Γs2,−1, the middle quiver is obtained by mutation at vertex
(2,−1), and the right quiver is Γs2,1, identical to the middle one up to a vertical shift of vertex
(2,−1). 2

Hence, for a fixed i ∈ I, all the quivers Γsi,r are mutation-equivalent, and they define the same
cluster algebra.

Definition 3.3 Let g be of type A,D,E and let i ∈ I. The cluster algebra Asi is the cluster algebra
with quiver Γsi,r for an arbitrary (i,r) ∈V .

3.3 Type A,D,E with arbitrary w

Let w ∈W , and pick a reduced decomposition w = si1 · · ·sik . We construct the quiver of an initial
seed of Aw by induction on k = `(w).

First, we choose a vertex of Γ of the form (i1,r1)∈V , and construct Γsi1 ,r1 as in §3.2. Note that
the lower part of Γsi1 ,r1 , below vertex (i1,r1−2), is exactly the same as the corresponding part of Γ

(except for the relabelling of vertices). So, we can pick a vertex (i2,r2) ∈V of Γsi1 ,r1 in this lower
part, and perform at this vertex the same operations as for the construction of Γsi2 ,r2 . We thus get
the new quiver Γ(i1, i2),(r1,r2). To illustrate, the left quiver in Figure 6 is the quiver Γ(1,2),(0,−3) in
type A2.
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Figure 5: Mutation of Γs2,−1 at vertex (2,−1) produces Γs2,1.

Obviously, we can continue in this way and construct successively quivers Γ(i1,...,il),(r1,...,rl) for
l ≤ k. For example, the right quiver in Figure 6 is the quiver Γ(1,2,1),(0,−1,−4) in type A2.

Our rule for labelling the vertices is that the vertex set is always the set V defined in §2.3, and
in each vertical subquiver, the second coordinates are arranged in decreasing order as we go down.
If the red vertices are (i1,r1), . . . ,(ik,rk) in this labelling, then we denote the resulting quiver by
Γ(i1,...,ik), (r1,...,rk). Clearly, for a given reduced decomposition w = si1 · · ·sik , we obtain an infinite
number of quivers Γ(i1,...,ik), (r1,...,rk) depending on the choice of (r1, . . . ,rk). However, the next
proposition shows that they define the same cluster algebra.

Proposition 3.4 For a fixed reduced decomposition w = si1 · · ·sik , the quivers Γ(i1,...,ik),(r1,...,rk) are
all mutation-equivalent.

Proof — This follows immediately from Lemma 3.2. 2

In fact, the next proposition gives a stronger result.

Proposition 3.5 The cluster algebra defined by a quiver Γ(i1,...,ik),(r1,...,rk) depends only on the Weyl
group element w.

Proof — Since g is assumed to be of type A,D,E, the braid relations satisfied by the generators
of W are all of the form

sis jsi = s jsis j, (ci j =−1), or sisk = sksi, (cik = 0).

We need to show that if two words (i1, . . . , ik) and ( j1, . . . , jk) are related by one of these two types
of braid moves, then the corresponding quivers Γ(i1,...,ik),(r1,...,rk) and Γ( j1,..., jk),(s1,...,sk) are related by
a finite sequence of mutations.
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Figure 6: The quivers Γ(1,2),(0,−3) and Γ(1,2,1),(0,−1,−4) in type A2.

Suppose that for some 1≤ l ≤ k−2 we have il = il+2 = i, il+1 = j with ci j =−1. By Propo-
sition 3.4, we see that, mutating only at red or green vertices, we can freely move up or down any
of the k pairs of red and green vertices of Γ(i1,...,ik),(r1,...,rk) corresponding to the indices i1, . . . , ik,
as long as we keep them in the same order when reading from top to bottom. By this procedure
we can perform a sequence of mutations on Γ(i1,...,ik),(r1,...,rk) which will isolate the red and green
vertices corresponding to il, il+1, il+2 so that locally, the mutated quiver looks like the left quiver
of Figure 7.

We claim that this left quiver can be transformed into the right quiver of Figure 7 by a sequence
of 3 mutations. This sequence is exhibited in Figure 8, where we have restricted ourselves to
quivers of type A2 to save space, and we have labelled the vertices to improve readability. The
mutations are performed at vertices (1,−2), (1,−4), (2,−3), successively. The result of this
sequence of 3 mutations is the 4th quiver of Figure 8, and the 5th quiver is the target quiver
Γ(2,1,2),(−1,−2,−5). One can see that the 4th and 5th quivers are identical up to the change of
labelling:

(1,−4) 7→ (2,−3), (1,a) 7→ (1,a+2), (a≤−6), (2,b) 7→ (2,b−2), (b≤−3).

This change of labelling seems artificial at this stage, but we will see in Remark 4.14 below that
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Figure 7: A local 3-move.

this problem disappears when we use the canonical labelling given by “stabilized g-vectors”. It
is easy to check that the same sequence of mutations transforms the left quiver of Figure 7 into
the right quiver, that is, that the arrows connecting the central part to the two sides also mutate as
expected.

Finally, the case of the trivial braid moves sisk = sksi, (cik = 0) follows again immediately
from Lemma 3.2. 2

Definition 3.6 The cluster algebra with defining quiver Γ(i1,...,ik),(r1,...,rk) is denoted by Aw.

For instance, in Figure 9 we display two initial seeds of the cluster algebra Aw0 in type A3,
corresponding respectively to the two reduced expressions s1s2s1s3s2s1 and s2s1s3s2s1s3 of w0.

Remark 3.7 As noted above in the case of type A1, by Proposition 3.4 it is possible to find an
infinite sequence of mutations transforming the quiver of an initial seed of Aw into the basic
infinite quiver Γ, that is, into the quiver of an initial seed of Ae. More precisely, mutating once
at each green vertex of an initial seed of Aw produces a new seed whose quiver is a one step
downward translation of the initial one. Thus, repeating an infinite number of times this operation
we can push down to infinity the middle part consisting of red and green vertices and recover the
quiver Γ, with its canonical labelling of vertices.

3.4 Initial seeds of Aw0 associated with a Coxeter element

Let Q be an orientation of the Dynkin diagram of g. In other words, Q is a Dynkin quiver of the
same Dynkin type as g. For i ∈ I, we denote by si(Q) the quiver obtained from Q by changing the
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Figure 8: A sequence of 3 mutations from Γ(1,2,1),(0,−1,−4) to Γ(2,1,2),(−1,−2,−5).

orientation of every arrow with source i or target i. Let w = si1 · · ·sik ∈W be a reduced decompo-
sition. We say that i = (i1, . . . , ik) is adapted to Q if and only if ik is a source of Q, ik−1 is a source
of sik(Q), . . . , i1 is a source of si2 · · ·sik(Q). There is a unique Coxeter element having reduced
expressions adapted to Q. We shall denote it by c. Moreover the map Q 7→ c is a bijection between
orientations Q of the Dynkin diagram and Coxeter elements of W .

Let c = si1 · · ·sin denote a fixed Coxeter element of W , and let Q be the corresponding Dynkin
quiver. Then the basic infinite quiver ΓC is isomorphic to the Auslander-Reiten quiver of the
bounded derived category Db(KQ) of the path algebra KQ over a field K, in which we have added
arrows corresponding to the action of the Auslander-Reiten translation (these are all the vertical
arrows (i,r)→ (i,r+2) of ΓC).

We can therefore identify the Auslander-Reiten quiver of the abelian category mod(KQ) with
a finite connected full subquiver Gc of ΓC, whose number of vertices is equal to the number of
positive roots of g. This is illustrated in type A3 in Figure 10. The two Coxeter elements s1s2s3
and s2s1s3 correspond to the two full subquivers Gc with vertices painted in red.

It is then easy to formulate an alternative recipe for obtaining the quiver of an initial seed of
Aw0 . Pick a Coxeter element c and determine the subquiver Gc of ΓC. Then at each vertex of
Gc perform the procedure described in Definition 3.1. The resulting quiver Γc is the quiver of
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Figure 9: Two initial seeds for the cluster algebra Aw0 in type A3.

an initial seed of Aw0 . For example, applying this recipe to the quivers of Figure 10, we get the
quivers of Figure 9.

Strictly speaking, Γc is only determined up to a vertical translation, but because of Proposi-
tion 3.4 this does not affect the mutation class of the quivers obtained by means of this procedure.

4 Stabilized g-vectors

If we choose a reference seed, we can parametrize cluster variables of Aw0 using their g-vectors
with respect to this reference seed. This parametrization depends on the choice of reference seed.
For instance, we can choose a reference seed coming from a Coxeter element c, as described in
§3.4. But, as noted above, this is only determined up to a vertical translation. If we mutate this
reference seed up or down, the g-vector of a given cluster variable will change.

In this section we will show that if we consider the sequence of g-vectors of a fixed cluster
variable x with respect to a sequence of such reference seeds obtained by successive downward
translations, then this sequence of g-vectors stabilizes after a finite number of downward transla-
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Figure 10: The subquivers Gc corresponding to the Coxeter elements s1s2s3 and s2s1s3 in type A3.

tions. The stabilized limit g-vector can be regarded as the g-vector of x with respect to the limit
reference seed obtained by translating downward a given Coxeter initial seed an infinite number
of times. As noted above (see Remark 3.7), the quiver of this limit of seeds is the basic quiver ΓC,
which is independent of the choice of Coxeter element c. After studying this limiting procedure
in detail, we will give explicit descriptions of stabilized g-vectors of the cluster variables of our
Coxeter-type initial seeds.

4.1 g-vectors

We start by recalling the basic facts about g-vectors which we will need.
Let x denote the kth cluster variable in a seed S, and let Σ be another seed. In [FZ2], Fomin

and Zelevinsky have given two recursive relations for calculating the g-vector of x with respect
to the reference seed Σ. Namely, we can mutate at x in the seed S and get a new cluster variable
µk(x), or mutate Σ in direction l and get a new reference seed µl(Σ). Then the first recursion
expresses the g-vector of x with respect to µl(Σ) in terms of the g-vector of x with respect to Σ,
and the second recursion expresses the g-vector of µk(x) with respect to Σ in terms of the g-vector
of x with respect to Σ.

To state these relations we will need some more notation. Let Γ denote the quiver of the seed
Σ, and let V be its vertex set. Let l ∈ V and let Σ′ := µl(Σ). We denote by g := (gv)v∈V (resp.
g′ := (g′v)v∈V ) the g-vector of the cluster variable x with respect to Σ (resp. with respect to Σ′).
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Then we have

g′v =


−gv if v = l,

gv + Nl→v gl if v 6= l and gl ≥ 0,
gv + Nv→l gl if v 6= l and gl ≤ 0,

(4)

where for a,b ∈ V , we denote by Na→b the number of arrows from a to b in Γ. This relation is
[FZ2, Conjecture 7.12], and it is now a theorem by [DWZ, Theorem 1.7].

To state the second recursion relation, we also need c-vectors (see [NZ]). Let c := (cv)v∈V

denote the c-vector of x with respect to Σ. By [DWZ, Theorem 1.7] and [NZ], it is known that
the coordinates cv of c are either all non-negative, or all non-positive. Accordingly we can write
unambiguously c≥ 0, or c≤ 0. Let x∗ := µk(x), and let g∗ denote the g-vector of x∗ with respect
to Σ. Let gv (v 6= k) be the g-vectors with respect to Σ of the cluster variables xv of S other than
x = xk. Then by [FZ2, Proposition 6.6, Equations 6.12, 6.13] we have,

g∗ =

{
−g+ ∑v∈V Mv→k gv if c≥ 0,

−g+ ∑v∈V Mk→v gv if c≤ 0,
(5)

where for a,b ∈ V , we denote by Ma→b the number of arrows from a to b in the quiver G of the
seed S.

Finally, to determine in practice whether c ≥ 0 or c ≤ 0, we can make use of [NZ, Equation
2.8], which implies that

∑
v∈V

(Mv→k−Mk→v) gv = ∑
v∈V

cv b0
v , (6)

where b0
v := ∑l∈V (Nl→v−Nv→l)el are the column vectors of the exchange matrix B0 of Σ. Indeed

the left-hand side of (6) can be calculated from the datum of S, and by expanding this sum as a
linear combination of the known columns of B0, we can calculate the coefficients cv and check
their sign.

4.2 An infinite sequence of mutations

From now on, we fix a Coxeter element c, and we consider the quiver Γ := Γc of an initial seed Σ

of Aw0 associated with c, as described in §3.4. This seed is only defined up to a vertical translation,
so for definiteness, let us decide that the highest red vertex of Γ is of the form (i,0), as in the left
quiver of Figure 9.

Then we define the following infinite sequence of mutations. We first mutate at all green
vertices of Γ, that is, at all sinks of the vertical subquivers of type A∞ of Γ. Here the mutation
order is irrelevant because all these mutations commute with each other. Let us denote by Γ(1)

the quiver of the new seed Σ(1) obtained after this finite sequence of `(w0) mutations. Then, by
Lemma 3.2, the quiver Γ(1) is obtained from Γ by a one-step downward translation. So we can
iterate this procedure and mutate at every green vertex of Γ(1) to get a new seed Σ(2) whose quiver
Γ(2) is obtained from Γ by a two-step downward translation. And so on. In this way we obtain an
infinite sequence Σ(m) (m≥ 0) of seeds of Aw0 , with quivers Γ(m) such that limm→∞ Γ(m) = ΓC.

Our aim is to study the sequences of g-vectors of all cluster variables of Σ with respect to the
sequence of reference seeds Σ(m).

Example 4.1 As a warm-up example, let us consider the A1-case. Here there is only one Coxeter
element c = s1 = w0. In this case, all mutations in the sequence occur at vertices which are sinks,
and it is easy to apply Equation (4). This is illustrated in Figure 11, where we have displayed the
first 4 steps of the mutation sequence. For each step we show (left) the initial seed Σ and (right)
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Figure 11: The first steps of the sequence of g-vectors in type A1.

the mutated reference seed Σ(m). The g-vectors of the cluster variables of Σ with respect to Σ(m)

are written at the corresponding vertices of Σ. The end result is that the g-vectors of the cluster
variables of Σ with respect to the limit reference seed are

g(∞)
(1,2k) = e(1,2k), g(∞)

(1,2l) =−e(1,2l), (k ≥ 0, l < 0).

Example 4.2 Let us now consider the A2-case. We choose the Coxeter element c = s1s2. In
Figure 12, we have displayed the g-vectors of the cluster variables of Σ with respect to the reference
seeds Σ(m) for m≤ 3. In this case it is again easy to check that the g-vectors stabilize. The stabilized
g-vectors with respect to the limit reference seed are :

g(∞)
(1,2k) =


e(1,2k) if k ≥ 0,

−e(1,2k)+ e(2,2k+1) if −2≤ k ≤−1,

−e(2,2k+1) if k ≤−3,

g(∞)
(2,2k−1) =

{
e(2,2k−1) if k ≥ 0,

−e(1,2k−2) if k ≤−1.

Example 4.3 The stabilized g-vectors of the cluster variables of a typical initial seed in types A1,
A2 and A3 are displayed in Figure 13.
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Figure 12: The first steps of the sequence of g-vectors in type A2.

4.3 Calculation of stabilized g-vectors

In this section we obtain an explicit expression of the above sequence of g-vectors, and show that
this sequence stabilizes. To do this we first introduce a partition of the quiver Γ into horizontal
slices. We then show that the G-matrices whose column vectors are the g-vectors have a block
diagonal form, where the diagonal blocks correspond to the slices of the partition. These blocks
can be explicitly calculated using the action of the Weyl group W on the weight lattice.

4.3.1 Slices for Γ

Let Q be a Dynkin quiver with vertex set I, as in §3.4. Let c be the corresponding Coxeter element,
and Γ = Γc the corresponding quiver of an initial seed of Aw0 . We will use the height function
lc : I→ Z≥0, which is uniquely determined by the following two properties:

• 0 ∈ Im(lc),

• If i→ j is an arrow in Q then lc(i) = lc( j)+1.

This is well-defined since the underlying Dynkin diagram is a tree. Note that if lc(i) = 0, then i is
a sink of Q.
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Figure 13: The stabilized g-vectors of an initial seed in type An (n≤ 3).

With this notation, the vertex set V of Γ can be written as

V =
⋃
i∈I

{(i,k) ∈ I×Z | k ∈ lc(i)+2Z}.

An arrow (i,m)→ ( j,n) in Γ is called vertical if i = j, otherwise it is called oblique. For every
vertical down arrow (i,k)→ (i,k−2) we draw the vertex (i,k) red and (i,k−2) green. All other
vertices remain black.

Remark 4.4 (1) If we delete all oblique arrows from Γ, the red vertices are precisely the sources,
and the green vertices are precisely the sinks of the remaining quiver.

(2) The vertical down arrows are in natural bijection with the vertices of the Auslander-Reiten
quiver of the path algebra KQ.

(3) We have for each m ∈ Z≥0 an embedding ιm : Q→ Γ defined by:

i 7→ (i, lc(i)+2m), and (i→ j) 7→ ((i, lc(i)+2m)→ ( j, lc( j)+2m)).
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The next Lemma is easy to check.

Lemma 4.5 Let α:(i,m)→ ( j,n) be an oblique arrow in Γ.

(a) The start point s(α) = (i,m) of α is either green or black. The endpoint t(α) = ( j,n) of α

is either red or black.

(b1) If s(α) is green, there exists an opposite oblique arrow

α
+:( j,n+2)→ (i,m+2) and t(α+) = (i,m+2) is red.

(b2) If s(α) is black, there exists a parallel oblique arrow

α
+:(i,m+2)→ ( j,n+2),

except when ( j,n+2) is green.

(c1) If t(α) is red, there exists an opposite oblique arrow

α
−:( j,n−2)→ (i,m−2) and s(α−) = ( j,n−2) is green.

(c2) If t(α) is black, there exists a parallel oblique arrow

α
−:(i,m−2)→ ( j,n−2),

except when (i,m−2) is red.

Definition 4.6 For m ∈ Z, let

I(m) := {(i, lc(i)+2m) | i ∈ I} ⊂V,

and denote by Q(m) the full subquiver of Γ with vertex set I(m).

Note, that Q(m) contains no vertical arrows of Γ, and for m≥ 0, the quiver Q(m) is canonically
isomorphic to Q. We regard the subquivers Q(m) as horizontal slices of Γ. This is illustrated in
Figure 14, in which for the quiver

Q : 1← 2← 3→ 4

of type A4, the slices Q(0),Q(−1), . . . ,Q(−6) of Γ are surrounded by grey lines. The next propo-
sition is easy to check.

Proposition 4.7 Let m ∈ Z.

(a) Each green vertex of Q(m) is a source and each red vertex of Q(m) is a sink.

