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ISOMORPHISMS AMONG QUANTUM GROTHENDIECK RINGS AND

CLUSTER ALGEBRAS

RYO FUJITA, DAVID HERNANDEZ, SE-JIN OH, AND HIRONORI OYA

Abstract. We establish a cluster theoretical interpretation of the isomorphisms of [FHOO22]
among quantum Grothendieck rings of representations of quantum loop algebras. Conse-
quently, we obtain a quantization of the monoidal categorification theorem of [KKOP21b].
We establish applications of these new ingredients. First we solve long-standing problems for
any non-simply-laced quantum loop algebras: the positivity of (q, t)-characters of all simple
modules, and the analog of Kazhdan–Lusztig conjecture for all reachable modules (in the
cluster monoidal categorification). We also establish the conjectural quantum T -systems for
the (q, t)-characters of Kirillov–Reshetikhin modules. Eventually, we show that our isomor-
phisms arise from explicit birational transformations of variables, which we call substitution
formulas. This reveals new non-trivial relations among (q, t)-characters of simple modules.
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Introduction

Consider a complex finite-dimensional simple Lie algebra g and q a generic quantum pa-
rameter. The associated quantum loop algebra Uq(Lg) is a quantum affinization of g with a
structure of Hopf algebra. In particular, finite-dimensional representations over Uq(Lg) form
a rigid monoidal category Cg, whose structure is quite intricate as it is neither semisimple
nor braided. This category has many applications and has been intensively studied from
various perspectives. However, several fundamental questions remain open, such as the di-
mension and q-character (in the sense of Frenkel–Reshetikhin [FR99]) of simple modules in
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non-simply-laced types. In the present paper, we establish that a Kazhdan–Lusztig type
approach is available to solve this problem for a very large family of simple modules.

The quantum Grothendieck ring Kt(Cg) of Cg is a non-commutative deformation of the
Grothendieck ring K(Cg) of Cg inside a quantum torus Yt. It was introduced in [Nak04, VV03]
for simply-laced types and then in [Her04] for non-simply-laced types with a different method.
This ring has a canonical basis Lt,g whose elements Lt(m) are called (q, t)-characters of simple
modules and can be calculated by the Kazhdan–Lusztig type algorithm. Here m belongs to a
setM which serves as a parameter set for the simple modules L(m) in Cg (which is comparable
with the set of Drinfel’d polynomials).

The quantum Grothendieck ring serves as a useful tool to study the simple modules in
Cg. Indeed, when g is simply-laced, Nakajima proved that the (q, t)-characters of simple
modules specialize to the q-characters of simple modules, based on the geometry of quiver
varieties [Nak04]. Namely, the q-characters of simple modules can be calculated by the
Kazhdan–Lusztig type algorithm. More precisely, this algorithm computes the Jordan–Hölder
multiplicity Pm,m′ of the simple module L(m′) occurring in the standard module M(m), that
is a tensor product of fundamental representations, whose q-character is known by Frenkel–
Mukhin [FM01]. Since we have

[M(m)] = [L(m)] +
∑

m′∈M : m′<m

Pm,m′ [L(m′)]

in the Grothendieck ring K(Cg) for a certain partial ordering on M, this algorithm enables
us to compute all the simple q-characters in principle.

Here we emphasize that the quiver varieties play an essential role to guarantee the validity
of the algorithm. When g is non-simply-laced, the above theory is not applicable for the
absence of a fully developed theory of quiver varieties. However, one can still formulate a
conjectural Kazhdan–Lusztig type algorithm for general g.

Conjecture 0.1 (Analog of Kazhdan–Lusztig conjecture, [Her04, Conjecture 7.3]). Under
the specialization Kt(Cg) → K(Cg) at t = 1, the element Lt(m) corresponds to the simple
class [L(m)] for any m ∈M.

Since the (q, t)-characters of simple modules can be computed algorithmically as in the usual
Kazhdan–Lusztig theory, Conjecture 0.1 enables us to compute all the simple q-characters
algorithmically once it is verified. Beyond simply-laced types, this conjecture has been proved
for type B and for certain remarkable monoidal subcategories of Cg in [FHOO22] that are small
(in the sense that they contain only a finite number of fundamental representations).

A related problem is the following positivity conjecture which is known to be true for simply-
laced types [Nak04, VV03], and was formulated for non-simply-laced types almost 20 years
ago in [Her04]. For types CFG, the statement is only known for fundamental representations
and was derived from a computer calculation in [Her05].

Conjecture 0.2 (Positivity of (q, t)-characters). In the quantum torus Yt, the elements Lt(m)
have non-negative coefficients.

In this paper, using the new ingredients that we explain below, we prove Conjecture 0.2
for all simple objects and Conjecture 0.1 for a large family of simple objects.

Theorem 0.3 (= Corollary 6.12 & Corollary 6.10).

(1) For general g, Conjecture 0.2 holds.
(2) For general g, Conjecture 0.1 holds for all reachable modules.
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A simple module is said to be reachable if its class (or one of its spectral parameter shift)
is a cluster monomial for the cluster algebra structure established in [HL16] on a subcategory
C− of Cg. This is a large family of simple modules, including many interesting modules, all
Kirillov–Reshetikhin modules for instance. This cluster algebra structure, and some of its
variations, will play a crucial role in our proofs.

Another important ingredient for our purposes is a collection of isomorphisms between the
quantum Grothendieck rings for non-simply-laced quantum loop algebras and their unfolded
simply-laced ones established in [FHOO22]. Let us explain this. Now we assume that g is
of non-simply-laced type. Then we choose another simple Lie algebra g of simply-laced type
whose Dynkin diagram is obtained by unfolding the Dynkin diagram of g (see Figure 1). It

was proved in [FHOO22] that there exists a (non-unique) isomorphism of Z[t±1/2]-algebras

(0.1) Kt(Cg) ' Kt(Cg)

which induces a bijection between the (q, t)-characters of simple modules. The specialization
at t = 1 of the isomorphism (0.1) yields an isomorphism between the usual Grothendieck rings
which is non-trivial. For example, it does not respect the classes of fundamental modules nor
of standard modules. In the light of the new results we will explain, we understand why
the combinatorics of this bijection are intricate, as they are related to the cluster algebra
structures.

We establish that the quantum Grothendieck ring of the category C− (as well as some
variations C≤ξ of this category, that we introduce) has a structure of a quantum cluster
algebras. This generalizes previous results [HL15, Qin17, Bit21]. We give a cluster theoretical
interpretation of the isomorphisms among quantum Grothendieck rings constructed above,
together with their behaviors on canonical bases. Consequently, we derive the following.

Theorem 0.4 (= Theorem 6.6). The quantum cluster monomials of Kt(C−) belong to the
canonical basis Lt,g of (q, t)-characters of simple modules.

This result is a quantum version of the monoidal categorification theorem of [KKOP21b]
which states that the (classical) cluster monomial in K(C−) are classes of simple modules.
We also have an analogous statement for the whole category Cg (see Theorem 6.15, where we
actually work with a monoidal skeleton CZ of Cg for simplicity). Let us sum up the situation
in the following diagram:

K(Cg) Kt(Cg)
t=1oo

zz

∼=

$$
At

∼=oo
∼= // Kt(Cg)

Lg

- 


<<

M? _oo
?�

OO

Lt,g
?�

OO

Mt
?�

OO

� � //? _oo

t=1

dd Lt,g
?�

OO

::

1:1

dd

Here Lg is the basis of the Grothendieck ring K(Cg) consisting of simple classes. It contains
the set of classes of reachable modules M by [KKOP21b]. A quantum cluster algebra At
is isomorphic to Kt(Cg) and to Kt(Cg) as proved in Sections 5 and 6. The cluster algebra
At contains its set of quantum cluster monomials Mt which specializes at t = 1 to M. The
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composition of the isomorphisms to At recovers the isomorphism (0.1) of [FHOO22] as proved
in Section 6. This isomorphism induces a bijection between the canonical bases Lt,g, Lt,g as
mentioned above. We prove in Section 6 that Mt is sent to a subset of Lt,g, and so also to
a subset of Lt,g. Combining all these results, we obtain that the elements in Lt,g that come
from elements in Mt are evaluated at t = 1 to elements in Lg, that is Theorem 0.3 (2). (In
the main body of the paper, we actually work with the analog of the above diagram for the
categories C≤ξ.)

Theorem 0.3 (1) is proved for all simple modules by identifying the coefficients occurring in
the (q, t)-characters with certain structure constants of the quantum Grothendieck ring with
respect to the canonical basis Lt,g. For this identification, the (q, t)-characters of particular
reachable simple modules, called Kirillov–Reshetikhin modules, play a key role. Our quantum
version of the monoidal categorification theorem implies that they satisfy the quantum T -
systems, as conjectured in [FHOO22], which help us to investigate the structure of these
(q, t)-characters.

As another application of the cluster theoretical interpretation of our isomorphisms among
quantum Grothendieck rings, we show that our isomorphisms arise from explicit birational
transformations of the variables in the quantum torus Yt (Theorem 7.1). We call these bira-
tional transformations as substitution formulas. Indeed, in [FHOO22, §10.3], we provided a
way of calculating the correspondence between the `-highest weight monomials of the (q, t)-
characters of simple modules which are mutually related under our isomorphism, while the
explicit correspondence among the lower terms had not been known. The substitution for-
mulas in the present paper provide one method to calculate it, and reveal new non-trivial
relations among the (q, t)-characters of simple modules. Note that we already know that the
(q, t)-characters of simple modules specialize to their q-characters at t = 1 in several cases (for
example, in the case when g is of types ABDE or in the new cases established in the present
paper), hence our formulas also imply several non-trivial relations among the q-characters of
simple modules. It seems to be a new application of cluster algebras to the representation
theory of quantum loop algebras, and it might be an interesting problem to further investigate
the meaning of our formulas.

For a discussion on the recent study of the non-symmetric quantized Coulomb branches
[NW23, Nak] by Nakajima and Weekes and the possible relation to our results, see the Intro-
duction of [FHOO22].

The paper is organized as follows. In Section 1, we introduce the quantum cluster algebra
Ai associated to an infinite sequence i with values in ∆0, the vertex set of the Dynkin diagram
of g (such that each value occurs infinitely many times), imitating the cluster structure of the
quantum unipotent groups. In Section 2, we study the relation between the quantum cluster
algebras Ai and Ai′ when i and i′ are related by simple operations (commutation moves,
braid moves and forward shifts in respective Sections 2.1, 2.2 and 2.3). In particular, we
obtain isomorphisms and embeddings of quantum cluster algebras which are relevant for our
purposes. In Section 3, we recall that by [GLS13, KKKO18, KK19] the quantum unipotent
group At[N−] associated to g has a quantum cluster algebras structure compatible with the
dual canonical basis, which is isomorphic to some of the (finite version of the) quantum cluster
algebras Ai. We establish that these isomorphisms are compatible with the transformations
of the last section (Corollary 3.4). In Section 4, we give general reminders on the category C
of finite-dimensional representations of a quantum loop algebra, in particular on Kazhdan–
Lusztig type conjectures in this context. We also recall the monoidal subcategories CZ and C−

defined in [HL10, HL16] and we introduce subcategories C≤ξ generalizing C−. In Section 5, we
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establish that the quantum Grothendieck ring of the category C≤ξ has a structure of a quantum
cluster algebra isomorphic to an algebra Ai introduced above (Theorem 5.16). Our proof is
partly based first on an isomorphism of quantum tori that we establish (Corollary 5.13).
In Section 6, we give a cluster theoreticalal interpretation of the isomorphisms of quantum
Grothendieck rings constructed in [FHOO22] (Theorem 6.3), together with their canonical
basis (Corollary 6.4). This leads to a quantum version of the monoidal categorification theorem
for the categories C≤ξ (Theorem 6.6) and CZ (Theorem 6.15). We derive the applications
discussed above (Corollary 6.10, Corollary 6.12). In Section 7, we show that our isomorphisms
among quantum Grothendieck rings come from explicit birational transformations among the
variables in our quantum tori Yt, which we call substitution formulas (Theorems 7.1 and 7.2).

Acknowledgments. R. F. was supported by JSPS Overseas Research Fellowships. D. H. was
supported by the Institut Universitaire de France. S.-j. Oh was supported by the Ministry of
Education of the Republic of Korea and the National Research Foundation of Korea (NRF-
2022R1A2C1004045). H. O. was supported by JSPS Grant-in-Aid for Early-Career Scientists
(No.19K14515).

Conventions. Let N := Z>0 be the set of positive integers and N0 := N ∪ {0}. For a, b ∈ Z,
we set [a, b] := {u ∈ Z | a ≤ u ≤ b}. For a statement P, we set δ(P) to be 1 or 0 according that
P is true or not. As a special case, we use the notation δi,j := δ(i = j) (Kronecker’s delta).

1. The quantum cluster algebra Ai
Let ∆ be the Dynkin graph of a finite-dimensional simple Lie algebra g over C, with ∆0

being its vertex set. We introduce the quantum cluster algebra Ai associated to an infinite
sequence i with values in ∆0 (such that each value occurs infinitely many times), imitating
the cluster structure of the quantum unipotent groups. The results in this section hold true
for g of arbitrary types, while in the applications to the representation theory of quantum
loop algebras of arbitrary untwisted type we will obtain in this paper, we will only use the
quantum cluster algebra Ai obtained from g of simply-laced type (even when we will handle
non-simply-laced quantum loop algebras).

1.1. Notation. Let C = (cij)i,j∈∆0 be the Cartan matrix of g and D = diag(di | i ∈ ∆0) its
minimal left symmetrizer (i.e. min{di | i ∈ ∆0} = 1). For i, j ∈ ∆0, we write i ∼ j when
cij < 0. Let h∗ be the dual of a Cartan subalgebra of g. Let {αi}i∈∆0 and {$i}i∈∆0 be
the two bases of h∗ formed by simple roots and fundamental weights respectively. They are
related by αi =

∑
j∈∆0

cji$j . We consider the symmetric bilinear pairing (·, ·) on h∗ given

by (αi, αj) = dicij . For each i ∈ ∆0, the i-th simple reflection si is a linear operator on h∗

given by si$j = $j − δi,jαi for j ∈ ∆0. Let W denote the Weyl group of g, which is the
subgroup of GL(h∗) generated by the simple reflections {si}i∈∆0 . Note that the pairing (−,−)
is W-invariant. The pair (W, {si}i∈∆0) forms a finite Coxeter system. Let w◦ be the longest
element of W and ` ∈ N its length. Let i 7→ i∗ denote the involution of ∆ given by w◦, namely
w◦αi = −αi∗ .

Consider the set ∆N
0 of infinite sequences of elements of ∆0. Let ∆

(∞)
0 denote the subset of

∆N
0 consisting of sequences i = (iu)u∈N satisfying the condition:

(1.1) For any i ∈ ∆0, we have |{u ∈ N | iu = i}| =∞.
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1.2. Compatible pair (B̃i,Λi). In this section, we fix a sequence i = (iu)u∈N ∈ ∆
(∞)
0 . For

u ∈ N and j ∈ ∆0, we write

u+ = u+
i := min{k ∈ N | k > u, ik = iu},

u− = u−i := max({k ∈ N | k < u, ik = iu} ∪ {0}),
u+(j) = u+

i (j) := min{k ∈ N | k > u, ik = j},
u−(j) = u−i (j) := max({k ∈ N | k < u, ik = j} ∪ {0}).

For u ∈ N0, we define
wu = wiu := si1si2 · · · siu ∈W.

Consider the N× N-matrix B̃i = (bu,v)u,v∈N given by

bu,v =



1 if v = u+,

−1 if u = v+,

ciu,iv if u < v < u+ < v+,

−ciu,iv if v < u < v+ < u+,

0 otherwise.

Note that B̃i is skew-symmetrizable by diag(diu | u ∈ N).
Let Λi = (Λu,v)u,v∈N be the skew-symmetric matrix defined by

(1.2) Λu,v = −Λv,u := ($iu − wu$iu , $iv + wv$iv) for u ≤ v.

Lemma 1.1. Let u, v ∈ N. If u < v+, we have Λu,v = ($iu − wu$iu , $iv + wv$iv).

Proof. When u ≤ v, this is nothing but the definition (1.2). When v < u < v+, we have
(wu$iu , wv$iv) = ($iu , $iv) and hence

Λu,v = −($iu + wu$iu , $iv − wv$iv) = ($iu − wu$iu , $iv + wv$iv). �

Proposition 1.2. Let i = (iu)u∈N ∈ ∆
(∞)
0 . For any u, v ∈ N, we have

(1.3)
∑
k∈N

bk,uΛk,v = 2diuδu,v.

Proof. Put i := iu. By the definition of B̃i, we have∑
k∈N

bk,uΛk,v = Λu−,v − Λu+,v +
∑
j∼i

cji
(
Λu−(j),v − Λ(u+)−(j),v

)
=: xu,v,

where we understand Λ0,v = 0 (then, (1.2) still holds for u = 0). Note that (u+)−(j) denotes
the largest integer u′ < u+ such that iu′ = j.

We need to show xu,v = 2diuδu,v. Since si$j = $j − δijαi and αi = 2$i +
∑

j∼i cji$j , we
have

(1.4) wu$i = −wu−$i −
∑
j∼i

cjiwu−(j)$j

for any u ∈ N. Using this identity twice, we obtain

yu := wu+$i − wu−$i +
∑
j∼i

cji(w(u+)−(j)$j − wu−(j)$j) = 0.

First, consider the case when u ≤ v. If u+ ≤ v, then we have

xu,v = (yu, $iv + wv$iv) = 0.
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When u ≤ v < u+, we have

xu,v = ($i − wu−$i, $iv + wv$iv) + ($i + wu+$i, $iv − wv$iv)

+
∑
j∼i

cji
{

($j − wu−(j)$j , $iv + wv$iv) + ($j + w(u+)−(j)$j , $iv − wv$iv)
}

= (−si$i + wu$i, $iv + wv$iv) + (−si$i − wu$i, $iv − wv$iv)

= 2(−si$i, $iv) + 2($i, $iv)

= 2(αi, $iv)

= 2diδi,iv .

Here the first equality follows from Lemma 1.1 (note that v < u+ < (u+)−(j)+). The second
one follows from (1.4). The third one is because (wu$i, wv$iv) = (wv$i, wv$iv) = ($i, $iv).
To conclude, we note that δi,iv = δu,v under the condition u ≤ v < u+.

Next, assume that u > v. If u− ≥ v, we have

xu,v = (yu, $iv − wv$iv) = 0.

Here we use again Lemma 1.1 (note that (u+)−(j)+ ≥ u−(j)+ > u > v).
When u > v > u−, we have

xu,v = ($i − wu−$i, $iv + wv$iv) + ($i + wu+$i, $iv − wv$iv)

+
∑
j∼i

cji
{
−($j + wu−(j)$j , $iv − wv$iv) + ($j + w(u+)−(j)$j , $iv − wv$iv)

}
= (yu +$i + wu−$i, $iv − wv$iv) + ($i − wu−$i, $iv + wv$iv)

= 2($i, $iv)− 2(wu−$i, wv$iv)

= 2($i, $iv)− 2(wv$i, wv$iv)

= 0.

Here the first equality follows from Lemma 1.1 (note that (u+)−(j)+ ≥ u−(j)+ > u > v).
The fourth one is deduced from our assumption u > v > u−.

The calculations above complete the proof. �

Let us take n ∈ N and set

J := [1, n], Jf := {k ∈ [1, n] | k+ > n}, Je := J \ Jf .

By truncating B̃i and Λi, we get a J × Je-matrix B̃n
i := (bu,v)u∈J,v∈Je and a J × J-matrix

Λni := (Λu,v)u,v∈J .

Corollary 1.3. For any n ∈ N, the pair (B̃n
i ,Λ

n
i ) defined as above forms a compatible pair.

More precisely, we have ∑
k∈J

bk,uΛk,v = 2diuδu,v for u ∈ Je, v ∈ J.

Proof. By the definition of Je, we have bk,u = 0 for u ∈ Je and k ∈ N \ J . Therefore, the
result follows from Proposition 1.2. �

Remark 1.4. Corollary 1.3 is well-known when (i1, . . . , in) is a reduced word for an ele-
ment of W (see [GLS13, Proposition 10.1, Lemma 11.3] and [GY17, Proposition 10.4]). Also
Corollary 1.3 gives an affirmative answer to [KO23, Conjecture 1].
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Definition 1.5. Let i = (i1, . . . , in) be an arbitrary finite sequence in ∆0. We extend it to

an infinite sequence ĩ = (iu)u∈N satisfying (1.1) and define a compatible pair

(B̃i,Λi) := (B̃n
ĩ
,Λn
ĩ
).

Clearly it is independent of the choice of extension ĩ ∈ ∆
(∞)
0 and hence it is well-defined.

1.3. Quantum cluster algebra Ai. For the generality of quantum cluster algebras, we refer

the reader to Appendix A. Let us denote by Ai = At(B̃i,Λi) the quantum cluster algebra

associated with the compatible pair (B̃i,Λi) in Proposition 1.2. It is a Z[t±1/2]-subalgebra

of the quantum torus T (Λi). Here we recall that T (Λi) is the Z[t±1/2]-algebra generated by
{X±1

u }u∈N subject to the relations

• XuX
−1
u = X−1

u Xu = 1 for u ∈ N,
• XuXv = tΛu,vXvXu for u, v ∈ N.

For each n ∈ N, we have the quantum cluster algebra Ani := At(B̃n
i ,Λ

n
i ) with ambient quan-

tum torus T (Λni ). We naturally regard T (Λni ) as the Z[t±1/2]-subalgebra of T (Λi) generated
by {X±1

u }u∈[1,n]. Thus we have the inclusions

A1
i ⊂ A2

i ⊂ · · · ⊂ Ai ⊂ T (Λi) such that
⋃
n∈N
Ani = Ai.

In particular, each cluster variable (resp. monomial) of Ai is a cluster variable (resp. mono-
mial) of Ani for n ∈ N large enough.

2. Relations among Ai’s

In this section, we study the relation between the quantum cluster algebras Ai and Ai′
when i and i′ are related by simple operations (commutation moves, braid moves and forward
shifts in respective Sections 2.1, 2.2 and 2.3). In particular, we obtain isomorphisms and
embeddings of quantum cluster algebras which are relevant for our purposes. We “keep
track” of the degrees (g-vectors) of cluster monomials through these transformations which
will be useful in the sequel.

In the present and the following sections, we take ∆ as a Dynkin diagram of finite type

ADE. With each sequence i = (iu)u∈N ∈ ∆
(∞)
0 , we associate the infinite quiver Γi defined as

follows: The set of vertices of Γi is simply N. For u, v ∈ N, we assign an arrow u → v in Γi
when either

• iu ∼ iv and u < v < u+ < v+, or
• iu = iv and u = v+.

Then, we have

(2.1) bu,v = |{arrows v → u in Γi}| − |{arrows u→ v in Γi}|.

