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ISOMORPHISMS AMONG QUANTUM GROTHENDIECK RINGS AND
CLUSTER ALGEBRAS

RYO FUJITA, DAVID HERNANDEZ, SE-JIN OH, AND HIRONORI OYA

ABSTRACT. We establish a cluster theoretical interpretation of the isomorphisms of [FHOO22]
among quantum Grothendieck rings of representations of quantum loop algebras. Conse-
quently, we obtain a quantization of the monoidal categorification theorem of [KKOP21b].
We establish applications of these new ingredients. First we solve long-standing problems for
any non-simply-laced quantum loop algebras: the positivity of (g, t)-characters of all simple
modules, and the analog of Kazhdan-Lusztig conjecture for all reachable modules (in the
cluster monoidal categorification). We also establish the conjectural quantum 7-systems for
the (g, t)-characters of Kirillov—Reshetikhin modules. Eventually, we show that our isomor-
phisms arise from explicit birational transformations of variables, which we call substitution
formulas. This reveals new non-trivial relations among (g, t)-characters of simple modules.
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INTRODUCTION

Consider a complex finite-dimensional simple Lie algebra g and ¢ a generic quantum pa-
rameter. The associated quantum loop algebra U,(Lg) is a quantum affinization of g with a
structure of Hopf algebra. In particular, finite-dimensional representations over U, (Lg) form
a rigid monoidal category %,, whose structure is quite intricate as it is neither semisimple
nor braided. This category has many applications and has been intensively studied from
various perspectives. However, several fundamental questions remain open, such as the di-
mension and g-character (in the sense of Frenkel-Reshetikhin [FR99]) of simple modules in
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non-simply-laced types. In the present paper, we establish that a Kazhdan—Lusztig type
approach is available to solve this problem for a very large family of simple modules.

The quantum Grothendieck ring (%) of €5 is a non-commutative deformation of the
Grothendieck ring K (%) of € inside a quantum torus );. It was introduced in [Nak04, VV03]
for simply-laced types and then in [Her04] for non-simply-laced types with a different method.
This ring has a canonical basis L; ; whose elements L;(m) are called (g, t)-characters of simple
modules and can be calculated by the Kazhdan—Lusztig type algorithm. Here m belongs to a
set M which serves as a parameter set for the simple modules L(m) in 6, (which is comparable
with the set of Drinfel’d polynomials).

The quantum Grothendieck ring serves as a useful tool to study the simple modules in
¢y- Indeed, when g is simply-laced, Nakajima proved that the (g,t)-characters of simple
modules specialize to the g-characters of simple modules, based on the geometry of quiver
varieties [Nak04]. Namely, the g¢-characters of simple modules can be calculated by the
Kazhdan-Lusztig type algorithm. More precisely, this algorithm computes the Jordan—Holder
multiplicity P, s of the simple module L(m’) occurring in the standard module M (m), that
is a tensor product of fundamental representations, whose ¢-character is known by Frenkel—
Mukhin [FMO01]. Since we have

[M(m)] = [L(m)]+ Y PowlL(m)]

m'eEM: m/'<m

in the Grothendieck ring K (%) for a certain partial ordering on M, this algorithm enables
us to compute all the simple g-characters in principle.

Here we emphasize that the quiver varieties play an essential role to guarantee the validity
of the algorithm. When g is non-simply-laced, the above theory is not applicable for the
absence of a fully developed theory of quiver varieties. However, one can still formulate a
conjectural Kazhdan—Lusztig type algorithm for general g.

Conjecture 0.1 (Analog of Kazhdan—Lusztig conjecture, [Her04, Conjecture 7.3]). Under
the specialization IC;(6y) — K(6,) at t = 1, the element Li(m) corresponds to the simple
class [L(m)] for any m € M.

Since the (g, t)-characters of simple modules can be computed algorithmically as in the usual
Kazhdan—Lusztig theory, Conjecture 0.1 enables us to compute all the simple g-characters
algorithmically once it is verified. Beyond simply-laced types, this conjecture has been proved
for type B and for certain remarkable monoidal subcategories of €y in [FHOO22] that are small
(in the sense that they contain only a finite number of fundamental representations).

A related problem is the following positivity conjecture which is known to be true for simply-
laced types [Nak04, VVO03], and was formulated for non-simply-laced types almost 20 years
ago in [Her04]. For types CFG, the statement is only known for fundamental representations
and was derived from a computer calculation in [Her05].

Conjecture 0.2 (Positivity of (g, t)-characters). In the quantum torus Yy, the elements Ly(m)
have non-negative coefficients.

In this paper, using the new ingredients that we explain below, we prove Conjecture 0.2
for all simple objects and Conjecture 0.1 for a large family of simple objects.

Theorem 0.3 (= Corollary 6.12 & Corollary 6.10).

(1) For general g, Conjecture 0.2 holds.
(2) For general g, Conjecture 0.1 holds for all reachable modules.
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A simple module is said to be reachable if its class (or one of its spectral parameter shift)
is a cluster monomial for the cluster algebra structure established in [HL16] on a subcategory
¢~ of 63. This is a large family of simple modules, including many interesting modules, all
Kirillov—Reshetikhin modules for instance. This cluster algebra structure, and some of its
variations, will play a crucial role in our proofs.

Another important ingredient for our purposes is a collection of isomorphisms between the
quantum Grothendieck rings for non-simply-laced quantum loop algebras and their unfolded
simply-laced ones established in [FHOO22]. Let us explain this. Now we assume that g is
of non-simply-laced type. Then we choose another simple Lie algebra g of simply-laced type
whose Dynkin diagram is obtained by unfolding the Dynkin diagram of g (see Figure 1). It
was proved in [FHOO22] that there exists a (non-unique) isomorphism of Z[t*'/2]-algebras

(0.1) Ki() = Ku(%,)

which induces a bijection between the (g, t)-characters of simple modules. The specialization
at t = 1 of the isomorphism (0.1) yields an isomorphism between the usual Grothendieck rings
which is non-trivial. For example, it does not respect the classes of fundamental modules nor
of standard modules. In the light of the new results we will explain, we understand why
the combinatorics of this bijection are intricate, as they are related to the cluster algebra
structures.