(b) Let Ired(m) denote the subset of red vertices of Q(m). Then the shift map

I(m)→ I(m−1), (i, l(i)+2m) 7→ (i, l(i)+2m−2) (i ∈ I),

induces an isomorphism of quivers(
∏

v∈Ired(m)

sv

)
Q(m)

∼−→Q(m−1),

where sv denotes the quiver reflection which changes the orientation of all arrows incident
with v. In particular, the underlying unoriented graph of Q(m) is isomorphic to the Dynkin
diagram of g for all m ∈ Z.
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Figure 14: The horizontal slices of Γ in type A4 for c = s1s2s4s3.
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(c) Dually, let Igrn(m) denote the subset of green vertices of Q(m). Then the shift map

I(m)→ I(m+1), (i, l(i)+2m) 7→ (i, l(i)+2m+2) (i ∈ I),

induces an isomorphism of quivers(
∏

v∈Igrn(m)

sv

)
Q(m)

∼−→Q(m+1).

(d) Let ν : I → I be the Nakayama permutation defined by w0(αi) = −αν(i). Suppose that for
some m < 0 we have Ired(m) = /0. Then the twisted shift

I(0)→ I(m), (i, lc(i)) 7→ (ν(i), lc(ν(i))+2m) (∀i ∈ I)

induces an isomorphism Q ∼−→Q(m) of quivers.

4.3.2 Transformation of the G-matrix under green mutations

From now we fix I = {1,2, . . . ,n}. We define a total ordering on the set V of vertices of Γ by the
following rule:

(i, lc(i)+2a)< ( j, lc( j)+2b)⇐⇒ (a < b) or (a = b and i < j) (7)

In the sequel, when we consider a matrix with rows and columns indexed by V , we always assume
that its rows and columns are ordered using this ordering.

Recall the sequence of quivers Γ(k) (k≥ 0) defined in §4.2. All these quivers are isomorphic to
Γ(0) = Γ by substituting every vertex (i, l) by (i, l−2k). In particular, every quiver Γ(k) has again
N red and N green vertices given by the end points of the N down arrows, where N is the number
of positive roots of the Dynkin diagram. Let V (k)

grn ⊂V denote the subset of green vertices of Γ(k).
We define the following sequence of mutations of Γ(k):

µ
(k)
grn := ∏

(i,l)∈V (k)
grn

µ(i,l).

Thus µ
(k)
grn consists of N pairwise commuting mutations. As explained in §4.2, we have

µ
(k)
grn(Γ

(k)) = Γ
(k+1).

Let
G(0) =

(
g(0)x,y

)
x,y∈V

∈ ZV×V

be the initial g-matrix with g(0)x,y = δx,y, where δ is the Kronecker symbol. The convention is that
the g-vectors are the column vectors of the G-matrix.

Now, we define recursively
G(k+1) := µ̃

(k)
grn(G(k)),

where µ̃
(k)
grn consists in applying to the column vectors of G(k) the transformations of §4.1 (4) for

all green vertices l of Γ(k). Thus, the columns of G(k) are the g-vectors of the cluster variables of
the initial seed x attached to Γ(0) with respect to the reference seed µ

(k−1)
grn ◦ · · · ◦ µ

(0)
grn(x) attached

to Γ(k).
For each i ∈ I let ti ∈ ZI×I be the matrix with entries

t(i)jk =

{
δ jk if k 6= i,

δ ji− c ji if k = i.
(8)
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Remark 4.8 Comparing with Eq. (2), (3), we see that ti is the matrix of the simple reflection
si ∈W with respect to the basis of fundamental weights. Note that left multiplication of a matrix
M by ti can be seen as a row transformation: row i of M is added to each row j of M such that j is
connected to i by an edge in the Dynkin diagram, and then row i of M is multiplied by −1.

Observe also that the transposed matrix si := tt
i is the matrix of the same reflection si ∈W with

respect to the basis of simple roots.

Lemma 4.9 Suppose that in each row of G(k) which corresponds to a green vertex of Γ(k), all en-
tries are non-negative. Then, the transformation µ̃

(k)
grn of G(k) can be realized by left multiplication

by a block diagonal matrix M(k)
grn, where each diagonal block M(k)

grn(m) corresponds to the subset
I(m)⊂V . More precisely, in this case we have

M(k)
grn(m) := ∏

i∈I(k)grn(m)

ti,

where
I(k)grn(m) := {i ∈ I | (i, lc(i)+2m) ∈ Γ

(k) is green},

and we identify each (i, lc(i)+2m) ∈ I(m) with i ∈ I.

Note that by construction I(k+1)
grn (m) = I(k)grn(m+1).

Proof — Recall, that Γ(k) is obtained from Γ = Γ(0) by relabelling the vertices. More precisely
we have to substitute ( j, l) by ( j, l− 2k) for all ( j, l) ∈ V , and keep the colouring. In particular,
the subquivers Q(m) can also be considered for Γ(k). Up to the corresponding shift they have the
same properties as in Γ.

Thus, by Remark 4.4 and Proposition 4.7, two different green vertices of Γ(k) are never joined
by an arrow. The sign hypothesis on G(k) implies that we are in the second case of Equa-
tion (4). It follows that the transformation µ̃(i,lc(i)+2m) of G(k) corresponding to a single green
vertex (i, lc(i)+ 2m) ∈ Q(m) ⊂ Γ(k) is a row transformation. Moreover, transformations for dif-
ferent green vertices commute. For this reason it is sufficient to show that the matrix for the row
transformation corresponding to a single green vertex has the alluded block diagonal form. In fact,
by Proposition 4.7, for a green vertex (i, lc(i)+ 2m) ∈ Q(m) as above, the arrows in Γ(k) which
start at (i, lc(i)+2m) are precisely of the form

(i, lc(i)+2m)→ ( j, lc( j)+2m) with ci, j < 0.

This means that, by Equation (4) and Remark 4.8, the corresponding transformation is given by
putting the matrix ti in the diagonal block corresponding to Q(m), whilst all other diagonal blocks
are identity matrices. 2

Let Q′ be a Dynkin quiver with vertex set I = {1,2, . . . ,n}, and let N denote the number of its
positive roots. Recall that we say that a sequence i = (ir, ir−1, . . . , i1) of vertices of Q′ is adapted
to Q′ if r ≤ N, and for every k = 0,1, . . . ,r− 1 we have that ik+1 is a source of sik · · ·si2si1(Q′).
Then (ir, . . . , i1) is a reduced expression for w = sir · · ·si1 ∈W , and we will also say that sir · · ·si1 is
adapted to Q′.

Lemma 4.10 Let i = (ir, ir−1, . . . , i1) be adapted to the Dynkin quiver Q′. Then, with the notation
from (8), the matrix

T := tir−1 · · · ti2ti1 ∈ ZI×I

has the following properties:
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• Each row of T is the expansion of a certain root in terms of the simple roots.

• Row ir of T corresponds to a positive root.

Proof — By construction, (ir, . . . , i1) is a reduced expression for w = sir · · ·si1 ∈W . Let (ei)i∈I be
the coordinate basis of ZI . Then for j ∈ I we have, in view of Remark 4.8,

(et
j(tir−1 · · · ti1))

t = (si1 · · ·sir−1)e j,

which is the expansion of a root in terms of the simple roots.
It is classical that in this situation

αi1 , si1(αi2), si1si2(αi3), . . . , si1si2 · · ·sir−1(αir)

is precisely a list of the positive roots which are sent by w to negative roots. Thus, in particular

et
ir(tir−1 · · · ti2ti1)

is the expansion of a positive root in terms of the simple roots. 2

Using the notation of Lemma 4.9, we define for each m ∈ Z :

Tm := ∏i∈I(0)grn(m)
ti ∈ ZI×I,

Sm := ∏i∈I(0)grn(m)
si ∈ ZI×I,

Sm := ∏i∈I(0)grn(m)
si ∈W.

All factors of these products pairwise commute since different green vertices are never joined by
an arrow. Let

hc := min
{

m ∈ Z | I(0)grn(m) 6= /0
}
.

Note that hc < 0. If m 6∈ {−1,−2, . . . ,hc} then I(0)grn(m) = /0, and it is understood that Tm = Idn, the
identity matrix of size n. It follows from the construction of Γ that S−1 · · ·S−2 · · ·Shc is a reduced
expression for the longest element w0 ∈W which is adapted to Q(hc).

Theorem 4.11 For each k≥ 0, the G-matrix G(k) is of block diagonal form diag(G(k)(m)) |m∈Z),
where each diagonal block G(k)(m) corresponds to the vertex set I(m) ⊂ V . More precisely, we
have

G(k)(m) = Tm+k−1 · · ·Tm+1 ·Tm

under the usual identifications. In particular, for k� |m| we have

G(k)(m) =


Idn if m > 0,

T−1T−2 · · ·Tm if hc ≤ m≤−1,
T−1T−2 · · ·Thc if m≤ hc,

(9)

which shows that the sequence of G-matrices (G(k))k≥0 has a well-defined limit

G(∞) := lim
k→+∞

G(k).
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Proof — In order to prove the first claim we proceed by induction on k. Trivially, all rows of G(0)

are non-negative. Thus, by Lemma 4.9, the matrix G(1) is of the desired shape. For the induction
step we may assume that we have in each diagonal block

G(k)(m) = Tm+k−1 · · ·Tm = tir · · · ti2ti1 ,

where (ir, . . . , i2, i1) is the sequence obtained by reading consecutively the first components of the
green vertices in the slices Q(m+k−1),Q(m+k−2), . . . ,Q(m). Now, the sequence (ir, . . . , i1) is
adapted to Q(m) by Proposition 4.7(c). Without loss of generality we may assume that j1, j2, . . . , jg
are the first components of the green vertices of Q(m+k). Now, we can apply Lemma 4.10 to the
sequence ( ja, ir, ir−1, . . . , i1) for 1≤ a≤ g and Q′ = Q(m), and conclude that row ja of G(k)(m) is
non-negative. It follows by Lemma 4.9, that G(k+1)(m) also has the desired shape.

The second claim follows since Ti = Idn for i≥ 0 or i < hc. 2

Remark 4.12 We deduce from Theorem 4.11 the following additional information about the
columns of G(k). Let (i, l) ∈ I(m)⊂V .

• The support of g(k)(i,l) is contained in I(m).

• If m> 0, we have g(k)(i,l) = e(i,l). Note, that T−1T−2 · · ·Thc represents w0, thus it is the negative
of the permutation matrix for the Nakayama permutation ν . Therefore, for m ≤ hc and
k� 0, we have

g(k)(i,lc(i)+2m) =−e(ν(i),lc(ν(i))+2m).

Example 4.13 We illustrate Theorem 4.11 in type A2. This is a continuation of Example 4.2.
Here the quiver Q is 1← 2, and hc =−3. For m ∈ Z, we have I(m) = {(1,2m),(2,2m+1)}. We
have

t1 =

(
−1 0
1 1

)
, t2 =

(
1 1
0 −1

)
,

and

Tm =


Id2 if m≥ 0,
t1 if m =−1,
t2 if m =−2,
t1 if m =−3,
Id2 if m≤−4.

Hence,

T−1T−2 =

(
−1 −1
1 0

)
, T−2T−3 =

(
0 1
−1 −1

)
, T−1T−2T−3 =

(
0 −1
−1 0

)
.

The non-trivial diagonal blocks of G(1) are:

G(1)(−1) = T−1,

G(1)(−2) = T−2,

G(1)(−3) = T−3.
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Figure 15: Mutation of stabilized g-vectors from Γ(1,2,1),(0,−1,−4) to Γ(2,1,2),(−1,−2,−5).

The non-trivial diagonal blocks of G(2) are:

G(2)(−1) = T0T−1 = T−1,

G(2)(−2) = T−1T−2,

G(2)(−3) = T−2T−3,

G(2)(−4) = T−3T−4 = T−3.

The non-trivial diagonal blocks of G(3) are:

G(3)(−1) = T1T0T−1 = T−1,

G(3)(−2) = T0T−1T−2 = T−1T−2,

G(3)(−3) = T−1T−2T−3,

G(3)(−4) = T−2T−3T−4 = T−2T−3,

G(3)(−5) = T−3T−4T−5 = T−3.

And so on. Thus, we see that in the limit the non trivial blocks of the stabilized G-matrix G(∞) are

G(∞)(−1) = T−1,
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G(∞)(−2) = T−1T−2,

G(∞)(m) = T−1T−2T−3, (m≤−3),

in agreement with the left quiver of Figure 15.

Remark 4.14 Now that we have determined the stabilized g-vectors of the cluster variables of
an initial seed, we can use Equation (5) to calculate the stabilized g-vector of a cluster variable
obtained from this initial seed by any explicit sequence of mutations.

For instance, if we replace in Figure 8 the original labelling of the vertices by the correspond-
ing stabilized g-vectors we get Figure 15. In Figure 15, the middle seed is obtained from the left
seed by the same sequence of three mutations as in Figure 8. The stabilized g-vectors of the three
new cluster variables, calculated using Equation (5), are painted in blue. The right seed is identical
to the middle one : it is obtained by just moving the lower blue vertex in the left column to the right
column and adjusting correspondingly the arrows. Note that now there is no need of relabelling
the vertices like we did in Figure 8.

4.3.3 A knitting algorithm

We will now deduce from Theorem 4.11 a simple algorithm for calculating the stabilized g-vectors.
For v =

(
v(i,l)

)
(i,l)∈V ∈ ZV and s ∈ Z, we define the shifted vector v[s] =

(
v′(i,l)

)
(i,l)∈V

by:

v′i,l := vi,l−2s, ((i, l) ∈V ).

Theorem 4.15 Recall the notation of Theorem 4.11. For (i, l) ∈ V , denote by g(k)(i,l) ∈ ZV the

column vector of G(k) in column (i, l). Suppose that k� 0.

(a) If there is a vertical up-arrow (i, l)→ (i, l +2) in Γ, then we have:

g(k)(i,l) = g(k)(i,l+2)[−1]. (10)

(b) If there is a vertical down-arrow (i, l +2)→ (i, l) in Γ, then we have:

g(k)(i,l) =−g(k)(i,l+2)[−1]+ ∑
(i,l)→( j,s)

g(k)( j,s). (11)

Proof — Suppose that (i, l) ∈ I(m). If m≥ 0 then we are always in case (a), and g(k)(i,l) = e(i,l) by
construction, so Equation (10) is trivially verified. Similarly, if m < h then we are also in case (a)
and Equation (10) follows obviously from the second point of Remark 4.12.

So we can assume that h≤ m < 0. By Eq. (9), we have

G(k)(m) = G(k)(m+1) ·Tm.

If we are in case (a) then (i, l) is not a green vertex of Γ, thus by definition of Tm, column i of
Tm is the unit vector ei, so the matrices G(k)(m) and G(k)(m+1) have the same column i, which is
precisely the content of Equation (10).

If we are in case (b) then (i, l) is a green vertex of Γ, and again by definition of Tm, column i
of Tm has an entry −1 on row i, an entry +1 on every row j such that ci j =−1, and 0 on all other
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rows. By Proposition 4.7, (i, l) is a source of Q(m) and (i, l +2) is a red vertex which is a sink of
Q(m+1). Thus we obtain

g(k)(i,l) =

(
−g(k)(i,l+2)+ ∑

( j,s+2)→(i,l+2)
g(k)( j,s+2)

)
[−1] =−g(k)(i,l+2)[−1]+ ∑

(i,l)→( j,s)
g(k)( j,s),

where the second equality follows from case (a). 2

Using Theorem 4.15, we can calculate very easily the stabilized g-vectors g(∞)
(i,l), starting from

the initial datum g(∞)
(i,l) = e(i,l) for all vertices (i, l) of the upper slices Q(m) (m≥ 0), and then going

down using alternately equations (10) and (11). This algorithm resembles the knitting algorithm
of Auslander-Reiten theory. More precisely, remember that the green vertices of Γ are in one-to-
one correspondence with the vertices of the Auslander-Reiten quiver of Q. The following easy
corollary of Theorem 4.15, which involves only green vertices, can be regarded as an analogue of
the classical mesh relations.

Corollary 4.16 Suppose that (i, l) and (i, l−4) are green vertices of Γ. Then for every (oblique)
arrow (i, l)→ ( j,s), vertex ( j,s−2) is green, and we have

g(∞)
(i,l−4)+g(∞)

(i,l)[−2] = ∑
(i,l)→( j,s)

g(∞)
( j,s−2)[−1].

4.3.4 Reformulation in terms of a braid group action

We now give a reformulation of the previous calculations in terms of a braid group action on ZV .

Definition 4.17 For i ∈ I we define an automorphism θi of the free Z-module ZV by:

θi
(
e( j,a)

)
:=


e( j,a) if j 6= i,

−e(i,a−2)+ ∑
k :cik=−1

e(k,a−1) if k = i, (( j,a) ∈V ).

The following lemma shows that the θi (i ∈ I) define an action on ZV of the braid group
attached to the Weyl group W . This is similar to the braid group action defined by Chari in [C].

Lemma 4.18 The automorphisms θi (i ∈ I) satisfy the braid relations.

Proof — Let i, j be two distinct elements of I. If k 6∈ {i, j} then θi(e(k,a)) = θ j(e(k,a)) = e(k,a) for
every (k,a) ∈V , and the braid relations are trivially verified on e(k,a).

If ci j = 0, then

θiθ j(e(i,a)) = θi(e(i,a)) =−e(i,a−2)+ ∑
k :cik=−1

e(k,a−1) = θ jθi(e(i,a))

since all indices k occurring in the sum are different from j.
If ci j =−1, then

θ jθiθ j(e(i,a))= θ j

(
−e(i,a−2)+ ∑

k :cik=−1
e(k,a−1)

)
=−e( j,a−3)+ ∑

k 6= j :cik=−1
e(k,a−1)+ ∑

l 6=i :c jl=−1
e(l,a−2).
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Since this sum does not contain any vector of the form e(i,b), it is invariant under θi. Hence

θ jθiθ j(e(i,a)) = θ jθi(e(i,a)) = θiθ jθi(e(i,a)),

so the braid relations are also satisfied on e(i,a). 2

Recall that reading the first indices of the green vertices of Γ from top to bottom we get a
sequence i = (i1, . . . , iN) ∈ IN such that si1 · · ·siN is a reduced decomposition of w0 ∈ W . For
example, in Figure 14 we have N = 10 and i = (1,2,4,1,3,2,4,1,3,2).

Let ((i1,a1) . . . ,(iN ,aN))∈V N denote the sequence of green vertices of Γ in the same ordering.
For 1 ≤ t ≤ N, let st := ]{ j < t | i j = it}. Finally, for i ∈ I, let (i,mi) ∈ V denote the highest red
vertex of Γ in column i.

Proposition 4.19 For 1≤ t ≤ N we have

g(∞)
(it ,at)

= θi1θi2 · · ·θit (e(it ,mit )
)[−st ].