For a set X, we denote by SX the group of permutations of X. For a matrix A =
(Au,v)u,v∈X and a permutation π ∈ SX , we set πA := (Aπ−1(u),π−1(v))u,v∈X . For each k ∈ N,
let σk ∈ SN be the simple transposition of k and k + 1.

In what follows, we work with two sequences i = (iu)u∈N, i
′ = (i′u)u∈N ∈ ∆

(∞)
0 .
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2.1. Commutation moves. First, we consider the case of a simple permutation of two
successive elements of the sequence which are not adjacent in the Dynkin diagram. Precisely,
it is the case when (i′k, i

′
k+1) = (ik+1, ik) with ik 6= ik+1 and ik 6∼ ik+1 for some k ∈ N, and

iu = i′u for u 6∈ {k, k + 1}. In this case, we write i′ = γki.

Lemma 2.1. When i′ = γki, we have B̃i′ = σkB̃i and Λi′ = σkΛi.

Proof. Thanks to the commutation relation siksik+1
= sik+1

sik , it is immediate that the

permutation σk induces a quiver isomorphism Γi ' Γi′ . Therefore we obtain σkB̃i = B̃i′ . To
show σkΛi = Λi′ , let Λi = (Λu,v)u,v∈N and Λi′ = (Λ′u,v)u,v∈N. For u, v 6∈ {k, k + 1}, we have
to prove the followings:

(i) Λu,v = Λ′u,v,
(ii) Λu,k = Λ′u,k+1,

(iii) Λu,k+1 = Λ′u,k,

(iv) Λk,k+1 = Λ′k+1,k.

For a 6= k, we have wia = wi
′
a , from which (i) follows. Moreover, we observe wik$ik =

wik+1$ik = wi
′
k+1$i′k+1

, from which (ii) follows. (iii) is dual to (ii). To see (iv), we may use

Lemma 1.1. �

Lemma 2.1 implies the following (see Appendix A.3).

Proposition 2.2. Assume that i, i′ ∈ ∆
(∞)
0 are related by i′ = γki for some k ∈ N. Then,

we have an isomorphism of Z[t±1/2]-algebras

γ∗k(= σ∗k) : Ai′ ' Ai given by Xu 7→ Xσk(u) for all u ∈ N,

which induces a bijection between the sets of quantum cluster monomials.

Remark 2.3. When n 6= k, the isomorphism γ∗k restricts to the isomorphism

γ∗k : Ani′ ' Ani .

Now, let us explain how the degrees of cluster monomials get modified.

Lemma 2.4. Assume that i, i′ ∈ ∆
(∞)
0 are related by i′ = γki for some k ∈ N. If x ∈ Ai′

is a cluster monomial whose degree is g′ = (g′u)u∈N ∈ Z⊕N, then the element γ∗kx ∈ Ai is the
cluster monomial whose degree g = (gu)u∈N is given by

(2.2) gu =


g′k+1 if u = k,

g′k if u = k + 1,

g′u otherwise.

Proof. Immediate from the construction. �

Definition 2.5 (Commutation equivalence). Let J = N, or J = [1, n] for some n ∈ N. Let
π ∈ SJ be a permutation. We say that two sequences i = (i1, i2, . . .) and i′ = (i′1, i

′
2, . . .) ∈ ∆J

0

are commutation-equivalent by π if iu = i′π(u) for all u ∈ J and we have [iu 6= iv and iu 6∼ iv]

whenever [u < v and π(u) > π(v)]. We simply say that i and i′ are commutation-equivalent
if they are commutation-equivalent by some π ∈ SJ .

The above discussion can be generalized as follows.
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Proposition 2.6. Let J = N, or J = [1, n] for some n ∈ N. Assume that two sequences

i and i′ are commutation-equivalent by a permutation π ∈ SJ . Then, we have (B̃i′ ,Λ
′
i) =

(πB̃i, πΛi) and hence we have the isomorphism of Z[t±1/2]-algebras π∗ : Ai′ ' Ai, which
induces a bijection between the sets of quantum cluster monomials.

2.2. Braid moves. Next, we consider the case of a braid transformation of three successive
elements of the sequence. Precisely, we assume that (ik, ik+1, ik+2) = (i, j, i) with i ∼ j for
some k ∈ N, and i′ is obtained from i by applying the braid move (i, j, i) (j, i, j). Namely
we have i′l = il for l 6∈ {k, k + 1, k + 2} and (i′k, i

′
k+1, i

′
k+2) = (j, i, j). In this case, we write

i′ = βki. Let µk denote the mutation at k.

Lemma 2.7. When i′ = βki, the permutation σk+1 induces a quiver isomorphism µkΓi ' Γi′.

In other words, we have B̃i′ = σk+1µkB̃i.

Proof. We put K = {k, k + 1, k + 2, k−i , (k + 1)−i } ∩ N. This is the neighborhood of k in Γi,
that is, the set of vertices which are equal or adjacent to k in the (underlying graph of the)
quiver Γi. Since k−i = (k+ 1)−i′ and (k+ 1)−i = k−i′ , the set K is also the neighborhood of k in
the quiver Γi′ and that of σk+1Γi′ . Note that the mutation µk only changes the full subquiver
Γi|K , and we have

µkΓi \ (µkΓi|K) = Γi \ (Γi|K) = σk+1Γi′ \ (σk+1Γi′ |K).

Therefore, we only have to check µkΓi|K = σk+1Γi′ |K . We only consider the case when both
k−i and (k + 1)−i are nonzero since the proof for the other case is similar, or rather simpler.
In this case, the quiver Γi|K is depicted as:

Γi|K =


(k + 1)−i

&&

k + 1oo

β

��

k

99

xx
k−i

α

OO

k + 2

ee

 ,

where we have the arrow α if and only if k−i < (k+ 1)−i , and we have the arrow β if and only

if (k + 1)+
i < (k + 2)+

i . Its mutation at k is:

µkΓi|K =


(k + 1)−i

��

k + 1

yy
β

��

k

ff

%%
k−i

88α

OO

k + 2oo

OO

 =


(k + 1)−i

α′

��

k + 1

yy
k

ff

%%
k−i

88

k + 2oo

β′

OO

 ,

where we have the arrow α′ if and only if k−i > (k + 1)−i , and we have the arrow β′ if and

only if (k + 1)+
i > (k + 2)+

i . On the other hand, the quiver Γi′ |K is depicted as:

Γi′ |K =


k−i′

α′′

��

k + 2

yy
k

ff

%%
(k + 1)−i′

88

k + 1

β′′

OO

oo

 ,



ISOMORPHISMS AMONG QUANTUM GROTHENDIECK RINGS AND CLUSTER ALGEBRAS 11

where we have the arrow α′′ if and only if k−i′ < (k + 1)−i′ , and we have the arrow β′′ if and

only if (k + 1)+
i′ < (k + 2)+

i′ . Since (k−i′ , (k + 1)−i′ ) = ((k + 1)−i , k
−
i ) and ((k + 1)+

i′ , (k + 2)+
i′ ) =

((k + 2)+
i , (k + 1)+

i ), we find µkΓi|K = σk+1Γi′ |K as desired. �

Lemma 2.8. When i′ = βki, we have Λi′ = σk+1µkΛi.

Proof. Let (i, j) := (ik, ik+1). As before, we put Λi = (Λu,v)u,v∈N and Λi′ = (Λ′u,v)u,v∈N. We
have to show Λ′u,v = (µkΛi)σk+1(u),σk+1(v) for u < v. It divides into the following 10 cases:

(i) Λ′u,v = Λu,v for u, v 6∈ {k, k + 1, k + 2},
(ii) Λ′k+2,v = Λk+1,v for v > k + 2,

(iii) Λ′k+1,v = Λk+2,v for v > k + 2,

(iv) Λ′k+1,k+2 = Λk+2,k+1,

(v) Λ′u,k+2 = Λu,k+1 for u < k,

(vi) Λ′u,k+1 = Λu,k+2 for u < k,

(vii) Λ′k,v = Λk−(j),v + Λk+2,v − Λk,v for v > k + 2,

(viii) Λ′k,k+2 = Λk−(j),k+1 + Λk+2,k+1 − Λk,k+1,

(ix) Λ′k,k+1 = Λk−(j),k+2 − Λk,k+2,

(x) Λ′u,k = Λu,k−(j) + Λu,k+2 − Λu,k for u < k.

Here k−(j) := k−i (j) = k−i′ (j). Recall the braid relation sisjsi = sjsisj . Then we have

wia = wi
′
a for any a ∈ N \ {k, k + 1}, from which (i) follows. Also, we observe wik+2$i =

wi
′
k+2$i = wi

′
k+1$i, from which (ii) and (v) follow. (iii) and (vi) are dual to them. To check

(iv), we may also use Lemma 1.1. To check (vii), we observe (si − sisjsi)$i = αj and hence

x := $j − wik−(j)$j − wik+2$i + wik$i

= $j − wik−1($j − (si − sisjsi)$i)

= $j − wik−1($j − αj)

= $j − wi
′
k$j .

Therefore we have

Λk−(j),v + Λk+2,v − Λk,v = (x,$iv + wiv$iv) = ($j − wi
′
k$j , $i′v + wi

′
v $i′v) = Λ′k,v.

We can check the remaining (viii), (ix) and (x) in a similar way with the help of Lemma 1.1
(and a trivial fact Λk+2,k+2 = 0 for (ix)). �

Lemmas 2.7 & 2.8 show the equality (Λi′ , B̃i′) = σk+1µk(Λi, B̃i) in the notation of Appen-
dix A. Therefore we have the following.

Proposition 2.9. Assume that i, i′ ∈ ∆
(∞)
0 are related by i′ = βki for some k ∈ N. Then,

we have an isomorphism of Z[t±1/2]-algebras

β∗k(= µ∗kσ
∗
k+1) : Ai′ ' Ai given by Xu 7→ µ∗k(Xσk+1(u)) for all u ∈ N,

which induces a bijection between the sets of quantum cluster monomials.

Remark 2.10. When n 6∈ {k, k + 1}, the isomorphism β∗k restricts to the isomorphism

β∗k : Ani′ ' Ani .

Now, let us explain how the degrees of cluster monomials get modified.
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Lemma 2.11. Assume that i, i′ ∈ ∆
(∞)
0 are related by i′ = βki for some k ∈ N. If x ∈ Ai′

is a cluster monomial whose degree is g′ = (g′u)u∈N ∈ Z⊕N, then the element β∗kx ∈ Ai is the
cluster monomial whose degree g = (gu)u∈N is given by

(2.3) gu =


−g′k if u = k,

g′σk+1(u) + max(g′k, 0) if u ∈ {k + 2, (k + 1)−i },
g′σk+1(u) + min(g′k, 0) if u ∈ {k + 1, k−i },
g′u otherwise.

Proof. Apply the formula in Theorem A.5. �

2.3. Forward shifts. Now, we consider a global forward shift of the elements of the sequence.

Precisely, assume that the sequences i = (iu)u∈N, i
′ = (i′u)u∈N ∈ ∆

(∞)
0 satisfy

i′u = iu+1 for all u ∈ N.

In this case, we write i′ = ∂+i. Let i := i1. Define an increasing sequence of positive integers
(xn)n∈N by the condition x1 = 1 and xn = (xn−1)+

i for n > 1, so that {xn}n∈N = {k ∈ N |
ik = i}. In the following lemmas, we consider the infinite mutation sequence corresponding
to (x1, x2, . . .). Let σ+ ∈ SN be the permutation defined by

σ+(k) =

{
k+
i − 1 if ik = i,

k − 1 if ik 6= i,

whose inverse σ−1
+ is given by

σ−1
+ (k) =

{
(k + 1)−i if ik+1 = i,

k + 1 if ik+1 6= i.

Lemma 2.12. Assume i′ = ∂+i and keep the above notation. Then, the limit

lim
n→∞

µxn · · ·µx2µx1B̃i

yields a well-defined matrix µ+B̃i and we have σ+µ+B̃i = B̃i′.

Proof. For j ∈ ∆0, we put Xj := {k ∈ N | ik = j}. By definition, we have Xi = {xn}n∈N. Take
an index j ∈ ∆0 adjacent to i, and consider the map Xi → Xj ∪ {0} given by xn 7→ (xn)−i (j).
Let {0 = y0 < y1 < y2 < · · · } be the natural ordering of the image of this map. For each
n ∈ N0, let ln be the largest integer (> 0) satisfying (xln)−i (j) = yn. The quiver Γi restricted
to Xij := Xi ∪Xj is depicted as:

x1
oo · · · oo xl0−1

oo xl0
oo

��

xl0+1
oo · · · oo xl1

oo

��

xl1+1
oo · · · oo xl2

oo · · ·

y1
oo

88

(y1)+
i
oo · · · oo y2

oo

88

(y2)+
i
oo · · ·

.

We easily see that the mutated quiver µxl0−1
· · ·µx1(Γi|Xij ) is:

x1
oo · · · oo xl0−1

// xl0
oo

��

xl0+1
oo · · · oo xl1

oo

��

xl1+1
oo · · · oo xl2

oo · · ·

y1
oo

88

(y1)+
i
oo · · · oo y2

oo

88

(y2)+
i
oo · · ·

.
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Then, applying Lemma 2.13 below, the quiver µxl1−1
· · ·µx1(Γi|Xij ) is depicted as:

x1
oo · · · oo xl0−1

oo

&&

xl0
oo · · · oo xl1−1

// xl1
oo

��

xl1+1
oo · · · oo xl2

oo · · ·

y1
oo

AA

(y1)+
i
oo · · · oo y2

oo

88

(y2)+
i
oo · · ·

,

where we have the dashed arrow if and only if l0 > 1. By repetition, we finally find that the
limit limn→∞ µxn · · ·µx1(Γi|Xij ) gives a well-defined quiver depicted as:

x1
oo · · · oo xl0−1

oo

&&

xl0
oo · · · oo xl1−1

oo

&&

xl1
oo · · · oo xl2−1

oo xl2
oo · · ·

y1
oo

AA

(y1)+
i
oo · · · oo y2

oo

AA

(y2)+
i
oo · · ·

,

which is isomorphic to Γi′ |σ+(Xij). Moreover, for each n ∈ N, there are no arrows going into

the vertex xn in the quiver µxn−1 · · ·µx1Γi other than xn−1 → xn and xn+1 → xn (see the
latter assertion of Lemma 2.13 below). Thus, we have

µxn · · ·µx1(Γi|Xij ) = (µxn · · ·µx1Γi)|Xij .

Since the mutations {µx1 , µx2 , . . .} change only the full subquivers supported on
⋃
j∼iXij , we

find that the limit µ+Γi := limn→∞ µxn · · ·µx1Γi is well-defined. Moreover, the permutation
σ+ gives an isomorphism of the quivers σ+ : µ+Γi ' Γi′ . Thus we obtain the conclusion. �

Lemma 2.13. Let n ∈ N and consider a quiver Q given by

Q =

 0 // 1 oo 2 oo · · · oo n oo n+ 1

•''

77
 .

Then, we have

µn · · ·µ2µ1Q =

 0 oo 1 oo 2 oo · · · oo n // n+ 1

•''

77
 .

Moreover, for each k ∈ [1, n], there are no arrows going into the vertex k in the quiver
µk−1 · · ·µ1Q other than k − 1→ k and k + 1→ k.

Proof. The proof is straightforward:

µ1Q =

 0 oo

))

1 // 2 oo

��

3 oo · · · oo n+ 1

•

gg 77
 ,

µ2µ1Q =

 0 oo

))

1 oo 2 //
^^ 3 oo

��

· · · oo n+ 1

•

77
 ,

· · ·



14 R. FUJITA, D. HERNANDEZ, S.-J. OH, AND H. OYA

µn−1 · · ·µ1Q =

 0 oo

))

1 oo · · · oo n− 1 //
OO n oo

��

n+ 1

•

77
 . �

Lemma 2.14. Assume i′ = ∂+i and keep the above notation. Then, the limit

lim
n→∞

µxn · · ·µx2µx1Λi

yields a well-defined matrix µ+Λi and we have σ+µ+Λi = Λi′.

Proof. We put Λi = (Λu,v)u,v∈N and Λi′ = (Λ′u,v)u,v∈N. As we have seen in the proof of
Lemma 2.12, there are no arrows going into the vertex xk in the quiver µxk−1

· · ·µx1Γi other
than xk−1 → xk and xk+1 → xk for each k ∈ N. Thus, we have

µxn · · ·µx2µx1Λi = (E(1)E(2) · · ·E(n))TΛi(E
(1)E(2) · · ·E(n)),

where the matrix E(k) = (e
(k)
u,v)u,v∈N is given by

e(k)
u,v =

{
δu,v if v 6= xk,

−δu,xk + δu,xk−1
+ δu,xk+1

if v = xk.

Therefore, the limit limn→∞E
(1)E(2) · · ·E(n) yields a well-defined matrix E and hence

µ+Λi = lim
n→∞

µxn · · ·µx1Λi = ETΛE

is also well-defined. More precisely, letting E = (eu,v)u,v∈N, we have

eu,v =
∑

a1,...,an−1∈N
e(1)
u,a1

e(2)
a1,a2

· · · e(n)
an−1,v,

where n ∈ N is an integer such that v ≤ xn. From this, we find that eu,v = δu,v if iv 6= i := i1,
and that eu,xn = −δu,xn + eu,xn−1 + δu,xn+1 . By the latter equality, we further compute

eu,xn − δu,xn+1 = eu,xn−1 − δu,xn = · · · = eu,x1 − δu,x2 = −δu,1,

where the last equality follows since eu,x1 = e
(1)
u,1 = −δu,1 + δu,x2 . Thus, we get

(2.4) eu,v =

{
δu,v if iv 6= i,

δu,v+ − δu,1 if iv = i,

where v+ = v+
i . Therefore, we have

(µ+Λi)u,v = (ETΛiE)u,v =


Λu,v if i 6∈ {iu, iv},
Λu+,v − Λ1,v if iu = i and iv 6= i,

Λu,v+ − Λu,1 if iu 6= i and iv = i,

Λu+,v+ − Λ1,v+ − Λu+,1 if iu = iv = i.



ISOMORPHISMS AMONG QUANTUM GROTHENDIECK RINGS AND CLUSTER ALGEBRAS 15

From this, the desired equality (µ+Λi)u,v = Λ′σ+(u),σ+(v) follows for any u, v ∈ N. For example,

when iu = iv = i and u < v, we have

Λ′σ+(u),σ+(v) = ($i − siwiu+$i, $i + siw
i
v+$i)

= ((1− si)$i + si(1− wiu+)$i, (1− si)$i + si(1 + wiv+)$i)

= ((1− si)$i, (1− si)$i)− ((1− wiu+)$i, (1− si)$i)

− ((1− si)$i, (1 + wiv+)$i) + ((1− wiu+)$i, (1 + wiv+)$i)

= Λ1,u+ − Λ1,v+ + Λu+,v+ .

Here, for the last equality, we used the identity

((1− si)$i, (1− si)$i) = ((1− si)$i, 2$i).

For the other case, we can check the desired equality with a similar computation. �

For each u ∈ N, there is nu ∈ N such that xnu > u since {xn}n∈N is increasing. Then, we

have µ∗xn(Xu) = Xu if n ≥ nu. We define a homomorphism of Z[t±1/2]-algebras

µ∗+ : At(µ+(Λi, B̃i))→ At(Λi, B̃i)

by µ∗+(Xu) := µ∗x1
µ∗x2
· · ·µ∗xnu (Xu) for all u ∈ N. Note that µ∗+(Xu) is independent of the

choice of nu with xnu > u, and hence µ∗+ is well-defined. By construction, it sends each
quantum cluster monomial to a quantum cluster monomial.

Lemmas 2.12 & 2.14 show the equality (Λi′ , B̃i′) = σ+µ+(Λi, B̃i) of compatible pairs.
Therefore we have obtained the following.

Proposition 2.15. Assume that i, i′ ∈ ∆
(∞)
0 are related by i′ = ∂+i. Then, we have a

homomorphism of Z[t±1/2]-algebras

∂∗+(= µ∗+σ
∗
+) : Ai′ → Ai given by Xu 7→ µ+(Xσ−1

+ (u)) for all u ∈ N,

which sends each cluster monomial in Ai′ to a cluster monomial in Ai.

Now, let us explain how the degrees of cluster monomials get modified under a certain

condition. For i ∈ ∆
(∞)
0 , let Ci ⊂ Z⊕N denote a cone given by

(2.5) Ci :=

g = (gu)u∈N ∈ Z⊕N
∣∣∣∣∣∣

∑
v≥u,iv=iu

gv ≥ 0,∀u ∈ N

 =
∑
u∈N

N0(eu − eu−i ),

where {eu}u∈N is the natural basis of Z⊕N and we understand e0 = 0.

Lemma 2.16. Assume that i, i′ ∈ ∆
(∞)
0 are related by i′ = ∂+i. Let x′ ∈ Ai′ be a cluster

monomial of degree g′ = (g′u)u∈N. Assuming g′ ∈ Ci′, the degree g = (gu)u∈N of the cluster
monomial ∂∗+x

′ ∈ Ai is given by

(2.6) gu =

{
−
∑

v∈N;i′v=i1
g′v if u = 1,

g′u−1 if u > 1.

In other words, the assignment g′ 7→ g is given by the N0-linear map Ci′ → Ci which sends
eu − eu−

i′
∈ Ci′ to eu+1 − e(u+1)−i

∈ Ci for all u ∈ N.
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Proof. This is an application of Theorem A.5. To be more precise, let g′′ = (g′′u)u∈N :=
(g′σ+(u))u∈N so that we have deg σ∗+(x′) = g′′ (see Remark A.7). Take a large integer n ∈ N
such that g′′u = 0 for all u > xn. Then we have ∂∗+x

′ = µ∗x1
µ∗x2
· · ·µ∗xnσ

∗
+x
′. The assumption

g′ ∈ Ci′ implies

sm :=
∑

m≤l≤n
g′′xl ≥ 0

for all m ∈ [2, n]. Since g′′xn = sn ≥ 0, we can apply Remark A.6 to get

deg(µ∗xnσ
∗
+x
′) = E(n)g′′,

where E(n) is the matrix as in the proof of Lemma 2.14. Again, since (E(n)g′′)xn−1 = sn−1 ≥ 0,
we can apply Remark A.6 to find

deg(µ∗xn−1
µ∗xnσ

∗
+x
′) = E(n−1)E(n)g′′.

Since (E(m+1) · · ·E(n)g′′)xm = sm ≥ 0 for any m ∈ [2, n − 1], we can successively apply the
similar argument, finally arriving at

g = deg(µ∗x1
µ∗x2
· · ·µ∗xnσ

∗
+x
′) = E(1)E(2) · · ·E(n)g′′ = Eg′′,

where E = (eu,v)u,v∈N is the matrix given by (2.4). The last equation is equivalent to the
desired equation (2.6). �

We conclude this section by showing relevant technical lemmas. Lemma 2.17 will be used
in the proof of Theorem 6.3, and Lemma 2.18 will be needed in the proof of Lemma 7.4.