We establish that the quantum Grothendieck ring of the category €~ (as well as some
variations é<¢ of this category, that we introduce) has a structure of a quantum cluster
algebras. This generalizes previous results [HL15, Qinl7, Bit21]. We give a cluster theoretical
interpretation of the isomorphisms among quantum Grothendieck rings constructed above,
together with their behaviors on canonical bases. Consequently, we derive the following.

Theorem 0.4 (= Theorem 6.6). The quantum cluster monomials of Kt(€¢~) belong to the
canonical basis Ly g of (q,t)-characters of simple modules.

This result is a quantum version of the monoidal categorification theorem of [KKOP21b]
which states that the (classical) cluster monomial in (€ ~) are classes of simple modules.
We also have an analogous statement for the whole category %, (see Theorem 6.15, where we
actually work with a monoidal skeleton €7 of €, for simplicity). Let us sum up the situation
in the following diagram:

Here Ly is the basis of the Grothendieck ring K(%y) consisting of simple classes. It contains
the set of classes of reachable modules M by [KKOP21b]. A quantum cluster algebra .4,
is isomorphic to K;(¢y) and to Ki(%;) as proved in Sections 5 and 6. The cluster algebra
A; contains its set of quantum cluster monomials M; which specializes at t = 1 to M. The
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composition of the isomorphisms to A; recovers the isomorphism (0.1) of [FHOO22] as proved
in Section 6. This isomorphism induces a bijection between the canonical bases L;g, Ly 4 as
mentioned above. We prove in Section 6 that M; is sent to a subset of L; g, and so also to
a subset of L; 3. Combining all these results, we obtain that the elements in L; 4 that come
from elements in M; are evaluated at ¢ = 1 to elements in Ly, that is Theorem 0.3 (2). (In
the main body of the paper, we actually work with the analog of the above diagram for the
categories G<¢.)

Theorem 0.3 (1) is proved for all simple modules by identifying the coefficients occurring in
the (g,t)-characters with certain structure constants of the quantum Grothendieck ring with
respect to the canonical basis L; 4. For this identification, the (g, t)-characters of particular
reachable simple modules, called Kirillov—Reshetikhin modules, play a key role. Our quantum
version of the monoidal categorification theorem implies that they satisfy the quantum 7-
systems, as conjectured in [FHOO22], which help us to investigate the structure of these
(g, t)-characters.

As another application of the cluster theoretical interpretation of our isomorphisms among
quantum Grothendieck rings, we show that our isomorphisms arise from explicit birational
transformations of the variables in the quantum torus ); (Theorem 7.1). We call these bira-
tional transformations as substitution formulas. Indeed, in [FHOO22, §10.3], we provided a
way of calculating the correspondence between the ¢-highest weight monomials of the (g, t)-
characters of simple modules which are mutually related under our isomorphism, while the
explicit correspondence among the lower terms had not been known. The substitution for-
mulas in the present paper provide one method to calculate it, and reveal new non-trivial
relations among the (g, t)-characters of simple modules. Note that we already know that the
(g, t)-characters of simple modules specialize to their g-characters at t = 1 in several cases (for
example, in the case when g is of types ABDE or in the new cases established in the present
paper), hence our formulas also imply several non-trivial relations among the g-characters of
simple modules. It seems to be a new application of cluster algebras to the representation
theory of quantum loop algebras, and it might be an interesting problem to further investigate
the meaning of our formulas.

For a discussion on the recent study of the non-symmetric quantized Coulomb branches
[NW23, Nak] by Nakajima and Weekes and the possible relation to our results, see the Intro-
duction of [FHOO22].

The paper is organized as follows. In Section 1, we introduce the quantum cluster algebra
A; associated to an infinite sequence ¢ with values in Ay, the vertex set of the Dynkin diagram
of g (such that each value occurs infinitely many times), imitating the cluster structure of the
quantum unipotent groups. In Section 2, we study the relation between the quantum cluster
algebras A; and A; when ¢ and ¢’ are related by simple operations (commutation moves,
braid moves and forward shifts in respective Sections 2.1, 2.2 and 2.3). In particular, we
obtain isomorphisms and embeddings of quantum cluster algebras which are relevant for our
purposes. In Section 3, we recall that by [GLS13, KKKO18, KK19] the quantum unipotent
group A;[N_] associated to g has a quantum cluster algebras structure compatible with the
dual canonical basis, which is isomorphic to some of the (finite version of the) quantum cluster
algebras A;. We establish that these isomorphisms are compatible with the transformations
of the last section (Corollary 3.4). In Section 4, we give general reminders on the category &
of finite-dimensional representations of a quantum loop algebra, in particular on Kazhdan—
Lusztig type conjectures in this context. We also recall the monoidal subcategories 67 and €~
defined in [HL10, HL16] and we introduce subcategories ¢<¢ generalizing ¢ ~. In Section 5, we
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establish that the quantum Grothendieck ring of the category ¢<¢ has a structure of a quantum
cluster algebra isomorphic to an algebra A; introduced above (Theorem 5.16). Our proof is
partly based first on an isomorphism of quantum tori that we establish (Corollary 5.13).
In Section 6, we give a cluster theoreticalal interpretation of the isomorphisms of quantum
Grothendieck rings constructed in [FHOO22] (Theorem 6.3), together with their canonical
basis (Corollary 6.4). This leads to a quantum version of the monoidal categorification theorem
for the categories ¢<¢ (Theorem 6.6) and %7 (Theorem 6.15). We derive the applications
discussed above (Corollary 6.10, Corollary 6.12). In Section 7, we show that our isomorphisms
among quantum Grothendieck rings come from explicit birational transformations among the
variables in our quantum tori )y, which we call substitution formulas (Theorems 7.1 and 7.2).
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supported by the Institut Universitaire de France. S.-j. Oh was supported by the Ministry of
Education of the Republic of Korea and the National Research Foundation of Korea (NRF-
2022R1A2C1004045). H. O. was supported by JSPS Grant-in-Aid for Early-Career Scientists
(No.19K14515).