Proof — This follows readily from Theorem 4.15 by induction on 1 ≤ t ≤ N. To avoid cumber-
some notation, we will just check it below on a typical example. 2

Example 4.20 We consider again the quiver of Example 4.3 in type A3. Thus i = (1,2,1,3,2,1),
and the sequence of green vertices is ((1,−2),(2,−3),(1,−6),(3,−4),(2,−7),(1,−10)). The
highest red vertices are (1,m1) = (1,0), (2,m2) = (2,−1), (3,m3) = (3,−2). We have

θ1(e(1,0)) =−e(1,−2)+ e(2,−1) = g(∞)
(1,−2),

θ1θ2(e(2,−1)) = θ1
(
−e(2,−3)+ e(1,−2)+ e(3,−2)

)
=−e(1,−4)+ e(3,−2) = g(∞)

(2,−3),

θ1θ2θ1(e(1,0))[−1] = θ1θ2
(
−e(1,−4)+ e(2,−3)

)
= θ1

(
−e(2,−5)+ e(3,−4)

)
=−e(2,−5)+ e(3,−4) = g(∞)

(1,−6),

θ1θ2θ1θ3(e(3,−2)) = θ1θ2
(
−e(3,−4)+ e(2,−3)

)
= θ1

(
−e(2,−5)+ e(1,−4)

)
=−e(1,−6) = g(∞)

(3,−4),

θ1θ2θ1θ3θ2(e(2,−1))[−1] = θ1θ2θ1θ3
(
−e(2,−5)+ e(1,−4)+ e(3,−4)

)
= θ1θ2

(
−e(1,−6)+ e(2,−5)− e(3,−6)

)
= θ1(−e(2,−7)) =−e(2,−7) = g(∞)

(2,−7),

θ1θ2θ1θ3θ2θ1(e(1,0))[−2] = θ1θ2θ3
(
−e(2,−7)+ e(3,−6)

)
= θ1θ2(−e(3,−8))

=−e(3,−8) = g(∞)
(1,−10).

Remark 4.21 Proposition 4.19 gives an expression of the stabilized g-vectors g(∞)
(i,a) for all green

vertices (i,a) of Γ. This in fact determines all stabilized g-vectors since, by Equation (10), all the
remaining ones are obtained from these by mere degree shifts. So for every vertex (i,a) ∈ V the
stabilized g-vector g(∞)

(i,a) can be written in the form

g(∞)
(i,a) = θi1 · · ·θit (e(it ,mit )

)[s] (12)

for some well-defined 0 ≤ t ≤ N and s ∈ Z. Here it is understood that when t = 0, the monomial
in the θi is empty. In that case (i,a) belongs to the upper part of Γ and g(∞)

(i,a) = e(i,a), a positive

degree shift of g(∞)
(i,mi)

= e(i,mi).
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5 Rings of formal power series and Weyl group action

Following [FH3], we introduce certain rings of formal power series related to the representation
theory of Uq(ĝ) and its shifted versions U µ

q (ĝ). (These connections will be explained in Section 9
below.) Then, again following [FH3], we introduce automorphisms of these rings which generate
an action of the Weyl group W of g.

5.1 Variables

We fix q ∈C∗ of infinite multiplicative order. We denote by {Ψi,a | i ∈ I,a ∈C∗} an infinite set of
commuting variables. To every λ ∈ P we also attach a commutative variable [λ ] such that

[λ ][µ] = [λ +µ], (λ ,µ ∈ P).

Next we introduce for i ∈ I and a ∈ C∗ the following Laurent monomials:

Yi,a := [ϖi]
Ψi,aq−1

Ψi,aq
, (13)

Ai,a := Yi,aq−1Yi,aq ∏
j: c j,i=−1

Y−1
j,a , (14)

Ψ̃i,a := Ψ
−1
i,a ∏

j: ci j=−1
Ψ j,aq. (15)

These monomials satisfy an important relation:

Lemma 5.1 For every i ∈ I and a ∈ C∗, we have:

Yi,aA−1
i,aq−1 = [ϖi−αi]

Ψ̃i,aq−3

Ψ̃i,aq−1

.

Proof — It follows from the definition of Ψ̃i,a that

Ψ̃i,aq−3

Ψ̃i,aq−1

=
Ψi,aq−1

Ψi,aq−3
∏

j: ci j=−1

Ψ j,aq−2

Ψ j,a
= [−ϖi +αi]Y−1

i,aq−2 ∏
j: ci j=−1

Yj,aq−1 .

The desired equality follows by comparison with the definition of A−1
i,aq−1 . 2

5.2 The ring Π

Let Y denote the ring of Laurent polynomials:

Y := Z[Y±1
i,a ; i ∈ I, a ∈ C∗].

Let M⊂Y denote the multiplicative group of Laurent monomials in the variables Yi,a. We denote
by ω the group homomorphism from M to P defined by

ω(Yi,a) := ϖi, (i ∈ I, a ∈ C∗).

Then we also have
ω(Ai,a) := αi, (i ∈ I, a ∈ C∗).
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In [FH3, Definition 2.1], completions Ỹw of this ring were introduced for every w ∈W . The
elements of Ỹw are formal power series of the form

∑
m∈S

am m,

where S is any subset of M such that w(ω(S)) is contained in a finite union of cones of P of the
form

Cλ := λ −Q+, (λ ∈ P),

and for any λ ∈ P, the number of am 6= 0 with ω(m) = λ is finite.

Example 5.2 The formal power series ring

Z[[A−1
i,a ; i ∈ I, a ∈ C∗]]

is contained in Ỹe, because ω(A−1
i,a ) =−αi ∈ −Q+ for all i ∈ I. On the other hand, the ring

Z[[Ai,a; i ∈ I, a ∈ C∗]]

is contained in Ỹw0 , since w0(ω(Ai,a)) = w0(αi) ∈ −Q+ for all i ∈ I. Now fix i ∈ I and a ∈ C∗,
and consider the series:

Σ
+
i,a := ∑

k≥0
∏

0< j≤k
A−1

i,aq−2( j−1) = 1+A−1
i,a +A−1

i,a A−1
i,aq−2 +A−1

i,a A−1
i,aq−2A−1

i,aq−4 + · · · , (16)

Σ
−
i,a := −∑

k>0
∏

0< j≤k
Ai,aq2 j =−

(
Ai,aq2 +Ai,aq2Ai,aq4 +Ai,aq2Ai,aq4Ai,aq6 + · · ·

)
. (17)

Then Σ
+
i,a ∈ Ỹw for every w ∈W such that w(αi) > 0, and Σ

−
i,a ∈ Ỹw for every w ∈W such that

w(αi)< 0. 2

Next, one defines [FH3, §2.5] the ring

Π :=
⊕
w∈W

Ỹw,

in which addition and multiplication are performed component-wise. This comes with a diagonal
embedding Y →Π, and with projections Ew : Π→ Ỹw for every w ∈W .

The following elements of Π introduced in [FH3, Definition 2.7] play a key role.

Definition 5.3 For i ∈ I, a ∈ C∗, and w ∈W put:

Σ
w
i,a := Σ

+
i,a if w(αi)> 0, and Σ

w
i,a := Σ

−
i,a if w(αi)< 0.

Then by Example 5.2 we have that Σw
i,a ∈ Ỹw for every w ∈W. Define:

Σi,a := (Σw
i,a)w∈W ∈Π.

Then for every i ∈ I, a ∈ C∗, w ∈W the element Σw
i,a is invertible in Ỹw. It follows that Σi,a is

invertible in Π (see [FH3, Lemma 2.8]).
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5.3 The Weyl group action on Π

Following [FH3, §3], for every i∈ I we introduce a ring endomorphism Θi = (Θw
i )w∈W of Π. Each

component Θw
i is in fact a ring homomorphism from Ỹw to Ỹwsi defined by :

Θ
w
i (Yj,a) =


Yj,a if j 6= i,

Yi,aA−1
i,aq−1

Σ
wsi
i,aq−3

Σ
wsi
i,aq−1

if j = i.

It is shown in [FH3] that these formulas combine into a well-defined continuous ring endomor-
phism Θi of Π.

Example 5.4 We fix g = sl2. In this case I = {1}, so we can drop the index i for simplicity of
notation. Here W = {e,s}. Consider the Laurent polynomials:

Pa := Ya +Y−1
aq2 ∈ Z[Y±1

a ;a ∈ C∗].

(These are the q-characters of the fundamental representations L(Ya) of Uq(ŝl2).) By the diagonal
embedding of Z[Y±1

a ;a ∈C∗] into Π, we get elements (Pe
a ,P

s
a) ∈Π, where Pe

a = Ps
a = Pa. We want

to calculate their image under Θ. Applying definitions, we have:

Θ
e(Pe

a ) = YaA−1
aq−1

Σ
−
aq−3

Σ
−
aq−1

+Y−1
aq2 Aaq

Σ−aq

Σ
−
aq−1

= (Σ−aq−1)
−1
(

Y−1
aq−2Σ

−
aq−3 +YaΣ

−
aq

)
∈ Ỹs.

Now,
Σ
−
aq−3 =−Aaq−1 +Aaq−1Σ

−
aq−1 , Σ

−
aq = 1+A−1

aq Σ
−
aq−1 ,

hence
Y−1

aq−2Σ
−
aq−3 =−Ya +YaΣ

−
aq−1 , YaΣ

−
aq = Ya +Y−1

aq2 Σ
−
aq−1 ,

so that
Θ

e(Pe
a ) = Ya +Y−1

aq2 = Ps
a ∈ Ỹs.

A similar calculation using the sums Σ+ instead of Σ− shows that we also have:

Θ
s(Ps

a) = Ya +Y−1
aq2 = Pe

a ∈ Ỹe.

Therefore, we get that Θ(Pe
a ,P

s
a) = (Pe

a ,P
s
a) ∈ Π, that is, the diagonal embedding of Pa in Π is

invariant by Θ, a simple illustration of [FH3, Theorem 5.1]. 2

Theorem 5.5 ([FH3]) The endomorphisms Θi satisfy the relations of the Coxeter generators si ∈
W. Hence the assignment si 7→ Θi defines an action of the Weyl group W on the ring Π by ring
automorphisms.

We quote the following important formulas proved in [FH3]:

Θi(A−1
i,a ) = Ai,aq−2

Σi,a

Σi,aq−4
, Θi(Σi,a) = 1−Σi,a =−A−1

i,a Σi,aq−2 , (i ∈ I, a ∈ C∗), (18)

in which Ai,a ∈ Y is identified with its diagonal embedding (Ai,a)w∈W ∈Π.
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5.4 The ring Π′ and its automorphisms

In this paper, we will need to extend the construction of [FH3] to a slightly larger ring. First we
extend the ring Y by adding the new variables Ψi,a and [λ ], and define:

Y ′ := Z[Ψ±1
i,a , [λ ]; i ∈ I, a ∈ C∗, λ ∈ P] ⊃ Y .

Let M′ ⊂ Y ′ denote the multiplicative group of Laurent monomials in the variables Ψi,a and the
variables [λ ]. We denote by ω ′ the group homomorphism from M′ to P defined by

ω
′(Ψi,a) := 0, ω

′([λ ]) := λ , (i ∈ I, a ∈ C∗, λ ∈ P).

The restriction of ω ′ to the subgroup M of M′ coincides with the homomorphism ω defined above.
For each w ∈W , we define a completion Ỹw

′
of Y ′ in a similar way as above, namely the

elements of Ỹw
′
are formal power series of the form

∑
m∈S

am m,

where S is any subset of M′ such that w(ω(S)) is contained in a finite union of cones of P of the
form Cλ (λ ∈ P) and for any λ ∈ P, the number of am 6= 0 with ω(m) = λ is finite.

Definition 5.6 We put
Π
′ :=

⊕
w∈W

Ỹw
′
,

and we denote by E ′w : Π′→ Ỹw
′
the projection morphisms.

By construction, each component Ỹw is a subalgebra of Ỹw
′
, and so Π is a subalgebra of Π′.

For every i ∈ I we introduce a ring endomorphism Θ̃i = (Θ̃w
i )w∈W of Π′. Each component Θ̃w

i

is in fact a ring homomorphism from Ỹw
′
to Ỹwsi

′
defined by :

Θ̃
w
i ([λ ]) = [si(λ )], Θ̃

w
i (Ψ j,a) =

{
Ψ j,a if j 6= i,

(1− [−αi])Ψ̃i,aq−2Σ
wsi
i,aq−2 if j = i,

where the Laurent monomial Ψ̃i,aq−2 is defined in Eq. (15). As before, these formulas combine
into a well-defined continuous ring endomorphism Θ̃i of Π′.

Proposition 5.7 The restriction of Θ̃i to Π is equal to Θi.

Proof — It is enough to check that Θ̃i(Yj,a) = Θi(Yj,a) for every j ∈ I and a ∈ C∗. We have

Yj,a = [ϖ j]
Ψ j,aq−1

Ψ j,aq
,

hence if j 6= i, since Θ̃i([ϖ j]) = [si(ϖ j)] = [ϖ j] and Θ̃i(Ψ j,b) = Ψ j,b for every b ∈ C∗, we get that
Θ̃i(Yj,a) = Yj,a. Otherwise, if j = i we have for every w ∈W , using Lemma 5.1,

Θ̃
w
i (Yi,a) = [si(ϖi)]

Θ̃w
i (Ψi,aq−1)

Θ̃w
i (Ψi,aq)

= [ϖi−αi]
Ψ̃i,aq−3

Ψ̃i,aq−1

Σ
wsi
i,aq−3

Σ
wsi
i,aq−1

= Yi,aA−1
i,aq−1

Σ
wsi
i,aq−3

Σ
wsi
i,aq−1

= Θ
w
i (Yi,a),

hence Θ̃i(Yi,a) = Θi(Yi,a). 2

The endomorphisms Θ̃i are also involutions of Π′, as shown by the next lemma.
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Lemma 5.8 For every i ∈ I and a ∈ C∗, we have

(Θ̃i)
2(Ψi,a) = Ψi,a.

Proof — Since Σi,aq−2 ∈Π, it follows from Proposition 5.7 and from Equation (18) that

Θ̃i(Σi,aq−2) = Θi(Σi,aq−2) =−A−1
i,aq−2Σi,aq−4 .

On the other hand, for j 6= i we have Θ̃i(Ψ j,b) = Ψ j,b for every b ∈ C∗, therefore

Θ̃i(Ψ̃i,aq−2) = Θ̃i(Ψ
−1
i,aq−2)Ψi,aq−2Ψ̃i,aq−2 = (1− [−αi])

−1
Ψ̃
−1
i,aq−4Σ

−1
i,aq−4Ψi,aq−2Ψ̃i,aq−2 .

Hence, using Lemma 5.1, we get

Θ̃i(Ψ̃i,aq−2) = (1− [−αi])
−1[−αi +ϖi]Σ

−1
i,aq−4Ψi,aq−2Y−1

i,aq−1Ai,aq−2

= (1− [−αi])
−1[−αi]Σ

−1
i,aq−4Ψi,aAi,aq−2 ,

and finally,

(Θ̃i)
2(Ψi,a) = Θ̃i(1− [−αi])Θ̃i(Ψ̃i,aq−2)Θ̃i(Σi,aq−2)

= (1− [αi])(1− [−αi])
−1(−[−αi])Ψi,a

= Ψi,a.

2

Like the automorphisms Θi, the automorphisms Θ̃i are compatible with the action of the ordi-
nary simple reflexions si. Recall the subgroup M of invertible elements of Π introduced in [FH3,
Section 6.4]. We consider the subgroup M

′
of invertible elements in Π′ generated by M , by the

subgroup M′ defined at the beginning of §5.4, and by the elements (1− [α]) with α ∈ ∆.
By [FH3, §6], Θi defines an automorphism of M . But, from the defining formulas of Θ̃i, we

have that Θ̃i(Ψ j,b) ∈M
′
for any j ∈ I and b ∈ C∗. Hence Θ̃i induces an automorphism of M ′.

Recall the map ϖ : M →R of [FH3, Lemma 6.5]1, which satisfies

ϖ(Yj,b) = [ϖ j], ϖ(Σ j,b) = (1− [−α j])
−1, ( j ∈ I, b ∈ C∗).

Here R = Z[[±ϖi],(1− [α])±1]i∈I,α∈∆ has a natural Weyl group action. The morphism ϖ can be
extended to ϖ ′ : M

′→R by setting

ϖ
′(Ψ j,b) = 1, ϖ

′([λ ]) = [λ ], ϖ
′(1− [α]) = (1− [α]) ( j ∈ I, b ∈ C∗, λ ∈ P, α ∈ ∆).

We still have the following.

Lemma 5.9 For i ∈ I, we have on the group M
′
the relation

ϖ
′ ◦ Θ̃i = si ◦ϖ

′. (19)

Proof — This can be checked on all generators of M
′
. For instance:

ϖ
′(Θ̃i(Ψi,a)) = ϖ

′(1− [−αi])ϖ
′(Ψ̃i,aq−2)ϖ(Σi,aq−2) = 1 = si(ϖ

′(Ψi,a)).

2

Moreover the Θ̃i also satisfy the braid relations, as shown by the next proposition.
1In [FH3], the generators of R are denoted by yi, aαi , etc. They correspond to our notation [ϖi], [αi], etc.
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Proposition 5.10 The endomorphisms Θ̃i of Π′ satisfy the braid relations. Hence the assignment
si 7→ Θ̃i defines an action of the Weyl group W on the ring Π′ by ring automorphisms.

Proof — The braid relations satisfied by the si are of the form

(sis j)
mi j = e, (i 6= j),

where mi j = 2 (resp. 3) if ci j = 0 (resp. −1). Let us write

Ri j :=
(

Θ̃iΘ̃ j

)mi j
.

Clearly, we have Ri j([λ ]) = [λ ] for every λ ∈ P. It remains to show that Ri j(Ψk,a) = Ψk,a for
every k ∈ I and a ∈ C∗.

Now, by Proposition 5.7 and Theorem 5.5, we know that Ri j(Yk,a) = Yk,a. It follows that

Ri j(Ψk,aq)Ψ
−1
k,aq = Ri j(Ψk,aq−1)Ψ−1

k,aq−1 , (k ∈ I, a ∈ C∗).

An element in M
′

is a product Ψ× g with Ψ ∈M ′ and g ∈M . This factorization is not
unique, but it becomes unique with the condition Λ(g) = 1 where Λ : M →M is defined in
[FH3, §6]. This implies that there is a unique factorization of the form

Ri j(Ψk,aq)Ψ
−1
k,aq = MaSa

where Ma ∈M ′ and Sa ∈M with leading term Λ(Sa) = 1. Because of this leading term, the above
equality MaSa = Maq−2Saq−2 implies that Ma = Maq−2 does not depend on the spectral parameter
a. Therefore Sa = Saq−2 is also independent of a, and Ri j(Ψk,aq)Ψ

−1
k,aq = χ ∈R is a constant. It

remains to show that χ = 1. But, using Equation (19) we have:

χ = ϖ
′(χ) = ϖ

′ (Ri j(Ψk,aq)
)

ϖ
′
(

Ψ
−1
k,aq

)
= (sis j)

mi j ϖ
′(Ψk,aq) = 1.

2

Remark 5.11 We can give another argument for the proof of the last Proposition, based on a
restriction to the rank 2 case as for the operators Θi in [FH3]. The result is clear in type A1×A1
as for i 6= j, Θ̃iΘ̃ j(Ψi,a) = Θ̃i(Ψi,a) = Θ̃ jΘ̃i(Ψi,a).