Lemma 2.17. Assume that i, i′ ∈ ∆
(∞)
0 are related by i′ = γki (resp. i′ = βki) for some

k ∈ N. Then, the assignment g′ 7→ g given by the equation (2.2) (resp. (2.3)) sends the cone
Ci′ ⊂ Z⊕N into the cone Ci ⊂ Z⊕N.

Proof. To simplify the notation, for g = (gu)u∈N and g′ = (g′u)u∈N, we set

Σu :=
∑

v≥u,iv=iu

gv, Σ′u :=
∑

v≥u,i′v=i′u

g′v

for each u ∈ N. We have to show that Σ′u ≥ 0 (∀u ∈ N) implies Σu ≥ 0 (∀u ∈ N) under
the assumption. When i′ = γki, the assertion is trivial. So we only consider the case when
i′ = βki and g is obtained from g′ by (2.3). Assume Σ′u ≥ 0 for all u ∈ N.

• If u > k + 2, we have Σu = Σ′u ≥ 0.
• If u = k + 2, we have Σk+2 = Σ′k+1 + max(g′k, 0) ≥ 0.
• If u = k + 1, we have Σk+1 = δ(g′k ≥ 0)Σ′k+2 + δ(g′k < 0)Σ′k ≥ 0.
• If u = k, we have

Σk = Σk+2 + gk

= Σ′k+1 + max(g′k, 0)− g′k
= Σ′k+1 + max(−g′k, 0) ≥ 0.

• If u < k, we have Σu = Σ′u ≥ 0 since we see

gk+2 + gk + gk−i
= g′k+1 + max(g′k, 0)− g′k + g′

(k+1)−
i′

+ min(g′k, 0)

= g′k+1 + g′
(k+1)−

i′

and similarly gk+1 + g(k+1)−i
= g′k+2 + g′k + g′

k−
i′

.
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Thus, we obtain the assertion. �

For g = (gu)u∈N and i ∈ ∆
(∞)
0 , write

(2.7) pi(g; i) :=
∑

u∈N,iu=i

gu.

The proof of Lemma 2.17 shows the following invariant property of pi(g; i).

Lemma 2.18. Let i, i′ ∈ ∆
(∞)
0 . If i′ = γki for some k ∈ N, the elements g, g′ ∈ Z⊕N related

by the equation (2.2) satisfy
pi(g; i) = pi′(g

′; i)

for all i ∈ ∆0.
If i′ = βki for some k ∈ N, the elements g, g′ ∈ Z⊕N related by the equation (2.3) satisfy

pi(g; i) =


pi′(g

′; i) + max(−g′k, 0) if i = ik and k−i = 0,

pi′(g
′; i)−max(g′k, 0) if i = ik+1 and (k + 1)−i = 0,

pi′(g
′; i) otherwise.

3. Comparison with dual canonical bases

We recall that by [GLS13, KKKO18, KK19] the quantum unipotent group At[N−] associ-
ated to g has a quantum cluster algebra structure compatible with the dual canonical basis,
which is isomorphic to some of the quantum cluster algebras Ai. We establish that these
isomorphisms are compatible with the transformations in the last section: for a composition
Ai ' Ai′ of such transformations, the corresponding transformation induced on At[N−] is
just the identity (Corollary 3.4). Our proof is based on the analysis of the degrees of the
cluster monomials.

3.1. Dual canonical basis. In this subsection, we briefly recall the PBW parametrization
of the dual canonical basis. For the precise definitions, we refer to [FHOO22, Appendix A]
and references therein.

Let At[N−] denote the quantum coordinate ring of the unipotent group N− = exp(n−),
where n− is the negative part of the Lie algebra g. More precisely, we are considering the

integral form defined over Z[t±1/2]. It carries the normalized dual canonical basis B̃∗. Each

reduced word i = (i1, . . . , i`) for the longest w◦ gives a parametrization B̃∗ = {G̃i(c) | c ∈ N`0}
characterized by

G̃i(c) ≡ tνi(c)
→∏

u∈[1,`]

D̃(wu$iu , wu−1$iu)cu mod
∑
b∈B̃∗

tZ[t]b

for each c = (c1, . . . , c`) ∈ N`0, where

νi(c) = −1

2

∑
u,v∈[1,`]

cucv(wu−1αiu , wv−1αiv) +
∑
u∈[1,`]

c2
u,

and D̃(λ, µ) denotes the renormalized quantum unipotent minor. In particular, when c =
ek := (δu,k)u∈[1,`], we have

G̃i(ek) = D̃(wk$ik , wk−$ik).

Proposition 3.1 (Lusztig [Lus93, Chapter 42]). Let i, i′ ∈ ∆`
0 be two reduced words for w◦,

and c = (c1, . . . , c`), c
′ = (c′1, . . . , c

′
`) ∈ N`0.
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(1) When i′ = γki for some k ∈ [1, `− 1], we have

G̃i(c) = G̃i′(c
′) if and only if

{
(ck, ck+1) = (c′k+1, c

′
k),

cu = c′u if u 6∈ {k, k + 1}.

(2) When i′ = βki for some k ∈ [1, `− 2], we have

G̃i(c) = G̃i′(c
′) if and only if


c′k = ck+1 + ck+2 −min(ck, ck+2),

c′k+1 = min(ck, ck+2),

c′k+2 = ck+1 + ck −min(ck, ck+2),

c′u = cu if u 6∈ {k, k + 1, k + 2}.

3.2. Cluster structures on At[N−]. Recall that for any finite sequence i in ∆0, we have

associated to i a compatible pair (B̃i,Λi) in Definition 1.5.

Theorem 3.2 (Geiß–Leclerc–Schröer [GLS13], Kang–Kashiwara–Kim–Oh [KKKO18], Kashi-
wara–Kim [KK19]). For each reduced word i ∈ ∆`

0 for the longest element w◦, there is an

isomorphism of Z[t±1/2]-algebras

ϕi : At(B̃i,Λi) ' At[N−]

which satisfies the following:

(1) for any 1 ≤ v < u ≤ ` with iu = iv, there exists a cluster variable which corresponds

to D̃(wu$iu , wv$iv) under ϕi,

(2) every cluster monomial corresponds to an element of the basis B̃∗ under ϕi,

(3) for each c = (cu) ∈ N`0, the element ϕ−1
i G̃i(c) is pointed and we have

(3.1) degϕ−1
i G̃i(c) =

∑
u∈[1,`]

cu(eu − eu−) ∈ Z`,

where we understand e0 = 0. In particular, the map deg ◦ϕ−1
i : B̃∗ → Z` is injective.

3.3. Change of reduced words. We establish the compatibility between the transforma-
tions γk, βk in the last section and the isomorphisms ϕi.

Proposition 3.3. Let i, i′ ∈ ∆`
0 be two reduced words for w◦. Assume that we have i′ = τi

for some τ ∈ {γ1, . . . , γ`−1} ∪ {β1, . . . , β`−2}. Then the following diagram commutes:

At(B̃i′ ,Λi′)
ϕi′ //

τ∗

��

At[N−]

At(B̃i,Λi)
ϕi // At[N−].

Proof. Since At[N−] is generated by {G̃i′(eu)}u∈[1,`], it suffices to show the equality

(3.2) ϕiτ
∗ϕ−1
i′ G̃i′(eu) = G̃i′(eu)

for all u ∈ [1, `]. Since τ∗ respects cluster monomials, we know that the LHS of (3.2) belongs

to B̃∗ by Theorem 3.2. When τ = γk for some k ∈ [1, `− 1], we have

deg γ∗kϕ
−1
i′ G̃i′(eu) = eσk(u) − eσk(u−

i′ )
= eσk(u) − eσk(u)−i

= degϕ−1
i G̃i(eσk(u))

by Lemma 2.4 and Theorem 3.2. Since deg ◦ϕ−1
i is injective on B̃∗, we get ϕiγ

∗
kϕ
−1
i′ G̃i′(eu) =

G̃i(eσk(u)). On the other hand, we know G̃i(eσk(u)) = G̃i′(eu) by Proposition 3.1. Therefore,
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we obtain (3.2) for τ = γk. Next, we consider the case when τ = βk for some k ∈ [1, ` − 2].
By Lemma 2.11 and Theorem 3.2, we have

deg β∗kϕ
−1
i′ G̃i′(eu) =


ek+2 − ek if u = k,

ek+2 − ek−i if u = k + 1,

ek − ek−i if u = k + 2,

eu − eu−i otherwise.

Again by the injectivity of deg ◦ϕ−1
i on B̃∗, we get ϕiτ

∗ϕ−1
i′ G̃i′(eu) = G̃i(cu), where

cu :=


ek+2 if u = k,

ek + ek+2 if u = k + 1,

ek if u = k + 2,

eu otherwise.

On the other hand, we have G̃i(cu) = G̃i′(eu) by Proposition 3.1. Thus, we obtain (3.2) for
τ = βk. �

For any two reduced words i, i′ ∈ ∆`
0 for w◦, we can always find a finite sequence τ =

(τ1, . . . , τl) in {γ1, . . . , γ`−1} ∪ {β1, . . . , β`−2} such that i′ = τ1 · · · τli. Then we have the
composed isomorphism

τ ∗ := τ∗l ◦ · · · ◦ τ∗1 : At(B̃i′ ,Λi′) ' At(B̃i,Λi).

Corollary 3.4. With the above notation, the following diagram commutes:

At(B̃i′ ,Λi′)
ϕi′ //

τ∗

��

At[N−]

At(B̃i,Λi)
ϕi // At[N−].

In particular, the isomorphism τ ∗ = ϕi ◦ ϕ−1
i′ depends only on the pair (i, i′), and not on the

sequence τ satisfying i′ = τ1 · · · τli.

Remark 3.5. By definition, the isomorphism τ ∗ induces a bijection between cluster mono-

mials in At(B̃i′ ,Λi′) and those in At(B̃i,Λi).

4. Reminders on quantum Grothendieck rings

We give general reminders on quantum Grothendieck rings of the category C of finite-
dimensional representations of a quantum loop algebra. In particular, we recall quantum
T -systems, Q-data, and Kazhdan–Lusztig type conjectures in this context. We also recall
the monoidal subcategories CZ and C− of C (as defined in [HL10, HL16]) and we introduce
subcategories C≤ξ generalizing C−.

4.1. Quantum loop algebras and the category CZ. Let g be a complex finite-dimensional
simple Lie algebra (it should not be confused with the Lie algebra g of the previous sections).
Let C = (cij)i,j∈I denote the Cartan matrix of g, where I is the set of Dynkin indices. For
i, j ∈ I, we write i ∼ j if cij < 0. Let r ∈ {1, 2, 3} be the lacing number of g, and d : I → {1, r}
the function satisfying dicij = djcji for all i, j ∈ I, i.e., the minimal left symmetrizer of C.

Let Uq(Lg) be the quantum loop algebra associated to g. It is a Hopf algebra defined over

an algebraic closed field k = Q(q), where q is a formal parameter. Let C denote the rigid
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monoidal category of finite-dimensional Uq(Lg)-modules, with the standard type 1 condition.
It is endowed with the contravariant auto-equivalence D±1 which sends each module to its
left/right dual. Recall that the isomorphism classes of simple modules of the category C
are parametrized by the set (1 + zk[z])I of I-tuples of monic polynomials (called Drinfeld
polynomials) [CP94, CP95].

In this paper, we restrict ourselves to a nice monoidal subcategory CZ of C introduced by
Hernandez–Leclerc [HL10] as the Serre subcategory generated by a distinguished family of
simple modules. Precisely, we fix a function ε : I → {0, 1} satisfying the condition

(4.1) εi ≡ εj + min(di, dj) (mod 2) whenever i ∼ j,

which we call a parity function, and let

Î := {(i, p) ∈ I × Z | p ≡ εi (mod 2)}.

We introduce a formal variable Yi,p for each (i, p) ∈ Î, and consider the ring of Laurent

polynomials Y := Z[Y ±1
i,p | (i, p) ∈ Î ]. Let M∗ ⊂ Y be the set of all the Laurent monomials.

An element m ∈M∗ is written as

(4.2) m =
∏

(i,p)∈Î

Y
ui,p(m)
i,p .

We say that m ∈M∗ is dominant if ui,p(m) ≥ 0 for all (i, p) ∈ Î. Let M⊂M∗ be the set of
dominant monomials. For each m ∈M, we have a simple module L(m) ∈ C corresponding to

the Drinfeld polynomials (
∏
p(1− qpz)ui,p(m))i∈I . The category CZ is defined to be the Serre

subcategory of C generated by the simple modules {L(m) | m ∈M}. It is closed under taking
tensor products and the auto-equivalences D±1, and hence forms a rigid monoidal category
in itself. Indeed, we have D±1L(m) ' L(D±1m) for any m ∈M. Here on the right hand side

D±1 denotes the automorphism of Y given by Yi,p 7→ Yi∗,p±rh∨ for (i, p) ∈ Î, where i 7→ i∗

is the involution of I induced by the longest Weyl group element and h∨ is the dual Coxeter
number of g. Moreover, every prime simple module of C (that is a simple module which
can not be factorized into a non-trivial tensor product of modules) is in CZ after a suitable
spectral parameter shift.

The q-character homomorphism χq defined by Frenkel–Reshetikhin [FR99] gives an injective
ring homomorphism χq : K(CZ)→ Y. As a ring, the Grothendieck ring K(CZ) is isomorphic
to the ring of polynomials in {[L(Yi,p)]}(i,p)∈Î . A simple module of the form L(Yi,p) is called

a fundamental module.

For each (i, p) ∈ I × Z with (i, p− di) ∈ Î, we define the element Ai,p ∈M∗ by

Ai,p = Yi,p−diYi,p+di
∏

(j,s)∈Î : j∼i,|s−p|<di

Y −1
j,s ,

which is a loop analog of the i-th simple root [FR99]. For m,m′ ∈ M∗, we write m ≤ m′ if

m′m−1 is a monomial in various Ai,p for (i, p − di) ∈ Î. This defines a partial ordering on
M∗, called the Nakajima partial ordering. For any m ∈M, we have

(4.3) χq(L(m)) = m+
∑

m′∈M∗ : m′<m

a[m;m′]m′

for some a[m;m′] ∈ N0. See [Nak01] and [FM01] for the proof.
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4.2. Quantum Grothendieck ring of CZ. The quantum Cartan matrix C(q) = (Cij(q))i,j∈I
is a Z[q±1]-valued matrix given by

Cij(q) := δi,j(q
di + q−di) + (1− δi,j)[cij ]q

for any i, j ∈ I, where [k]q = (qk − q−k)/(q− q−1) is the standard q-integer. The matrix C(q)

is invertible as a Q(q)-valued matrix and we write C̃(q) = (C̃ij(q))i,j∈I for its inverse. For any
i, j ∈ I, we write

C̃ij(q) =
∑
u∈Z

c̃ij(u)qu ∈ Z((q))

for the Laurent expansion at q = 0 of the (i, j)-entry C̃ij(q). In this way, we get a collection
of integers {c̃ij(u) | i, j ∈ I, u ∈ Z}. We define a map N : (I × Z)2 → Z by

N (i, p; j, s) := c̃ij(p− s− di)− c̃ij(p− s+ di)− c̃ij(s− p− di) + c̃ij(s− p+ di).

It satisfies N (i, p; j, s) = −N (j, s; i, p) for any (i, p), (j, s) ∈ I × Z.

Let t be an indeterminate with a formal square root t1/2. We define the quantum torus

Yt to be the Z[t±1/2]-algebra presented by the set of generators {Y ±1
i,p | (i, p) ∈ Î } and the

following relations:

• Yi,p · Y −1
i,p = Y −1

i,p · Yi,p = 1 for each (i, p) ∈ Î,

• Yi,p · Yj,s = tN (i,p;j,s)Yj,s · Yi,p for each (i, p), (j, s) ∈ Î.

Note that Yt is a deformation of Y. Indeed, there exists a surjective Z-algebra homomorphism

evt=1 : Yt → Y given by t1/2 7→ 1 and Yi,p 7→ Yi,p for all (i, p) ∈ Î. An element m̃ of Yt is called

a monomial if it is a product of the generators Y ±1
i,p for (i, p) ∈ Î and t±1/2. A monomial m̃ is

said to be dominant if evt=1(m̃) is dominant. Following [Her04, §6.3], we define the Z-algebra

anti-involution (·) on Yt by

t1/2 := t−1/2, Yi,p := Yi,p.

This is called the bar involution on Yt. For any m ∈ M∗, we denote by m the unique
monomial in Yt satisfying m = m and evt=1(m) = m. The elements of this form are called
commutative monomials (cf. Appendix A.1). Note that we have (m−1) = (m)−1(=: m−1).

The commutative monomials form a free basis of the Z[t±1/2]-module Yt. For any m,m′ ∈M∗,
we have

m ·m′ = t−N (m,m′)/2m ·m′ = tN (m,m′)/2m′ ·m
where N (m,m′) ∈ Z is a skew-symmetric pairing given by

(4.4) N (m,m′) :=
∑

(i,p),(j,s)∈Î

ui,p(m)uj,s(m
′)N (i, p; j, s)

in the notation of (4.2).

For each i ∈ I, denote by Ki,t the Z[t±1/2]-subalgebra of Yt generated by{
Yi,p(1 + t−1A−1

i,p+di
)
∣∣∣ (i, p) ∈ Î

}
∪
{
Y ±1
j,s

∣∣∣ (j, s) ∈ Î , j 6= i
}
.

Following [Nak04, VV03, Her04], we define the quantum Grothendieck ring Kt(CZ) to be the

Z[t±1/2]-subalgebra of Yt given by

Kt(CZ) :=
⋂
i∈I
Ki,t.
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Note that Kt(CZ) is stable under the bar involution. Moreover, we have evt=1(Kt(CZ)) =
χq(K(CZ)). For future use, we remark the following.

Lemma 4.1. Assume that two non-zero elements x ∈ Kt(CZ) and y ∈ Yt satisfy xy ∈ Kt(CZ).
Then we have y ∈ Kt(CZ).

Proof. This is a quantum analog of an argument presented in [HL16]. Indeed, the assertion
follows from the fact that Ki,t is the kernel of the t-deformed i-th screening operator Si,t.

Namely, there is a Yt-bimodule Yi,t and a Z[t±1/2]-linear map Si,t : Yt → Yi,t such that
Si,t(xy) = Si,t(x)y + xSi,t(y) for any x, y ∈ Yt, and KerSi,t = Ki,t. See [Her04, Theorem
4.10] for details. �

We have the following result due to the second named author which will be crucial for our
purposes.

Theorem 4.2 ([Her04, Theorem 5.11][Her05, Theorem 7.5]). For every dominant monomial
m ∈ M, there exists a unique element Ft(m) of Kt(CZ) such that m is the unique dominant

monomial occurring in Ft(m). It satisfies Ft(m) = Ft(m). Moreover, the set {Ft(m) | m ∈
M} forms a Z[t±1/2]-basis of Kt(CZ), and the set {Ft(Yi,p) | (i, p) ∈ Î} generates the Z[t±1/2]-
algebra Kt(CZ).

We can construct the canonical basis Lt of Kt(CZ), whose member Lt(m) is conjecturally
a t-analog of the q-character χq(L(m)).

Theorem 4.3 ([Nak04, Theorem 8.1], [Her04, Theorem 6.9]). There exists a unique Z[t±1/2]-
basis Lt = {Lt(m) | m ∈ M} of Kt(CZ) characterized by the following properties: for each

m ∈M, we have Lt(m) = Lt(m), and

Lt(m) ≡ tN (m)
→∏
p∈Z

∏
i∈I : (i,p)∈Î

Ft(Yi,p)
ui,p(m) mod

∑
m′<m

tZ[t]Lt(m
′)

in the notation of (4.2) for some N (m) ∈ 1
2Z. Explicitly, one has

N (m) = −1

2

∑
(i,p),(j,s)∈Î : p<s

ui,p(m)uj,s(m)N (i, p; j, s).

Note that for a fixed p, the Ft(Yi,p)’s (i ∈ I) mutually commute, so the formula for Lt(m)
is well-defined. The element Lt(m) is called the (q, t)-character of L(m). As a t-analog of the
equation (4.3), for each m ∈M, we have

(4.5) Lt(m) = m+
∑

m′∈M∗ : m′<m

at[m;m′]m′

for some at[m;m′] ∈ Z[t±1/2].

Conjecture 4.4 (cf. [Her04, Conjecture 7.3]). For all m ∈M, we have

(1) evt=1(Lt(m)) = χq(L(m)), and

(2) at[m;m′] ∈ N0[t±1/2] for all m′ ∈M∗ with m′ < m.

Conjecture 4.4 (1) is called the Kazhdan–Lusztig type conjecture and was motivated by the
results of Nakajima. At this moment, we know that Conjecture 4.4 is true when g is of type
ADE by Nakajima [Nak04], and when g is of type B by [FHOO22]. Moreover, Conjecture 4.4
(1) for general g holds true when m belongs to MQ for some Q-data Q for g (see Section 4.3
for the definition of MQ) [FHOO22].
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In this paper, we will prove Conjecture 4.4 (1) for reachable modules L(m) (see Definition
6.7) and Conjecture 4.4 (2), for general g. See Corollaries 6.10 and 6.12.

We have the following positivity result concerning the canonical basis Lt, which is proved
by Varagnolo–Vasserot [VV03] for type ADE and by the authors [FHOO22] in general.

Theorem 4.5 ([VV03, Theorem 4.1], [FHOO22, Corollary 10.7]). The structure constants of

Kt(CZ) with respect to the canonical basis Lt belong to N0[t±1/2].

Let D±1
t be the Z[t±1/2]-algebra automorphism of Yt given by D±1

t m = D±1m for all
m ∈ M∗. It satisfies evt=1 ◦D±1

t = D±1 ◦ evt=1 and preserves the subalgebra Kt(CZ) ⊂ Yt.
Moreover, we have

D±1
t (Ft(m)) = Ft(D

±1m) and D±1
t (Lt(m)) = Lt(D

±1m)

for any m ∈M (see [FHOO22, Lemma 3.11]).

4.3. Q-data and associated subcategories. With our simple Lie algebra g, we associate
a unique pair (∆, σ), which we call the unfolding of g, consisting of a simply-laced Dynkin
diagram ∆ and a graph automorphism σ of ∆ as given in the Table 1, where id : ∆0 → ∆0 is
the identity map and the automorphisms ∨ and ∨̃ are given by the blue arrows in Figure 1
below.

r g ∆ (or g) σ h∨ `

An An id n+ 1 n(n+ 1)/2

1 Dn Dn id 2n− 2 n(n− 1)

E6,7,8 E6,7,8 id 12, 18, 30 36, 63, 120

Bn A2n−1 ∨ 2n− 1 n(2n− 1)

2 Cn Dn+1 ∨ n+ 1 n(n+ 1)

F4 E6 ∨ 9 36

3 G2 D4 ∨̃ 4 12

Table 1. Unfoldings and associated numerical data

Hereafter, we denote by g the simple Lie algebra associated with the simply-laced Dynkin
diagram ∆ and apply the notation in §1.1 for this g except that we adopt the symbols ı, , . . .
to denote elements of ∆0 in order to reserve the symbols i, j, . . . for elements of I. Under
the above assignment g 7→ (∆, σ), we identify the lacing number r of g with the order of
the automorphism σ, and also identify the set I of Dynkin indices of g with the set ∆0/〈σ〉
of σ-orbits in ∆0 as suggested by the dotted lines in Figure 1. Then the positive integer
di ∈ {1, r} coincides with the cardinality of the σ-orbit i ∈ I. We denote the natural quotient
map ∆0 → I = ∆0/〈σ〉 by ı 7→ ı̄.