Conventions. Let N := Z-( be the set of positive integers and Ny := NU {0}. For a,b € Z,
we set [a,b] == {u € Z | a < u < b}. For a statement P, we set §(P) to be 1 or 0 according that
P is true or not. As a special case, we use the notation d; ; := 0(i = j) (Kronecker’s delta).

1. THE QUANTUM CLUSTER ALGEBRA A;

Let A be the Dynkin graph of a finite-dimensional simple Lie algebra g over C, with Ag
being its vertex set. We introduce the quantum cluster algebra 4; associated to an infinite
sequence ¢ with values in Ag (such that each value occurs infinitely many times), imitating
the cluster structure of the quantum unipotent groups. The results in this section hold true
for g of arbitrary types, while in the applications to the representation theory of quantum
loop algebras of arbitrary untwisted type we will obtain in this paper, we will only use the
quantum cluster algebra A; obtained from g of simply-laced type (even when we will handle
non-simply-laced quantum loop algebras).

1.1. Notation. Let C = (c;j);jea, be the Cartan matrix of g and D = diag(d; | i € Ag) its
minimal left symmetrizer (i.e. min{d; | i € Ao} = 1). For i,j7 € Ap, we write ¢ ~ j when
cij < 0. Let h* be the dual of a Cartan subalgebra of g. Let {a;}ica, and {w;}ica, be
the two bases of h* formed by simple roots and fundamental weights respectively. They are
related by a; = Zje A, Gi@j- We consider the symmetric bilinear pairing (-,-) on h* given
by (i, o) = dicij. For each i € Ay, the i-th simple reflection s; is a linear operator on h*
given by s;w; = w; — 0; jo; for j € Ag. Let W denote the Weyl group of g, which is the
subgroup of GL(h*) generated by the simple reflections {s; };ca,. Note that the pairing (—, —)
is W-invariant. The pair (W, {s;}ica,) forms a finite Coxeter system. Let w, be the longest
element of W and ¢ € N its length. Let i — i* denote the involution of A given by w,, namely
Wolly = — Oy

Consider the set AY of infinite sequences of elements of Ag. Let Aéoo) denote the subset of
Al consisting of sequences i = (i, )uen satisfying the condition:

(1.1) For any i € Ay, we have [{u € N| i, =i}| = 0.
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1.2. Compatible pair (gz, A;). In this section, we fix a sequence ¢ = (iy,)yeN € A(()OO). For
u € Nand j € Ay, we write

ut = =min{k € N| k> u,ij =i, },

v~ =u; =max({k € N|k < w,ip =i,} U{0}),
ut(j) = uf (j) = min{k € N| k > u, i), = j},
u (j) = u; (j) =max({k e N| k <wu,ip =75} U{0}).

For u € Ny, we define .
Wy = Wy, = 84,84, -+~ 85, € W.

Consider the N x N-matrix B; = (bu,w)u,veN given by

(

1 if v=ut,
-1 ifu=o",

buw = Cini, Hu<v<ut <ot
—Ciyiy v <u<ovt <ut
0 otherwise.

Note that B; is skew-symmetrizable by diag(d;, | u € N).
Let A; = (Ayw)uwen be the skew-symmetric matrix defined by

(1.2) Ayy = =Ny oy = (w4, — wyw;,, @i, +wyw;,) for u < w.
Lemma 1.1. Let u,v € N. If u < v™, we have Ay, = (wi, — wy@i,, @i, + WD, ).
Proof. When u < v, this is nothing but the definition (1.2). When v < u < v*, we have
(wy 4, , Wy, ) = (w;, , w;,) and hence
Ny = —(wi, + wywi, , @i, — Wywi,) = (W, — Wy, , Wi, + Wy, ). O

Proposition 1.2. Let i = (iy)uen € A(()OO). For any u,v € N, we have

(1.3) > by = 2di, Guo.
keN

Proof. Put ¢ .= i,. By the definition of Ei, we have
D Okl = Ay = Aty + D i (Aum (o = Aut)=(3)0) = s
kEN jrvi

where we understand Ag, = 0 (then, (1.2) still holds for u = 0). Note that (u)~(j) denotes
the largest integer v’ < u™ such that i, = j.

We need to show ., = 2d;,dy,. Since s;w; = w; — d;;04 and o; = 2w; + ),
have

i Cjiwj, wWe

(14) Wy W = —Wy—TW; — chiwu—(j)wj
ji
for any u € N. Using this identity twice, we obtain
Yy = Wy+W; — Wy -y + Z Cji(w(qu)—(j)wj‘ - wuf(j)wj) =0.
jovi
First, consider the case when u < v. If u™ < v, then we have

Ly = (ymwiv + wvwiv) = 0.
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When u < v < u™, we have
Tup = (Wi — Wy~ i, @5, + We@5,) + (@i + Wyt Wi, Wi, — Wy, )
+ Z Cji {(w] = Wy~ ()W, Wi, + wvwiv) + (wj + W(yt)=(5)Tj> Wi, — wvwiv)}
jevi
= (=8iw; + Wy i, Wi, + Wy, ) + (— 8w — Wy, Wi, — Wy,
= 2(—s;w;, wi,) + 2(wi, @i, )
= 2(0(1‘, wiv)
= 2di5i,iv-
Here the first equality follows from Lemma 1.1 (note that v < u™ < (u*)~(5)"). The second
one follows from (1.4). The third one is because (wy,w;, w,w;,) = (Wyw;, Wy, ) = (w04, @5,
To conclude, we note that d;;, = d,,, under the condition u < v < ut.
Next, assume that u > v. If 4= > v, we have
Typw = (ylwwiv - wvwiv) = 0.
Here we use again Lemma 1.1 (note that (u™)~ ()" > u=(5)" > u > v).
When u > v > u~, we have
Tup = (Wi — Wy~ i, @i, + Wew5,) + (Wi + Wyt @i, @i, — Wy, )
+ Z Cji {—(YDJ' + Wy~ ()5, Wiy, — wvwiv) + (w]' + Wy+)=(5)Tjs Wiy, — wvwiv)}
i
= (Yu + @i + Wy~ Wi, Wi, — WuT,) + (@i — Wy Wi, @i, + Wy, )
= 2(wi7wiu) — 2(wu7wi,wywiv)
= 2(’@@, wiu) — 2(’[1)@@@', wvwiv)
= 0.
Here the first equality follows from Lemma 1.1 (note that (u*)=(5)" > w= ()T > u > v).