In type A2, we have for i 6= j

(Θ̃ jΘ̃i)(Ψi,a) = (1− [−αi−α j])(1− [−α j])Ψ
−1
j,aq−3Σ ji,aq−2 , (20)

where Σ ji,a is defined by Θ j(Σi,a) = Σ ji,aΣ
−1
j,aq−1 . Clearly, we have

Θ̃i

(
Ψ
−1
j,aq−3

)
= Ψ

−1
j,aq−3 , Θ̃i ((1− [−αi−α j])(1− [−α j])) = (1− [−α j])(1− [−αi−α j]).

Since, by [FH3, 4.35], we have Θi(Σ ji,a) = Σ ji,a, the right hand-side of Eq. (20) is invariant by Θ̃i.
As Ψi,a is invariant by Θ̃ j, it follows that

Θ̃iΘ̃ jΘ̃i(Ψi,a) = Θ̃ jΘ̃iΘ̃ j(Ψi,a).

2
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Using Proposition 5.10 we can define for every w ∈W a ring automorphism Θ̃w of Π′ by

Θ̃w := Θ̃i1 . . .Θ̃ir , (21)

where w = si1 . . .sir denotes an arbitrary factorization of w.

Remark 5.12 There are two possible variations of this Weyl group action, both extending the
operators Θi on Π.

The first one is a braid group action. As in [FH4, Remark 3.11], define an operator Θ′i on Π′

by:

Θ
′
i([λ ]) = [si(λ )], Θ

′
i(Ψ j,a) =

{
Ψ j,a if j 6= i,

Ψ̃i,aq−2Σi,aq−2 if j = i.

Then the analogue of Proposition 5.7 is true with a similar proof, but the analogue of Lemma 5.8
is false (the order of Θ′i is not finite), as well as the analogue of Lemma 5.9. However, the proof
of Proposition 5.10 explained in Remark 5.11 works the same, and so the operators Θ′i satisfy the
braid relations. For example, if ci j =−1 we have

(Θ′jΘ
′
i)(Ψi,a) = Ψ

−1
j,aq−3Σ ji,aq−2

which is invariant by Θ′i.
The second variation is an action of a finite covering of the Weyl group W , which will be

discussed in §7.3 below. 2

6 QQ-systems

Using the Weyl group action, we introduce distinguished elements Qw(ϖi),a of the ring Π′ satisfy-
ing a system of functional relations called the QQ-system.

6.1 Normalization factors χw(ϖi)

We first introduce some normalization factors χw(ϖi) (i ∈ I, w ∈ W ) indexed by the extremal
weights w(ϖi) of the fundamental g-modules. The fact that these normalization factors are well-
defined relies on [FH4, Lemma 5.3].

Definition 6.1 There is a unique family χw(ϖi) of elements of Π′ defined by induction by the fol-
lowing conditions:

(i) for every i ∈ I, χϖi = 1;

(ii) for every i ∈ I and w ∈W such that wsi > w,

χwsi(ϖi)χw(ϖi) =
∏ j 6=i χ

|ci j|
w(ϖ j)

1− [−w(αi)]
.

Example 6.2 In type A2 we have:

χϖ1 = 1, χs1(ϖ1) =
1

1− [−α1]
, χs2s1(ϖ1) =

1
(1− [−α1−α2])(1− [−α2])

,

χϖ2 = 1, χs2(ϖ2) =
1

1− [−α2]
, χs1s2(ϖ2) =

1
(1− [−α1−α2])(1− [−α1])

.

2
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6.2 Q-variables

Using the automorphisms Θ̃w of Π′ introduced in Eq. (21), we can now define:

Definition 6.3 For i ∈ I, w ∈W and a ∈ C∗, let

Qw(ϖi),a := χw(ϖi)Θ̃w(Ψi,a).

It follows from the definition of Θ̃i and from Proposition 5.10 that Θ̃w(Ψi,a) depends only on
the weight w(ϖi), hence the notation Qw(ϖi),a.

Example 6.4 In type A2 we have:

Qϖ1,a = Ψ1,a,

Qs1(ϖ1),a = χs1(ϖ1)Θ̃1(Ψ1,a) = Ψ̃1,aq−2Σ1,aq−2 = Ψ
−1
1,aq−2Ψ2,aq−1Σ1,aq−2 ,

Qs2s1(ϖ1),a = χs2s1(ϖ1)Θ̃2Θ̃1(Ψ1,a) = Ψ
−1
2,aq−3Σ2,aq−3Θ2(Σ1,aq−2) = Ψ

−1
2,aq−3Σ21,aq−2 ,

where Σ21,aq−2 ∈Π is described in [FH3, §4.4]. Its projection on Ỹe is given by

Ee(Σ21,aq−2) = ∑
0≤`≤k

(
k−1

∏
i=0

A−1
2,aq−3−2i

`−1

∏
j=0

A−1
1,aq−2−2 j

)
= 1+A−1

2,aq−3 +A−1
2,aq−3A−1

1,aq−2 + · · · .

Moreover,

Qs2(ϖ1),a = Qϖ1,a, Qs1s2(ϖ1),a = Qs1(ϖ1),a, Qs2s1s2(ϖ1),a = Qs1s2s1(ϖ1),a = Qs2s1(ϖ1),a.

Finally, because of the symmetry 1↔ 2 of the root system of type A2, the expressions for Qw(ϖ2),a
are obtained by switching 1 and 2 in the above formulas. 2

Recall the operators Θ′i introduced in Remark 5.12. Since they satisfy the braid relations, using
an arbitrary reduced decomposition of w ∈W we can define a ring automorphism Θ′w of Π′. In
fact we have

Lemma 6.5 For w ∈W, i ∈ I, a ∈ C∗ we have

Qw(ϖi),a = Θ
′
w(Ψi,a).

Proof — We have

Θw(Yi,a) = [w(ωi)]Θ
′
w(Ψi,aq−1)/Θ

′
w(Ψi,aq) = [w(ωi)]Qw(ϖi),aq−1/Qw(ϖi),aq.

Hence, by uniqueness, as in [FH4, Theorem 4.5], we have

Θ
′
w(Ψi,a)/ϖ

′(Θ′w(Ψi,a)) = Qw(ϖi),a/ϖ
′(Qw(ϖi),a).

By construction
ϖ
′(Qw(ϖi),a) = χw(ϖ).

In addition, it is established in the proof of [FH4, Lemma 5.3] that

ϖ
′(Θ′w(Ψi,a)) = χw(ϖi).

This implies the result. 2
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6.3 QQ-systems

It is proved in [FH4] that the elements Qw(ϖi),a satisfy the following functional relations.

Theorem 6.6 ([FH4]) For i ∈ I and w ∈W such that wsi > w, we have:

Qwsi(ϖi),aqQw(ϖi),aq−1− [−w(αi)]Qwsi(ϖi),aq−1Qw(ϖi),aq = ∏
j: ci j=−1

Qw(ϖ j),a.

Example 6.7 In type A1, the only relation is for i = 1 and w = e, and we have:

Qϖ1,a = Ψ1,a, Qs1(ϖ1),a = Ψ
−1
1,aq−2Σ1,aq−2 .

Then, using the relation A−1
1,aq−1 = [−α1]Ψ

−1
1,aq−3Ψ1,aq, we get:

Qs1(ϖ1),aqQϖ1,aq−1− [−αi]Qs1(ϖ1),aq−1Qϖ1,aq = Ψ
−1
1,aq−1Σ1,aq−1Ψ1,aq−1− [−αi]Ψ

−1
1,aq−3Σ1,aq−3Ψ1,aq

= Σ1,aq−1−A−1
1,aq−1Σ1,aq−3

= Σ1,aq−1− (Σ1,aq−1−1)

= 1.

2

7 Cluster algebra structures on formal power series rings

7.1 The ring KZ

Let K := E ′e(Π
′) denote the projection of Π′ on its first factor. In other words,

K = Ỹe
′
.

The ring K contains in particular the elements:

Qw(ϖi),a := E ′e
(
Qw(ϖi),a

)
, (i ∈ I, w ∈W, a ∈ C∗).

Each of these elements has a unique factorization of the form

Qw(ϖi),a = Ψw(ϖi),a Σw(ϖi),a,

where Ψw(ϖi),a is a Laurent monomial in the variables Ψ j,b, and Σw(ϖi),a is a formal power series
in the variables A−1

j,b with constant term equal to 1. We call Ψw(ϖi),a the highest weight monomial
of Qw(ϖi),a.

It is explained in [FH3] that Ỹe is a complete topological ring. For the same reason, K has
the structure of a complete topological ring. Moreover, K is an algebra over the group ring [P]
generated by the elements [λ ] (λ ∈ P).

In the sequel, we will only consider elements Qw(ϖi),a in which the spectral parameter a be-
longs to a discrete subset of C∗ (depending on i ∈ I). Also, for reasons which will appear in §7.2,
we will have to use weights in P := 1

2Z⊗Z P. More precisely, recall the vertex set V ⊂ I×Z of
the basic quiver Γe. We define KZ as the [P]-subalgebra of [P]⊗[P] K topologically generated by
the elements:

Qw(ϖi),qr , ((i,r) ∈V, w ∈W ).
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Proposition 7.1 For every (i,r) ∈V and w ∈W, the element Qw(ϖi),qr is invertible in KZ.

Proof — Let K′Z be the topological [P]-subalgebra of [P]⊗[P] K generated by the Ψ
±1
i,qr with

(i,r) ∈V . Let us prove that KZ equals K′Z.
First, we establish that the Qw(ϖi),qr are in K′Z if (i,r) ∈ V and w ∈W . The point here is the

restriction on spectral parameters. We need to show that all terms of Qw(ϖi),qr depend only on the
Ψi,qr with (i,r) ∈V . Recall the factorization

Qw(ϖi),qr = Ψw(ϖi),qr Σw(ϖi),qr .

By [FH4], the Laurent monomial Ψw(ϖi),qr can be calculated from Ψϖi,qr using Chari’s braid group
action, hence it is a Laurent monomial in the Ψ

±1
j,qs with ( j,s) ∈ V . Therefore it suffices to prove

that the factor Σw(ϖi),qr belongs to K′Z. For w = e or w = s j with j 6= i, Σw(ϖi),qr = 1 and for w = si,

Σw(ϖi),qr = E ′e(Σi,qr−2) = 1+A−1
i,qr−2(1+A−1

i,qr−4(· · ·)) ∈ K′Z.

Consider the two following properties depending on l = 0,1, . . . , `(w0):

(Al) For any w ∈W of length ≤ l and any (i,r) ∈V , we have E ′e(Θ̃w(Ψ
±1
i,r )) ∈ K′Z.

(Bl) For any w ∈W of length ≤ l and any (i,r) ∈V , we have E ′e(Θw(Σ
±1
i,r )) ∈ K′Z.

We have already checked (A1) and (B0). Now the defining relations of the actions Θ and Θ̃ give
that (Bl,Al)⇒ (Al+1). Also, it follows from the q-difference equation

Θw(Σi,a) = 1+Θw(A−1
i,a )Θw(Σi,aq−2)

that (Al)⇒ (Bl). Thus we obtain by induction that Al and Bl hold for any l ≤ `(w0), and we have
established that KZ ⊂ K′Z.

Conversely, we can show using the braid group action that, for every (i,r) in V , Ψw0(ϖi),qr =

Ψ
−1
ν(i),qr−h , where ν is the Nakayama involution defined in Proposition 4.7, and h is the Coxeter

number. It follows that for any Laurent monomial M in the variables Ψi,qr , (i,r) ∈V , there exists a
product of elements of KZ of the form Qϖ j,qs (( j,s) ∈V ) and Qw0(ϖk),qt ((k, t) ∈V ) whose leading
term is M. Hence the generators of KZ generate also K′Z as a topological [P]-module. Thus we
have proved that KZ = K′Z.

Now, recall that Σw(ϖi),qr is invertible, and Σ
−1
w(ϖi),qr belongs to K′Z. Clearly, we also have

Ψ
−1
w(ϖi),qr ∈ K′Z. It follows that Qw(ϖi),qr is invertible in K′Z = KZ for every (i,r) ∈V . 2

7.2 Renormalized Q-variables

Let Ω be the group homomorphism from the multiplicative group of Laurent monomials in the
variables

Ψi,qr , [λ ], ((i,r) ∈V, λ ∈ P),

to the additive group P defined by

Ω(Ψi,qr) :=
r
2

ϖi, Ω([λ ]) := λ , ((i,r) ∈V, λ ∈ P).

Note that

Ω(Yi,qr+1) = Ω

(
[ϖi]

Ψi,qr

Ψi,qr+2

)
= 0, ((i,r) ∈V ). (22)
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We set:
Qw(ϖi),qr :=

[
−Ω(Ψw(ϖi),qr)

]
Qw(ϖi),qr , ((i,r) ∈V, w ∈W ).

In terms of these renormalized elements Qw(ϖi),qr , the QQ-system simplifies slightly and becomes:

Proposition 7.2 For (i,r) ∈V and w ∈W such that wsi > w, we have:

Qwsi(ϖi),qr Qw(ϖi),qr−2− Qwsi(ϖi),qr−2Qw(ϖi),qr = ∏
j: ci j=−1

Qw(ϖ j),qr−1 .

Proof — We have to check that, using this new normalization, the factor [−w(αi)] in the second
term of the left hand-side of Theorem 6.6 cancels out.

Let us first check it for w = e. The highest weight monomial of Qsi(ϖi),qr Qϖi,qr−2 is equal to

Ψ̃i,qr−2Ψi,qr−2 = ∏
j: ci j=−1

Ψϖ j,qr−1

which is nothing else than the highest weight-monomial of the right-hand side. Therefore applying
Ω to the highest weight-monomial of the right-hand side, we get exactly Ω(Ψ̃i,qr−2Ψi,qr−2). Now
the quotient of the highest weight monomial of Qsi(ϖi),qr−2Q

ϖi,qr by the highest weight monomial
of Qsi(ϖi),qr Qϖi,qr−2 is equal to

Ψ̃i,qr−4Ψi,qr

Ψ̃i,qr−2Ψi,qr−2

= [αi−ϖi]Yi,qr−1A−1
i,qr−2 [ϖi]Y−1

i,qr−1 = [αi]A−1
i,qr−2 ,

by Lemma 5.1. Hence, since by Eq. (22) we have
[
Ω

(
A−1

i,qr−2

)]
= 1, we get:[

−Ω

(
Ψ̃i,qr−4Ψi,qr

)]
=
[
−Ω

(
Ψ̃i,qr−2Ψi,qr−2

)]
[−αi]

and the Proposition is proved in the case w = e.
The case of an arbitrary w can be checked in a similar way using results from [FH4]. First, one

can see that for every w, the highest weight monomial of the right-hand side coincides with the
highest weight monomial of the first term of the left-hand side. Therefore we only have to compare
the result of applying Ω to the highest weight monomials of the two terms of the left hand-side.
Now, the highest weight monomial Λ(Θw(Yi,a)) of Θw(Yi,a), where Λ is defined in [FH3, §6.4], is
known to be equal to

Λ(Θw(Yi,a)) = [w(ϖi)]Ψw(ϖi),aq−1Ψ
−1
w(ϖi),aq, (w ∈W, a ∈ C∗).

Since Λ(Θw(Yi,a)) is a Laurent monomial in the variables Yj,b ( j ∈ I, b ∈ C∗), it follows from
Eq. (22), that: [

Ω
(
Λ(Θw(Yi,qr−1))

)]
= [w(ϖi)]

[
Ω

(
Ψw(ϖi),qr−2Ψ

−1
w(ϖi),qr

)]
= 1,

and similarly [
Ω
(
Λ(Θwsi(Yi,qr−3))

)]
= [wsi(ϖi)]

[
Ω

(
Ψwsi(ϖi),qr−4Ψ

−1
wsi(ϖi),qr−2

)]
= 1.

Therefore, [
Ω

(
Ψwsi(ϖi),qr−4Ψw(ϖi),qr

Ψwsi(ϖi),qr−2Ψw(ϖi),qr−2

)]
= [w(ϖi)−wsi(ϖi)] = [w(αi)],

hence [
−Ω

(
Ψwsi(ϖi),qr−4Ψw(ϖi),qr

)]
=
[
−Ω

(
Ψwsi(ϖi),qr−2Ψw(ϖi),qr−2

)]
[−w(αi)].

2
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7.3 Action of a finite covering of W

Consider the subring Π′Z ⊂ [P]⊗[P] Π
′ constructed as Π′ but using only variables Ψi,qr with (i,r)∈

V and [λ ] (λ ∈ P) (the completion procedure is the same as in §5.2).
We define an operator si on Π′Z by si([λ ]) := [si(λ )] (λ ∈ P) and :

si([−Ω(Ψ j,qr)]Ψ j,qr) =

 [−Ω(Ψ j,qr)]Ψ j,qr if j 6= i,[
−Ω(Ψ̃i,qr−2)

]
Ψ̃i,qr−2Σi,qr−2 if j = i.

Then the analogue of Proposition 5.7 is true with a similar proof, because

si(Yi,qr) = s̄i([−Ω(Ψi,qr−1)]Ψi,qr−1 [Ω(Ψi,qr+1)]Ψ−1
i,qr+1) = Θi(Yi,qr)

and si(Yj,qr) = Yj,qr for i 6= j.
Although si is not an involution, it is an involution up to sign (and so it is an automorphism).

Indeed, by a calculation similar to the proof of Lemma 5.8, we have:

s2
i ([−Ω(Ψi,qr)]Ψi,qr)

= s̄i

(
[Ω(Ψi,qr−2)]Ψ−1

i,qr−2

)(
Ψ̃i,qr−2Ψi,qr−2

)[
−Ω(Ψ̃i,qr−2Ψi,qr−2)

]
(−A−1

i,qr−2)Σi,qr−4

= −[−Ω(Ψi,qr)]Ψi,qr ,

and s2
i (Ψ j,qr) = Ψ j,qr for i 6= j. Hence we have:

s4
i = id, (i ∈ I).

Finally, the proof of Proposition 5.10 explained in Remark 5.11 works also in this case, and
we obtain that the si satisfy the braid relations. For example, in type A2 with i 6= j,

(s jsi)(Ψi,qr [−Ω(Ψi,qr)]) = [Ω(Ψ j,qr−3)]Ψ−1
j,qr−3Σ ji,qr−2 ,

which is invariant by si.

Remark 7.3 Since the si satisfy the braid relations, using an arbitrary reduced decomposition of
w ∈W we can define a ring automorphism sw of Π′Z. Let Qw(ϖi),qr :=

[
−Ω(Ψw(ϖi),qr)

]
Qw(ϖi),qr .

Then we have
sw(Qϖi,qr) = Qw(ϖi),qr .

The proof is analog to the proof of Lemma 6.5. We have

sw(Yi,qr−1) = sw(Qϖi,qr−2)/sw(Qϖi,qr) = Qw(ϖi),qr−2/Qw(ϖi),qr .

Hence, by uniqueness as in [FH4, Theorem 4.5], we have that sw(Qϖi,qr) and Qw(ϖi),qr are equal
up to their image by ϖ ′. (Here we keep denoting by ϖ ′ the map extended to Π′Z by setting
ϖ ′([λ ]) = [λ ] for λ ∈ P.) We know that[

Ω(Ψw(ϖi),qr)
]

ϖ
′(Qw(ϖi),qr) = χw(ϖi)

which is the solution of QQ-system without spectral parameters. As above, one can check that[
Ω(Ψw(ϖi),qr)

]
ϖ ′(sw(Qϖi,qr)) satisfies the same equation, and conclude in the same way.
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Figure 16: An initial seed of Aw0 and its image by F in type A3.