Let us recall the following notion introduced in [FO21] and which will be important in the
following. A Q-datum for g is defined to be a triple Q = (∆, σ, ξ) such that (∆, σ) is the
unfolding of g and ξ : ∆0 → Z is a function satisfying the following properties:

(1) For ı,  ∈ ∆0 with ı ∼  and dı̄ = d̄, we have |ξı − ξ| = dı̄ = d̄.
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(A2n−1,∨)

n + 1n + 22n− 22n− 1

n− 1n− 2
· · ·

· · ·

21
n

Bn

1 2 n− 2 n− 1 n
· · ·

(Dn+1,∨)
1 2

· · ·
n− 2 n− 1

n

n + 1

Cn

1 2
· · ·

n− 2 n− 1 n

(E6,∨)
24

56

31

F4

1 2 3 4

(D4, ∨̃)

1

2
3

4

G2

1 2

Figure 1. Unfoldings for non-simply-laced g

(2) For i, j ∈ I with i ∼ j and di = 1 < dj = r, there is a unique  ∈ j such that
|ξı − ξ| = 1 and ξσk() = ξ − 2k for any 1 ≤ k < r, where i = {ı}.

We refer to the function ξ as a height function. Recall that we have chosen a parity function
ε : I → {0, 1} satisfying (4.1) in §4.1. In what follows, we always assume without loss of
generality that a Q-datum Q = (∆, σ, ξ) satisfies the condition

(4.6) ξı ≡ εı̄ (mod 2) for any ı ∈ ∆0.

For a Q-datum Q = (∆, σ, ξ) for g, we define another Q-datum D±1Q = (∆, σ,D±1ξ) for g
by

(4.7) (D±1ξ)ı := ξı∗ ± rh∨ for ı ∈ ∆0.

One can easily check that (D−1ξ)ı < ξı < (Dξ)ı holds for each ı ∈ ∆0 and that D±1Q satisfies
the condition (4.6) whenever Q does.

Now, given a Q-datum Q = (∆, σ, ξ) for g, we consider the following sets

∆̂[ξ] := {(ı, p) ∈ ∆0 × Z | ξı − p ∈ 2dı̄Z},

∆̂≤ξ := {(ı, p) ∈ ∆̂[ξ] | p ≤ ξı}, Î≤ξ := f(∆̂≤ξ),

∆̂Q := {(ı, p) ∈ ∆̂[ξ] | (D−1ξ)ı < p ≤ ξı}, ÎQ := f(∆̂Q),

where f : ∆0 × Z→ I × Z is the folding map (ı, p) 7→ (̄ı, p). Note that we have ÎQ ⊂ Î≤ξ ⊂ Î,

and f induces the bijections ∆̂[ξ] ' Î, ∆̂≤ξ ' Î≤ξ, and ∆̂Q ' ÎQ. Let Yt,≤ξ (resp. Yt,Q)

be the Z[t±1/2]-subalgebra of the quantum torus Yt generated by all the elements Y ±1
i,p with

(i, p) ∈ Î≤ξ (resp. ÎQ). Then the algebra Y≤ξ := evt=1(Yt,≤ξ) (resp. YQ := evt=1(Yt,Q)) is

identical to the ring of Laurent polynomials in the variables Yi,p with (i, p) ∈ Î≤ξ (resp. ÎQ).
We set M≤ξ :=M∩Y≤ξ and MQ :=M∩YQ.

Let C≤ξ (resp. CQ) be the Serre subcategory of CZ generated by all the simple modules
L(m) with m ∈ M≤ξ (resp. MQ). It is closed under taking tensor products. Moreover, the
category C≤ξ is stable under the functor D−1, and we have D−1C≤ξ = C≤D−1ξ. We define

Kt(C≤ξ) (resp. Kt(CQ)) to be the Z[t±1/2]-subalgebra of Kt(CZ) generated by all the Ft(Yi,p)

with (i, p) ∈ Î≤ξ (resp. ÎQ). It is endowed with the canonical Z[t±1/2]-basis Lt,≤ξ (resp. Lt,Q)
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consisting of all the elements Lt(m) with m ∈ M≤ξ (resp. MQ). Moreover, the algebra

Kt(C≤ξ) is stable under the automorphism D−1
t , and we have D−1

t Kt(C≤ξ) = Kt(C≤D−1ξ).
Let us recall the following truncation procedure. For an element y ∈ Yt, we denote by

y≤ξ the element of Yt,≤ξ obtained from y by discarding all the monomials containing the

factors Y ±1
i,p with (i, p) ∈ Î \ Î≤ξ. This assignment y 7→ y≤ξ defines a Z[t±1/2]-linear map

(·)≤ξ : Yt → Yt,≤ξ, which is not an algebra homomorphism. However, it restricts to the
injective algebra homomorphisms Kt(C≤ξ) ↪→ Yt,≤ξ and Kt(CQ) ↪→ Yt,Q (see [FHOO22, §5.4]).

For future use, we remark the following fact.

Lemma 4.6. Let Q = (∆, σ, ξ) be a Q-datum for g. We have

Kt(C≤ξ) = Kt(CZ) ∩ Yt,≤Dξ.

In other words, an element x ∈ Kt(CZ) belongs to Kt(C≤ξ) if and only if it satisfies that
x≤Dξ = x.

Proof. We consider the subset Î≥−ξ := {(i, p) ∈ Î | (i,−p) ∈ Î≤ξ} of Î and the corresponding

Z[t±1/2]-subalgebra Yt,≥−ξ of Yt. Then, for each (i, p) ∈ Î≥−ξ, we have Ft(Yi,p) ∈ Y≥−ξ (see

[FHOO22, Proof of Corollary 5.12]). In particular, if we define Kt(C≥−ξ) to be the Z[t±1/2]-

subalgebra generated by {Ft(Yi,p) | (i, p) ∈ Î≥−ξ}, we have

Kt(C≥−ξ) = Kt(CZ) ∩ Yt,≥−ξ.

Let ωt be an algebra involution of Yt given by ωt(t
±1/2) = t∓1/2 and ωt(Yi,p) = Y −1

i,−p for all

(i, p) ∈ Î. By definition, we have ωt(Yt,≤ξ) = Yt,≥−ξ. Moreover, it satisfies ωt(Ft(Yi,p)) =

Ft(Yi∗,−p−rh∨) for any (i, p) ∈ Î (see [FHOO22, §3.4]). Therefore, we have

ωt(Kt(C≤ξ)) = Kt(C≥−Dξ) = Kt(CZ) ∩ Yt,≥−Dξ = ωt(Kt(CZ) ∩ Yt,≤Dξ),

which yields the assertion. �

4.4. Kirillov–Reshetikhin modules. Recall that a Kirillov–Reshetikhin (KR) module is a
simple object of C whose Drinfeld polynomials are of the form(

l∏
k=0

(1− aq2dikz)δi,j

)
j∈I

for some i ∈ I, l ∈ N and a ∈ k×.

Proposition 4.7. For a KR module L(m), we have evt=1(Ft(m)) = χq(L(m)).

Proof. The q-character of a KR-module has a unique dominant monomial as proved in [Nak03,
Her06]. Moreover, the image of the quantum Grothendieck ring by evt=1 is the ring of
q-characters [Nak04, Her04]. But a q-character is characterized by the multiplicity of its
dominant monomial [FM01]. This implies the result. �

Having Proposition 4.7, in view of Conjecture 4.4, one may expect the following.

Conjecture 4.8. For a KR module L(m), we have Ft(m) = Lt(m).

At this moment, we know that Conjecture 4.8 is true when g is of type ABDE by [Nak03]
and [FHOO22, Theorem 11.6]. We will prove Conjecture 4.8 for the remaining case as one of
the results of this paper, that is, when g is of type CFG. See Corollary 6.11.
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For our purpose, it is useful to introduce the following notation for KR modules. Let
Q = (∆, σ, ξ) be a Q-datum for g. For ı ∈ ∆0 and integers a, b ∈ Z with a ≤ b, we define a

dominant monomial m(ı)[a, b] ∈M by

m(ı)[a, b] :=
∏

(ı,p)∈∆̂[ξ] : p∈[a,b]

Yı̄,p.

The corresponding simple module L(ı)[a, b] := L(m(ı)[a, b]) is a KR module. Any KR module
in the category CZ is written in this form. In what follows, we use simplify the notation by

setting F
(ı)
t [a, b] := Ft(m

(ı)[a, b]) and L
(ı)
t [a, b] := Lt(m

(ı)[a, b]). Letting (a, b] := [a, b] \ {a},
[a, b) := [a, b] \ {b}, (a, b) := [a, b] \ {a, b}, we define F

(ı)
t (a, b], F

(ı)
t [a, b), F

(ı)
t (a, b) in the same

way as F
(ı)
t [a, b].

The following states that certain truncations of these elements are just a single monomial.

Lemma 4.9 ([FHOO22, Lemma 6.7]). For any (ı, p) ∈ ∆̂≤ξ, we have

F
(ı)
t [p, ξı]≤ξ = m(ı)[p, ξı].

The following generalizes the quantum T -system in simply-laced types [Nak03] and deforms
the general T -systems [Her06].

Theorem 4.10 (Quantum T -system [FHOO22, Theorem 6.8]). Let Q = (∆, σ, ξ) be a Q-

datum for g and let (ı, p), (ı, s) ∈ ∆̂[ξ] satisfy p < s. Then the elements in {F ()
t (p, s)}∼ı are

mutually commutative up to powers of t±1/2, and we have

(4.8) F
(ı)
t [p, s)F

(ı)
t (p, s] = taF

(ı)
t (p, s)F

(ı)
t [p, s] + tb

→∏
∼ı

F
()
t (p, s)

in Kt(CZ) for some a, b ∈ 1
2Z. Here the ordered product is taken with respect to any total

ordering of the set { ∈ ∆0 |  ∼ ı}.

Note that the factors of the last term do not commute in general but only t-commute, that
is why the product has to be ordered.

5. Cluster structure on Kt(C≤ξ)

We show that the quantum Grothendieck ring of the category C≤ξ has a structure of a
quantum cluster algebras isomorphic to an algebra Ai introduced above (Theorem 5.16).
This generalizes previous results [HL15, Qin17, Bit21]. For our purposes, we use the quantum
affine quiver introduced in [HL16] and for which we discuss several technical results. Then
our proof is based first on an isomorphism of quantum tori that we establish (Corollary 5.13).
The isomorphism between the quantum Grothendieck ring and the quantum cluster algebra
is then obtained by identifying their respective image by the truncation of (q, t)-characters
and the natural inclusion, inside the quantum tori.

5.1. Adapted sequences. Throughout this section, we fix a Q-datum Q = (∆, σ, ξ) for g.
A vertex ı ∈ ∆0 is called a source of Q if we have ξı > ξ for any  ∈ ∆0 with  ∼ ı. In this
case, we define a new Q-datum sıQ = (∆, σ, sıξ) by setting

(sıξ) := ξ − 2dı̄δı, for  ∈ ∆0.

Note that, if Q satisfies (4.6), so does sıQ for any source ı ∈ ∆0 of Q. We say that a sequence
i = (ı1, ı2, . . .) in ∆0 is adapted to Q if ık is a source of the Q-datum sık−1

· · · sı2sı1Q for all
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k ∈ {1, 2, . . .}. We have the following combinatorial result, which is crucial for our purposes.
Recall the notion of commutation equivalence from Definition 2.5.

Proposition 5.1 ([FO21, §3.5]). For each Q-datum Q for g, there is a reduced word (ı1, . . . , ı`)
for the longest element w◦ adapted to Q, uniquely up to commutation-equivalence. Moreover,
we have sı` · · · sı1Q = D−1Q.

Let i = (ık)k∈N ∈ ∆
(∞)
0 be a sequence satisfying the condition (1.1). In what follows, we

use the notation
ni(u) := |{v ∈ N | v < u, ıv = ıu}|.

Then we define the map ρi : N→ ∆̂≤ξ by

ρi(u) := (ıu, ξıu − 2dı̄uni(u)).

By the condition (1.1), ρi is a bijection. We set ρ̄i := f ◦ ρi : N→ Î≤ξ.

For (ı, p), (, s) ∈ ∆̂[ξ], write (ı, p) ≺ (, s) if ı ∼  and p = s + min(dı̄, d̄). Taking the

transitive closure of this relation, we obtain a partial ordering � on the set ∆̂[ξ].

Remark 5.2. The Hasse diagram of the poset (∆̂≤ξ,�) is identical to the repetition quiver

(restricted to ∆̂≤ξ) in the sense of [FO21, §3.4].

Lemma 5.3. An infinite sequence i ∈ ∆N
0 is adapted to Q if and only if the condition (1.1)

is satisfied and the bijection ρ−1
i : (∆̂≤ξ,�)→ (N,≤) is a morphism of posets.

Proof. It is easy to see that the condition (1.1) is satisfied if i ∈ ∆N
0 is adapted to Q. Then

the assertion follows from the following observation: (ı, p) ∈ ∆̂≤ξ is minimal if and only if

p = ξı and ı is a source of Q. Moreover, if this is the case, we have ∆̂≤ξ \{(ı, ξı)} = ∆̂≤sıξ. �

Lemma 5.4. Assume that two sequences i = (ıu)u∈N and i′ = (ı′u)u∈N are both adapted to Q.
Then i and i′ are commutation-equivalent by the transformation ρ−1

i′ ◦ ρi.

Proof. Letting π := ρ−1
i′ ◦ ρi ∈ SN, we have ıu = ı′π(u) for all u ∈ N. Assume that two

positive integers u, v ∈ Z satisfy u < v and π(u) > π(v). By Lemma 5.3, ρi(u) and ρi(v) are

not comparable in (∆̂≤ξ,�). Then, we have ıu 6= ıv and ıu 6∼ ıv (see [FO21, Remark 3.17]
together with Remark 5.2). Therefore, we obtain the conclusion. �

Example 5.5. Let i = (ıu)u∈N ∈ ∆N
0 be a sequence satisfying the condition

(5.1)

{
(1) (ı1, . . . , ı`) is a reduced word for w◦ adapted to Q, and

(2) we have ıu+` = ı∗u for all u ∈ N.

Then, the sequence i is adapted to Q by Proposition 5.1.

Example 5.6. Let {(ıu, pu)}u∈N be an arbitrary total ordering of the set ∆̂≤ξ satisfying
p1 ≥ p2 ≥ · · · . Then, the sequence i := (ıu)u∈N is adapted to Q by Lemma 5.3 and we have
ρi(u) = (ıu, pu) for all u ∈ N.

Following [HL16], we define the quiver G as follows. The set of vertices of G is Î. For

(i, p), (j, s) ∈ Î, we assign an arrow (i, p)→ (j, s) if

cij 6= 0 and s− dj = p− di + dicij .

Let G≤ξ denote the full subquiver of G supported on the set Î≤ξ.
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Remark 5.7. We can always find a Q-datum Q for g whose height function ξ satisfies
−2dı̄ < ξı ≤ 0 for all ı ∈ ∆0. In this case, the quiver G≤ξ is identical to the quiver G− defined
in [HL16]. In this sense, the quiver G≤ξ is a generalization of the quiver G−.

Lemma 5.8 ([KKOP21b, Proposition 7.27]). For any sequence i adapted to Q, the bijection

ρ̄i : N→ Î≤ξ induces the quiver isomorphism

Γi ' G≤ξ.

Proof. By Proposition 2.6 and Lemma 5.4, we may assume that i satisfies (5.1) in Example 5.5.
Then, the assertion is identical to [KKOP21b, Proposition 7.27]. �

Example 5.9. We exhibit some examples of the quiver G≤ξ. Here the labeling of I is as in
Figure 1. The symbols ? indicate the vertices (̄ı, ξı) for ı ∈ ∆0.

• Type A5:

(i \ p) −24 −23 −22 −21 −20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1

1 · · · //
cc • //cc • //cc • //cc • //cc • //cc • //cc • //cc • //cc • //cc • //cc • //cc ?

2 · · · // • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{

?
{{

3 · · · //
cc
{{

• //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{
?
{{

4 · · · // • //{{
cc • //{{

cc • //{{
cc • //{{

cc • //{{
cc • //{{

cc • //{{
cc • //{{

cc • //{{
cc • //{{

cc ?
{{

5 · · · //{{
• //{{ • //{{ • //{{ • //{{ • //{{ • //{{ • //{{ • //{{ • //{{

?
{{

• Type D5:

(i \ p) −23 −22 −21 −20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1

1 · · · //
cc • //cc • //cc • //cc • //cc • //cc • //cc • //cc • //cc • //cc • //cc ? cc

2 · · · // • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{

?

3 · · · //
cc
{{

• //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{
? cc
{{

4 · · · // • //{{ • //{{ • //{{ • //{{ • //{{ • //{{ • //{{ • //{{ • //{{ • //{{ • //{{
?

5 · · · // • //

ZZ

��
• //

ZZ

��
• //

ZZ

��
• //

ZZ

��
• //

ZZ

��
• //

ZZ

��
• //

ZZ

��
• //

ZZ

��
• //

ZZ

��
• //

ZZ

��
?

ZZ

��

• Type B3:

(i \ p) −24 −23 −22 −21 −20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1

1 · · · //hh • //hh • //hh • //hh • //hh • //hh ?

2 · · · // • //ff
vv • //ff

vv • //ff
vv • //ff

vv • //ff
vv ? vv

3 · · · // • //ll • //rr • //ll • //rr • //ll • //rr • //ll • //rr • //ll • //rr ?

2 · · · //hh
xx

• //hh
xx • //hh

xx • //hh
xx • //hh

xx
?
xx

1 · · · // • //vv • //vv • //vv • //vv ? vv

• Type C4:

(i \ p) −24 −23 −22 −21 −20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1

1 · · · //
cc • //cc • //cc • //cc • //cc • //cc • //cc • //cc • //cc • //cc • //cc ? cc

2 · · · // • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{ • //cc

{{ • //cc
{{

? cc

3 · · · //gg
{{

• //kk
{{ • //gg

{{ • //kk
{{ • //gg

{{ • //kk
{{ • //gg

{{ • //kk
{{ • //gg

{{ • //kk
{{ • //gg

{{ • //{{
?

4 · · · // • //{{ • //{{ • //{{ • //{{ • //{{
?
{{

4 · · · // • //��
• //��

• //��
• //��

• //��
?
��
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• Type G2:

(i \ p) −24 −23 −22 −21 −20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1

1 · · · // • //cc • //cc • //cc ? cc

2 · · · //qq • //jj • //mm • //qq • //jj • //mm • //qq • //jj • //mm • //qq • // • // ?

1 · · · // • //{{ • //{{ • //{{
?
{{

1 · · · // • //��
• //��

• //��
?
��

5.3. Technical complement. In this subsection, we often identify the automorphism σ of
∆ with the linear operator on P given by $ı 7→ $σ(ı) for any ı ∈ ∆0. Given a Q-datum
Q = (∆, σ, ξ), for each i ∈ I, let i◦ denote the unique vertex in the σ-orbit i satisfying
ξi◦ = max{ξı | ı ∈ i}. We consider the following condition on Q:

(5.2) For each i ∈ I and k ∈ [1, di − 1], we have ξσk(i◦) = ξi◦ − 2k.

Note that this condition is always satisfied unless g is of type Bn or F4 (we underline however
that our results and proofs below will be uniform for all types).

Proposition 5.10 ([FO21, Section 3.6]). There is a unique collection {τQ}Q ⊂ W o 〈σ〉
labelled by Q-data for g and characterized by the following conditions :

(1) If Q = (∆, σ, ξ) satisfies (5.2), we have τQ = si◦1 · · · si◦nσ, where (i1, . . . , in) is any total
ordering of I such that ξi◦1 ≥ · · · ≥ ξi◦n.

(2) If ı ∈ ∆0 is a source of Q, we have τsıQ = sıτQsı.

The element τQ is called the generalized Coxeter element associated with Q.

Lemma 5.11. Let Q = (∆, σ, ξ) be a Q-datum for g, and i = (ıu)u∈N ∈ ∆N
0 a sequence

adapted to Q. Then, we have

(5.3) wiu$ıu = τ
dı̄u (ni(u)+1)
Q $ıu for any u ∈ N.

Proof. Let i′ = (ı′u)u∈N ∈ ∆N
0 be another sequence adapted to Q. Thanks to Lemma 5.4, it

follows that wiu$ıu = wi
′
u′$ı′u when ıu = ı′u′ and ni(u) = ni′(u

′). Therefore, it is enough to
prove the assertion for a specific choice of i adapted to Q.

First we assume that Q satisfies the condition (5.2). Let I = {i1, . . . , in} be a total ordering
such that ξi◦1 ≥ · · · ≥ ξi◦n holds as in Proposition 5.10 (1). Then, we define a sequence
i = (ıu)u∈N by setting ıu := i◦u for u ∈ [1, n] and ıu+n := σ(ıu) for all u ∈ N. It is easy to see
that the sequence i is adapted to Q. For this i, (5.3) holds by a direct computation using
Proposition 5.10 (1).

Next, we shall prove that (5.3) holds for Q-datum sıQ assuming that it holds for Q, where
ı ∈ ∆0 be a source of Q. Let i = (ıu)u∈N be a sequence adapted to Q such that ı1 = ı. Then
the sequence i′ = (ı′u)u∈N := ∂+i is adapted to sıQ. Take any u ∈ N and set  := ı′u = ıu+1.
Under these assumptions, we have

τ
d̄(ni′ (u)+1)
sıQ $ = sıτ

d̄(ni(u+1)−δı,+1)
Q sı$ by Proposition 5.10 (2)

= sıτ
d̄(ni(u+1)+1)
Q $ by sı$ = wi1$ = τ

d̄δı,
Q $

= sıw
i
u+1$ by (5.3) for i

= wi
′
u$.

Thus we get (5.3) for sıQ.
Finally, recall that every Q-datum can be obtained from one satisfying (5.2) by applying

source reflections (see [FO21, Equation (3.11)]). Therefore, we conclude that (5.3) holds for
any Q-datum Q for g. �
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5.4. Isomorphism of quantum tori. We establish first isomorphisms of quantum tori.
Again, we fix a Q-datum Q = (∆, σ, ξ) for g.