The fourth one is deduced from our assumption v > v > u™.
The calculations above complete the proof. O

Let us take n € N and set
J=[1n], Jp={kel,n]|k">n}, Jo=J\Js

By truncating Ez and A;, we get a J X J.-matrix E:‘ = (buw)uesves. and a J x J-matrix
AZL = (Au,v)u,veJ'

Corollary 1.3. For any n € N, the pair (Ez",Af) defined as above forms a compatible pair.
More precisely, we have

Z beulky = 2d;, 000 forue Je,v e J.

kedJ
Proof. By the definition of J., we have by, = 0 for u € J. and k € N\ J. Therefore, the
result follows from Proposition 1.2. O
Remark 1.4. Corollary 1.3 is well-known when (i1,...,4,) is a reduced word for an ele-

ment of W (see [GLS13, Proposition 10.1, Lemma 11.3] and [GY17, Proposition 10.4]). Also
Corollary 1.3 gives an affirmative answer to [KO23, Conjecture 1].
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Definition 1.5. Let ¢ = (i1,...,%,) be an arbitrary finite sequence in Ay. We extend it to
an infinite sequence ¢ = (i, )yen satisfying (1.1) and define a compatible pair

(Bi, Aq) = (B}, AD).

)

Clearly it is independent of the choice of extension & € A(()OO and hence it is well-defined.

1.3. Quantum cluster algebra A;. For the generality of quantum cluster algebras, we refer
the reader to Appendix A. Let us denote by A; = At(éi,Ai) the quantum cluster algebra
associated with the compatible pair (B;, A;) in Proposition 1.2. It is a Z[t¥Y/2]-subalgebra
of the quantum torus T (A;). Here we recall that T (A;) is the Z[t='/2]-algebra generated by
{X*1} en subject to the relations

e X, X, '=X1X,=1forueN,
o X, X, =tMvX,X, for u,v € N.

For each n € N, we have the quantum cluster algebra A} = At(E?, A7) with ambient quan-
tum torus 7 (A}). We naturally regard T (A?) as the Z[t*'/2]-subalgebra of T(A;) generated
by {de}ue[lvn]. Thus we have the inclusions

Al CAFC - C A CT(A;) suchthat | ] Af = A;.

neN

In particular, each cluster variable (resp. monomial) of A4; is a cluster variable (resp. mono-
mial) of A? for n € N large enough.

2. RELATIONS AMONG A;’S

In this section, we study the relation between the quantum cluster algebras A; and A
when ¢ and ¢’ are related by simple operations (commutation moves, braid moves and forward
shifts in respective Sections 2.1, 2.2 and 2.3). In particular, we obtain isomorphisms and
embeddings of quantum cluster algebras which are relevant for our purposes. We “keep
track” of the degrees (g-vectors) of cluster monomials through these transformations which
will be useful in the sequel.

In the present and the following sections, we take A as a Dynkin diagram of finite type

ADE. With each sequence ¢ = (iy)yen € A(()OO), we associate the infinite quiver I'; defined as
follows: The set of vertices of I'; is simply N. For u,v € N, we assign an arrow u — v in I[';
when either

o i,~i,and u<v<ut <ovT, or

® i, =i, and u=1vt.

Then, we have
(2.1) by = [{arrows v — w in I';}| — [{arrows u — v in I';}.

For a set X, we denote by &x the group of permutations of X. For a matrix A =
(Auv)uvex and a permutation 7™ € Sx, we set TA = (Aﬂ.—l(u)ﬂr—l(v))u’vex. For each k£ € N,
let o € ©n be the simple transposition of k£ and &k + 1.

(c0)

In what follows, we work with two sequences ¢ = (iy)yen, ¢’ = (@, )ueny € Ay .
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1. Commutation moves. First, we consider the case of a simple permutation of two
successive elements of the sequence which are not adjacent in the Dynkin diagram. Precisely,
it is the case when (i}, %)) = (ipy1,ix) With i # ipq1 and iy % ixqy for some & € N, and
iy = 1), for u & {k,k + 1}. In this case, we write ¢’ = 1.

Lemma 2.1. When ' = v, we have By = 0 B; and Ay = oA\,

Proof. Thanks to the commutation relation s;, i, it is immediate that the

Sigg1 = Sigg1
permutation o induces a quiver isomorphism I'; ~ I';;. Therefore we obtain o, B; = By. To
show o A; = Ay, let A; = (Au,v)u,veN and Ay = (A:Jm)u,vEN- For u,v ¢ {k,k + 1}, we have
to prove the followings:

(i) A, AL o
(i) A uk = uk+17
(i) Awg+1 = Al g
(i) Akt = Mgy e

For a # k, we have w? = wg, from which (i) follows. Moreover, we observe wiw;, =
wi i, = wk+1wz , from which (ii) follows. (iii) is dual to (ii). To see (iv), we may use
Lemma 1.1. n

Lemma 2.1 implies the following (see Appendix A.3).

Proposition 2.2. Assume that i, € A(()OO)

we have an isomorphism of Z[t*'/?]-algebras

Yi(=05): Ay ~ A; given by Xy Xo, () for all u € N,

are related by i = v for some k € N. Then,

which induces a bijection between the sets of quantum cluster monomials.
Remark 2.3. When n # k, the isomorphism fyz restricts to the isomorphism
Vi ~ Af.
Now, let us explain how the degrees of cluster monomials get modified.