7.4 Cluster algebra structure on KZ

In this section we will use freely the notation and results of §4.2 and §4.3. In particular, we fix a
Coxeter element c and we denote by Γ the quiver of the corresponding initial seed of the cluster
algebra Aw0 . The cluster variables z(i,a) ((i,a) ∈ V ) of this initial seed are parametrized by their
stabilized g-vectors, which by §4.3, Equation (12), can be written in the form

g(∞)
(i,a) = θi1 · · ·θit (e(i,mi))[s],

for some well-defined s ∈ Z and t ∈ {0,1, . . . ,N} such that it = i. Let L denote the Laurent poly-
nomial ring in these initial cluster variables. By the Laurent phenomenon, the cluster algebra Aw0

embeds into L.
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Theorem 7.4 For (i,a) ∈V , let z(i,a) denote the initial cluster variable with stabilized g-vector

g(∞)
(i,a) = θi1 · · ·θit (e(i,mi))[s].

The assignment
z(i,a) 7→ Qsi1 ···sit (ϖi),qmi+2s , ((i,a) ∈V ),

extends to an injective ring homomorphism F : L→ KZ. Moreover the topological closure of
[P]⊗Z F(Aw0) is equal to KZ.

Example 7.5 Figure 16 illustrates Theorem 7.4 in type A3. The left quiver is the quiver of an initial
seed of Aw0 associated with the Coxeter element c = s1s2s3. At each vertex we have written the
stabilized g-vector of the corresponding cluster variable. The right quiver shows the Q-variables
images under F of these cluster variables.

Mutating the initial cluster variable Q
ϖ1,q0 we get the new cluster variable Qs1(ϖ1),q2 , and the

corresponding exchange relation is

Q
ϖ1,q0Qs1(ϖ1),q2 = Q

ϖ1,q2Qs1(ϖ1),q0 + Q
ϖ2,q

,

an example of relation of the QQ-system.
Similarly, mutating Qs1s2(ϖ2),q−3 we get the new variable Qs1s2s1s3s2(ϖ2),q−1 , and the correspond-

ing exchange relation is

Qs1s2(ϖ2),q−3Qs1s2s3s1s2(ϖ2),q−1 = Qs1s2(ϖ2),q−1Qs1s2s3s1s2(ϖ2),q−3 + Qs1s2s1(ϖ1),q−2Qs1s2s1s3(ϖ3),q−2 ,

which is also an example of relation of the QQ-system (for i = 2, w = s1s2s3s1, and r =−1).
On the other hand, mutating Q

ϖ2,q
, we get a new cluster variable, say x, given by the exchange

relation
xQ

ϖ2,q
= Q

ϖ1,q0Q
ϖ2,q3Q

ϖ3,q0 + Q
ϖ1,q2Q

ϖ2,q−1Q
ϖ3,q2

which is not a relation of the QQ-system. Explicitly,

x = [−ϖ1 +ϖ2−ϖ3]Ψ
−1
2,qΨ2,q−1Ψ1,q2Ψ3,q2

(
1+A−1

2,q

)
.

This other type of relation has been studied in [HL3] and [FH2], where it was given the name of
QQ∗-system. 2

Remark 7.6 The homomorphism F of Theorem 7.4 is defined by means of an initial seed of the
cluster algebra Aw0 , corresponding to the datum of a Coxeter element c. If we use a different
Coxeter element, we will define a priori another homomorphism F ′, giving rise to another cluster
structure on KZ, which is possibly different but is isomorphic.

In fact, we could start from a more general initial seed defined by the datum of a reduced
decomposition i = (i1, . . . , iN) of w0 and a sequence of integers r = (r1 . . . ,rn), as in Definition 3.6.
Then we could define as in Theorem 7.4 a homomorphism Fi,r from Aw0 to KZ corresponding to
this initial seed.

It turns out that all these homomorphisms coincide. To check it, one needs to show that if Si,r
and Sj,s are the two initial seeds of KZ coming from Fi,r and Fj,s, then Si,r and Sj,s are connected
by a finite sequence of mutations.
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Figure 17: A sequence of mutations relating two seeds of KZ in type A2.

If i = j, and only r and s differ, then by induction it is enough to consider the elementary
mutations described in Lemma 3.2. But the exchange relations corresponding to these mutations
of the seeds Si,r and Sj,s are instances of QQ-system relations. This is illustrated by the first two
mutations of Example 7.5. So in this case we are done: if the two seeds Si,r and Sj,s differ only
by their `-tuples r and s, they are connected by a finite sequence of mutations, all coming from the
QQ-system.

Now if i 6= j, we can reduce to the case when these two reduced words differ only by a 2-move
or a 3-move. The case of a 2-move is similar to the previous case, and can be dealt with using
only QQ-system relations. For a 3-move, Figure 17 displays this verification in type A2, using the
mutation sequence of Proposition 3.5. Note that in order to match the third and fourth seeds, we
have to use obvious equalities like

Qs1(ϖ2),q−1 = Q
ϖ2,q−1 , Qs2(ϖ1),q−2 = Q

ϖ1,q−2 , Qs1s2s1(ϖ1),q−2 = Qs2s1(ϖ1),q−2 .

Note also that the exchange relation corresponding to the second mutation is

Qs1(ϖ1),q−2Qs2(ϖ2),q−1 = Q
ϖ1,q−2Qs1s2(ϖ2),q−1 +Qs2s1(ϖ1),q−2Q

ϖ2,q−1 ,

which is not a relation coming from the QQ-system.
Proposition 7.7 below proves a more general relation of this type, valid for all A, D, E types.

Using it, one can check that all homomorphisms Fi,r coincide. 2
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Proposition 7.7 Suppose that ci j = −1, and let w ∈W be such that `(wsis jsi) = `(w)+ 3. For
every r ∈ Z we have:

Qwsi(ϖi),qr Qws j(ϖ j),qr+1 = Qw(ϖi),qr Qwsis j(ϖ j),qr+1 + Qws jsi(ϖi),qr Qw(ϖ j),qr+1 .

Proof — Following [FH3], for a ∈ C∗, we define Σi j,a and Σ ji,a by:

Θi(Σ j,a) = Σi j,aΣ
−1
i,aq−1 , Θ j(Σi,a) = Σ ji,aΣ

−1
j,aq−1 .

Then the following relation holds in Π:

Σi,aΣ j,aq = Σi j,aq +A−1
j,aqΣ ji,a.

In type A2, this is Eq. (4.36) in [FH3]. The same proof as in [FH3, Section 4.5] gives this relation
for general simply-laced type. Now this relation can be rewritten in the following form:

Θ̃i(Ψi,aq2)Ψ̃−1
i,a (1− [−αi])

−1Θ̃ j(Ψ j,aq3)Ψ̃−1
j,aq(1− [−α j])

−1

= Θ̃i(Θ̃ j(Ψ j,aq3)Ψ̃−1
j,aq(1− [−α j])

−1)Σi,a + A−1
j,aqΘ̃ j(Θ̃i(Ψi,aq2)Ψ̃−1

i,a (1− [−αi])
−1)Σ j,aq−1

= Θ̃sis j(Ψ j,aq3)(1− [−α j−αi])
−1)(1− [−αi])

−1)Ψ̃−1
j,aqΨi,aq2Ψ̃

−1
i,a

+ A−1
j,aqΘ̃s jsi(Ψi,aq2)(1− [−α j−αi])

−1)(1− [−α j])
−1)Ψ̃−1

i,a Ψ j,aqΨ̃
−1
j,aq−1 .

This implies:

Θ̃i(Ψi,a)(1− [−αi])
−1Θ̃ j(Ψ j,aq)(1− [−α j])

−1

= Θ̃sis j(Ψ j,aq)(1− [−α j−αi])
−1)(1− [−αi])

−1)Ψi,a

+ A−1
j,aq−1Θ̃s jsi(Ψi,a)(1− [−α j−αi])

−1)(1− [−α j])
−1)Ψ̃ j,aq−1Ψ̃

−1
j,aq−3Ψ j,aq−1

that is, after applying the projection E ′e,

Qsi(ϖi),aQs j(ϖ j),aq = Qϖi,aQsis j(ϖ j),aq +[−α j]Qϖ j,aqQs jsi(ϖi),a.

Now for w ∈W , applying Θ̃w to this relation gives:

(1− [−w(αi)])
−1(1− [−w(α j)])

−1Θ̃wsi(Ψi,a)Θ̃ws j(Ψ j,aq)

= (1− [−w(αi +α j)])
−1(1− [−w(αi)])

−1Θ̃w(Ψi,a)Θ̃wsis j(Ψ j,aq)

+ [−w(α j)](1− [−w(αi +α j)])
−1(1− [−w(α j)])

−1Θ̃w(Ψ j,aq)Θ̃ws jsi(Ψi,a).

Since we assume that l(wsis jsi) = l(w)+3, using the defining formulas for the elements χw(ϖi) we
have:

(1− [−w(αi)])(1− [−w(α j)])χwsi(ϖi)χws j(ϖ j)

= (1− [−w(αi +α j)])(1− [−w(αi)])χw(ϖi)χwsis j(ϖ j)

= (1− [−w(αi +α j)])(1− [−w(α j)])χw(ϖ j)χws jsi(ϖi)

= ∏
k/∈{i, j},cik+c jk<0

χw(ϖk).

Hence, we obtain:

Qwsi(ϖi),aQws j(ϖ j),aq = Qw(ϖi),aQwsis j(ϖ j),aq +[−w(α j)]Qw(ϖ j),aqQws jsi(ϖi),a. (23)

45



Finally, we handle the renormalization by Ω. Comparing the highest `-weights in the expan-
sions of both sides of Eq. (23) in Ỹe, we obtain

Ψwsi(ϖi),aΨws j(ϖ j),aq = Ψw(ϖi),aΨwsis j(ϖ j),aq.

Inverting the role of i and j, we have also :

Ψwsi(ϖi),aΨws j(ϖ j),aq−1 = Ψw(ϖ j),aq−1Ψws jsi(ϖi),a.

Assume that a = qr. Recall that [w(ϖi)]Ψw(ϖi),qr−1Ψ
−1
w(ϖi),qr+1 is a Laurent monomial in the vari-

ables Yj,b. Hence [
Ω(Ψw(ϖi),qr+1)

]
= [w(ωi)]

[
Ω(Ψw(ϖi),qr−1)

]
. (24)

Now
Ω(Ψwsi(ϖi),qr Ψws j(ϖ j),qr−1) = Ω(Ψw(ϖ j),qr−1Ψws jsi(ϖi),qr)

and applying (24) to Ψws j(ϖ j),qr−1 and Ψw(ϖ j),qr−1 , this implies that[
Ω(Ψwsi(ϖi),qr Ψws j(ϖ j),qr+1)

]
= [w(ϖ j)−w(s j(ϖ j))]

[
Ω(Ψw(ϖ j),qr+1Ψws jsi(ϖi),qr)

]
.

Since w(ϖ j)−w(s j(ϖ j)) = w(α j), we obtain that:[
Ω(Ψw(ϖi),qr Ψwsis j(ϖ j),qr+1)

]
=
[
Ω(Ψwsi(ϖi),qr Ψws j(ϖ j),qr+1)

]
= [w(α j)]

[
Ω(Ψw(ϖ j),qr+1Ψws jsi(ϖi),qr)

]
.

So we obtain:

Qwsi(ωi),qr Qws j(ω j),qr+1 = Qw(ωi),qr Qwsis j(ω j),qr+1 + Qw(ω j),qr+1Qws jsi(ωi),qr .

2

8 Proof of Theorem 7.4

Recall the notation of §7.4. Let Z := {z(i,r) | (i,r) ∈ V} denote the set of cluster variables of the
initial seed of Aw0 . Let F : Aw0 → KZ be the map defined in Theorem 7.4.

Proposition 8.1 The elements of F(Z ) are algebraically independent in KZ.

Proof — Recall the notation Ψw(ϖi),a for the highest weight monomial of Qw(ϖi),a. Suppose that
w = si1 · · ·sik is a reduced expression, and that a = qr, where (i,r)∈V . Then it follows from [FH4,
Theorem 4.5] that Ψw(ϖi),qr can be calculated using a multiplicative analogue of the braid group
action introduced in §4.3.4. More precisely, we have

Ψw(ϖi),qr = ∏
( j,s)∈V

Ψ
m j,s
j,qs ,

where the exponents m j,s are given by

θi1 · · ·θik(e(i,r)) = ∑
( j,s)∈V

m j,se( j,s).

Therefore, by Proposition 4.19, the exponents of the highest weight monomial of F(z(i,r)) coincide

with the coordinates of the stabilized g-vector g(∞)
(i,r). Since the stabilized g-vectors form a Z-basis

of ZV , the elements of F(Z ) are algebraically independent in KZ. 2
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Proposition 8.2 For every (i,r) ∈ V and w ∈W, the element Qw(ϖi),qr is the image by F of a
cluster variable of Aw0 .

Proof — By Remark 7.6 and Proposition 7.7, for every datum (i,r) the images of all the cluster
variables of the seed Γ(i,r) of Aw0 by F are of the form Qw(ϖi),qr . By varying r and i, we can obtain
all possible w(ϖi) and r such that (i,r) ∈ V . Therefore all elements Qw(ϖi),qr are images under F
of a cluster variable of Aw0 . 2

Example 8.3 In type A3, choosing i = (1,2,1,3,2,1), as in Example 7.5, we will get all variables
Qw(ϖi),qr for the following weights w(ϖi):

ϖ1, s1(ϖ1), s2s1(ϖ1), s3s2s1(ϖ1), ϖ2, s1s2(ϖ2), s2s1s3s2(ϖ2), ϖ3, s1s2s3(ϖ3).

With i = (2,1,3,2,1,3) we will get in addition the weights:

s2(ϖ2), s2s3(ϖ3).

Finally, with i = (3,1,2,3,1,2) we will get the weight s1s3s2(ϖ2), and with i = (3,2,3,1,2,3) we
will get the last missing weight s3s2(ϖ2). 2

We can now complete the proof of Theorem 7.4. First, the homomorphism F is well-defined
because by Proposition 7.1 every element Qw0(ϖk),qt is invertible in KZ. The injectivity of F fol-
lows from Proposition 8.1. The remaining statement then follows from the definition of KZ and
Proposition 8.2. 2

9 Shifted quantum affine algebras

In this section, we give a rapid overview of shifted quantum affine algebras and their category Osh.
The reader is referred to [FT] and [H] for more details and references. The main motivations for
the study of these algebras and their representations come from quantized K-theoretic Coulomb
branches of certain quiver gauge theories, and from representation theory of Borel subalgebras of
quantum affine algebras.

Our main point here is to explain that the ring KZ coincides with the q-character ring of a
subcategory OZ of Osh, specified by certain integrality conditions on the highest loop-weights.
This allows us to translate Theorem 7.4 into Theorem 9.15, and give an interpretation of the
cluster algebra Aw0 in terms of the category OZ.

9.1 Representations of shifted quantum affine algebras

As above, we assume that g is of simply-laced type. Because of this, we can identify coweight
lattice and weight lattice, and regard the shifting parameters µ arising in the definition below as
integral weights rather than coweights. We fix a non-zero complex number q, not a root of unity.

Definition 9.1 ([FT]) Let µ ∈ P. The shifted quantum affine algebra U µ
q (ĝ) is the C-algebra with

the same Drinfeld generators φ
±
i,r, x±i,r (i ∈ I, r ∈ Z) as the ordinary quantum affine algebra Uq(ĝ)

and the same relations, except that the definition of the series φ
−
i (z) is modified as follows:

φ
−
i (z) = ∑

m∈Z
φ
−
i,mzm = φ

−
i,αi(µ)

zαi(µ) exp

(
−(q−q−1)∑

r>0
hi,−rz−r

)
(25)
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(the definition of the series φ
+
i (z) stays the same). In addition, we impose the condition that φ

+
i,0

and φ
−
i,αi(µ)

are invertible (but they are not necessarily inverse to each other).

The complete list of relations of U µ
q (ĝ) can be found in [FT, Section 5], see also [H, Section 3.1].

Recall the basis (hi)i∈I of the Cartan subalgebra h. For a U µ
q (ĝ)-module V and λ ∈ P, we

define
Vλ :=

{
v ∈V | φ+

i,0 v = qλ (hi)v, for every i ∈ I
}
,

and call it the weight space of V of weight λ . We say that V is Cartan-diagonalizable if

V =
⊕
λ∈P

Vλ .

For λ ∈ P, recall the cone Cλ = λ −Q+ ⊂ P defined in Section 5.2.

Definition 9.2 ([H]) A U µ
q (ĝ)-module V is said to be in category Oµ if

i) V is Cartan-diagonalizable;

ii) for all λ ∈ P we have dim(Vλ )< ∞;

iii) there exist finitely many weights λ1, . . . ,λs ∈ P such that all weights of V are contained in⋃
j=1,...,sCλ j .

Remark 9.3 This category is slightly different from the category introduced in [H], in that here
we only allow integral weights λ .

Definition 9.4 A collection Ψ = (Ψi,m)i∈I,m≥0 of complex numbers Ψi,m such that Ψi,0 ∈ qZ for
all i ∈ I is called an `-weight. We denote by t×` the set of `-weights.

We will identify the collection (Ψi,m)m≥0 with its generating series and use this to represent
every `-weight as an I-tuple of formal power series in z:

Ψ = (Ψi(z))i∈I, Ψi(z) := ∑
m≥0

Ψi,mzm.

Since each Ψi(z) is an invertible formal power series, t×` has a natural group structure by pointwise
multiplication.

We have a surjective group homomorphism ϖ : t×` → P given by

ϖ(Ψ) := ∑
i

aiϖi, (Ψ ∈ t×` ), (26)

where for i ∈ I we have written Ψi(0) = qai . This is well-defined because q is not a root of unity.

Definition 9.5 We say that an `-weight Ψ∈ t×` is rational if Ψi(z) is the power series expansion of
a rational function in z for every i ∈ I. We denote by r the subgroup of t×` consisting of all rational
`-weights.

Theorem 9.6 ([H]) The simple representations in Oµ are parameterized by the subset rµ of ra-
tional `-weights of degree µ , that is, the rational `-weights Ψ = (Ψi(z))i∈I such that:

∑
i∈I

deg(Ψi(z))ϖi = µ.
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The simple representation associated with Ψ ∈ rµ will be denoted by L(Ψ). The `-weight Ψ

encodes the eigenvalues of the generators φ
+
i,m (i ∈ I, m≥ 0) on a highest weight vector v ∈ L(Ψ) :

φ
+
i,m · v = Ψi,mv, (i ∈ I, m≥ 0).