Proposition 5.12. Let i ∈ ∆N
0 be a sequence adapted to Q and Λi = (Λu,v)u,v∈N the skew-

symmetric matrix defined by (1.2). For any u, v ∈ N, we have

(5.4) Λu,v = N (m(ı)[p, ξı],m
()[s, ξ]),

where (ı, p) = ρi(u) and (, s) = ρi(v).

Proof. Thanks to Proposition 2.6 and Lemma 5.4, it is enough to prove the assertion for a
specific sequence i adapted to Q. Therefore, we may assume that our i is as in Example 5.6.
Moreover, since the both sides of (5.4) are skew-symmetric, we may assume that u < v. Under
these assumptions, we have s ≤ p. Applying [FHOO22, Proposition 8.4], we find that

N (m(ı)[p, ξı],m
()[s, ξ]) = ($ı − τdı̄(ni(u)+1)

Q $ı, $ + τ
d̄(ni(v)+1)
Q $),

where τQ denotes the generalized Coxeter element associated with Q (see §5.3 above). Here we
remind that p = ξı−2dı̄ni(u) and s = ξ−2d̄ni(v). Now, we obtain the desired equality (5.4)
by Lemma 5.11. �

Corollary 5.13. Let i ∈ ∆N
0 be a sequence adapted to Q. We have an isomorphism of

Z[t±1/2]-algebras

η̃i : T (Λi) ' Yt,≤ξ given by Xu 7→ m(ı)[p, ξı] for u ∈ N,

where (ı, p) = ρi(u). In addition, we have η̃i ◦ (·) = (·) ◦ η̃i.

Proof. For each (ı, p) ∈ ∆̂≤ξ, we have Yı̄,p = m(ı)[p, ξı]/m
(ı)[p+ 2dı̄, ξı]. This implies that the

Z[t±1/2]-algebra Yt,≤ξ is generated by {m(ı)[p, ξı]}(ı,p)∈∆̂≤ξ
. Then, Proposition 5.12 asserts that

the presentation of Yt,≤ξ in terms these generators is identical to that of T (Λi) in §1.3 under

the correspondence Xu 7→ m(ı)[p, ξı] as in the statement. Thus, we have the isomorphism η̃i.
The compatibility with the bar involutions is obvious from the definition. �

We conclude this subsection by the following important observation.

Proposition 5.14 ([HL16, Lemma 4.15]). Let i ∈ ∆N
0 be a sequence adapted to Q. For u ∈ N,

we set eu = (δku)k∈N ∈ Z⊕N, and

bu = B̃ieu =
∑
k∈N

bk,uek.

Then we have

η̃i(X
bu) = A−1

i,p−di

where (i, p) = ρ̄i(u).

Proof. We know that η̃i(X
bu) = ta/2A−1

i,p−di for some a ∈ Z by Lemma 5.8 and the observation

similar to the proof of [HL16, Lemma 4.15]. We can conclude that a = 0 since η̃i is compatible
with the bar involutions on T (Λi) and Yt,≤ξ. �
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5.5. Cluster structure on Kt(C≤ξ). We prove the main result of this section: Kt(C≤ξ) has
a quantum cluster algebra structure. Using the isomorphism η̃i of quantum tori in Corollary
5.13, we use the approach in [HL16, Bit21]: to identify the respective images in the quantum
tori, for the first inclusion we prove that the generators Ft(Yi,p) correspond to some quantum
cluster variables (by using quantum T -systems) and then we show a stability property of the
quantum Grothendieck ring by quantum cluster mutation for the other inclusion.

Recall one of the main results of [HL16].

Theorem 5.15 ([HL16, Theorem 5.1]). The Grothendieck ring K(C−) has a cluster algebra
structure so that the classes of Kirillov-Reshetikhin modules in K(C−) are cluster variables.

The proof of the following Theorem is a generalization of the proof of [HL16, Theorem
5.1] above, and that of [Bit21, Theorem 5.2.4] for the quantum Grothendieck ring Kt(C−) of
type ADE. Here C− is a special example of the category C≤ξ with ξ satisfying the condition
−2dı̄ < ξı ≤ 0 for all ı ∈ ∆0 (cf. Remark 5.7).

Theorem 5.16. Let Q = (∆, σ, ξ) be a Q-datum for g and i = (ıu)u∈N ∈ ∆N
0 a sequence

adapted to Q. There is a unique isomorphism of Z[t±1/2]-algebras ηi : Ai ' Kt(C≤ξ) which
makes the following diagram commute:

(5.5)

Ai
ηi //

� _

��

Kt(C≤ξ)� _
(·)≤ξ
��

T (Λi)
η̃i // Yt,≤ξ.

Moreover, when m is a dominant monomial of a KR module in C≤ξ, the element Ft(m)
corresponds to a cluster variable of Ai under the isomorphism ηi.

Proof. Let Kt,≤ξ ⊂ Yt,≤ξ be the image of Kt(C≤ξ) under the truncation map (·)≤ξ. To establish
the isomorphism ηi, it is enough to show that η̃i(Ai) = Kt,≤ξ.

First, we shall show η̃i(Ai) ⊃ Kt,≤ξ. Since Kt(C≤ξ) is generated by the elements Ft(Yi,p),

it is enough to prove that Ft(Yi,p)≤ξ ∈ η̃i(Ai) for all (i, p) ∈ Î≤ξ. It follows from the following
more general assertion: for any k ∈ N0, and u ∈ N, we have

(5.6) η̃i(∂
∗
+)kXu = F

(ı)
t [p, (sık · · · sı1ξ)ı]≤ξ if ρ∂k+i

(u) = (ı, p),

where (∂∗+)k denotes the composition of the homomorphisms

A∂k+i
∂∗+−−→ A∂k−1

+ i

∂∗+−−→ · · ·
∂∗+−−→ A∂+i

∂∗+−−→ Ai

and Xu denotes the u-th initial cluster variable of A∂k+i. Once we have the assertion 5.6, it

follows that η̃−1
i Ft(m)≤ξ is a cluster variable for all dominant monomial m corresponding to

a KR module in C≤ξ, since every F
(ı)
t [p, s]≤ξ (with (ı, p), (ı, s) ∈ Î≤ξ, p ≤ s) appears in the

RHS of the equality (5.6) when k and u vary. This proves the last assertion in the statement.
Let us outline the proof of (5.6), which is the same as those of previous works [HL16, Bit21].

It proceeds by transfinite induction on (k, u) ∈ N0 × N along the lexicographic order. When
k = 0, (5.6) holds for all u ∈ N by Lemma 4.9 and the definition of η̃i in Corollary 5.13. Let
us discuss the case when k = 1. We set ı := ı1 and recall the notation µ+ and σ+ which
appeared in the definition of ∂∗+ in §2.3. For each u ∈ N, let X ′u := µ∗+Xu be the mutated



32 R. FUJITA, D. HERNANDEZ, S.-J. OH, AND H. OYA

cluster variable so that we have ∂∗+Xσ+(u) = X ′u. Note that X ′u = Xu if ıu 6= ı. For any v ∈ N
with ıv = ı, we have the exchange relation

(5.7) X ′vXv = taX ′
v−i
Xv+

i
+ tb

→∏
∼ı

Xv+
i ()

for some a, b ∈ 1
2Z (see the proof of Lemma 2.12 and Lemma 2.13). Now, we want to show that

η̃i(X
′
v) = F

(ı)
t [p, ξı)≤ξ if ρi(v) = (ı, p+ 2dı̄), which is equivalent to (5.6) for (k, u) = (1, σ+(v))

(note that ρ∂+i(σ+(v)) = (ı, p) in this case). By induction, we assume that η̃i(X
′
v−i

) =

F
(ı)
t (p, ξı)≤ξ. Then, from (5.7), we deduce that η̃i(X

′
v) is the unique bar invariant element of

the form (
taF

(ı)
t [p, ξı]≤ξF

(ı)
t (p, ξı)≤ξ + tb

→∏
∼ı

F
()
t (p, ξı)≤ξ

)(
F

(ı)
t (p, ξı]≤ξ

)−1
.

On the other hand, the truncation of the quantum T -system equation (4.8) tells us that the

same property also characterizes the element F
(ı)
t [p, ξı)≤ξ. Therefore, we obtain the equality

η̃i(X
′
v) = F

(ı)
t [p, ξı)≤ξ, which completes the proof of (5.6) for k = 1. The proof for the case

k > 1 is similar and hence we omit it.
Next, we shall prove the opposite inclusion η̃i(Ai) ⊂ Kt,≤ξ. Take a reduced word (1, . . . , `)

of the longest element w◦ adapted to the Q-datum DQ. Then we define a sequence i′ = (ı′u)u∈N
so that ı′u = u for 1 ≤ u ≤ ` and ı′u+` = ıu for any u ∈ N. By Proposition 5.1, i′ is adapted

to DQ, and obviously we have ∂`+i
′ = i. Consider the following diagram:

(5.8)

Ai′
η̃i′ // Yt,≤Dξ

(·)≤ξ
��

Ai
η̃i //

(∂∗+)`

OO

Yt,≤ξ.

A priori, it is not clear whether (5.8) commutes (but we will see that actually it does). Letting
ζ := η̃i′◦(∂∗+)`, we shall prove that ζ(x) ∈ Kt(C≤ξ) and ζ(x)≤ξ = η̃i(x) for any quantum cluster
variable x ∈ Ai by induction on the distance from the initial cluster. When x is an initial
quantum cluster variable, it follows from (5.6) (with k = `), Proposition 5.1 and Lemma 4.6.
Let x be a quantum cluster variable obtained by the exchange relation xx′ = y1 + y2, where
x′ is another quantum cluster variable and y1, y2 are quantum cluster monomials multiplied
by some powers of t±1/2. By induction, we assume that ζ(z) ∈ Kt(C≤ξ) and ζ(z)≤ξ = η̃i(z)
for z ∈ {x′, y1, y2}. Since ζ is an algebra homomorphism, we have

(5.9) ζ(x)ζ(x′) = ζ(y1) + ζ(y2) ∈ Kt(C≤ξ).

Then, Lemmas 4.1 & 4.6 imply that ζ(x) ∈ Kt(C≤ξ). Recall that the restriction of (·)≤ξ to
Kt(C≤ξ) is an algebra homomorphism. We apply it to the equation (5.9) to find

ζ(x)≤ξη̃i(x
′) = η̃i(y1) + η̃i(y2) = η̃i(x)η̃i(x

′),

which implies that ζ(x)≤ξ = η̃i(x). Thus, we have proved that η̃i(x) ∈ Kt,≤ξ for any quantum
cluster variable x ∈ Ai. �

For future use, we remark the following.
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Lemma 5.17. Let Q = (∆, σ, ξ) be a Q-datum for g and i ∈ ∆N
0 a sequence adapted to Q.

For each (i, p) ∈ Î≤ξ, the element η−1
i Ft(Yi,p) is a quantum cluster variable whose degree is

eu − eu−i , where ρ̄i(u) = (i, p).

Proof. By (5.6), we have η−1
i Ft(Yi,p) = (∂∗+)u−1X1. Therefore, the assertion follows from

Lemma 2.16. �

5.6. Relation to the HLO isomorphisms. Let i = (ı1, . . . , ı`) be a reduced word for the
longest element adapted to Q (recall Proposition 5.1). We extend it to be an infinite sequence

ĩ = (ıu)u∈N adapted to Q. Such an extension always exists, see Example 5.5. From the
discussion in [FHOO22, §8.2], we can deduce that the isomorphism ηĩ : Aĩ ' Kt(C≤ξ) in

Theorem 5.16 restricted to At(B̃i,Λi) yields the isomorphism of Z[t±1/2]-subalgebras

ηi : A`ĩ = At(B̃i,Λi) ' Kt(CQ),

which does not depend on the choice of extension ĩ of i. Moreover, the composition

ΦQ = ηi ◦ ϕ−1
i : At[N−] ' At(B̃i,Λi) ' Kt(CQ)

only depends on the Q-datum Q (that is, it does not depend on the reduced word i adapted
to Q, see Propositions 2.6, 3.3, & 5.1) and it is identical to the isomorphism in [HL15, §6],
[HO19, §10], [FHOO22, §8.2], which is called the HLO isomorphism in [FHOO22].

6. Isomorphisms among quantum Grothendieck rings and applications

We give in Theorem 6.3 a cluster theoreticalal interpretation of the isomorphisms among
the quantum Grothendieck rings constructed in [FHOO22], together with their canonical basis
(Corollary 6.4). This leads to a quantum version of the monoidal categorification Theorem of
[KKOP21b] for the categories C≤ξ (Theorem 6.6): the quantum cluster monomials belong to
the canonical basis. We obtain several applications, including the proof of the positivity con-
jecture of (q, t)-characters (Corollary 6.12) and the proof of the Kazhdan–Lusztig conjecture
for reachable modules (Corollary 6.10).

6.1. Isomorphisms among quantum Grothendieck rings. We recall the isomorphisms
among the quantum Grothendieck rings constructed in [FHOO22].

Let Q = (∆, σ, ξ) be a Q-datum for g. Take another complex simple Lie algebra g′ and a
Q-datum Q′ = (∆′, σ′, ξ′) for g′. We assume ∆ ' ∆′, that is, we assume either that g and g′

are related by (un)folding, or that g ' g′ holds. In what follows, we identify ∆ with ∆′, and in
particular we have ∆0 = ∆′0. To avoid a possible confusion, we often denote a mathematical
object X by X ′ when it is associated with g′. For example, we denote by C ′ the category
of finite-dimensional Uq(Lg

′)-modules of type 1, and by D′±1 the duality functors on C ′. In
[FHOO22], we proved the following.

Theorem 6.1 ([FHOO22, §10.3]). With the above assumption, there exists a unique isomor-

phism of Z[t±1/2]-algebras

Ψ ≡ Ψ(Q,Q′) : Kt(C ′Z) ' Kt(CZ)

satisfying the following properties:

(1) restricted to the subalgebra Kt(C ′Q′), it coincides with the isomorphism

ΦQ ◦ Φ−1
Q′ : Kt(C ′Q′) ' At[N−] ' Kt(CQ),

(2) we have Ψ ◦D′±1
t = D±1

t ◦Ψ.
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Moreover, the isomorphism Ψ induces a bijection between the (q, t)-characters of simple mod-
ules.

Note that the isomorphism Ψ restricts to the isomorphism

Kt(C ′≤D′kξ′) ' Kt(C≤Dkξ)

which induces a bijection between the canonical bases L′
t,≤D′kξ′ and Lt,≤Dkξ for all k ∈ Z.

We conclude this section by mentioning a related work by Kashiwara, Kim, Park and
the third named author. Though this observation will not be used in this paper, it is of
interest itself. In [KKOP21a], a collection of automorphisms {σı}ı∈∆0 is constructed on the

localized quantum Grothendieck ring Kt(CZ)⊗Z[t±1/2] Q(t1/2), which satisfies the braid group

relations. When g = g′ and Q = sıQ′ with ı ∈ ∆0 being a source of Q′, it is easy to see
that the isomorphism Ψ(Q,Q′) in Theorem 6.1 is identical to the automorphism σı after the
localization. In particular, we obtain the following.

Proposition 6.2. The braid group symmetry given by the automorphisms {σı}ı∈∆0 in [KKOP21a]
respects the canonical basis of Kt(CZ).

6.2. Cluster theoretical interpretation of the isomorphisms. Let us choose an infinite
sequence i = (ıu)u∈N (resp. i′ = (ı′u)u∈N) satisfying the condition (5.1) in Example 5.5 with
respect to Q (resp. Q′). Recall the notation γk and βk from §2.1 and §2.2 respectively. We
choose and fix a finite sequence τ = (τ1, . . . , τl) in {γ1, . . . , γ`−1} ∪ {β1, . . . , β`−2} such that

(ı′1, . . . .ı
′
`) = τ1 · · · τl(ı1, . . . , ı`).

For each n ∈ N0, we have the Z[t±1/2]-algebra isomorphism

τ̂ (n)∗ := τ̂l
(n)∗ · · · τ̂ (n)∗

1 : An`i′ → An`i ,
where we set

γ̂
(n)∗
k := γ∗kγ

∗
k+` · · · γ∗k+(n−1)`, β̂

(n)∗
k := β∗kβ

∗
k+` · · ·β∗k+(n−1)`.

Note that ε∗1ε
∗
2 = ε∗2ε

∗
1 whenever εi ∈ {γk+ni`}k∈[1,`−1] ∪ {βk+ni`}k∈[1,`−2] and n1 6= n2. Recall

that we have Ai =
⋃
nAn`i and Ai′ =

⋃
nAn`i′ . Taking the inductive limit, we obtain the

Z[t±1/2]-algebra isomorphism

τ̂ ∗ := lim
n→∞

τ̂ (n)∗ : Ai′ → Ai.

By construction, the isomorphism τ̂ ∗ induces a bijection between the sets of quantum cluster
monomials.

The following is one of the main theorems of this section and gives a cluster theoretical
interpretation of the isomorphism Ψ. Our proof has two steps: we study first the result for
subcategories CQ, and then we extend it to the categories C≤ξ using the dualities Dt.

Theorem 6.3. In the situation described above, the following diagram commutes:

(6.1)

Ai′
ηi′ //

τ̂∗

��

Kt(C ′≤ξ′)

Ψ
��

Ai
ηi // Kt(C≤ξ).

Proof. Let T := ηi ◦ τ̂ ∗ ◦ η−1
i′ . We have to show T = Ψ. By the characterization of the

isomorphism Ψ in Theorem 6.1, it suffices to prove
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(1) T = Ψ after restricted to Kt(C ′Q′), and

(2) T ◦D′−1
t = D−1

t ◦T.

Restricting (6.1) to A`i′ ' At(B̃i′ ,Λi′), we obtain

(6.2)

At(B̃i′ ,Λi′)
ηi′ //

τ∗

��

ϕi′

&&

Kt(C ′Q′)

Ψ

��

At[N−]

ΦQ′
99

ΦQ %%
At(B̃i,Λi)

ϕi

88

ηi
// Kt(CQ).

We know that all of the 4 small triangles in the diagram (6.2) commute thanks to Corollary 3.4,
the discussion in §5.6, and Theorem 6.1 (1). Thus, the large square in (6.2) also commutes,
which proves (1).

Next, we shall prove (2). Note that i = ∂`+i
∗ with i∗ = (ı∗u)u∈N. Since B̃i = B̃i∗ and

Λi = Λi∗ , there is the obvious isomorphism ν : Ai∗ ' Ai identifying Xu for all u ∈ N. Then,
we have the identity

(6.3) ηi ◦ ν ◦ (∂∗+)` = D−1
t ◦ ηi

which relates the homomorphisms (∂∗+)` : Ai → Ai∗ and D−1
t : Kt(C≤ξ) → Kt(C≤ξ). Indeed,

by Lemmas 2.16 & 5.17 and Proposition 5.1, we see that the cluster variables

η−1
i D−1

t Ft(Yi,p) and ν(∂∗+)`η−1
i Ft(Yi,p)

share the same degree, and hence they coincide for all (i, p) ∈ Î≤ξ (see Theorem A.8). Since the

elements {Ft(Yi,p)}(i,p)∈Î≤ξ generate the Z[t±1/2]-algebra Kt(C≤ξ), we get (6.3). In the same

way, we have the analogous identity for i′. In addition, for any cluster monomial x ∈ Ai′
whose degree belongs to the cone Ci′ (see (2.5) for its definition), we have

(6.4) τ̂ ∗ν(∂∗+)`x = ν(∂∗+)`τ̂ ∗x.

Indeed, the degrees of both sides of (6.4) coincide by Lemmas 2.16 & 2.17 and the definition
of τ̂ ∗. Now, we have

TD−1
t Ft(Yi,p) = ηiτ̂

∗η−1
i′ D

′−1
t Ft(Yi,p)

= ηiτ̂
∗ν(∂∗+)`η−1

i′ Ft(Yi,p) by (6.3) for i′

= ηiν(∂∗+)`τ̂ ∗η−1
i′ Ft(Yi,p) by (6.4)

= D−1
t ηiτ̂

∗η−1
i′ Ft(Yi,p) by (6.3) for i

= D−1
t TFt(Yi,p)

for any (i, p) ∈ Î≤ξ′ . Since the elements {Ft(Yi,p)}(i,p)∈Î≤ξ generate the Z[t±1/2]-algebra

Kt(C≤ξ), we obtain the claim (2). �

Corollary 6.4. Let Q = (∆, σ, ξ) and Q′ = (∆′, σ′, ξ′) be two Q-data such that ∆ = ∆′ as

above. For any sequences i, i′ ∈ ∆N
0 adapted to Q and Q′ respectively, the Z[t±1/2]-algebra iso-

morphism η−1
i ◦Ψ(Q,Q′)◦ηi′ induces a bijection between the set of quantum cluster monomials

in Ai′ and the set of quantum cluster monomials in Ai.
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Proof. In view of Proposition 2.6, Lemma 5.4 and Example 5.5, it is enough to prove the
assertion when both i and i′ are satisfying the condition (5.1). In this case, it is immediate
from Theorem 6.3. �

6.3. Quantization of monoidal categorification theorem. Let Q = (∆, σ, ξ) be a Q-

datum for g, and i ∈ ∆N
0 a sequence adapted to Q. Let Āi := Ā(B̃i) denote the (classical)

cluster algebra associated with B̃i, which comes with the evaluation map evt=1 : Ai → Āi.
Specializing t to 1, in Theorem 5.16, we obtain the isomorphism of commutative algebras
η̄i : Āi → K(C≤ξ). For example, this is the isomorphism of [HL16] for the category C−.
Precisely, we define η̄i to be the unique isomorphism which makes the following diagram
commute:

(6.5)

Ai
ηi //

evt=1

��

Kt(C≤ξ) �
� // Yt

evt=1

��
Āi

η̄i // K(C≤ξ)
� � χq // Y.

Here, we remind the important monoidal categorification theorem established by Kashi-
wara, Kim, Park, and the third named author.

Theorem 6.5 ([KKOP21b, §8]). The isomorphism η̄i sends each cluster monomial of the
cluster algebra Āi to the class of a simple object of the category C≤ξ.

Now, we shall prove a quantum analog of this result.

Theorem 6.6. The isomorphism ηi sends each quantum cluster monomial of the quantum
cluster algebra Ai to an element of the canonical basis Lt,≤ξ of the quantum Grothendieck ring
Kt(C≤ξ). More precisely, we have ηi(x) = Lt(m) for any quantum cluster monomial x ∈ Ai,
where m ∈M≤ξ is the unique dominant monomial such that η̄i(evt=1(x)) = [L(m)].

Proof. Our proof has two main steps: first we prove the result for simply-laced types, and
then we use a (un)folding argument for general types which is based on the new ingredients
discussed above. As the first step also works directly for type B, it is also included.