Lemma 2.4. Assume that 1,7 € A(()OO) are related by v = i for some k € N. If x € Ay

is a cluster monomial whose degree is g’ = (gl,)uen € Z™N, then the element vix € A; is the
cluster monomial whose degree g = (gu)uen S given by

g;ngl Zf u= ka
(2.2) gu=1g, ifu=k+1,
g, otherwise.
Proof. Immediate from the construction. O

Definition 2.5 (Commutation equivalence). Let J = N, or J = [1,n] for some n € N. Let
7 € &7 be a permutation. We say that two sequences & = (i1, 142, ...) and i’ = (i},i},...) € Af
are commutation-equivalent by m if i, = z;r (w) for all uw € J and we have [i,, # i, and i, £ iy]
whenever [u < v and 7(u) > 7(v)]. We simply say that ¢ and ¢’ are commutation-equivalent
if they are commutation-equivalent by some 7 € & .

The above discussion can be generalized as follows.



10 R. FUJITA, D. HERNANDEZ, S.-J. OH, AND H. OYA

Proposition 2.6. Let J = N, or J = [1,n] for some n € N. Assume that two sequences
i and v’ are commutation-equivalent by a permutation 1 € &;. Then, we have (Ei/,A;) =
(wéi,w/\i) and hence we have the isomorphism of Z[t*Y/?]-algebras 7 : Ay ~ Aj;, which
mnduces a bijection between the sets of quantum cluster monomials.

2.2. Braid moves. Next, we consider the case of a braid transformation of three successive
elements of the sequence. Precisely, we assume that (ig,ix41,i4+2) = (4,7,7) with i ~ j for
some k € N, and 4’ is obtained from % by applying the braid move (i, j,7) ~ (4,1, 7). Namely
we have iy = i; for | & {k,k + 1,k + 2} and (4},4}_,%.5) = (j,4,j). In this case, we write
t' = Bii. Let ui denote the mutation at k.

Lemma 2.7. When ¢’ = B, the permutation o1 induces a quiver isomorphism iy ~ Ty
In other words, we have By = op4111B;.

Proof. We put K = {k,k +1,k+2,k; ,(k+1); } N N. This is the neighborhood of k in I';,
that is, the set of vertices which are equal or adjacent to k in the (underlying graph of the)
quiver I';. Since k; = (k+1);, and (k+1); =k, the set K is also the neighborhood of k£ in
the quiver I';; and that of o 1';;. Note that the mutation uy only changes the full subquiver
I';|k, and we have

el \ (uels|x) =i\ (Tilx) = opp1lar \ (0r1 Do | ).

Therefore, we only have to check ppl';|x = ox+10¢| k. We only consider the case when both
k; and (k + 1); are nonzero since the proof for the other case is similar, or rather simpler.
In this case, the quiver I';|x is depicted as:

(k+1);

\\/
l/\’

where we have the arrow « if and only if k; < (k+1);, and we have the arrow (3 if and only
if (k+1)] < (k+2);. Its mutation at k is:

Ik

(k+1); k+1 (k+1); k+1
A ! \ A
welilie = ak \k‘/ :ﬁ B N \k‘/ :ﬁ/
T - | | - @y | )
\ / \ Y v / \ \
k; k+2 k; k+2

where we have the arrow o' if and only if k; > (k + 1), , and we have the arrow ' if and
only if (k+1)] > (k+2)]. On the other hand, the quiver I'y |k is depicted as:

k:—i—2
Lilx = ‘ \ / NCL I
% / \

(k + ),<—k+1



ISOMORPHISMS AMONG QUANTUM GROTHENDIECK RINGS AND CLUSTER ALGEBRAS 11

where we have the arrow o if and only if k;, < (k+ 1), and we have the arrow " if and
only if (k+ 1)}, < (k+2);,. Since (k;,(k+1);) = ((k+1);,k;) and (k+ 1)}, (k+2);) =

ARRA

(k+2)F,(k+1)]), we find uxl's|k = op41T4 |k as desired. O
Lemma 2.8. When ¢’ = i1, we have Ay = oppqppl;.

Proof. Let (4,7) = (ix,ir41). As before, we put A; = (Ayy)uwen and Ay = (A}, )upven. We
have to show Aj, , = (116 Ai) o, 1 ()01 (v) TOT u < w. Tt divides into the following 10 cases:

(i) A, , = Ay for u,v & {k,k+1,k+2},

(ii) Ak+2v = Apt1, for v >k + 2,

(i) Ahyy, = Aptop for v >k +2,

(iv) At ro = Mot

(v) Auk+2 = Ay 1 for u <k,

(Vi) A% py1 = Augege for u <k,
(Vii) A;c,fu = Ay- () + Ak+2,v — Ak,v for v > k + 2,
(Vi) A% pyo = M=t + Mzt — Mt

(%) Afpr = M=) sz — Mkkras

(X) A;k = Au,k*(]) + Au,k+2 — Au,k: for u < k.
Here k™ ( ) = k; (j) = k;(j).- Recall the braid relation s;s;s; = s;js;s;. Then we have
wfl = w? for any a € N\ {k,k + 1}, from which (i) follows. Also, we observe w,iﬂwi =

wk_ﬂwZ = wk+1w27 from which (ii) and (v) follow. (iii) and (vi) are dual to them. To check
(iv), we may also use Lemma 1.1. To check (vii), we observe (s; — s;5;5;)w; = o and hence
xTr = = W — wk (j )wj — warsz + wsz
= wj — wi_y (wj — (si — si555:)ws)

= wj — wi_(@; — o)

Therefore we have
i i/ 2’ /
Ak‘(j),v + Ak+2,v — A].“, = (J?, wi, + ’LUUYDZ‘U) = (w]' — W, Wy, Wit + Wy, w%) = Np g

We can check the remaining (viii), (ix) and (x) in a similar way with the help of Lemma 1.1
(and a trivial fact Ayt k1o = 0 for (ix)). O

Lemmas 2.7 & 2.8 show the equality (A, Ez/) = o1k (N, Ez) in the notation of Appen-
dix A. Therefore we have the following.

Proposition 2.9. Assume that 4,3’ € Ag’o)

we have an isomorphism of Z[t¥'/?]-algebras

Br(= ppogyr): As ~ A; given by Xy, — pp (X

Uk+1

are related by i = Bt for some k € N. Then,

(u)) for allu € N,

which induces a bijection between the sets of quantum cluster monomials.