The fundamental examples of simple representations come from the simplest rational `-weights
of degree ±ϖi and are defined as follows [HJ, H]. For i ∈ I and a ∈ C×, let

L±i,a := L
(

Ψ
±1
i,a

)
where (Ψi,a) j(z) :=

{
1− za ( j = i) ,

1 ( j 6= i) .
(27)

We call L+
i,a (resp. L−i,a) a positive (resp. negative) prefundamental representation.

For λ ∈ P, we also have a one-dimensional invertible representation L(Ψλ ) in O0, where

Ψλ = (qλ (hi))i∈I ∈ t×` (28)

is the unique constant `-weight such that ϖ(Ψλ ) = λ .
Note that r is the free (multiplicative) abelian group generated by the `-weights Ψi,a ((i,a) ∈

I×C∗) and Ψλ (λ ∈ P).

Theorem 9.7 ([H]) Let µ ∈ P.

• The algebra U µ
q (ĝ) has a non-zero finite-dimensional representation if and only if µ is a

dominant weight.

• If µ is antidominant, then there is a natural embedding of the ordinary quantum affine Borel
algebra Uq(b̂) into U µ

q (ĝ).

To illustrate, the prefundamental modules have the following properties :

• the Uϖi
q (ĝ)-module L+

i,a is one-dimensional.

• the U−ϖi
q (ĝ)-module L−i,a is infinite-dimensional. It remains simple when restricted to the

Borel subalgebra Uq(b̂) naturally embedded in U−ϖi
q (ĝ). The corresponding Uq(b̂)-module

can be obtained as a limit of Kirillov-Reshetikhin modules [HJ].

Let E be the additive group of maps c : P→ Z whose support is contained in a finite union of
cones Cµ . For λ ∈ P, we define [λ ] = δλ ,− ∈ E . We will regard elements of E as formal sums

c = ∑
ω∈Supp(c)

c(ω)[ω].

Definition 9.8 For V in the category Oµ we define the character of V as:

χ(V ) := ∑
λ∈P

dim(Vλ )[λ ] ∈ E .

Remark 9.9 We have a ring structure on E so that [λ +λ ′] = [λ ][λ ′] for any λ ,λ ′. This multi-
plicative notation is compatible with the notation [λ ] introduced in §5.4.
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Let K0(Oµ) be the Grothendieck group of the category Oµ . Let O sh denote the direct sum of
the abelian categories Oµ (µ ∈ P). It is shown in [H] that the direct sum of Grothendieck groups

K0(O
sh) :=

⊕
µ∈P

K0(O
µ)

has a ring structure, coming from a fusion product constructed from the deformed Drinfeld co-
product, and we have

K0(O
µ) ·K0(O

µ ′)⊂ K0(O
µ+µ ′).

In particular, K0(O0) is a subring of K0(O sh).
We naturally identify E with the Grothendieck ring of the category of representations in O0

with constant `-weights, the simple objects of which are the [L(Ψλ )], λ ∈ P, that are identified
with their character [λ ]. The character map χ induces a ring homomorphism χ : K0(O sh)→ E ,
which is not injective.

Let E` be the additive group of maps γ : r→Z so that ϖ(supp(γ)) is contained in a finite union
of sets of the form Cµ , where

supp(γ) := {Ψ ∈ r | γ(Ψ) 6= 0}.

Then E` has a natural ring structure. For Ψ ∈ t×` , we define [Ψ] = δΨ,− ∈ E`.

Remark 9.10 (i) The group homomorphism ϖ : t×` → P given by Equation (26) is naturally
extended to a surjective homomorphism

ϖ : E`→ E .

(ii) Recall the ring Y ′ of §5.4, generated by variables Ψ
±1
i,a , [λ ] with i ∈ I, a ∈ C∗ and λ ∈ P.

We have a natural identification of this ring Y ′ with the group algebra of r, by identifying
the variables Ψi,a with the `-weights Ψi,a ∈ r defined in Equation (27), and the variables [λ ]
with the `-weights Ψλ ∈ r defined in Equation (28).

(iii) It follows that the completion K = Ỹe
′
of §7.1 identifies with E`.

Theorem 9.11 ([H]) The `-weights of a representation in Oµ belong to rµ .

It follows that every representation V in the category Oµ has a q-character

χq(V ) = ∑
Ψ∈rµ

dim(VΨ)[Ψ] ∈ E`,

where VΨ is the `-weight space of `-weight Ψ (common generalized eigenspace).
Since the q-character map is additive on short exact sequences, it gives rise to an injective ring

homomorphism [H, Corollary 5.1]:

χq : K0(O
sh)→ E`.

In fact, χq is a ring isomorphism (the argument is the same as in [W, Theorem 4.19]).
Since E` has the structure of a topological ring, K0(O sh) itself inherits the structure of a topo-

logical ring. The classes [L(Ψ)] (Ψ ∈ r) of simple modules form a topological basis of K0(Osh).
The construction in [H] implies also immediately the following:
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Proposition 9.12 For Ψ,Ψ′ ∈ t×` , [L(ΨΨ′)] occurs in [L(Ψ)][L(Ψ′)] with multiplicity 1 and

[L(Ψ)][L(Ψ′)] = [L(ΨΨ
′)]+ ∑

Ψ′′∈t×` ,ϖ(Ψ′′)<ϖ(Ψ′)+ϖ(Ψ)

mΨ′′ [L(Ψ′′)]

for some coefficients mΨ′′ ∈ Z≥0.

Definition 9.13 Let OZ denote the full subcategory of O sh consisting of the objects M which
satisfy the following property:

every simple subquotient of M is of the form L(Ψ) where Ψ is a Laurent monomial in
the variables [λ ] (λ ∈ P) and Ψi,qr (i,r) ∈V .

The Grothendieck group K0(OZ) is the [P]-topological subspace of K0(O sh) generated by the
simple classes [L(Ψ)] such that Ψ ∈ Z[Ψ±1

i,qr ](i,r)∈V .

Proposition 9.14 K0(OZ) is a subring of K0(O sh). The homomorphism χq restricts to an isomor-
phism

χq : K0(OZ)→ E`,Z

where E`,Z is the [P]-topological subring of E` generated by the [Ψ±1
i,qr ], (i,r) ∈V .

Proof — The first point follows from the second point.
For the second point, let us prove that for (i,r) ∈V , the q-character of the negative prefunda-

mental representation L−i,qr has a q-character which belongs to E`,Z. By [HJ, H], this q-character
can be obtained as a limit of q-characters of finite-dimensional Kirillov-Reshetikhin modules. The
q-character of a KR-module can be obtained by an algorithm of Frenkel-Mukhin, and this implies
the result (this also follows from the main result of [HL2]).

As in addition [Ψi,qr ] = χq(L(Ψi,qr)) for any (i,r) ∈ V , we obtain from Proposition 9.12
χq(L(Ψ)) ∈ E`,Z for any simple class [L(Ψ)] among the generators of K0(OZ).

Now E`,Z is generated, as a [P]-topological ring, by the [Ψi,qr ] = χq(L(Ψi,qr)) and by the
χq(L(Ψ−1

i,qr)) for (i,r) ∈V . This concludes the proof. 2

Recall the subring KZ ⊂ [P]⊗[P] K introduced in §7.1. As each generator of KZ belongs to
E`,Z, we can identify KZ with [P]⊗[P] E`,Z.

Combining the previous results, Theorem 7.4 now implies immediately the following:

Theorem 9.15 We have an injective ring homomorphism

I : Aw0 → [P]⊗[P] K0(OZ)

and the topological closure of [P]⊗[P] I(Aw0) is the entire topological ring [P]⊗[P] K0(OZ).

We say that a simple class [L(Ψ)] in K0(Osh) is real if [L(Ψ)]2 = [L(Ψ2)] is a simple class.

Conjecture 9.16 The image of a cluster monomial of Aw0 is a real simple class in [P]⊗[P]K0(OZ).

In the rest of this section we will provide some evidence supporting Conjecture 9.16.
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9.2 Finite-dimensional representations

Let CZ denote the full subcategory of OZ whose objects are the finite-dimensional modules.

Theorem 9.17 ([H]) The simple representations in CZ are the simple modules L(Ψ) in OZ such
that Ψ is a monomial in the `-weights:

Ψλ , Ψi,qr , Yi,qr+1 = [ωi]
Ψi,qr

Ψi,qr+2
, (λ ∈ P, (i,r) ∈V ).

For example, the positive prefundamental representations L+
i,qr = L(Ψi,qr) ((i,r) ∈V ) are con-

tained in CZ, but the negative prefundamental representations L−i,qr = L(Ψ−1
i,qr) are not. The category

CZ also contains the fundamental representations Vi,qr+1 = L(Yi,qr+1) of the ordinary quantum affine
algebra Uq(ĝ).

Consider the corresponding subring K0(CZ) of K0(OZ). Note that the simple classes in K0(CZ)
form a basis of K0(CZ) (not only a topological basis) and that each product [L(Ψ)][L(Ψ′)] in
K0(CZ) is a finite sum of simple classes.

Recall the cluster algebra AΓ = Ae associated with the quiver Γ = Γe. Building on results of
[HJ] and [KKOP2], the following theorem was established in [H].

Theorem 9.18 There is an isomorphism of algebras

[P]⊗[P] Ae→ [P]⊗[P] K0(CZ)

mapping the initial cluster variable of Ae attached to vertex (i,r) of Γe to the renormalized positive
prefundamental representation [−Ω(Ψi,qr)]L(Ψi,qr). Moreover, all cluster monomials in Ae are
mapped to simple real classes in [P]⊗[P] K0(CZ).

We have a natural embedding Ae→Aw0 fitting into the commutative diagram:

Ae //

��

[P]⊗[P] K0(CZ)

��
Aw0

// [P]⊗[P] K0(OZ)

This embedding comes from Remark 3.7, which shows that the initial seed of Ae with quiver
Γ = Γe can be regarded as a limit of a sequence of mutations applied to an initial seed of Aw0 .
In particular, since by construction any cluster variable of Ae is obtained from its initial seed
via a finite sequence of mutations, it can also be obtained by performing the same sequence of
mutations starting from one of the initial seeds of Aw0 . Therefore every cluster variable (resp.
cluster monomial) of Ae is a cluster variable (resp. cluster monomial) of Aw0 . Hence, Theorem
9.18 implies Conjecture 9.16 for all cluster monomials of Aw0 contained in Ae. However, there are
infinitely many isoclasses in OZ which do not belong to CZ, and infinitely many cluster monomials
of Aw0 which do not belong to Ae.

9.3 Q-variables

Recall the Q-variables introduced in Section 7.1. For i ∈ I, w ∈W , and a ∈ C∗, we have the
Q-variable

Qw(ϖi),a ∈ K,
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whose leading term Ψw(ϖi),a is a Laurent monomial in the variables Ψ j,b, explicitly computed in
[FH4] in terms of Chari’s braid group action.

By Remark 9.10(iii), K identifies with E`. Hence it makes sense to ask whether Q-variables
are q-characters of simple representations. The following conjecture was formulated in [FH4].

Conjecture 9.19 We have the q-character formula :

χq(L(Ψw(ϖi),a)) = Qw(ϖi),a.

By our construction, for (i,r) ∈ V , the Q-variable Qw(ϖi),qr (which is a rescaling of Qw(ϖi),qr

by a constant `-weight) is the image in KZ of a cluster variable of Aw0 . So Conjecture 9.16 for
these cluster variables is compatible with Conjecture 9.19. In addition, Conjecture 9.16 states that
the corresponding simple module should be real, and Conjecture 9.19 gives the precise highest
`-weight of the corresponding simple class. If Conjecture 9.16 is true for these cluster variables,
the QQ-systems, which correspond to exchange relations in Aw0 , are the conjectural extended
QQ-systems between simple classes conjectured in [FH4].

9.3.1 Simple reflections

Proposition 9.20 Conjectures 9.16 and 9.19 hold for the Q-variables associated with w = e and
w = si (i ∈ I).

Proof — Conjecture 9.19 is proved in [FH4] for w = e or w = si. We reproduce the short proof
here for the convenience of the reader.

For w = e, we have
χq(L(Ψi,a)) = Qϖi,a = Ψi,a.

Moreover, L(Ψi,a) is real as it is one-dimensional.
For w = si and j 6= i, we have Ψw(ϖ j),qr = Ψ j,qr , and the result follows as above. For j = i, we

have Ψsi(ωi),qr = Ψ̃i,qr−2 , and

Qw(ϖi),qr = Ψ̃i,qr−2(1+A−1
i,qr−2(1+A−1

i,qr−4(1+ · · ·)) · · ·) = χq(L(Ψ̃i,qr−2)),

where the second equality comes from [H, Example 5.2]. This proves Conjecture 9.19 in this case.
To finish the proof of Conjecture 9.16, it suffices to prove that L(Ψ̃i,qr−2) is real.

Recall the second point of Theorem 9.7. For g = sl2, we have i = 1, and Ψ̃1,qr−2 = Ψ
−1
1,qr−2 .

Hence L(Ψ̃1,qr−2) is a negative prefundamental module, and by [H, Theorem 5] we know that neg-
ative prefundamental modules are real. In particular, the character of L(Ψ̃1,qr−2) is (1− [−α1])

−2.
For a general g, consider the subalgebra of U−2ϖi

q (ĝ) generated by the Drinfeld generators
of index i, which is isomorphic to U−2ϖi

q (ŝl2). For this subalgebra, the submodule generated by
the highest weight vector of L(Ψ̃2

i,qr−2) is isomorphic to L(Ψ−2
1,qr−2) studied above. By the above

discussion, this implies that the weight multiplicities of χ(L(Ψ̃2
i,qr−2)) are at least as large as

those of (1− [−αi])
−2. But this is precisely the character associated with [L(Ψ̃i,qr−2)]2. Hence

[L(Ψ̃i,qr−2)]2 = [L(Ψ̃2
i,qr−2)] and L(Ψ̃i,qr−2) is real. 2
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9.3.2 Longest Weyl group element

Proposition 9.21 Conjectures 9.16 and 9.19 hold for the Q-variables associated with w = w0.

Proof — It is noted in [FH1, Remark 4.10] that a Baxter T Q-relation can be written not only in
terms of positive prefundamental representations, but also, using a dual construction, in terms of
negative prefundamental representations. This is a particular case of the extended T Q-relations of
[FH4, Conjecture 3.8], corresponding to the longest Weyl group element w0 (see [FH4, Remark
3.3]). The substitution goes as follows. Variable Yi,a in the q-character of a representation V is
replaced by

[w0(ϖi)]
[L−

ν(i),aq−h−1 ]

[L−
ν(i),aq−h+1 ]

,

where h is the Coxeter number. Then we obtain a valid relation in the Grothendieck ring, that is, a
solution to the Baxter T Q-relation with w = w0. In general, a solution is a substitution

Yi,a 7→ [w0(ϖi)]
Xi,aq−1

Xi,aq

which fixes q-characters of finite-dimensional representations. Our solution satisfies

Xi,a ∈Ψ
−1
ν(i),aq−h Z[[A−1

j,b]] j∈I,b∈C∗ ∈ K,

with highest weight term Ψ
−1
ν(i),aq−h . Such a solution is unique.

Indeed, consider another similar substitution X . Then X(Yi,a) ∈ Y−1
ν(i),aq−hZ[[A−1

j,b]] j∈I,b∈C∗ has

highest weight term Y−1
ν(i),aq−h . Then the Baxter T Q-relations for the various fundamental represen-

tations Vj,b determine the other terms of X(Yi,a) by induction on the weight. So X(Yi,a) is unique.
Then it determines again the terms of Xi,aΨν(i),aq−h = 1+ · · · by weight induction.

Now E ′e(Θ
′
w0
(Ψi,a)) is also a solution. Hence we obtain

χq

(
L−

ν(i),aq−h

)
= E ′e

(
Θ
′
w0
(Ψi,a)

)
.

It follows from Lemma 6.5 that
Θ
′
w0
(Ψi,a) = Qw0(ϖi),a.

Hence, applying E ′e, we obtain

Qw0(ϖi),a = χq

(
L−

ν(i),aq−h

)
.

This proves Conjecture 9.19 in this case. Moreover, by [H, Theorem 5] we know that L−i,a is real,
so Conjecture 9.16 also holds. 2

Remark 9.22 As a consequence, χ−ϖν(i) = χ

(
L−

ν(i),aq−h

)
.

Example 9.23 Putting together Proposition 9.20 and Proposition 9.21, we get a proof of Con-
jectures 9.16 and 9.19 for all Q-variables in type A2. In this case, explicit expansions of the
Q-variables are given in Example 6.4, and we have

Qω1,qr = χq

(
L+

1,qr

)
, Qω2−ω1,qr = χq

(
L(Ψ−1

1,qr−2Ψ2,qr−1)
)
, Q−ω2,qr = χq

(
L−2,qr−3

)
,

Qω2,qr = χq

(
L+

2,qr

)
, Qω1−ω2,qr = χq

(
L(Ψ−1

2,qr−2Ψ1,qr−1)
)
, Q−ω1,qr = χq

(
L−1,qr−3

)
.
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9.4 Type A1

In this subsection we assume that g = sl2 and we establish Conjecture 9.16 in this case. Here
V = {(1,2r) | r ∈ Z}. For readability, we will drop the unique index i = 1 of the Dynkin diagram
in this section, and we will identify V with 2Z.

The Q-variable Qϖ ,q2r (resp. Q−ϖ ,q2r ) coincides with the q-character of the positive (resp.
negative) prefundamental representation L+

q2r (resp. L−q2r−2). Indeed, we have explicit q-character
formulas:

χq(L+
q2r) = χq(L(Ψq2r)) = Ψq2r = Qϖ ,q2r ,

χq(L−q2r−2) = χq(L(Ψ−1
q2r−2)) = Ψ

−1
q2r−2(1+A−1

q2r−2(1+A−1
q2r−4(1+ · · ·)) · · ·) = Q−ϖ ,q2r ,

(recall that, in type A1, we have Aq2r = Yq2r+1Yq2r−1 , where Yqs = [ϖ ]Ψqs−1Ψ
−1
qs+1 .)

By [H, Corollary 5.6], any simple module in OZ is a quotient of a fusion product of positive
and negative prefundamental representations and of an invertible representation [Ψλ ], λ ∈ P. The
category OZ contains also the finite-dimensional representations L(Ψq2r Ψ

−1
q2s ) for r ≤ s ∈ Z. Their

q-character is equal to:

χq(L(Ψq2r Ψ
−1
q2s )) = Ψq2r Ψ

−1
q2s (1+A−1

q2s (1+A−1
q2s−2(1+ · · ·+A−1

q2r+4(1+A−1
q2r+2)) · · ·)

= ∑
t=s,s−1,···,r

[(t− s)α]Ψq2(s+1)Ψ
−1
q2(1+t)Ψ

−1
q2t Ψq2r .

Indeed, [(s− r)ω1]⊗ L(Ψq2r Ψ
−1
q2s ) ' L(Yq2r+1Yq2r+3 · · ·Yq2s−1) is a representation of the ordinary

quantum affine algebra Uq(ŝl2). Its q-character is known as it is obtained as an evaluation of a
simple representation of Uq(sl2).

Let us recall that a simple representation V is said to be prime if it can not be factorized as a
tensor product of two non-invertible representations.