So first, we discuss the case when g is of type ABDE. In this case, we know that Con-
jectures 4.4 & 4.8 are true. In particular, it follows that, for any m1,m2 ∈ M, the tensor
product module L(m1)⊗ L(m2) is simple if and only if we have

Lt(m1)Lt(m2) = taLt(m1m2)

in Kt(CZ) for some a ∈ 1
2Z (see [HL15, Corollary 5.5], [FHOO22, Lemma 11.5]). Thanks to

this fact, it is enough to show that ηi(x) ∈ Lt,≤ξ for every quantum cluster variable x ∈ Ai
(rather than monomial). We prove this by induction on the distance from the initial cluster.
When x is an initial quantum cluster variable, it follows because Conjecture 4.8 is true for
type ABDE. Assume that x is a quantum cluster variable obtained by the exchange relation

(6.6) xx′ = ta1y1 + ta2y2,

where x′ is another quantum cluster variable, y1, y2 are quantum cluster monomials, and
a1, a2 ∈ 1

2Z. Let m,m′,m1,m2 ∈M≤ξ be the unique dominant monomials satisfying

η̄i(evt=1(x)) = [L(m)], η̄i(evt=1(x′)) = [L(m′)], η̄i(evt=1(yk)) = [L(mk)]

for k = 1, 2. We note that the relation (6.6) goes to

(6.7) χq(L(m))χq(L(m′)) = χq(L(m1)) + χq(L(m2))
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under the homomorphism χq ◦ η̄i ◦ evt=1. By induction, we assume that

ηi(x
′) = Lt(m

′), ηi(yk) = Lt(mk)

for k = 1, 2. Then, by the relation (6.6), we see that the element ηi(x) is characterized as the
unique bar invariant element of the form

(6.8) (ta1Lt(m1) + ta2Lt(m2))Lt(m
′)−1 for some a1, a2 ∈ 1

2Z

in the fraction field F(Yt). On the other hand, in Kt(C≤ξ), we have

(6.9) Lt(m)Lt(m
′) =

∑
m′′∈M≤ξ

cm′′(t)Lt(m
′′)

with some cm′′(t) ∈ N0[t±1/2] for m′′ ∈M≤ξ by Theorem 4.5. Since Conjecture 4.4 is verified
for type ABDE, we can compare the specialization of (6.9) at t = 1 with the relation (6.7).
Then, the positivity forces that

cm′′(t) =

{
tbk for some bk ∈ 1

2Z if m′′ = mk, k ∈ {1, 2},
0 otherwise.

This implies that the element Lt(m) is also the bar invariant element of the form (6.8) in
F(Yt). Therefore, we obtain ηi(x) = Lt(m), which completes the proof for type ABDE.

Next, we consider the other case, that is, when g of type CFG. Let x ∈ Ai be an arbitrary
quantum cluster monomial, and m ∈M≤ξ the dominant monomial satisfying η̄i(evt=1(x)) =
[L(m)]. Let Q′ = (∆, id, ξ′) be a Q-datum for the simply-laced Lie algebra g whose Dynkin
diagram is ∆. Take a sequence i′ ∈ ∆N

0 adapted to Q′ and set x′ := η−1
i′ Ψ(Q′,Q)ηi(x) ∈ Ai′ .

By Corollary 6.4, this x′ is a quantum cluster monomial. Since we already know that the
assertion of the theorem is true for simply-laced type, we have ηi′(x

′) ∈ Lt,≤ξ′ . Since Ψ(Q,Q′)
respects the canonical bases (Theorem 6.1), we have ηi(x) = Ψ(Q,Q′)(ηi′(x′)) ∈ Lt,≤ξ. In
other words, there is a dominant monomial m′ ∈ M≤ξ such that ηi(x) = Lt(m

′). By the
commutativity of (6.5), we have evt=1Lt(m

′) = χq(L(m)). By comparing (4.3) and (4.5), it
implies that m′ = m. �

Let us consider the following notion of reachable simple modules, that is of simple modules
corresponding to cluster monomials.

Definition 6.7. We say that a simple module L(m) is reachable if there is a Q-datum Q =
(∆, σ, ξ) for g such that m ∈ M≤ξ and η̄−1

i [L(m)] is a cluster monomial in Āi for some (or

any) sequence i ∈ ∆N
0 adapted to Q.

Remark 6.8. Thanks to Theorem 6.6 above, L(m) is reachable if and only if there is a Q-
datum Q = (∆, σ, ξ) for g such that m ∈M≤ξ and η−1

i Lt(m) is a quantum cluster monomial

in Ai for some (or any) sequence i ∈ ∆N
0 adapted to Q.

Corollary 6.9. The isomorphism Ψ: Kt(C ′Z) → Kt(CZ) in Theorem 6.1 induces a bijection
between the sets of (q, t)-characters of reachable modules.

Proof. This is immediate from Corollary 6.4. �
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6.4. Corollaries. We explain several applications of our main results. The statements of
Corollaries 6.10, 6.11, 6.12 are known in types ADE [Nak04] and type B [FHOO22] but are
new for general types.

We first state the Kazhdan–Lusztig type conjecture (= Conjecture 4.4 (1)) for reachable
modules. Note that reachable modules include KR-modules, and when g is of types CFG, the
following result is new even for KR-modules.

Corollary 6.10. If L(m) is reachable, we have evt=1(Lt(m)) = χq(L(m)).

Proof. Noting the commutativity of the diagram (6.5), this is an immediate consequence of
Theorem 6.6. �

Then we establish Conjecture 4.8 for any g.

Corollary 6.11. If L(m) is a KR module, we have Ft(m) = Lt(m).

Proof. Assume that L(m) is a KR module. Theorems 5.16 & 6.6 tell us that Ft(m) ∈ Lt.
Thus, there exists m′ ∈ M such that Ft(m) = Lt(m

′). The characterization of Ft(m) in
Theorem 4.2 and the equation (4.5) force that m′ = m, which proves the assertion. �

We also obtain the positivity of the coefficients of (q, t)-characters of simples modules, that
is, we prove Conjecture 4.4 (2) for any g, which was formulated for non-simply-laced types
almost 20 years ago in [Her04]. For types CFG, the statement was only known for fundamental
representations and was derived from a computer calculation in [Her05]. Hence we obtain an
explanation of these computational results and a vast generalization of the statement.

Corollary 6.12. The coefficients of (q, t)-characters of simple modules are positive. Precisely,

for any m ∈ M and m′ ∈ M∗ (with m′ < m), we have at[m;m′] ∈ N0[t±1/2] in the notation
of (4.5).

Proof. The idea of the proof is to identify the coefficients at[m;m′] with structure constants of
the quantum Grothendieck ring with respect to the canonical basis Lt by using Corollary 6.11
and Lemma 4.9. Then the desired positivity of at[m;m′] follows from the positivity of structure
constants (Theorem 4.5). Since it is the same argument as for the proof of [FHOO22, Theorem
11.7], we omit the details. �

6.5. Cluster structure on Kt(CZ). In this subsection, as an application of the results from
the previous subsections, we briefly discuss how one can lift the cluster algebra structure on
the Grothendieck ring K(CZ) of the whole category CZ fully investigated by [KKOP21b], to
the quantum Grothendieck ring Kt(CZ).

First, we recall the cluster algebra structure on K(CZ). In the original paper [KKOP21b],
it is described by a combinatorial gadget called the admissible chains of i-boxes. Here, let us
explain it with an equivalent but a little bit different terminology to make the things more

suitable with our notations. Let Q = (∆, σ, ξ) be a Q-datum for g. Recall the sets ∆̂≤ξ ⊂
∆̂[ξ] ⊂ ∆0×Z from §4.3 and the partial ordering � on ∆̂[ξ] from §5.1. Put ∆̂>ξ := ∆̂[ξ] \ ∆̂≤ξ.
We say that a bijection e : N → ∆[ξ] is a Q-adapted enumeration if the restrictions of its

inverse e−1 to the subsets ∆̂≤ξ and ∆̂>ξ give the morphisms of posets (∆̂≤ξ,�)→ (N,≤) and

(∆̂>ξ,�op) → (N,≤) respectively (cf. Lemma 5.3). Given such a Q-adapted enumeration e,
for each u ∈ N, we write e(u) = (ıu, pu) ∈ ∆0 × Z and define

u? := max({v ∈ [1, u] | ıu = ıv, sgn(u) 6= sgn(v)} ∪ {0}),
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where

sgn(u) :=

{
1 if e(u) ∈ ∆̂>ξ,

−1 if e(u) ∈ ∆̂≤ξ.

With this notation, we have a collection {L(me
u)}u∈N of KR modules in CZ given by

me
u :=


m(ıu)[pu, pu? ] if sgn(u) = −1 and u? 6= 0,

m(ıu)[pu, ξıu ] if sgn(u) = −1 and u? = 0,

m(ıu)[pu? , pu] if sgn(u) = 1 and u? 6= 0,

m(ıu)(ξıu , pu] if sgn(u) = 1 and u? = 0.

(6.10)

By [KKOP21b, Theorem 5.5], the collection {L(me
u)}u∈N forms a commuting family of real

simple modules, i.e., for any u, v ∈ N, we have

L(me
u)⊗ L(me

v) ' L(me
u ·me

v).

Now, we define a skew-symmetric matrix Λe = (Λe
u,v)u,v∈N by

Λe
u,v := N (me

u,m
e
v).

Theorem 6.13 ([KKOP21b, Theorem 8.1]). Let Q = (∆, σ, ξ) be a Q-datum for g. For any

Q-adapted enumeration e : N → ∆̂, there is a unique exchange matrix B̃e = (beu,v)u,v∈N such
that

∑
k∈N b

e
kuΛe

kv = 2δu,v for all u, v ∈ N. Moreover, we have a ring isomorphism

η̄e : A(B̃e) ' K(CZ)

under which the initial cluster variable Xu corresponds to [L(me
u)] for any u ∈ N, and every

cluster monomial corresponds to the class of a simple module.

Examples are given in Appendix B.

Proposition 6.14 ([KKOP21b, §8]). The isomorphism η̄e in Theorem 6.13 induces a bijection

between the cluster monomials in A(B̃e) and the classes of reachable modules in the sense of
Definition 6.7.

Proof. Let x be an arbitrary cluster monomial in A(B̃e). Then, the discussion in the proof of
[KKOP21b, Theorem 8.1] implicitly tells us that, for any Q-datum Q = (∆, σ, ξ) such that
η̄e(x) ∈ K(C≤ξ), the element η̄−1

i η̄e(x) is a cluster monomial in Āi for any sequence i ∈ ∆N
0

adapted to Q. Therefore, η̄e(x) is reachable. Similarly, for any reachable L(m), we see that

the element η̄−1
e ([L(m)]) is a cluster monomial in A(B̃e). �

Now, we shall prove a quantum analog of Theorem 6.13.

Theorem 6.15. Let Q = (∆, σ, ξ) be a Q-datum for g. For any Q-adapted enumeration

e : N→ ∆̂[ξ], we have an isomorphism of Z[t±1/2]-algebras

ηe : At(Λe, B̃e) ' Kt(CZ)

under which the initial quantum cluster variable Xu corresponds to Lt(m
e
u) for any u ∈ N,

and every cluster monomial corresponds to the (q, t)-character of a simple module. Here B̃e

is the unique exchange matrix in Theorem 6.13 above.

Proof. The proof is similar to the former part of the proof of Theorem 6.6. Thanks to
Theorem 4.5 and Corollary 6.10, for any mutually commuting pair of reachable modules
L(m) and L(m′), we have

Lt(m)Lt(m
′) = tN (m,m′)/2Lt(mm

′).
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In particular, we have an embedding ηe : F(T (Λe)) ↪→ F(Yt) of skew fields over Q(t1/2) given
by ηe(Xu) = Lt(m

e
u) for all u ∈ N. By a similar argument as in the proof of Theorem 6.6, using

Theorem 4.5, Corollary 6.10 and Proposition 6.14, we can show that ηe(X) = Lt(m) holds for

any quantum cluster variable X in At(Λe, B̃e), where m ∈ M the dominant monomial such
that η̄e(evt=1(X)) = [L(m)] in the notation of Theorem 6.13 above. Therefore, the image of

At(Λe, B̃e) under the embedding ηe is included in Kt(CZ). Since every fundamental module

is reachable, the above discussion also tells us that Lt(Yi,p) = Ft(Yi,p) ∈ ηe(At(Λe, B̃e)) for

any (i, p) ∈ Î. Since the set {Ft(Yi,p)}(i,p)∈Î is generating the Z[t±1/2]-algebra Kt(CZ), we

conclude that ηe(At(Λe, B̃e)) = Kt(CZ). �

7. Substitution formulas

In Theorem 6.3, we gave a cluster theoretical interpretation of Ψ|Kt(C ′≤ξ′ ). As an application

of it, we show in this section that Ψ comes from an explicit birational transformation among
the variables in Yt and Y ′t, which we call substitution formulas. It reveals a non-trivial relation
among the (q, t)-characters of simple modules which are mutually related under Ψ.

Let us state the main result of this section more precisely. We return to the assumption
and the notation in Sections 6.1 and 6.2. Recall that we have

Kt(CZ) ⊂ Yt ⊂ F(Yt), Kt(C ′Z) ⊂ Y ′t ⊂ F(Y ′t),

where F(Yt) and F(Y ′t) denote the skew field of fractions of Yt and Y ′t, respectively. The main
theorem in this section is the following:

Theorem 7.1 (Substitution formulas). With the above assumption, there exists an isomor-
phism of skew fields

Ψ̃ ≡ Ψ̃(Q,Q′) : F(Y ′t)
∼−→ F(Yt),

such that

(1) Dt ◦ Ψ̃ = Ψ̃ ◦D′t,
(2) Ψ̃(Yi,p) ∈ F(Yt,DkQ) for k ∈ Z and (i, p) ∈ Î ′

D′kQ′,

(3) the following diagram commutes.

F(Y ′t)
Ψ̃ // F(Yt)

Kt(C ′Z)
?�

OO

Ψ // Kt(CZ)
?�

OO

In particular, there exists a birational transformation between the variables in Y ′t and those
in Yt which makes the (q, t)-characters of simple modules in C ′Z into those in CZ.

Our proof of Theorem 7.1 is valid under the setting when t = 1. Hence we obtain the
parallel result at t = 1 by the same proof. Let F(Y) (rep. F(Y ′)) be the field of fractions of
Y (resp. Y ′). Denote by Ψt=1 the Z-algebra isomorphism which makes the following diagram
commutative:

Kt(C ′Z)
Ψ
∼

//

evt=1
����

Kt(CZ)

evt=1
����

χq(K(C ′Z))
Ψt=1

∼
// χq(K(CZ))
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We call the image of the (q, t)-characters of simple modules under evt=1 the (q, 1)-characters
of simple modules.

Theorem 7.2 (Substitution formulas at t = 1). With the above assumption, there exists an
isomorphism of fields

Ψ̃t=1 ≡ Ψ̃(Q,Q′)t=1 : F(Y ′) ∼−→ F(Y),

such that

(1) D ◦ Ψ̃t=1 = Ψ̃t=1 ◦D′,
(2) Ψ̃t=1(Yi,p) ∈ F(YDkQ) for k ∈ Z and (i, p) ∈ Î ′

D′kQ′,

(3) the following diagram commutes.

F(Y ′) Ψ̃t=1 // F(Y)

χq(K(C ′Z))
?�

OO

Ψt=1 // χq(K(CZ)).
?�

OO

In particular, there exists a birational transformation between the variables in Y ′ and those
in Y which makes the (q, 1)-characters of simple modules in C ′Z into those in CZ.

Remark 7.3. We can calculate Ψ̃ and Ψ̃t=1 explicitly by tracing a specific mutation sequence.
See Appendix C.

The coincidence of the (q, 1)-characters and the q-characters are now known in many cases.
See Conjecture 4.4, Corollary 6.10, and expositions around them. Hence the substitution
formulas at t = 1 reveal several non-trivial relations among the q-characters of simple modules
which are mutually related under Ψt=1.

The rest of this section is devoted to the proof of Theorem 7.1. We consider the following
commutative diagram:
(7.1)

F(Y ′t,≤ξ′)

Ψ̃≤ξ,≤ξ′

++
F(T (Λi′))∼

η̃i′,Foo
∼
τ̂∗F // F(T (Λi))

η̃i,F

∼
// F(Yt,≤ξ)

Y ′t,≤ξ′
?�

OO

T (Λi′)∼̃
ηi′oo

?�

OO

T (Λi) ∼̃
ηi //

?�

OO

Yt,≤ξ
?�

OO

Kt(C ′≤ξ′)≤ξ′
?�

OO

Kt(C ′≤ξ′)

(·)≤ξ′
gg

∼oo

Ψ|Kt(C ′≤ξ′ )

∼

66
Ai′ηi′

∼oo τ̂∗

∼
//

?�

OO

Ai ηi

∼ //
?�

OO

Kt(C≤ξ)

(·)≤ξ
77

∼ // Kt(C≤ξ)≤ξ
?�

OO

Kt(C ′≤D′−1ξ′)
?�

OO

Ψ|Kt(C ′≤D′−1ξ′
)

∼

33
id Kt(C ′≤D′−1ξ′)

?�

OO

Kt(C≤D−1ξ)
?�

OO

id Kt(C≤D−1ξ)
?�

OO

Here the morphisms η̃i,F, η̃i′,F, τ̂
∗
F , and Ψ̃≤ξ,≤ξ′ are uniquely defined so that the diagram be-

comes commutative. The hooked arrows denote the inclusion maps. Note that the restriction
of (·)≤ξ (resp. (·)≤ξ′) to Kt(C≤D−1ξ) (resp. Kt(C ′≤D′−1ξ′)) is the identity map by Lemma 4.6.
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The key step for the proof of Theorem 7.1 is to show the compatibility of Ψ̃≤ξ,≤ξ′ with the

dual operations, that is, D−1
t ◦ Ψ̃≤ξ,≤ξ′ = Ψ̃≤ξ,≤ξ′ ◦D′−1

t on F(Y ′t,≤ξ′) (Lemma 7.4 (1)). Once

we established it, we can extend Ψ̃≤ξ,≤ξ′ to Ψ̃ by using the dual operations. Note that we can

not deduce the compatibility of Ψ̃≤ξ,≤ξ′ with the dual operations directly from Theorem 6.3

because the truncation map (·)≤ξ : Kt(C≤ξ) ↪→ Yt,≤ξ does not commute with D−1
t .

Lemma 7.4.

(1) D−1
t

∣∣
F(Yt,≤ξ)

◦ Ψ̃≤ξ,≤ξ′ = Ψ̃≤ξ,≤ξ′ ◦ D′−1
t

∣∣
F(Y ′

t,≤ξ′ )
.

(2) For k ∈ N0 and (i, p) ∈ Î ′
D′−kQ′, we have Ψ̃≤ξ,≤ξ′(Yi,p) ∈ F(Yt,D−kQ).

Proof. The statement (2) immediately follows from (1) since we have Ψ̃≤ξ,≤ξ′(F(Y ′t,Q′)) ⊂
F(Yt,Q) by the construction of Ψ̃≤ξ,≤ξ′ . Hence we shall prove (1).

Let us define the homomorphisms of skew fields as

Σ̃ := η̃−1
i,F ◦D

−1
t ◦ η̃i,F : F(T (Λi))→ F(T (Λi)),

Σ̃′ := η̃−1
i′,F ◦D

′−1
t ◦ η̃i′,F : F(T (Λi′))→ F(T (Λi′)).

Let Σ, Σ̃ : Z⊕N → Z⊕N be Z-module homomorphisms determined by

Σ(eu) = eu+`, Σ̃(eu) = eu+` − e(`+1)−i (ı∗u) for all u ∈ N.

Note that we have

(7.2) Σ̃(a) = Σ(a)−
∑
ı∈∆0

pi(a; ı)e(`+1)−i (ı∗)

for a ∈ Z⊕N by the notation defined in (2.7). Recall ρi : N → ∆̂≤ξ defined in Section 5.1.
Then, for u ∈ N with ρi(u) = (ı, p), we have

Σ̃(Xu) = η̃−1
i,F(D−1

t (η̃i,F(Xu)))(7.3)

= η̃−1
i,F(D−1

t (m(ı)[p, ξı]))

= η̃−1
i,F(m(ı∗)[p− rh∨, ξı − rh∨])

= η̃−1
i,F(m(ı∗)[p− rh∨, ξı∗ ](m(ı∗)((D−1ξ)ı∗ , ξı∗ ])

−1)

= XΣ̃(eu)

by the condition (5.1). Therefore, we have Σ̃(Xa) = XΣ̃(a) for a ∈ Z⊕N. Moreover, in the
notation of Proposition 5.14, we have

Σ̃(Xbu) = η̃−1
i,F(D−1

t (η̃i,F(Xbu))) = η̃−1
i,F(D−1

t (A−1
i,p−di)) = η̃−1

i,F(A−1
i∗,p−rh∨−di∗ ) = Xbu+`(7.4)

for u ∈ N with ρ̄i(u) = (i, p) by Proposition 5.14 and the condition (5.1).
For u ∈ N, set Zu := τ̂ ∗(X ′u). Then, by the definition of τ̂ ∗, Zu is a quantum cluster variable

in Ai. Therefore, by [Tra11, Theorem 5.3], there exist cu,n ∈ Z[t±1/2] for n ∈ N⊕N0 \ {0} and
gu ∈ Z⊕N such that

Zu = Xgu

1 +
∑

n=(nk)k∈N⊕N
0 \{0}

cu,nX
∑
k∈N nkbk

 .
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For k ∈ N0, set

∆̂fr
D−kQ := {(ı, (D−(k+1)ξ)ı + 2dı̄) | ı ∈ ∆0},

∆̂uf
D−kQ := ∆̂D−kQ \ ∆̂fr

D−kQ.

For u ∈ N, there exists k ∈ N0 such that the quantum cluster variable Zu is obtained from

the initial cluster {Xs | s ∈ N} by the mutations only at the vertices labelled by ∆̂uf
D−kQ.

See the construction of τ̂ ∗ in Section 6.2 and recall the fact that ε∗1ε
∗
2 = ε∗2ε

∗
1 whenever

εi ∈ {γk+ni`}k∈[1,`−1] ∪ {βk+ni`}k∈[1,`−2] and n1 6= n2. (If Zu belongs to the initial cluster,
then we may take arbitrary k ∈ N0.)

Moreover, if Zu is obtained from the initial cluster by the mutation sequence µ
k

(u)
su
· · ·µ

k
(u)
1

for k
(u)
1 , . . . , k

(u)
su ∈ ρ−1

i (∆̂uf
D−kQ), then Zu+` is obtained from the initial cluster by the mutation

sequence µ
k

(u)
su +`

· · ·µ
k

(u)
1 +`

, by the construction of τ̂ ∗. Since cu,n ∈ Z[t±1/2] and gu are

determined only from B̃i and the sequence k
(u)
1 , . . . , k

(u)
su [Tra11, Theorem 5.3], this periodicity

together with the periodicity of B̃i coming from the condition (5.1) implies that

gu+`

{
= Σ(gu) if u > ` or u = (`+ 1)−i′ (ı) for ı ∈ ∆0,

∈ Σ(gu) +
∑

ı∈∆0
Ze(`+1)−i (ı) otherwise,

and(7.5)

cu+`,n =

{
cu,Σ−1(n) if n ∈ Σ(N⊕N0 ),

0 otherwise,
(7.6)

for u ∈ N. (Here the statement for gu+` is divided by cases since the vertices in ∆̂uf
Q does

not have a neighborhood corresponding to ∆̂fr
DQ in Γi.) Note that Z(`+1)−

i′ (ı)
= X(`+1)−i (ı) and

Z(`+1)−
i′ (ı)+`

= X(`+1)−i (ı)+`.