Remark 2.10. When n & {k, k + 1}, the isomorphism Bj; restricts to the isomorphism
Br: A ~ A7

Now, let us explain how the degrees of cluster monomials get modified.
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Lemma 2.11. Assume that 1,1’ € A(()OO) are related by ©' = Bt for some k € N. If x € Ay
is a cluster monomial whose degree is g' = (gl,)uen € Z®N, then the element Bix € A; is the
cluster monomial whose degree g = (gu)uen 5 given by

— 35 ifu=k,
(2.3) g = Iorpr(w) +m§X(9§g70) z:fu e {k+2 (k+1);},
g;kﬂ(u) + min(g;,0) ifue{k+1,k;},
9 otherwise.
Proof. Apply the formula in Theorem A.5. O

2.3. Forward shifts. Now, we consider a global forward shift of the elements of the sequence.

Precisely, assume that the sequences @ = (iy)yen, ¥ = (), )uen € A(()oo) satisfy

z; =iys+1 forall u € N.

In this case, we write ¢/ = d,4. Let ¢ := i;. Define an increasing sequence of positive integers
(Zn)nen by the condition z; = 1 and z,, = (2,-1)] for n > 1, so that {z,}neny = {k € N |
i, = i}. In the following lemmas, we consider the infinite mutation sequence corresponding
to (z1,x2,...). Let o4 € Sy be the permutation defined by

ki —1 ifip=1
or(k)=4" LR
kE—1 ifdg #14,

. -1 . .
whose inverse o~ is given by

D= if iy —
O R
k+1 if igy1 # 3.

Lemma 2.12. Assume i’ = 011 and keep the above notation. Then, the limit

lim Ky - Mmlu’alei

n—oo
yields a well-defined matrix ,u+§i and we have O'+/,L+§i = By.
Proof. For j € Ay, we put X; = {k € N | i, = j}. By definition, we have X; = {z,, }nen. Take
an index j € Ag adjacent to ¢, and consider the map X; — X; U {0} given by z,, — (z,,); (j)-
Let {0 = yp < y1 < y2 < ---} be the natural ordering of the image of this map. For each

n € Ny, let [,, be the largest integer (> 0) satisfying (x7,); () = yn. The quiver I'; restricted
to X;; = X; U Xj is depicted as:

xl&exloflexloewloJrleexlle'rh*Fle%le%
\ + +
i< ()] < <—y2=<(y2); <
We easily see that the mutated quiver pg, , - pay (I's] x;;) Is:

Tl <— " =<=Xg—1] > Ty < Tyl < ' <— X)) < Tlj41 <" <— T, <— "

N\

yle(yl)i e"'<*Z/26(y2):-r€'“
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Then, applying Lemma 2.13 below, the quiver pa, - fia, (I'i]x,,) is depicted as:

xl&exlglexlo exll 191716'1‘11*%16%'%'[2%
/ \ / |
yl.e ...eyQ.e . e

where we have the dashed arrow if and only if [ > 1. By repetition, we finally find that the
limit limy, o0 fte, - - - flay (Ti] x,;) gives a well-defined quiver depicted as:

xl%exlo 161‘10 ea}ll 1€xl1 <—1‘l2 16"]}12%
/ \ / ’
yl.e ey2<;

which is isomorphic to I'y/|,, ( X;;)- Moreover, for each n € N, there are no arrows going into
the vertex z, in the quiver p,, - g, I'; other than x, 1 — =z, and x,11 — x, (see the
latter assertion of Lemma 2.13 below). Thus, we have

W, * My (F,’|X¢j) = (M, = Mxlri)|Xij’

Since the mutations { iz, , fz,, - - .} change only the full subquivers supported on (. i Xij, we
find that the limit p4I'; = lim, o0 g, - - - iz, I's is well-defined. Moreover, the permutation
o4 gives an isomorphism of the quivers o : pu4I'; ~ I';. Thus we obtain the conclusion. [

Lemma 2.13. Let n € N and consider a quiver Q given by

n<—n-+1

Then, we have
0 1 2
fin -+ p2pin @ = \ /
[ ]

Moreover, for each k € [1,n], there are no arrows going into the vertexr k in the quiver
fp—1 - pu1Q other than k —1 — k and k+ 1 — k.

n—-=n-+1

Proof. The proof is straightforward:
c<-n—+1

mQ = \\ / ,

e=n—+1

o Q = \\I/ ,
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0=—1<~—-=n—-1—-n<—n+1

O \T/ . .

Lemma 2.14. Assume i = 0.1 and keep the above notation. Then, the limit
nh—>Igo Mz, = ngﬂxlAi
yields a well-defined matriz pyA; and we have oAy = Ay

Proof. We put Aj = (Ayp)uveny and Ay = (A;ﬂ,)u’veN. As we have seen in the proof of
Lemma 2.12, there are no arrows going into the vertex x; in the quiver p,, | ---pg, I'; other
than xp_1 — a2 and xg11 — xp for each & € N. Thus, we have

Lo, - -+ Py pto, As = (BEDE@ . ENT A (EOER) ... gy

where the matrix E*) = (egfz),)umeN is given by

e =
U, .
, _5u,zk + 5u,mk,1 + 5u,xk+1 ifv= Tl

® {% if v £ 2y,

Therefore, the limit lim,, . EWE® ... p0) yields a well-defined matrix F and hence
pedi = Hm g, - pip Ay = ETAE
n—oo

is also well-defined. More precisely, letting £ = (ey)u,ven, we have

_ 1 2 n
Cup = E ega,()zl egu),az e egn)—hv’

al,...,ap—1EN

where n € N is an integer such that v < z,,. From this, we find that e, , = 0y if ¢, # 7 =141,
and that e, ., = —0uz, + €uz,_ 1 + Ouz, - By the latter equality, we further compute
Cu,zp — 5u,ﬂcn+1 = Cuzpn_1 — (5u,$n == Gy T 5u7$2 - _5%17

1

where the last equality follows since ey ., = eu% = —0y,1 + Oyz,. Thus, we get

)

" e fin T

Oyt — Oy ifiy =1,

where v = v Therefore, we have

Au,v if 4 g {Z.’LH iv}v

A+, — A if 4, = ¢ and i, # 1,
(#+Ai)u,v = (ETAiE)u,v = * b e . . 7 .