Proposition 9.24 The simple representations L+
1,q2r , L−1,q2r , L(Ψq2r Ψ

−1
q2s ) (r ≤ s ∈ Z) are prime

objects of OZ.

Proof — The representation L+
1,q2r is prime. Indeed, it is simple since it is one-dimensional.

Also, it is not invertible because the only simple representation V such that the highest `-weight of
L+

1,q2r ∗V is 1 is V = L−1,q2r which is infinite-dimensional. Now, assume that L+
1,q2r ' V ∗V ′. Then

V and V ′ are one-dimensional and simple : V = L(Ψ) and V ′ = L(Ψ′). If we assume in addition
that V and V ′ are not invertible, then their highest `-weights are not constant. Now if a simple
representation L(Ψ) is one-dimensional, then Ψ = Ψ(z) is a polynomial. Indeed, it follows from
the relations of the shifted quantum affine algebras that the action of φ+(z)− φ−(z) is zero on
the representation, and so the coefficient of zs in Ψ(z) is zero for s large enough. Then ΨΨ′ is a
product of non-constant polynomials which is of degree 1, and we get a contradiction.

Consider now a simple representation in OZ. It is a highest weight module with a highest
weight λ ∈ P. If this representation is not one-dimensional, then the dimension of its weight space
of weight λ −α is at least 1. This implies that if the dimension of this weight space is actually
equal to 1, then this representation is prime. Consequently, from the explicit q-character formulas
above, the simple representations L−1,q2r , L(Ψq2r Ψ

−1
q2s ) are also prime. 2

Mimicking the notations for prime finite-dimensional representations of the ordinary quantum
affine algebra Uq(ŝl2), we will denote these prime representations by segments:

[r, s−1] = L(Ψq2r Ψ
−1
q2s ), [−∞, s−1] = L(Ψ−1

q2s ), [r,+∞] = L(Ψq2r).
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We also set [−∞,+∞] = 1. Then [r,s] is defined for any r ≤ s ∈ Z∪{±∞}.
The following identities are easy consequences of the above q-character formulas. (Here we

identify a simple representation with its class in K0(OZ).)

Proposition 9.25 Let r ≤ s and r′ ≤ s′. Suppose r < r′ and s < s′ and r′ ≤ s+1 (in particular, r′

and s are finite). In K0(OZ) we have:

[r, s][r′, s′] = [r, s′][r′, s]+ [2(r′− s−2)ϖ ][r, r′−2][s+2,s′], (29)

where if a > b, we understand [a,b] = 1. 2

Proposition 9.25 recovers several classical families of relations :

• T -system relations : for r′− r = s′− s = 1,

• Baxter T Q-relations : for r = s = r′−1, s′ =+∞,

• QQ-relations : for r =−∞, s′ =+∞, r′ = s+1.

The next proposition generalizes a classical result of Chari and Pressley [CP] for Uq(ŝl2).

Proposition 9.26 Let r ≤ s and r′ ≤ s′. The product [r, s] · [r′, s′] is a simple class in K0(OZ) if
and only if the union of the two intervals [r, s]∪ [r′, s′] is not an interval containing properly both
intervals [r, s] and [r′, s′].

Proof — It follows from Equation (29) that if the conditions on r,s,r′,s′ are not satisfied, then the
product is not a simple class.

Now let us suppose that the conditions are satisfied. We will prove that the product [r, s] · [r′, s′]
is a simple class.

For finite s,s′ the representations [r,s] and [r′,s′] are representations of a shifted quantum affine
algebra U µ

q (ŝl2) with µ ≤ 0. Moreover, by [H], these representations are simple when restricted
to the Borel algebra Uq(b̂). The tensor product of these representations seen as Uq(b̂)-module is
simple (it follows from [CP] for the finite-dimensional ones, and from [HL3] in general). At the
level of representations of shifted quantum affine algebras, it implies that the simple quotient of
the fusion product of [r,s] by [r′,s′] has weight spaces at least as large as in the fusion product.
So this fusion product is simple and the product of the classes in K0(OZ) corresponds to a simple
class.

For s = s′ = +∞, the representations are one-dimensional, as well as their fusion product, so
the product is a simple class.

It remains to study the product [r, s] · [r′,+∞] with s < +∞ and (r′ ≤ r or s ≤ r′− 2). Since
[r′,+∞] is one-dimensional, one can construct directly a structure of representation on the tensor
product space [r,s]⊗ [r′,+∞] by using the Drinfeld coproduct (without using forms, specializations
and fusion product). This is explained in [H, Remark 5.8]. For example, the action of

x+(z) = ∑
m∈Z

x+mzm

on the tensor product coincides with the action of x+(z)⊗ Id. So the tensor product is cocyclic
(every non-zero submodule contains the highest weight vector). The action of

x−(z) = ∑
m∈Z

x−mzm
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on the tensor product coincides with the action of

(1− zq2r′)x−(z)⊗ Id.

As explained above, [r, s] can be obtained from an evaluation module of the ordinary quantum
affine algebra and so the action of x−(z) is of the form(

∑
m∈Z

α
mzm

)
x0

for an operator x0 and α = q2A with r < A≤ s+1. In particular α 6= q2r′ . Then

(1− zq2r′) ·

(
∑

m∈Z
α

mzm

)
= (1−α

−1q2r′)

(
∑

m∈Z
α

mzm

)
6= 0

is non zero. As moreover [r,s] is generated by a highest weight vector under the action of x0, we
obtain that the tensor product is also cyclic (generated by a highest weight vector). A cocyclic
representation which is cyclic is simple, hence the result. 2

Proposition 9.27 Consider a product ∏1≤i≤N [ri, si] in K0(OZ) such that for every i < j, the
classes [ri, si] and [r j, s j] satisfy the condition of Proposition 9.26. Then this product is a sim-
ple class.

Proof — If si <+∞ for all i, then we are reduced to consider representations of the Borel algebra
Uq(b̂) as in the previous proof. For such representations the result was established in [HL3].
Otherwise, one can assume si < +∞ for 1 ≤ i ≤ M and si = +∞ for M + 1 ≤ i ≤ N. Then the
product is of the form P1P2 where P1 is the simple product of the M first factors, and P2 is one
dimensional, product of the classes of N−M positive prefundamental representations. Then an
argument analog to the last argument in the proof of 9.26 allows to conclude. 2

Corollary 9.28 The prime representations of Proposition 9.24 are all the prime representations
of the category OZ (up to invertible representations L(Ψλ )). A simple class in K0(OZ) admits
a unique factorization as a product of prime representations (up to ordering and to invertible
representations).

Proof — The highest `-weight of a simple representation of OZ can be factorized in a unique way
(up to ordering and a constant `-weight factor) as a product of highest `-weights of representations
[r,s] such that the conditions of Proposition 9.27 are satisfied. This implies that the class of this
simple representation admits a factorization into a (unique) product of classes of prime represen-
tations listed in Proposition 9.24. 2

Remark 9.29 (i) Corollary 9.28 implies that all simple representations in OZ are real. Note that
this is specific to g= sl2.

(ii) In the Grothendieck ring of the category O of Uq(b̂), factorization into primes is not unique
in general. Following an example of [MY], the following factorization is discussed in [HL3,
Remark 3.10] (we use the notation Lb for representations of Uq(b̂)):

Lb(Ψq4Ψ
−1
q−6)⊗Lb(Ψq8Ψ

−1
q−10)' Lb(Ψq4Ψ

−1
q−10)⊗Lb(Ψq8Ψ

−1
q−6)' Lb(Ψq4Ψq8Ψ

−1
q−6Ψ

−1
q−10),
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Figure 18: Two triangulations of the ∞-gon.

where the 4 representations occurring in the 2 factorizations are prime as representations of Uq(b̂).
But, in the Grothendieck ring of the category Osh, for r > s ∈ Z, the class

[L(Ψq2r Ψ
−1
q2s )] = [L(Ψq2r)][L(Ψ−1

q2s )]

is not prime. Hence the corresponding representations in the factorization above are not prime.
The unique factorization into prime representations is :

[L(Ψq4Ψq8Ψ
−1
q−6Ψ

−1
q−10)] = [L(Ψq4)][L(Ψq8)][L(Ψ−1

q−6)][L(Ψ−1
q−10)].

2

The main result of this subsection is the following.

Theorem 9.30 Conjecture 9.16 is true for g= sl2.

Before proving Theorem 9.30, we need to give a more detailed description of the cluster alge-
bra Aw0 in type A1. The quivers Γw0,2r (r ∈ Z) of the standard initial seeds of Aw0 were discussed
in detail in Section 3.1. These seeds can be regarded as limits when N→∞ of certain acyclic seeds
of cluster algebras AN of finite type AN . It is well known that the clusters of AN are in natural
bijection with triangulations of a convex (N + 3)-gon. This leads us to a convenient geometric
model for clusters and cluster variables of Aw0 in terms of triangulations of an ∞-gon, which we
shall now explain.

Let P denote an ∞-gon, with vertex set V and edge set E given by:

V := Z∪{−∞,+∞}, E := {(r,r+1) | r ∈ Z}∪{(−∞,+∞)}.

Figure 18 represents two triangulations of P , with edges in black and inner diagonals in red. In
the left one, all finite vertices v ≥ r (resp. v ≤ r) are connected by a diagonal to vertex +∞ (resp.
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Figure 19: An example of Ptolemy relation.

−∞). This triangulation corresponds to the standard initial seed of Aw0 with quiver Γw0,2r. More
precisely, the diagonal (v,+∞) encodes the cluster variable with stabilized g-vector e2v, and the
diagonal (−∞,v) encodes the cluster variable with stabilized g-vector −e2v−2. There is an arrow
between two vertices of Γw0,2r if and only if the two corresponding diagonals form two sides of
one triangle of the triangulation, and the direction of the arrow indicates if one passes from one
diagonal to the other by a clockwise or an anti-clockwise rotation around their common vertex.
Thus, choosing r = 0 in the triangulation of Figure 18, one gets the standard initial seed of Aw0

whose quiver is the leftmost one in Figure 13.
Let us denote by x+v (v∈Z) (resp. x−v−1 (v∈Z)) the cluster variable corresponding to the diag-

onal (v,+∞) (resp. (−∞,v)). The remaining cluster variables xr,s of Aw0 correspond to diagonals
(r,s+1) joining two finite vertices r,s+1 ∈ Z such that r < s. For example, the right triangulation
of Figure 18 contains the diagonal (r−1,r+1) corresponding to the cluster variable xr−1,r.

Using this notation, the initial exchange relations of the seed with quiver Γw0,2r are:

x+v xv−1,v = x+v+1 + x+v−1, (v > r), (30)

x+r x−r = x+r+1 + x−r−1, (31)

x−r−1x+r−1 = x+r + x−r−2, (32)

x−v xv,v+1 = x−v+1 + x−v−1, (v < r−1). (33)

They can be visualized as Ptolemy relations associated with a flip of diagonals in a suitable quadri-
lateral. For instance Figure 19 represents the exchange relation of Equation (30). Note that the
cluster algebra Aw0 has no frozen variables, so the edges (v− 1,v) and (v,v+ 1) of the ∞-gon
count for 1.

The clusters of Aw0 are represented by those triangulations of P which are reachable from
the triangulation corresponding to a standard initial seed by means of a finite number of flips of
diagonals. Two cluster variables are compatible (that is, may belong to the same cluster) if and
only if the corresponding diagonals do not intersect in their interior. If two cluster variables are
not compatible, then the corresponding arcs form the two diagonals of a quadrilateral inscribed
in P , and their product is the left-hand side of an exchange relation represented by the Ptolemy
relation in this quadrilateral. Let r < r′ < s+2 < s′+2∈ V , where r (resp. s′) is allowed to be−∞

(resp. +∞). Then replacing cluster variables by the corresponding diagonals, the Ptolemy relation
in the quadrilateral (r,r′,s+2,s′+2) reads:

(r,s+2)(r′,s′+2) = (r,s′+2)(r′,s+2)+(r,r′)(s+2,s′+2). (34)
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Remark 9.31 The idea of using triangulations of an ∞-gon as a combinatorial model for cluster
algebras of type A in the infinite rank limit is very natural, and it has already been studied by many
authors [IT, HoJo, GG, BG, PY, CKP]. These papers develop generalizations of the classical
cluster categories of type AN and study the correspondence between their cluster-tilting subcat-
egories and triangulations of an ∞-gon. Since in our case every triangulation contains infinitely
many diagonals joining a finite vertex to +∞ or −∞, the papers [BG, PY, CKP] which also deal
with this type of configurations seem to be the most relevant for us. It would be interesting to es-
tablish connections between the abelian category OZ and the (ex-)triangulated categories studied
in these papers. 2

We can now explain the proof of Theorem 9.30.

Proof — Recall the injective ring morphism F : Aw0 → KZ of Theorem 7.4. We want to prove
that every cluster monomial of Aw0 is mapped by F to the class of a real simple module in KZ. By
Proposition 8.2, we already know that the renormalized Q-variables

Q
ϖ ,q2r = [−rϖ ]Qϖ ,q2r = χq

(
[−rϖ ]L+

q2r

)
, Q−ϖ ,q2r = [(r−1)ϖ ]Q−ϖ ,q2r = χq

(
[(r−1)ϖ ]L−q2r−2

)
are images by F of cluster variables. More precisely Q

ϖ ,q2r = F(x+r ) and Q−ϖ ,q2r = F(x−r−1).
Now, a special case of Equation (34) gives, for r < s ∈ Z :

(−∞,s+1)(r,+∞) = (r,s+1)+(−∞,r)(s+1,+∞),

where we have used that (−∞,+∞) = 1. In other words, we have:

xr,s = x−s x+r − x−r−1x+s+1.

Comparing with Equation (29), we obtain:

F(xr,s) = χq

(
[sϖ ]L−q2s

)
χq

(
[−rϖ ]L+

q2r

)
−χq

(
[(r−1)ϖ ]L+

q2r−2

)
χq

(
[−(s+1)ϖ ]L+

q2s+2

)
= χq

(
[(s− r)ϖ ]L

(
Ψq2r Ψ

−1
q2s

))
.

Hence we see that the image by F of the set of cluster variables of Aw0 is precisely the set of classes
of prime simple modules of OZ (up to invertible elements of [P]) described in Proposition 9.24.

In more geometric terms, we see that F maps the cluster variable associated with the diagonal
(r,s+2) of P to the prime simple module labelled by the segment [r,s] (up to invertible elements).
Finally it is easy to check that the condition of Proposition 9.27 on two segments [r,s] and [r′,s′]
is equivalent to the condition that the two diagonals (r,s+2) and (r′,s′+2) do not cross in their
interior, that is, the compatibility condition of the corresponding cluster variables. Therefore, by
Corollary 9.28, F maps the set of cluster monomials of Aw0 to the set of classes of simple modules
in OZ. 2

Remark 9.32 Let O f
Z be the abelian subcategory of OZ of objects of finite length. Its Grothendieck

group K f
0 ⊂ K0 is the subgroup of K0 generated by (finite) linear combinations of simple classes.

It follows from our results that [P]⊗[P] K
f

0 ' [P]⊗Aw0 . This implies that K f
0 is stable under mul-

tiplication. The representation-theoretical interpretation of this property is that O f
Z is stable by

fusion product. Indeed, it is established in [H] that a truncated shifted quantum affine algebra
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has a finite number of classes of simple representations. Moreover, in the case of g = sl2, a pre-
fundamental representation, after a twist by an invertible representation, descends to a truncation.
Hence, one obtains as in [HZ] that a fusion product of various prefundamental representations has
finite length. As a simple representation is a subquotient of a fusion product of prefundamental
representations, we obtain that the finite length property is stable by fusion product. We expect
this holds for a general Lie algebra g.

10 Double Bruhat cells and quantum Wronskians

10.1 The open double Bruhat cell

Let G be a simple simply-connected complex algebraic group with Lie algebra g. Let B and B−
be a pair of opposite Borel subgroups of G. The double Bruhat cells of G, introduced by Fomin
and Zelevinsky in [FZ1], are the intersections of the strata of the two Bruhat decompositions of G
with respect to B and B−:

Gv,w := BvB ∩ B−wB−, (v,w ∈W ).

The complex dimension of the stratum Gv,w is equal to `(v)+ `(w)+ n. In particular, the double
Bruhat cell Gw0,w0 is the unique stratum of maximal dimension 2`(w0)+n = dimG. It can be de-
scribed explicitly as the open dense subset of G defined by the non-vanishing of certain generalized
minors:

Gw0,w0 = {g ∈ G | ∆w0(ϖi),ϖi(g) 6= 0, ∆ϖi,w0(ϖi)(g) 6= 0, for all i ∈ I}.

It was shown in [BFZ] that the coordinate ring C[Gv,w] of Gv,w has the structure of a cluster algebra,
with explicit initial seeds consisting of certain generalized minors.

Example 10.1 In type A2, we have G = SL(3,C), and we can represent elements of G by 3× 3
complex matrices of determinant 1. For A,B, two subsets of {1,2,3} of the same cardinality, we
denote by ∆A,B(g) the minor of g with row set A and column set B. We have

Gw0,w0 = {g ∈ G | ∆1,3(g) 6= 0, ∆12,23(g) 6= 0, ∆3,1(g) 6= 0, ∆23,12(g) 6= 0} .

An initial seed of the cluster structure of C[Gw0,w0 ] is displayed in Figure 20. The four minors
painted in blue are frozen variables. These are the minors which do not vanish on Gw0,w0 . In this
small rank case, the cluster structure has finite type D4. There are 20 cluster variables (including
the 4 frozen ones) and 50 clusters (see [BFZ, Example 2.11 and Example 2.18]).

For instance, mutating at vertex ∆12,12, we get the new cluster variable ∆23,23, as shown by the
exchange relation:

∆12,12∆23,23 = ∆23,12∆12,23 +∆2,2.

(This minor identity follows from the classical Lewis Caroll identity:

∆12,12∆23,23−∆23,12∆12,23 = ∆2,2∆123,123,

if we take into account that the determinant function ∆123,123 is equal to 1 on G.) 2

In [BFZ] several initial seeds of the cluster algebra structure of C[Gv,w] were described, as-
sociated with pairs of reduced expressions of the Weyl group elements v and w. In this paper we
will only consider a subclass of these initial seeds parametrized by the Coxeter elements c, whose
precise description we will now recall.
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∆3,1

∆23,12

{{
∆2,1

OO

��
∆2,2

##
∆12,12

OO

��
∆12,23

{{
∆1,2

OO

��
∆1,3

Figure 20: An initial seed for C[Gw0,w0 ] in type A2

Let c be a fixed Coxeter element of W . For i ∈ I we denote by mi the smallest integer k
such that ck(ϖi) = w0(ϖi) = −ϖν(i). In §4.3.4, we have attached to c a reduced expression
(i1, i2, . . . , iN) of w0. The initial seed Sc of [BFZ, §2.2] corresponding to the reduced expres-
sion (i1,−i1, i2,−i2, . . . , iN ,−iN) of (w0,w0) ∈W ×W can be described as follows.