Therefore, for u ∈ N, we have

Σ̃(Zu) = XΣ̃(gu)

1 +
∑

n=(nk)k∈N⊕N
0 \{0}

cu,nX
∑
k∈N nkbk+`

 by (7.4)(7.7)

= XΣ̃(gu)

1 +
∑

n=(nk)k∈N⊕N
0 \{0}

cu+`,Σ(n)X
∑
k∈N nkbk+`

 by (7.6)

= XΣ̃(gu)

1 +
∑

n=(nk)k∈N⊕N
0 \{0}

cu+`,nX
∑
k∈N nkbk

 by (7.6)

' XΣ̃(gu)−gu+`Zu+`

Here ' stands for the equality up to multiplication by ta/2 for some a ∈ Z. (We use this nota-

tion throughout this proof.) Note that, by (7.2) and (7.5), Σ̃(gu)− gu+` ∈
∑

ı∈∆0
Ze(`+1)−i (ı),

and every Zs (s ∈ N) t-commutes with XΣ̃(gu)−gu+` since ρi((`+ 1)−i (ı)) ∈ ∆̂fr
Q for ı ∈ ∆0.

To show the statement (1), it suffices to prove

D−1
t (Ψ̃≤ξ,≤ξ′(Yi,p)) = Ψ̃≤ξ,≤ξ′(D

′−1
t (Yi,p))(7.8)
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for all (i, p) ∈ Î ′≤ξ′ . First, we show the equality (7.8) for (i, p) ∈ Î ′≤D′−1ξ′ . Let (i, p) ∈ Î ′≤D′−1ξ′

and u := ρ̄−1
i′ ((i, p)) ∈ N. Then u− := u−i′ ∈ N, and

D−1
t (Ψ̃≤ξ,≤ξ′(Yi,p)) = D−1

t (η̃i,F(τ̂ ∗F (η̃−1
i′,F(Yi,p))))

= D−1
t (η̃i,F(τ̂ ∗F (X ′eu−eu− )))

' D−1
t (η̃i,F(Z−1

u−Zu))

= η̃i,F(Σ̃(Z−1
u−Zu))

' η̃i,F(XΣ̃(gu)−gu+`−Σ̃(gu− )+gu−+`Z−1
u−+`

Zu+`),

Ψ̃≤ξ,≤ξ′(D
′−1
t (Yi,p)) = η̃i,F(τ̂ ∗F (η̃−1

i′,F(D′−1
t (Yi,p))))

= η̃i,F(τ̂ ∗F (Σ̃′(η̃−1
i′,F(Yi,p))))

= η̃i,F(τ̂ ∗F (Σ̃′(X ′eu−eu− )))

= η̃i,F(τ̂ ∗F (X ′eu+`−eu−+`)) by the argument parallel to (7.3),

' η̃i,F(Z−1
u−+`

Zu+`).

Let us show that

Σ̃(gu)− gu+` − Σ̃(gu−) + gu−+` = 0

for all u > `. By the iterated application of Lemmas 2.4, 2.11, and 2.18, we have

pi(gu; ı) = pi′(eu; ı) = δı′u,ı and pi(gu− ; ı) = pi′(eu− ; ı) = δı′
u−

,ı = δı′u,ı.

Note that, when applying Lemma 2.18, we used the fact that the s-th components of gu and

gu− are equal to zero for all s ∈ ρ−1
i (∆̂uf

Q ) by the definition of τ̂ ∗ and our assumption on u.
Therefore, by (7.2) and (7.5), we have

Σ̃(gu)− gu+` − Σ̃(gu−) + gu−+`

= Σ(gu)− e(`+1)−i ((ı′u)∗) − gu+` − Σ(gu−) + e(`+1)−i ((ı′u)∗) + gu−+`

= 0.

Then we have

D−1
t (Ψ̃≤ξ,≤ξ′(Yi,p)) ' Ψ̃≤ξ,≤ξ′(D

′−1
t (Yi,p)).

Since Dt,D
′
t, and Ψ̃≤ξ,≤ξ′ are compatible with the bar involution, D−1

t (Ψ̃≤ξ,≤ξ′(Yi,p)) and

Ψ̃≤ξ,≤ξ′(D
′−1
t (Yi,p)) are bar-invariant. Therefore, we have

D−1
t (Ψ̃≤ξ,≤ξ′(Yi,p)) = Ψ̃≤ξ,≤ξ′(D

′−1
t (Yi,p)),

which completes the proof of (7.8) for (i, p) ∈ Î ′≤D′−1ξ′ .

Next, we show the equality (7.8) for (i, p) ∈ Î ′Q′ . For u ∈ N, set

Fu :=

1 +
∑

n=(nk)k∈N⊕N
0 \{0}

cu,nX
∑
k∈N nkbk

 .

Then the calculation in (7.7) shows that

Σ̃(Fu) = Fu+`
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for u ∈ N. We prepare the following claim.

Claim. For (i, p) ∈ Î ′≤D′−2ξ′, Ψ̃≤ξ,≤ξ′(Yi,p) ∈ F(Yt,≤D−2ξ).

Proof of Claim. Write u := ρ̄−1
i′ ((i, p)) and u− := u−i′ . Then,

Ψ̃≤ξ,≤ξ′(Yi,p) = η̃i,F(τ̂ ∗F (X ′eu−eu− )) ' η̃i,F(Z−1
u−Zu) ' η̃i,F(F−1

u−X
gu−gu−Fu).

By Proposition 5.14 and (7.6), we have

η̃i,F(F−1
u− ), η̃i,F(Fu) ∈ F(Yt,≤D−2ξ).

Hence it suffices to show that η̃i,F(Xgu−gu− ) ∈ F(Yt,≤D−2ξ). Since we already proved (7.8) for

(i, p) ∈ Î ′≤D′−1ξ′ , we have

Ψ̃≤ξ,≤ξ′(F(Y ′t,≤D′−2ξ′)) = Ψ̃≤ξ,≤ξ′(D
′−1
t (F(Y ′t,≤D′−1ξ′)))

= D−1
t (Ψ̃≤ξ,≤ξ′(F(Y ′t,≤D′−1ξ′))) ⊂ F(Yt,≤D−1ξ).

Therefore, η̃i,F(F−1
u−X

gu−gu−Fu) = Ψ̃≤ξ,≤ξ′(Yi,p) ∈ F(Yt,≤D−1ξ), hence we have

(7.9) η̃i,F(Xgu−gu− ) ∈ F(Yt,≤D−1ξ).

The property (7.5) implies that η̃i,F(Xgu−gu− ) is a monomial in the variables {m(ı)[p, ξı]
±1 |

p ≤ (D−2ξ)ı + 2dı̄, ı ∈ ∆0}. Hence, we can write the monomial η̃i,F(Xgu−gu− ) as

η̃i,F(Xgu−gu− ) = M ·
∏

ı∈∆0

m(ı)[(D−2ξ)ı + 2dı̄, ξı]
kı

for some kı ∈ Z and a monomial M in Y≤D−2ξ. Here the property (7.9) implies kı = 0 for all

ı ∈ ∆0. Therefore, η̃i,F(Xgu−gu− ) ∈ F(Yt,≤D−2ξ). �

Assume that 1 ≤ u ≤ `. Since we already proved (7.8) for u > `, it suffices to show that

D−2
t (Ψ̃≤ξ,≤ξ′(η̃i′,F(X ′u))) = Ψ̃≤ξ,≤ξ′(D

′−2
t (η̃i′,F(X ′u))).

Indeed, since D′−1
t (η̃i′,F(X ′u)) ∈ Y ′t,≤D′−1ξ′ , this equality implies

D−2
t (Ψ̃≤ξ,≤ξ′(η̃i′,F(X ′u))) = Ψ̃≤ξ,≤ξ′(D

′−2
t (η̃i′,F(X ′u))) = D−1

t (Ψ̃≤ξ,≤ξ′(D
′−1
t (η̃i′,F(X ′u)))),

which is equivalent to D−1
t (Ψ̃≤ξ,≤ξ′(η̃i′,F(X ′u))) = Ψ̃≤ξ,≤ξ′(D

′−1
t (η̃i′,F(X ′u))).

Write f := (2`+ 1)−i (ıu) and f ′ := (2`+ 1)−i′ (ıu). Note that Xf = Zf ′ . Then

D−2
t (Ψ̃≤ξ,≤ξ′(η̃i′,F(X ′u))) = D−2

t (η̃i,F(Zu))

= D−2
t (η̃i,F(XguFu))

= η̃i,F(Σ̃2(XguFu))

= η̃i,F(XΣ̃2(gu)Fu+2`).

Ψ̃≤ξ,≤ξ′(D
′−2
t (η̃i′,F(X ′u))) = Ψ̃≤ξ,≤ξ′(η̃i′,F(Σ̃′2(X ′u)))

= Ψ̃≤ξ,≤ξ′(η̃i′,F(X ′eu+2`−ef ′ ))

' η̃i,F(X−1
f Zu+2`)

' η̃i,F(Xgu+2`−efFu+2`).
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By Claim, we have

η̃i,F(XΣ̃2(gu)−gu+2`+ef )

' D−2
t (Ψ̃≤ξ,≤ξ′(η̃i′,F(X ′u)))

(
Ψ̃≤ξ,≤ξ′(D

′−2
t (η̃i′,F(X ′u)))

)−1
∈ F(Yt,≤D−2ξ).

On the other hand, by (7.5),

Σ̃2(gu)− gu+2` + ef ∈
∑
ı∈∆0

Ze(2`+1)−i (ı) +
∑
ı∈∆0

Ze(`+1)−i (ı).

Hence η̃i,F(XΣ̃2(gu)−gu+2`+ef ) is a monomial in the variables Y ±1
j,s for (j, s) ∈ ÎQ ∪ ÎD−1Q.

Therefore,

η̃i,F(XΣ̃2(gu)−gu+2`+ef ) = 1,

which implies Σ̃2(gu) = gu+2` − ef . Therefore,

D−2
t (Ψ̃≤ξ,≤ξ′(η̃i′,F(X ′u))) ' Ψ̃≤ξ,≤ξ′(D

−2
t (η̃i′,F(X ′u))).

Then, by taking the bar-invariance into account again, we obtain

D−2
t (Ψ̃≤ξ,≤ξ′(η̃i′,F(X ′u))) = Ψ̃≤ξ,≤ξ′(D

−2
t (η̃i′,F(X ′u))),

which completes the proof. �

We are now in the position to define Ψ̃ in Theorem 7.1. Define the map Ψ̃: F(Y ′t)→ F(Yt)
as follows. For y ∈ F(Y ′t), there exists k ∈ N0 such that D′−kt (y) ∈ F(Y ′t,≤ξ′). Then we set

Ψ̃(y) := Dk
t

(
Ψ̃≤ξ,≤ξ′

(
D′−kt (y)

))
.

Let us check the well-definedness of Ψ̃. If k, k′ ∈ Z≥0 with k < k′ satisfy D′−kt (y),D′−k
′

t (y) ∈
F(Y ′t,≤ξ′), then by Lemma 7.4 (1),

Dk′
t

(
Ψ̃≤ξ,≤ξ′

(
D′−k

′

t (y)
))

= Dk′
t

(
Ψ̃≤ξ,≤ξ′

(
D
′−(k′−k)
t

(
D′−kt (y)

)))
= Dk′

t

(
D
−(k′−k)
t

(
Ψ̃≤ξ,≤ξ′

(
D′−kt (y)

)))
= Dk

t

(
Ψ̃≤ξ,≤ξ′

(
D′−kt (y)

))
,

which shows the well-definedness of Ψ̃.
The property (1) in Theorem 7.1 immediately follows from the definition of Ψ̃. The property

(2) in Theorem 7.1 follows from Lemma 7.4 (2).

Let y1, y2 ∈ F(Y ′t), and choose k ∈ Z≥0 satisfying D′−kt (y1),D′−kt (y2) ∈ F(Y ′t,≤ξ′). Then

D′−kt (y1y2) ∈ F(Y ′t,≤ξ′), and we have

Ψ̃(y1y2) = Dk
t

(
Ψ̃≤ξ,≤ξ′

(
D′−kt (y1y2)

))
= Dk

t

(
Ψ̃≤ξ,≤ξ′

(
D′−kt (y1)

))
Dk
t

(
Ψ̃≤ξ,≤ξ′

(
D′−kt (y2)

))
= Ψ̃(y1)Ψ̃(y2).

We can show the linearity of Ψ̃ in the same way. Therefore, Ψ̃ is a homomorphism of skew
fields.
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Moreover, for x ∈ Kt(C ′Z), we can take k ∈ Z≥0 satisfying D−kt (x) ∈ Kt(C ′≤D′−1ξ′)(⊂
F(Y ′t,≤ξ′)). Then, by the commutativity of the diagram (7.1) and Theorem 6.1 (2),

Ψ̃(x) = Dk
t

(
Ψ̃≤ξ,≤ξ′

(
D′−kt (x)

))
= Dk

t

(
Ψ
(
D′−kt (x)

))
= Dk

t

(
D−kt (Ψ(x))

)
= Ψ(x).

Hence Ψ̃ satisfies the property in Theorem 7.1 (3).
Finally, by reversing the role of g and g′, we can construct a homomorphism of skew fields

Ψ̃′ : F(Yt)
∼−→ F(Y ′t) which gives an inverse of Ψ̃. Therefore Ψ̃ is an isomorphism, which

completes the proof of Theorem 7.1.
We provide some explicit examples of substitution formulas in Appendix C.

Appendix A. Quantum cluster algebras

In this appendix, we fix our notation around the quantum cluster algebras.

A.1. Quantum torus. Let t be an invertible indeterminate with a formal square root t1/2.
Let J be a (possibly countably infinite) set. For a Z-valued skew-symmetric J × J-matrix

Λ = (Λij)i,j∈J , we define the quantum torus T (Λ) to be the Z[t±1/2]-algebra presented by the

set of generators {X±1
j | j ∈ J} and the relations:

• XjX
−1
j = X−1

j Xj = 1 for j ∈ J ,

• XiXj = tΛijXjXi for i, j ∈ J .

We define the Z-algebra anti-involution (·) of T (Λ) by

t1/2 := t−1/2, Xj := Xj

for all j ∈ J . This is called the bar involution of T (Λ). For a = (aj)j∈J ∈ Z⊕J , we define the
commutative monomial

Xa := t−
1
2

∑
i<j aiajΛij

→∏
j∈J

X
aj
j ,

where we fixed an arbitrary total ordering < of the set J . Note that the resulting element
Xa ∈ T (Λ) is independent from the choice of total ordering <, and invariant under the bar

involution. The set {Xa | a ∈ Z⊕J} forms a free Z[t±1/2]-basis of T (Λ). Since T (Λ) is an Ore
domain, it is embedded into the skew field of fractions F(T (Λ)).

A.2. Quantum cluster algebra. Let Jf ⊂ J be a subset and put Je := J \ Jf . Let

B̃ = (bij)i∈J,j∈Je be a Z-valued J × Je-matrix whose principal part B = (bij)i,j∈Je is skew-
symmetrizable, i.e., there is a diagonal matrix D with positive integer entries such that the
product DB is skew-symmetric. We assume that the set {i ∈ J | bij 6= 0} is finite for all

j ∈ J . Such a matrix B̃ is called an exchange matrix. We say that a pair (Λ, B̃) is compatible
if we have ∑

k∈J
bkiΛkj = diδi,j (i ∈ Je, j ∈ J)

for some positive integer di. In this case, B is skew-symmetrizable by the diagonal matrix
D = diag(di | i ∈ Je).

Given a compatible pair (Λ, B̃) and an element k ∈ Je, we define a new pair

µk(Λ, B̃) = (µkΛ, µkB̃) := (ETΛE,EB̃F ),



48 R. FUJITA, D. HERNANDEZ, S.-J. OH, AND H. OYA

where the matrices E = (eij)i,j∈J and F = (fij)i,j∈Je are given by

(A.1) eij :=


δi,j if j 6= k,

−1 if i = j = k,

max(0,−bik) if i 6= j = k,

fij :=


δi,j if i 6= k,

−1 if i = j = k,

max(0,−bik) if i = k 6= j.

The pair µk(Λ, B̃) again forms a compatible pair. The operation µk is called the mutation

at k and it is involutive, i.e., we have µk(µk(Λ, B̃)) = (Λ, B̃). In addition, we define an

isomorphism of Q(t1/2)-algebras µ∗k : F(T (µkΛ)) ∼= F(T (Λ)) by

(A.2) µ∗k(Xj) :=

{
Xa′ +Xa′′ if j = k,

Xj if j 6= k,

where a′ = (a′j)j∈J and a′ = (a′′j )j∈J are given by

a′j :=

{
−1 if i = k,

max(0, bik) if i 6= k,
a′′j :=

{
−1 if i = k,

max(0,−bik) if i 6= k.

Note that the definition of µ∗k does depend on the exchange matrix B̃. The isomorphism µ∗k is

often called the cluster transformation at k. We have µ∗k ◦µ∗k = idF(T (Λ)) and µ∗k ◦(·) = (·)◦µ∗k.

Definition A.1. Let (Λ, B̃) be a compatible pair. We say that an element of F(T (Λ)) is a
quantum cluster variable (resp. quantum cluster monomial) if it is written as

µ∗k1
µ∗k2
· · ·µ∗kn(Xj) (resp. µ∗k1

µ∗k2
· · ·µ∗kn(Xa)),

for some finite sequence (k1, k2, . . . , kn) in Je and j ∈ J (resp. a ∈ N⊕J0 ). The quantum

cluster algebra At(Λ, B̃) is defined to be the Z[t±1/2]-subalgebra of F(T (Λ)) generated by all
the quantum cluster variables.

Note that each quantum cluster monomial is invariant under the bar involution.

Theorem A.2 (The quantum Laurent phenomenon [BZ05, Corollary 5.2]). The quantum

cluster algebra At(Λ, B̃) is contained in the quantum torus T (Λ).

By definition, the cluster transformation at k ∈ Je gives a Z[t±1/2]-algebra isomorphism

µ∗k : At(µk(Λ, B̃)) ∼= At(Λ, B̃),

which induces a bijection between the sets of quantum cluster monomials.

A.3. Permutation. Let π be a permutation of the index set J satisfying π(Jf ) ⊂ Jf . Given a

compatible pair (Λ, B̃) as above, we can consider another compatible pair π(Λ, B̃) = (πΛ, πB̃),

where πΛ := (Λπ−1(i),π−1(j))i,j∈J and πB̃ := (bπ−1(i),π−1(j))i∈J,j∈Je . Then we have the isomor-

phism of Z[t±1/2]-algebras

π∗ : At(π(Λ, B̃)) ∼= At(Λ, B̃) given by π∗(Xj) = Xπ−1(j) for all j ∈ J .

Clearly, this isomorphism π∗ induces a bijection between the sets of quantum cluster mono-
mials.
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A.4. Classical limit. Let B̃ be an exchange matrix as above. Consider the (commutative)
ring of Laurent polynomials Z[X±1

j | j ∈ J ] and let Q(Xj | j ∈ J) be its fraction field. For

each k ∈ Je, we have an algebra involution µ∗k of Q(Xj | j ∈ J) defined by the same formula
as (A.2).

Definition A.3. Let B̃ be an exchange matrix. An element of Q(Xj | j ∈ J) is called a
cluster variable (resp. cluster monomial) if it is written as

µ∗k1
µ∗k2
· · ·µ∗kn(Xj) (resp. µ∗k1

µ∗k2
· · ·µ∗kn(Xa)),

for some finite sequence (k1, k2, . . . , kn) in Je and j ∈ J (resp. a ∈ N⊕J0 ). The cluster algebra

A(B̃) is defined to be the Z-subalgebra of Q(Xj | j ∈ J) generated by all the cluster variables.

Now, let (Λ, B̃) be a compatible pair. By specializing t1/2 to 1, we obtain the surjec-
tive algebra homomorphism evt=1 : T (Λ) → Z[X±1

j | j ∈ J ]. By definition, it induces the
surjection

evt=1 : At(Λ, B̃)→ A(B̃).

under which a quantum cluster monomial goes to a cluster monomial. See [GLS20, Lemma
3.3].

Lemma A.4 (cf. [BZ05]). The homomorphism evt=1 gives a bijection between the set of

quantum cluster monomials in At(Λ, B̃) and the set of cluster monomials in A(B̃).

Proof. The surjectivity is obvious from the definition. The injectivity follows from an argu-
ment similar to the proof of [BZ05, Theorem 6.1]. �

A.5. Degrees. Let (Λ, B̃) be a compatible pair. We say that an element x of the quantum
torus T (Λ) is pointed if it is written in the form

x = Xg +
∑

n∈N⊕Je0 \{0}

cnX
g+B̃n

for some g ∈ Z⊕J and cn ∈ Z[t±1/2]. In this case, we write deg x = g and call it the degree of

x. Note that this notion of degree does depend on the exchange matrix B̃, not only on the
quantum torus T (Λ).

It is known that every quantum cluster monomial x in At(Λ, B̃) is pointed [Tra11, Theorem
5.3]. Its degree is often called the g-vector of x.

Theorem A.5 ([FZ07, (7.18)], [DWZ10], [GHKK18]). Let (Λ, B̃) be a compatible pair and

k ∈ Je. Let x ∈ At(Λ, B̃) and x′ ∈ At(µk(Λ, B̃)) be quantum cluster monomials whose
g-vectors are g = (gj)j∈J and g′ = (g′j)j∈J respectively. If µ∗k(x

′) = x, we have

gj =


−g′k if j = k,

g′j + max(b′jk, 0)g′k if j 6= k and g′k ≥ 0,

g′j −min(b′jk, 0)g′k if j 6= k and g′k ≤ 0.

Here µkB̃ = (b′ij)i∈J,j∈Je.

Remark A.6. In particular, under the assumption of Theorem A.5, we have g = Eg′ if

g′k ≥ 0. Here E = (eij)i,j∈J is the matrix given by (A.1) with B̃ = (bij)i∈J,j∈Je .

Remark A.7. Let π ∈ SJ be a permutation such that π(Jf ) ⊂ Jf as in Section A.3. From
the definition, it is clear that we have deg(π∗x) = (gπ(j))j∈J if deg x = (gj)j∈J .
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Theorem A.8 ([FZ07, Conjecture 7.10(1)], [DWZ10], [GHKK18]). Let (Λ, B̃) be a compatible

pair and x, x′ ∈ At(Λ, B̃) be two cluster monomials. If deg x = deg x′, we have x = x′.