Ayt — Au if 4, # ¢ and i, = 1,

Au+,v+ - Al,v"’ — Au+71 lf Zu = iv == ’L
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From this, the desired equality (pi4 Ag)uw = AL ()

), (0) follows for any u,v € N. For example,

when i, = 7, =7 and u < v, we have

/
o4 (u),04(v)

= (w; — Siwi+wi7 w; + Siwf,+wi)
= (1 — si)w; + s:(1 — w' )i, (1 — s)w; + si(1+ why )
= ((1 = si)wi, (1 = si)om) — (1 = wis)wi, (1 = 55)wi)
— (1= si)wi, (1 + wiy )w) + (1 — wps )wi, (14w )oos)
= Apur — Npor + Ayt
Here, for the last equality, we used the identity
(1 = sj)wi, (1 — si)w;i) = ((1 — 84)wi, 2005).

For the other case, we can check the desired equality with a similar computation. O

For each u € N, there is n,, € N such that x,, > u since {z,, },en is increasing. Then, we
have p; (X,) = Xy if n > n,. We define a homomorphism of Z[t*+1/?]-algebras
Wi A(ue (Mg, Bi)) — Av(Ag, By)

by i (Xu) = pgy py, - py, (Xu) for all w € N Note that p% (X,) is independent of the
choice of n, with x,, > u, and hence p% is well-defined. By construction, it sends each
quantum cluster monomial to a quantum cluster monomial. N

Lemmas 2.12 & 2.14 show the equality (Ay, By) = o4py (A4, B;) of compatible pairs.
Therefore we have obtained the following,.

Proposition 2.15. Assume that 1,7 € A(()OO) are related by ©' = 0yi. Then, we have a
homomorphism of Z[t='/?]-algebras

O (=piol): Ay — A; given by X, — ,LLJF(XUIl(u)) for all u € N,
which sends each cluster monomial in Ay to a cluster monomial in A;.

Now, let us explain how the degrees of cluster monomials get modified under a certain
condition. For ¢ € A(()OO), let C; C Z®N denote a cone given by

(2'5) Ci=q9= (gu)uEN € ZN Z gy > 0,Vu e N» = Z NO(Gu - eu;),

V> U, Gy =1y u€eN
where {e, }uen is the natural basis of Z®N and we understand eg = 0.

Lemma 2.16. Assume that 1,4’ € Aéoo) are related by ¢ = 011. Let ' € Ay be a cluster
monomial of degree g’ = (g, )uen- Assuming g’ € Cy, the degree g = (gu)uen of the cluster
monomial 0% x' € A; is given by

! if u> 1.

Ju—1

(2 6) Ju = {_ ZveN;iQ,:il gi} qu = 17
. w =

In other words, the assignment g’ — g is given by the Ng-linear map Cy — C; which sends

ey —€,- € Cir to eyy1 — €ut1) € C; for all u € N.
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Proof. This is an application of Theorem A.5. To be more precise, let " = (g/)yen =
(gg+(u))u€N so that we have dego’ (z') = g” (see Remark A.7). Take a large integer n € N

such that g;; = 0 for all u > z,,. Then we have 072’ = py i, ---py o’ x’. The assumption

g € Cy implies
S = Z g;’l >0
m<Il<n

for all m € [2,n]. Since g, = s, >0, we can apply Remark A.6 to get
deg(1i;, 0%a") = E™g,
where E(™ is the matrix as in the proof of Lemma 2.14. Again, since (E(")g”)xw1 = Sp—1 >0,
we can apply Remark A.6 to find
deg (s, ,ps,0%a') = E"VEMg!,

Since (EM*D) ... E(Mg"), = s, >0 for any m € [2,n — 1], we can successively apply the
similar argument, finally arriving at

g =deg(py, i, - 3, 0%y = EVE® ... E(g" = Eg",

where E = (€y4)uwven is the matrix given by (2.4). The last equation is equivalent to the
desired equation (2.6). O

We conclude this section by showing relevant technical lemmas. Lemma 2.17 will be used
in the proof of Theorem 6.3, and Lemma 2.18 will be needed in the proof of Lemma 7.4.

Lemma 2.17. Assume that 1,1 € Aéoo) are related by i = i (resp. i = Pii) for some
k € N. Then, the assignment g’ — g given by the equation (2.2) (resp. (2.3)) sends the cone
Cy C Z9N into the cone C; C ZON.

Proof. To simplify the notation, for g = (gu)uen and g’ = (g, )uen, we set

Yy = Z G, X, = Z g
VU, Ty =1y v>u,ih =i,

for each u € N. We have to show that 3!, > 0 (Vu € N) implies ¥, > 0 (Vu € N) under
the assumption. When 7’ = ~,1, the assertion is trivial. So we only consider the case when
i = Bit and g is obtained from g’ by (2.3). Assume X!, > 0 for all u € N.
If u> k+ 2, we have ¥, = X!, > 0.
If u=k+2, we have ¥j 1o = ¥} _ | + max(gj,0) > 0.
If u=k+1, we have Xp11 = (g;, > 0)%), 5 + (g, <0)X}, > 0.
If u = k, we have

Yp = Ygg2 + gk
= E;H + max(gy,, 0) — gj,
= %} + max(—g;,0) > 0.

If u < k, we have ¥,, = X!, > 0 since we see
Ik+2 + gk + gki_ = g;c—&-l + maX(g;cv 0) - g;c + gEk-i-l): + min(g;m 0)
/ /
= gk+1 + g(k—l—l);

and similarly gx11 + Ier1); = Ghso + 91 + g;(/.
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Thus, we obtain the assertion. O

For g = (gu)uen and @ € A(()OO)

(2.7) Pi(g;i) = D gu

UEN, iy, =1

, write

The proof of Lemma 2.17 shows the following invariant property of p;(g;1).