Recall the infinite quiver Γc defined in §3.4. The quiver of Sc is the full subquiver γc of Γc

whose set of vertices consists of all green and red vertices together with the n vertices immediately
above the highest red vertices. These last n vertices are in fact frozen vertices, and we will paint
them in blue. The lowest green vertex in each of the n columns is also considered as frozen. Hence
the quiver γc is an ice-quiver with 2`(w0)+n = dimG vertices, 2n of them being frozen. Since the
arrows connecting frozen vertices play no rôle, we will usually omit them.

The cluster variables of the seed Sc are generalized minors, described as follows. For every
i ∈ I, column i of the quiver γc contains the cluster variables:

∆ck(ϖi), c`(ϖi), (0≤ k, `≤ mi, mi−1≤ k+ `≤ mi).

More precisely, the top vertex corresponds to ∆cmi (ϖi), ϖi , and each vertical arrow is of the form

∆ck(ϖi), cmi−k(ϖi)
∆ck(ϖi), cmi−k−1(ϖi)

��

or

∆ck−1(ϖi), cmi−k(ϖi)

OO

∆ck(ϖi), cmi−k(ϖi)

Example 10.2 In type A3, we choose c = s1s2s3. Then m1 = 3, m2 = 2 and m1 = 1. The initial
seed Sc of C[Gw0,w0 ] is displayed in Figure 21. 2
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∆c3(ϖ1), ϖ1

∆c2(ϖ2), ϖ2

vv
∆c2(ϖ1), ϖ1

OO

��

∆c(ϖ3), ϖ3

~~

∆c2(ϖ1), c(ϖ1)

((
∆c(ϖ2), ϖ2

OO

��
∆c(ϖ2), c(ϖ2)

vv ((
∆c(ϖ1), c(ϖ1)

OO

��

∆ϖ3, ϖ3

��

OO

∆c(ϖ1), c2(ϖ1)

((

∆ϖ3, c(ϖ3)

vv
∆ϖ2, c(ϖ2)

OO

��
∆ϖ2, c2(ϖ2)

vv
∆ϖ1, c2(ϖ1)

OO

��
∆ϖ1, c3(ϖ1)

Figure 21: An initial seed of C[Gw0,w0 ] in type A3.

10.2 Relations between C[Gw0,w0] and KZ

The following proposition follows immediately from the above discussion.

Proposition 10.3 Let c be a Coxeter element, and let Bc be the cluster subalgebra of Aw0 with
initial seed given by the subquiver γc (in which the 2n vertices lying at the top rim and the bottom
rim are frozen). Then C⊗Z Bc is isomorphic to the Berenstein-Fomin-Zelevinsky cluster algebra
C[Gw0,w0 ]. 2

Using Theorem 7.4, we deduce from Proposition 10.3 that the ring C⊗Z KZ contains infinitely
many cluster subalgebras isomorphic to the cluster algebra C[Gw0,w0 ]. Moreover, in these isomor-
phisms, the Q-variables of the initial seeds of KZ get identified with certain generalized minors
on G. It turns out that the QQ-system relations of Proposition 7.2, which can be regarded as cer-
tain initial exchange relations for the cluster algebra structure of Theorem 7.4, correspond in this
identification to some well-known algebraic identities between generalized minors discovered by
Fomin and Zelevinsky [FZ1, Theorem 1.17].

Example 10.4 We continue Example 10.2. Comparing the seeds of Figure 16 and Figure 21, we
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see that the QQ-system relation

Qs1s2(ϖ2),q−1Q
ϖ2,q−3 = Qs1s2(ϖ2),q−3Q

ϖ2,q−1 + Qs1(ϖ1),q−2Q
ϖ3,q−2 ,

which is the exchange relation corresponding to the mutation of the cluster variable Qs1s2(ϖ2),q−1 ,
translates into the generalized minor identity

∆c(ϖ2),c(ϖ2)∆ϖ2,ϖ2 = ∆c(ϖ2),ϖ2∆ϖ2,c(ϖ2)+ ∆c(ϖ1),c(ϖ1)∆ϖ3,ϖ3 ,

which is [FZ1, Theorem 1.17] with i = 2 and u = v = s1. 2

Remark 10.5 (a) Similarly, it is easy to check that the algebraic relation between Q-variables
proved in Proposition 7.7 corresponds precisely to the generalized minor identity of [FZ1, Theo-
rem 1.16].

(b) By definition, the Weyl group W is a quotient of the normalizer N of a maximal torus in G.
Lifting the elements of W to N, and then letting them act by right or left translations on G, one
gets induced left and right actions of a finite covering W of W on G, and therefore also on C[G].
In these actions, the lifts of the generators si of W to W act on generalized minors by:

∆u(ϖi),v(ϖi) 7→ ∆u(ϖi),siv(ϖi), ∆u(ϖi),v(ϖi) 7→ ∆siu(ϖi),v(ϖi), (u,v ∈W ),

if l(siu) = l(u)+1 and l(siv) = l(v)+1. Now, as explained above, we can embed C[G] in C⊗ZKZ,
in such a way that the generalized minors ∆ck(ϖi),c`(ϖi) of the initial seed Sc get mapped to Q-
variables of the form Qc`(ϖi),qr , where r is an integer depending linearly on k. This suggests that

the left action of W on C[G] is related by this embedding with the action introduced in §7.3 of a
finite covering of W on Π′Z (see Remark 7.3). As to the right action of W on C[G], its counterpart
in KZ seems more hidden. In the next sections we will look at it from a different angle, using the
idea of quantum Wronskian borrowed from [KSZ, KZ]. 2

10.3 Quantum Wronskian matrices

In the classical theory of ordinary linear differential equations, the Wronskian matrix of n smooth
functions f1(z), . . . , fn(z) is by definition

W ( f1, . . . , fn) :=


f1(z) · · · fn(z)
f ′1(z) · · · f ′n(z)

...
...

f (n−1)
1 (z) · · · f (n−1)

n (z)

 ,

where f (k)(z) denotes the kth derivative. Given a fixed number q, we can replace derivatives by
q-differences and define by analogy the quantum Wronskian matrix

qW ( f1, . . . , fn) :=


f1(z) · · · fn(z)

f1(q2z) · · · fn(q2z)
...

...
f1(q2(n−1)z) · · · fn(q2(n−1)z)

 .

It turns out that such matrices arise naturally in our topic. Indeed, as explained in [KSZ], given a
solution of the QQ-system relations in type An, one can form a q-Wronskian matrix of size n+1
such that every Q-variable indexed by an element of the form w(ϖi) occurs as a minor of size i
of this matrix. Moreover, this matrix has determinant 1. Let us illustrate this using the solution
Qw(ϖi),a

∈ KZ of Proposition 7.2.
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Example 10.6 Consider the commutative ring KZ in type A1. The following matrix in M(2,KZ):

g(qr) :=
(

Q
ϖ1,qr Qs1(ϖ1),qr

Q
ϖ1,qr+2 Qs1(ϖ1),qr+2

)
, (r ∈ 2Z),

can be regarded as the quantum Wronskian matrix of the two functions z 7→Q
ϖ1,z

and z 7→Qs1(ϖ1),z
,

evaluated at z = qr. The determinant of this matrix is

det(g(qr)) = Q
ϖ1,qr Qs1(ϖ1),qr+2−Qs1(ϖ1),qr Qϖ1,qr+2 = 1

because of the QQ-system relation of type A1. Therefore g(qr) ∈ SL(2,KZ).

Example 10.7 Consider the commutative ring KZ in type A2. The following matrix in M(3,KZ):

g(qr) :=

 Q
ϖ1,qr Qs1(ϖ1),qr Qs2s1(ϖ1),qr

Q
ϖ1,qr+2 Qs1(ϖ1),qr+2 Qs2s1(ϖ1),qr+2

Q
ϖ1,qr+4 Qs1(ϖ1),qr+4 Qs2s1(ϖ1),qr+4

 , (r ∈ 2Z),

can be regarded as the quantum Wronskian matrix of the three functions z 7→ Q
ϖ1,z

, z 7→ Qs1(ϖ1),z
and z 7→ Qs2s1(ϖ1),z

evaluated at z = qr. The QQ-system relations of type A2 imply that∣∣∣∣ Q
ϖ1,qr Qs1(ϖ1),qr

Q
ϖ1,qr+2 Qs1(ϖ1),qr+2

∣∣∣∣= Q
ϖ2,qr+1 ,

∣∣∣∣ Qs1(ϖ1),qr Qs2s1(ϖ1),qr

Qs1(ϖ1),qr+2 Qs2s1(ϖ1),qr+2

∣∣∣∣= Qs1s2(ϖ2),qr+1 .

Finally, the determinant of this matrix is also 1. Indeed, using the Lewis Caroll identity, we have∣∣∣∣∣ Q
ϖ2,qr+1 Qs1s2(ϖ2),qr+1

Q
ϖ2,qr+3 Qs1s2(ϖ2),qr+3

∣∣∣∣∣= Qs1(ϖ1),qr+2

∣∣∣∣∣∣
Q

ϖ1,qr Qs1(ϖ1),qr Qs2s1(ϖ1),qr

Q
ϖ1,qr+2 Qs1(ϖ1),qr+2 Qs2s1(ϖ1),qr+2

Q
ϖ1,qr+4 Qs1(ϖ1),qr+4 Qs2s1(ϖ1),qr+4

∣∣∣∣∣∣ .
Now, the QQ-system relations also imply that∣∣∣∣∣ Q

ϖ2,qr+1 Qs1s2(ϖ2),qr+1

Q
ϖ2,qr+3 Qs1s2(ϖ2),qr+3

∣∣∣∣∣= Qs1(ϖ1),qr+2 ,

thus by comparison, we get that det(g(qr)) = 1. Hence, g(qr) ∈ SL(3,KZ).

10.4 Quantum Wronskian elements in G(KZ)

We will now explain how Proposition 10.3 allows to generalize the previous examples and for-
mulate a general statement valid for every group G of type A,D,E. This discussion is a simple
translation in our algebraic setting of ideas of Koroteev and Zeitlin formulated in the context of
q-opers [KZ]. What we would like to emphasize is that the cluster algebra structure of KZ is the
natural combinatorial tool for dealing with these formulas.

We first note the following consequence of the cluster algebra structure on the coordinate ring
of the open double Bruhat cell.

Proposition 10.8 Let k be a commutative field of characteristic 0. Let G = G(k) denote the k-
points of the algebraic group G. Let {φ1, . . . ,φd} be a fixed cluster of the cluster algebra structure
on the coordinate ring k[Gw0,w0 ]. For every (a1, . . . ,ad) ∈ (k×)d , there is a unique g ∈ G such that
φ1(g) = a1, . . . ,φd(g) = ad .
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Proof — Since {φ1, . . . ,φd} is a cluster, it is algebraically independent, so for every (a1, . . . ,ad)∈
(k×)d , there exists g ∈ Gw0,w0 such that φ1(g) = a1, . . . ,φd(g) = ad . Now, because of the Laurent
phenomenon, k[Gw0,w0 ] is contained in the ring of Laurent polynomials in the variables {φ1, . . . ,φd}.
Hence for every f ∈ k[Gw0,w0 ], the evaluation f (g) can be expressed as a Laurent polynomial in
terms of the evaluations φ1(g) = a1, . . . ,φd(g) = ad only, which proves unicity. 2

Example 10.9 We continue Example 10.1 in type A2. Let

g :=

a b c
d e f
h i j

 ∈ Gw0,w0 .

The cluster of the coordinate ring of Gw0,w0 considered in Example 10.1 is:

{∆3,1, ∆2,1, ∆2,2, ∆1,2, ∆1,3, ∆23,12, ∆12,12, ∆12,23}.

First we have:

h = ∆3,1(g), d = ∆2,1(g), e = ∆2,2(g), b = ∆1,2(g), c = ∆1,3(g).

Then we calculate easily:

a =

(
∆12,12 +∆1,2∆2,1

∆2,2

)
(g), f =

(
∆12,23 +∆2,2∆1,3

∆1,2

)
(g),

i =
(

∆23,12 +∆3,1∆2,2

∆2,1

)
(g),

∣∣∣∣e f
i j

∣∣∣∣= (∆2,2 +∆12,23∆23,12

∆12,12

)
(g),

where the last equality uses the fact that det(g) = 1. Since e = ∆2,2(g) is invertible, the entry j can
also be calculated from these equations. Hence we see that g is entirely determined by the values

{∆3,1(g), ∆2,1(g), ∆2,2(g), ∆1,2(g), ∆1,3(g), ∆23,12(g), ∆12,12(g), ∆12,23(g)},

which can be arbitrary invertible elements in k. 2

We now introduce a generalization of the definition of a quantum Wronskian matrix. Let
q ∈ C∗, not a root of unity. Write q2Z := {qr | r ∈ 2Z}.

Definition 10.10 Let c be a fixed Coxeter element. Recall the integers mi attached to c in §10.1.
Let γ : z 7→ g(z) be a map from q2Z to G. We say that γ is a quantum (G,c)-Wronskian if the
following system of equations is fulfilled:

∆ck(ϖi),c`(ϖi)(g(z)) = ∆ck−1(ϖi),c`(ϖi)(g(q
2z)), (i ∈ I, 1≤ k ≤ mi, 0≤ `≤ mi, z ∈ q2Z).

Example 10.11 The map qr 7→ g(qr) of Example 10.7 is a quantum (G,c)-Wronskian for c = s1s2
and G= SL(3,KZ). Indeed, by definition of the matrix g(qr), its entries ∆ck(ϖ1),c`(ϖ1)(g(q

r)) satisfy
the relations :

∆ck(ϖ1),c`(ϖ1)(g(q
r)) = Qcl(ϖ1),qr+2k = ∆ck−1(ϖ1),c`(ϖ1)(g(q

r+2)), (0 < k ≤ 1, 0≤ `≤ 2, r ∈ 2Z).

As to the fundamental weight ϖ2, we have m2 = 1, and for 0 ≤ ` ≤ 1, the generalized minor
∆ϖ2,c`(ϖ2)(g(q

r)) (resp. ∆c(ϖ2),c`(ϖ2)(g(q
r))) is a 2× 2 minor taken on the first and second rows
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(resp. second and third rows) of g(qr), so the desired identity follows immediately from the one
for ϖ1. In fact the only nontrivial property in this example is that g(qr) ∈G, that is det(g(qr)) = 1.

Note, that qr 7→ g(qr) is not a quantum (G, c̃)-Wronskian for the Coxeter element c̃ = s2s1,
since for instance

∆c̃(ϖ1),ϖ1(g(q
r)) = Q

ϖ1,qr+4 and ∆ϖ1,ϖ1(g(q
r)) = Q

ϖ1,qr .

2

Let k denote the fraction field of KZ. Let c be a fixed Coxeter element. Recall the height
function lc defined in §4.3.1. Using the description of the initial seed Sc given in §10.1 and
Proposition 10.8 we can define the following elements of G(k).

Definition 10.12 For r ∈ 2Z, we denote by gc(qr) the unique element of G(k) such that:

∆ck(ϖi),c`(ϖi)(gc(qr)) = Qc`(ϖi),q2+r+2(k−mi)−lc(i) , (i ∈ I, 0≤ k, `≤ mi, mi−1≤ k+ `≤ mi).

Note that, by Proposition 7.1, the elements Qw(ϖi),qr are invertible in KZ for every (i,r) ∈ V .
Therefore the elements gc(qr) belong in fact to G(KZ).

We can now state the main result of this section.

Proposition 10.13 The map qr 7→ gc(qr) is a quantum (G,c)-Wronskian.

Proof — The formula of Definition 10.12 is obtained in the following way. Consider the seed
S c of KZ given by Theorem 7.4. As already noted in Proposition 10.3, the infinite quiver Γc

of S c contains a finite subquiver γc isomorphic to the quiver of the initial seed Sc of k[Gw0,w0 ].
The cluster variables of Sc are exactly the generalized minors occurring in Definition 10.12, and
their evaluations at g(qr) are the corresponding Q-variables located at the same position on the
subquiver γc of S c, except that their spectral parameter has been multiplied uniformly by qr.
In fact, this spectral parameter shift by qr can be implemented by performing |r|/2 times the
canonical sequence of N mutations at all red vertices if r > 0, or at all green vertices if r < 0. We
shall denote this seed by S c[r].

Let us now perform the same sequence of N mutations at all red vertices of Sc. (Note that
none of the red vertices of Sc is frozen.) Using the generalized minor identities [FZ1, Theorem
1.17], this will replace every red cluster variable ∆ck−1(ϖi),cmi−k(ϖi)

by ∆ck(ϖi),cmi−k+1(ϖi)
.On the other

hand, because of the QQ-relations, the same sequence of N mutations at all red vertices of S c[r]
will replace every red cluster variable Qcmi−k(ϖi),qr+2(k−mi)−lc(i) by Qcmi−k+1(ϖi),qr+2+2(k−mi)−lc(i) . Now, by

definition of gc(qr+2), we have

∆ck−1(ϖi), cmi−k+1(ϖi)
(gc(qr+2)) = Qcmi−k+1(ϖi),qr+2+2(k−mi)−lc(i) ,

hence we obtain

∆ck(ϖi),cmi−k+1(ϖi)
(gc(qr)) = ∆ck−1(ϖi), cmi−k+1(ϖi)

(gc(qr+2)).

This is the quantum (G,c)-Wronskian property of Definition 10.10 when k+ `= mi +1.
Let us call µ(1) the sequence of N mutations that we have performed. In the new seed µ(1)(Sc)

we consider all non-frozen vertices which are sinks for the vertical arrows and call them red
vertices of µ(1)(Sc). There are N−n of them. Let µ(2) denote the sequence of mutations at these
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red vertices of µ(1)(Sc). Repeating the same reasoning for µ(2) as we did for µ(1), we will deduce
the quantum (G,c)-Wronskian property for k+`= mi+2. Iterating, we will verify in this way the
quantum (G,c)-Wronskian property for k+ ` > mi.

Finally, the same reasoning but replacing everywhere red vertices by green vertices will give
the proof of the quantum (G,c)-Wronskian property for k+ `≤ mi. 2

Remark 10.14 Definition 10.10 is an algebraic version of the notion of (G,q)-Wronskian intro-
duced by Koroteev and Zeitlin in [KZ] to generalize the (SL(n),q)-Wronskian of [KSZ]. A (G,q)-
Wronskian is a certain type of section of a principal G-bundle on the projective line equipped with
a q-connection depending on the choice of a Coxeter element c. Proposition 10.13 corresponds to
[KZ, Proposition 4.17]. In our situation, the rôle of the q-connection is played by the sequence of
cluster mutations at red vertices.

Note that in [KSZ, KZ], the QQ-systems have twisting parameters ξi, ξ̃i, and singularities
encoded by certain polynomials Λi(z) (see [KZ, §3.6]). In contrast, our QQ-system equations do
not involve any additional parameters (see Proposition 7.2). A consequence of this is that they
cannot have polynomial solutions. The solutions Qw(ϖi),qr ∈ KZ that we consider in this paper are
all formal power series for w 6= e. We were informed by Koroteev and Zeitlin that QQ-systems
without twisting parameters and singularities naturally occur in relation with q-opers on a disc
(instead of a projective line).
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