Proof. Note that we have the similar notion of degrees for classical cluster algebraA(B̃) [FZ07]
and we have deg x = deg evt=1(x) for any quantum cluster monomial x thanks to [Tra11,

Theorem 5.3(2)]. For the classical cluster algebra A(B̃), the assertion is proved by [DWZ10]
when B is skew-symmetric and by [GHKK18] in general. Therefore, the assertion for the

quantum cluster algebra At(Λ, B̃) also follows in view of Lemma A.4. �

Remark A.9. In the main body of the present paper, we consider the degrees only for
skew-symmetric quantum cluster algebras. Therefore, we do not really need the results of
[GHKK18] for our purpose.

Appendix B. Cluster structure on K(CZ)

We give examples for Theorem 6.13.

Example B.1 (Type A). Let Q = (∆An , id, ξ) be a Q-datum of type An such that

ξı =

{
0 if ı ≡ 1 (mod 2),

−1 if ı ≡ 0 (mod 2),

and take a Q-adapted sequence

i = (ıu)u∈N :=

{
(1, 3, . . . , n, 2, 4, . . . , n− 1, 1, 3, . . . , n, 2, 4, . . . , n− 1, . . .) if n ≡ 1 (mod 2),

(1, 3, . . . , n− 1, 2, 4, . . . , n, 1, 3, . . . , n− 1, 2, 4, . . . , n, . . .) if n ≡ 0 (mod 2).

The map e defined below is a Q-adapted enumeration of ∆̂[ξ]: For u = kn+ s with k ∈ Z≥0

and 0 < s ≤ n, set

e(u) :=


(ıs, ξıs + k) (i) k ≡ 0 (mod 2) and 0 < s ≤ dn/2e,
(ıs, ξıs − k) (ii) k ≡ 0 (mod 2) and dn/2e < s ≤ n,
(ıs, ξıs − (k + 1)) (iii) k ≡ 1 (mod 2) and 0 < s ≤ dn/2e,
(ıs, ξıs + k + 1) (iv) k ≡ 1 (mod 2) and dn/2e < s ≤ n.

Then each me
u in (6.10) becomes

me
u :=


m(ıs)[ξıs − k, ξıs + k] (i),

m(ıs)[ξıs − k, ξıs + k] (ii),

m(ıs)[ξıs − (k + 1), ξıs + k − 1] (iii),

m(ıs)[ξıs − k + 1, ξıs + k + 1] (iv),

and the exchange matrix B̃e is given as follows (see [KKOP22, Theorem 6.14]):

(B̃e)u,v :=



1 if (a) u− v = ±n and u satisfies (i) or (iv),

or (b) |u− v| < n, ıu ∼ ıv and u satisfies (iii) or (ii),

−1 if (c) u− v = ±n and u satisfies (iii) or (ii),

or (d) |u− v| < n, ıu ∼ ıv and u satisfies (i) or (iv),

0 otherwise.
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Using {me
u}u∈N as the set of vertices for the corresponding quiver Γ

B̃e of B̃e, Γ
B̃e is isomorphic

to the the product of sink-source Dynkin quivers of type A∞ and An, usually denoted by
→
A∞ ⊗

→
An (see [Kel13, §3.3]). For instance, Γ

B̃e for n = 3 can be drawn as follows:

· · · // m
(1)
7 [−2, 2]

yy

m
(1)
4 [−2, 0] //oo m

(1)
1 [0, 0]

yy

· · · m
(2)
9 [−3, 1] //oo m

(2)
6 [−1, 1]

99

%%

m
(2)
3 [−1,−1]oo

· · · // m
(3)
8 [−2, 2]

ee

m
(3)
5 [−2, 0] //oo m

(3)
2 [0, 0]

ee

Here m
(ı)
u [p, s] means me

u = m(ı)[p, s].

Example B.2 (Type B). Let Q = (∆A2n−1 ,∨, ξ) be a Q-datum of type Bn such that

ξn−s =

{
ξn + 1 if n− s ≡ 0 (mod 2),

ξn + 3 if n− s ≡ 1 (mod 2),
ξ2n−s = ξs − 2 for 1 ≤ s ≤ n− 1,

and take Q-adapted sequence

i := (ı1, ı2, . . . , ın, ın+1, ın+2, ı2n−1, ı2n, ı2n+1, . . .)

such that (1) ık = ık−2n for any k > 2n, (2) {ı1, . . . , ın} = {1, . . . , n}, (3) ın = n, (4)
ın+k = ∨(ık) for 1 ≤ k ≤ n− 1 and (5) ξı1 ≥ ξı2 ≥ · · · ≥ ξın (recall Subsection 5.3). Then the

map e defined below is a Q-adapted enumeration of ∆̂[ξ]: For u = 2kn+ s ∈ N with k ∈ Z≥0

and 0 < s < n, set

e(u) :=


(ıs, ξıs − 2k) (i) k ≡ 0 (mod 2) and ξn − ξıs ≡ 3 (mod 4),

(ıs, ξıs + 2k) (ii) k ≡ 0 (mod 2) and ξn − ξıs ≡ 1 (mod 4),

(ıs, ξıs + 2(k + 1)) (iii) k ≡ 1 (mod 2) and ξn − ξıs ≡ 3 (mod 4),

(ıs, ξıs − 2(k + 1)) (iv) k ≡ 1 (mod 2) and ξn − ξıs ≡ 1 (mod 4),

and, for u = tn ∈ N with t ∈ N, set

e(u) :=

{
(n, ξn + t) (v) t ≡ 0 (mod 2),

(n, ξn − (t− 1)) (vi) t ≡ 1 (mod 2).

Then each me
u in (6.10) becomes as follows:

me
u :=



m(ıs)[ξıs − 2k, ξıs + 2k] (i) or (ii),

m(ıs)[ξıs − 2(k − 1), ξıs + 2(k + 1)] (iii),

m(ıs)[ξıs − 2(k + 1), ξıs + 2(k − 1)] (iv),

m(n)[ξın − (t− 2), ξn + t] (v),

m(n)[ξın − (t− 1), ξn + t] (vi).
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In this case, one can prove that the following skew-symmetric matrix is B̃e in Theorem 6.13:
For u, v ∈ N such that {ıu, ıv} 6= {n, n± 1},

(B̃e)u,v :=



1 if (a) u− v = ±2dı̄un and u satisfies (ii), (iii) or (v),

or (b) |u− v| < 2dı̄un, ıu ∼ ıv and u satisfies (i), (iv) or (vi),

−1 if (c) u− v = ±2dı̄un and u satisfies (i), (iv) or (vi),

or (d) |u− v| < 2dı̄un, ıu ∼ ıv and u satisfies (ii), (iii) or (v),

0 otherwise.

and the remained entries −(B̃e)v,u = (B̃e)u,v for ıu = n± 1 and ıv = n are given as follows:

(B̃e)u,v :=


1 if (g) |u− v| < n, and v satisfies (v),

−1 if (e) |u− v| < 3n, ıu = n− 1, u satisfies (ii) and v satsifies (vi),

or (f) |u− v| < 3n, ıu = n+ 1, u satisfies (iv) and v satsifies (vi),

0 otherwise.

Interestingly enough, the quiver Γ
B̃e corresponding to B̃e in the above is isomorphic to the

quiver Q∞(Bn) in [IIK+13a, Figure 1] which is related to the periodicity of cluster algebras.

Let us see the particular example for n = 3. In this case, we can take ξ3 = −3 and

i = (1, 2, 3, 5, 4, 3, 1, 2, 3, 5, 4, 3, . . .).

Using {me
u}u∈N as the set of vertices for the corresponding quiver Γ

B̃e of B̃e, Γ
B̃e can be drawn

as follows:

· · · // m(1)
19 [−8, 4] m

(1)
13 [−8, 0] //oo m

(1)
7 [−4, 0]

ww

m
(1)
1 [−4,−4]oo

· · · // m
(2)
14 [−6, 2]

77

$$
ss

m
(2)
8 [−6,−2]oo // m

(2)
2 [−2,−2]

ss

77

$$

· · · // m
(3)
18 [−7, 3]

::

zz

m
(3)
15 [−7, 1]oo // m

(3)
12 [−5, 1]

zz

::

m
(3)
9 [−5,−1]oo // m

(3)
6 [−3,−1]

zz

::

m
(3)
3 [−3,−3]oo

· · · m
(4)
17 [−8, 0]oo // m

(4)
11 [−4, 0]

dd

''

33

m
(4)
5 [−4,−4]

''

oo

· · · // m
(5)
16 [−6, 2]

gg

m
(5)
10 [−6,−2] //oo m

(5)
4 [−2,−2]

(B.1)

Remark B.3. As Example B.1, there exist admissible chains of i-boxes and Q-data with

σ = id, whose corresponding quivers are isomorphic to the product quivers
→
A∞ ⊗

→
Dn (n ≥ 4)

and
→
A∞ ⊗

→
En (n = 6, 7, 8) in [Kel13], for simply-laced types g. Similar to Example B.2, for

non simply-laced type g, there exist admissible chains of i-boxes and Q-data with σ 6= id,
whose corresponding quivers are isomorphic to Q∞(g) in [IIK+13a, IIK+13b].

Appendix C. Example of substitution formulas

In this appendix, we show some examples of our substitution formulas. We mainly consider

the situation when t = 1 for simplicity, that is, the morphism Ψ̃t=1. Its quantum analogue Ψ̃
can be calculated in a parallel manner.

Example C.1. Let us calculate explicitly the substitution formula from type A2 to type A2

itself arising from a braid move. Consider the height functions ξ′, ξ given as follows:

(ξ′1, ξ
′
2) = (0,−1), (ξ1, ξ2) = (0, 1).
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Then the followings are the infinite sequences i′ = (ı′u)u∈N, i = (ıu)u∈N ∈ {1, 2}N satisfying
the condition (5.1) in Example 5.5:

i′ = ( 1, 2, 1︸ ︷︷ ︸,
reduced word for w◦

2, 1, 2︸ ︷︷ ︸, 1, 2, 1︸ ︷︷ ︸, . . . ), i = ( 2, 1, 2︸ ︷︷ ︸,
reduced word for w◦

1, 2, 1︸ ︷︷ ︸, 2, 1, 2︸ ︷︷ ︸, . . . ).
The quiver Γi corresponding to i can be depicted as

(ı \ p) · · · −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1

1 · · · • bb •// bb •// bb •// bb •// bb •// bb •// bb

2 · · · •//
||

•//
||

•//
||

•//
||

•//
||

•//
||

•//

The infinite sequence i can be obtained from i′, and vise versa, by applying the braid moves.
Hence applying the mutations at the following vertices

(C.1) (2, 1), (1,−2), (2,−5), (1,−8), (2,−11), . . .

we obtain the quiver Γi′ .

(ı \ p) · · · −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

1 · · · • bb •// bb •// bb •// bb •// bb •// bb •//

2 · · · •//
||

•//
||

•//
||

•//
||

•//
||

•//
||

Here the correspondence of the labelling of vertices is given by

(C.2)

(2, 1− 6m) 7→ (1,−6m), (1,−6m) 7→ (1,−2− 6m),

(2,−1− 6m) 7→ (2,−1− 6m), (1,−2− 6m) 7→ (2,−3− 6m),

(2,−3− 6m) 7→ (2,−5− 6m), (1,−4− 6m) 7→ (1,−4− 6m).

By the exchange relation of cluster algebra and (C.2), we have

τ̂ ∗(X ′1,−6m) =
X2,3−6mX1,−6m +X1,2−6mX2,−1−6m

X2,1−6m
,

τ̂ ∗(X ′1,−2−6m) = X1,−6m,

τ̂ ∗(X ′1,−4−6m) = X1,−4−6m,

τ̂ ∗(X ′2,−1−6m) = X2,−1−6m,

τ̂ ∗(X ′2,−3−6m) =
X1,−6mX2,−3−6m +X2,−1−6mX1,−4−6m

X1,−2−6m
,

τ̂ ∗(X ′2,−5−6m) = X2,−3−6m.

Here X2,3 = X1,2 := 1. Hence,

Ψ̃≤ξ,≤ξ′(m
(ı)[p, ξ′ı])

=



(Y −1
2,1−6mY1,−6m + Y2,−1−6m)m(1)[2− 6m, 0] if (ı, p) = (1,−6m),

m(1)[−6m, 0] if (ı, p) = (1,−2− 6m),

m(1)[−4− 6m, 0] if (ı, p) = (1,−4− 6m),

m(2)[−1− 6m, 1] if (ı, p) = (2,−1− 6m),

(Y −1
1,−2−6mY2,−3−6m + Y1,−4−6m)m(2)[−1− 6m, 1] if (ı, p) = (2,−3− 6m),

m(2)[−3− 6m, 1] if (ı, p) = (2,−5− 6m).
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Here m(1)[2, 0] := 1. This calculation implies that, for (ı, p) ∈ Î ′≤ξ′ ,

Ψ̃≤ξ,≤ξ′(Yı,p) = Ψ̃≤ξ,≤ξ′(m
(ı)[p, ξ′ı])Ψ̃≤ξ,≤ξ′(m

(ı)[p+ 2, ξ′ı])
−1

=



Y −1
2,1−6mY1,−6m + Y2,−1−6m if (ı, p) = (1,−6m),

1

Y −1
2,1−6m + Y2,−1−6mY

−1
1,−6m

if (ı, p) = (1,−2− 6m),

Y1,−4−6mY1,−2−6m if (ı, p) = (1,−4− 6m),

Y2,−1−6mY2,1−6m if (ı, p) = (2,−1− 6m),

Y −1
1,−2−6mY2,−3−6m + Y1,−4−6m if (ı, p) = (2,−3− 6m),

1

Y −1
1,−2−6m + Y1,−4−6mY

−1
2,−3−6m

if (ı, p) = (2,−5− 6m).

Therefore, for (ı, p) ∈ Î ′,

Ψ̃t=1(Yı,p) =



Y −1
2,1−6mY1,−6m + Y2,−1−6m if (ı, p) = (1,−6m),

1

Y −1
2,1−6m + Y2,−1−6mY

−1
1,−6m

if (ı, p) = (1,−2− 6m),

Y1,−4−6mY1,−2−6m if (ı, p) = (1,−4− 6m),

Y2,−1−6mY2,1−6m if (ı, p) = (2,−1− 6m),

Y −1
1,−2−6mY2,−3−6m + Y1,−4−6m if (ı, p) = (2,−3− 6m),

1

Y −1
1,−2−6m + Y1,−4−6mY

−1
2,−3−6m

if (ı, p) = (2,−5− 6m).

This is the substitution formula from A2 to itself.
For an instance, we have

χq(L(Y2,−7)) = Y2,−7 + Y1,−6Y
−1

2,−5 + Y −1
1,−4.

By applying the above formula, we have

Y2,−7Y2,−5 + Y −1
2,−5Y1,−6Y

−1
1,−2 + Y2,−7Y

−1
1,−2

+ Y −1
2,−5Y1,−6Y1,−4Y

−1
2,−3 + Y2,−7Y1,−4Y

−1
2,−3 + Y −1

1,−4Y
−1

1,−2 = χq(L(Y2,−7Y2,−5)).

We remark here that the isomorphism Ψt=1 is categorified by the autofunctor S2 on CZ,sl3 in
[KKOP21a] (see also Proposition 6.2).

Example C.2. We illustrate an example of our substitution formula from type B2 to type
A3. Consider the height functions ξ′ of type B2 and ξ of type A2 given as follows:

(ξ′1, ξ
′
2, ξ
′
3) = (−3, 0,−1), (ξ1, ξ2, ξ3) = (−1, 0,−1).

Then the followings are the infinite sequences i′ = (ı′u)u∈N, i = (ıu)u∈N ∈ {1, 2, 3}N satisfying
the condition (5.1) in Example 5.5:

i′ = ( 2, 3, 2, 1, 2, 3︸ ︷︷ ︸
reduced word for w◦

, 2, 1, 2, 3, 2, 1︸ ︷︷ ︸, 2, 3, 2, 1, 2, 3︸ ︷︷ ︸, . . . ),
i = ( 2, 3, 1, 2, 1, 3︸ ︷︷ ︸

reduced word for w◦

, 2, 1, 3, 2, 3, 1︸ ︷︷ ︸, 2, 3, 1, 2, 1, 3︸ ︷︷ ︸, . . . ).
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The quiver Γi corresponding to i can be depicted as

(ı \ p) · · · −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

1 · · · • cc •// cc •// cc •// cc •// cc •// cc •// cc
2 · · · •// cc

{{ •// cc
{{ •// cc

{{ •// cc
{{ •// cc

{{ •// cc
{{ •//

3 · · · • {{ •// {{ •// {{ •// {{ •// {{ •// {{ •// {{

The infinite sequence i can be obtained from i′, and vise versa, by applying the braid moves
in the red parts of i and i′ above. Hence, by applying the mutations at the following vertices

(C.3) (1,−1), (3,−5), (1,−9), (3,−13), . . . , (1,−1− 8m), (3,−5− 8m), . . .

we obtain the quiver Γi′ .

(ı \ p) · · · −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

1 · · · •// cc •// cc •// cc
2 · · · ss •// kk •// ss •// kk •// ss •// kk •// •//

3 · · · • {{ •// {{ •// {{ •// {{

Here the correspondence of the labelling of vertices is given by

(C.4)

(1,−1− 8m) 7→ (2,−2− 12m), (1,−3− 8m) 7→ (1,−3− 12m),

(1,−5− 8m) 7→ (1,−7− 12m), (1,−7− 8m) 7→ (1,−11− 12m),

(2,−4m) 7→ (2,−6m), (2,−2− 4m) 7→ (2,−4− 6m),

(3,−1− 8m) 7→ (3,−1− 12m), (3,−3− 8m) 7→ (3,−5− 12m),

(3,−5− 8m) 7→ (2,−8− 12m), (3,−7− 8m) 7→ (3,−9− 12m),

for m ∈ N0. Note that 8 and 12 are the numbers 2rh∨ for types A3 and B2 respectively. By
the exchange relation of cluster algebras and (C.4), we have

τ̂ ∗(X ′1,−3−12m) = X1,−3−8m, τ̂ ∗(X ′1,−7−12m) = X1,−5−8m,

τ̂ ∗(X ′1,−11−12m) = X1,−7−8m, τ̂ ∗(X ′2,−6m) = X2,−4m

τ̂ ∗(X ′2,−2−12m) =
X2,−2−8mX1,1−8m +X1,−3−8mX2,−8m

X1,−1−8m

τ̂ ∗(X ′2,−4−6m) = X2,−2−4m, τ̂ ∗(X ′3,−1−12m) = X3,−1−8m,

τ̂ ∗(X ′3,−5−12m) = X3,−3−8m, τ̂ ∗(X ′3,−9−12m) = X3,−7−8m,

τ̂ ∗(X ′2,−8−12m) =
X3,−7−8mX2,−4−8m +X2,−6−8mX3,−3−8m

X3,−5−8m
.

Here X1,1 := 1. Hence,

Ψ̃≤ξ,≤ξ′(m
(1)[−3− 12m,−3]) = m(1)[−3− 8m,−1],

Ψ̃≤ξ,≤ξ′(m
(1)[−7− 12m,−3]) = m(1)[−5− 8m,−1],

Ψ̃≤ξ,≤ξ′(m
(1)[−11− 12m,−3]) = m(1)[−7− 8m,−1],

Ψ̃≤ξ,≤ξ′(m
(2)[−6m, 0]) = m(2)[−4m, 0],

Ψ̃≤ξ,≤ξ′(m
(2)[−2− 12m, 0]) = (Y2,−2−8mY

−1
1,−1−8m + Y1,−3−8m)m(2)[−8m, 0],

Ψ̃≤ξ,≤ξ′(m
(2)[−4− 6m, 0]) = m(2)[−2− 4m, 0],
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Ψ̃≤ξ,≤ξ′(m
(3)[−1− 12m,−1]) = m(3)[−1− 8m,−1],

Ψ̃≤ξ,≤ξ′(m
(3)[−5− 12m,−1]) = m(3)[−3− 8m,−1],

Ψ̃≤ξ,≤ξ′(m
(3)[−9− 12m,−1]) = m(1)[−7− 8m,−1],

Ψ̃≤ξ,≤ξ′(m
(2)[−8− 12m, 0]) = (Y3,−7−8m + Y2,−6−8mY

−1
3,−5−8m)m(2)[−4− 8m, 0].

Therefore, for (i, p) ∈ Î ′,

Ψ̃t=1(Yi,p) =



Y1,−3−8mY1,−1−8m if (i, p) = (1,−3− 12m),

Y1,−5−8m if (i, p) = (1,−7− 12m),

Y1,−7−8m if (i, p) = (1,−11− 12m),

Y2,−8m if (i, p) = (2,−12m),

Y2,−2−8mY
−1

1,−1−8m + Y1,−3−8m if (i, p) = (2,−2− 12m),
1

Y −1
1,−1−8m + Y −1

2,−2−8mY1,−3−8m

if (i, p) = (2,−4− 12m),

Y2,−4−8m if (i, p) = (2,−6− 12m),

Y3,−7−8m + Y2,−6−8mY
−1

3,−5−8m if (i, p) = (2,−8− 12m),
1

Y −1
2,−6−8mY3,−7−8m + Y −1

3,−5−8m

if (i, p) = (2,−10− 12m),

Y3,−1−8m if (i, p) = (1,−1− 12m),

Y3,−3−8m if (i, p) = (1,−5− 12m),

Y3,−7−8mY3,−5−8m if (i, p) = (1,−9− 12m),

for some m ∈ Z, as Example C.1. This is the substitution formula from type B2 to type A3.
For example, we have

χq(L
B2(Y1,−7)) = Y1,−7 + Y2,−6Y2,−4Y

−1
1,−3 + Y2,−6Y

−1
2,−2 + Y1,−5Y

−1
2,−4Y

−1
2,−2 + Y −1

1,−1.

By applying the above formulas, we have

Y1,−5 +
Y2,−4

(Y −1
1,−1 + Y −1

2,−2Y1,−3)Y1,−3Y1,−1

+
Y2,−4

Y2,−2Y
−1

1,−1 + Y1,−3

+
Y3,−3(Y −1

1,−1 + Y −1
2,−2Y1,−3)

Y2,−2Y
−1

1,−1 + Y1,−3

+ Y −1
3,−1

= Y1,−5 + Y2,−4

Y −1
1,−3Y

−1
1,−1 + Y −1

2,−2

Y −1
1,−1 + Y −1

2,−2Y1,−3

+ Y3,−3Y
−1

2,−2 + Y −1
3,−1

= Y1,−5 + Y2,−4Y
−1

1,−3 + Y3,−3Y
−1

2,−2 + Y −1
3,−1 = χq(L

A3(Y1,−5)).
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Birkhäuser Boston, Boston, MA, 2003.

(R. Fujita) Research Institute for Mathematical Sciences, Kyoto University, Oiwake-Kitashirakawa,
Sakyo, Kyoto, 606-8502, Japan & Institut de Mathématiques de Jussieu-Paris Rive Gauche, Uni-
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