Lemma 2.18. Let 2,1 € A(()OO). If i’ = v for some k € N, the elements g,g" € Z related
by the equation (2.2) satisfy
pi(g:1) = pir(g's9)
for all i € Ayg.
If i’ = Byi for some k € N, the elements g,g' € ZN related by the equation (2.3) satisfy

pi(g';i) + max(—g},0) ifi =iy and k; =0,
pi(g;i) = { pir(g';1) —max(g;,0)  if i =igp1 and (k+1); =0,
pir(g';1) otherwise.

3. COMPARISON WITH DUAL CANONICAL BASES

We recall that by [GLS13, KKKO18, KK19] the quantum unipotent group .A;[N_] associ-
ated to g has a quantum cluster algebra structure compatible with the dual canonical basis,
which is isomorphic to some of the quantum cluster algebras A;. We establish that these
isomorphisms are compatible with the transformations in the last section: for a composition
A; ~ Ay of such transformations, the corresponding transformation induced on A;[N_] is
just the identity (Corollary 3.4). Our proof is based on the analysis of the degrees of the
cluster monomials.

3.1. Dual canonical basis. In this subsection, we briefly recall the PBW parametrization
of the dual canonical basis. For the precise definitions, we refer to [FHOO22, Appendix A]
and references therein.

Let A;[N_] denote the quantum coordinate ring of the unipotent group N_ = exp(n_),
where n_ is the negative part of the Lie algebra g. More precisely, we are considering the
integral form defined over Z[t¥'/2]. It carries the normalized dual canonical basis B*. Each
reduced word 4 = (i1, ... ,iz) for the longest w, gives a parametrization B* = {G;(¢) | ¢ € N§}
characterized by

—
Gilc) = t%(© H D(wyt;, , wu—1;,)% mod Z tZ[t)b

’U,E[l,g] bGE*
for each ¢ = (c1,. .., ;) € N, where
1
vile) = =5 Y cuto(wuri, womr04,) + D €l
u,v€([1,] u€(1,0]

and 5()\, u) denotes the renormalized quantum unipotent minor. In particular, when ¢ =
e = (Ouk)ue[1,g, We have

G,,,(ek) = D(wkwik,wkfwik).
Proposition 3.1 (Lusztig [Lus93, Chapter 42]). Let i,4’ € A} be two reduced words for w,
and ¢ = (c1,...,c0), ¢ = (d},...,c}) € N§.
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(1) When &' =yt for some k € [1,£ — 1], we have
_ / /
é. c) = é./ c/ - d W i (Ck,6k+1) - (Ck+1ﬂck)7
ie) #(€) if and only if {cu:c;ifug{k,k—i-l}.
(2) When &' = By for some k € [1,£ — 2], we have
Cj, = Chy1 + Chpo — min(ck, cry2),
A
Gi(c) = Gy(c) if and only if Cf““ = min(c, Ck+2)’.
Ckio = Ck+1 T Ck — min(cy, cxy2),
c,=cyifudg{kk+1k+ 2}
3.2. Cluster structures on A;[N_]. Recall that for any finite sequence 7 in Ay, we have
associated to 4 a compatible pair (B;, A;) in Definition 1.5.

Theorem 3.2 (Geifi—Leclerc—Schréer [GLS13], Kang-Kashiwara-Kim-Oh [KKKO18], Kashi-
wara-Kim [KK19]). For each reduced word i € A} for the longest element w,, there is an
isomorphism of Z[t*/?]-algebras
i Ai(Bi, Aj) ~ A[N_]

which satisfies the following:

(1) for any 1 < v < u < ¢ with i, = iy, there exists a cluster variable which corresponds

to D(wywm;, , wyw;, ) under o,
(2) every cluster monomial corresponds to an element of the basis B* under Vi,
(3) for each ¢ = (c,) € N§, the element goi_léi(c) is pointed and we have

(3.1) deg Soi_léi(c) = Z cu(ey —€,-) € ZE’
u€(1,4]
where we understand eg = 0. In particular, the map deg ogolTl: B* — 7! is injective.

3.3. Change of reduced words. We establish the compatibility between the transforma-
tions 7, Bk in the last section and the isomorphisms ;.

Proposition 3.3. Let 1,4’ € Aé be two reduced words for w,. Assume that we have i = 71
for some T € {y1,...,ve—1} U{B1,...,Be—2}. Then the following diagram commutes:

Ai(By, Ay) —2> AN

g

At(Bz, A;) s Ay [N.
Proof. Since A;[N_] is generated by {éi/(eu)}ue[l’g], it suffices to show the equality
(3.2) pit* 0y Gir(eu) = Gy (ew)

for all u € [1,£]. Since 7* respects cluster monomials, we know that the LHS of (3.2) belongs
to B* by Theorem 3.2. When 7 = 74, for some k € [1,¢ — 1], we have

deg 1iipy ' Gir(eu) = €au) = €5, (us) = Cortw) ~ oy = de8 5 Gilen,w)

by Lemma 2.4 and Theorem 3.2. Since deg ogoi_1 is injective on B*, we get gpi’y,;k@i_,léz-/(eu) =
Gi(€g,(u))- On the other hand, we know Gj;(ey, (u)) = Gir(es) by Proposition 3.1. Therefore,
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we obtain (3.2) for 7 = 4. Next, we consider the case when 7 = f for some k € [1,¢ — 2].
By Lemma 2.11 and Theorem 3.2, we have
epro—e, ifu=k,
~ €k+2—ek7 lf’LL:k?-f-].,
d * T,lG‘/ — i
egﬁkspz 2 (eu) e _ek._ ifu= k+2,

e, — e, otherwise.

i

Again by the injectivity of deg ogo;l on ]§*, we get g0i7*¢i716~¥i/(eu) = éi(cu), where

€i+2 if u==k,

e, +eprs fu=~k+1,
YT ) e ifu=*k+2,

ey otherwise.

On the other hand, we have G;(c,) = Gy (ey) by Proposition 3.1. Thus, we obtain (3.2) for
T = Bp. O

For any two reduced words 2,7 € Aé for w,, we can always find a finite sequence 7 =
(T1,--.,m) in {1,y v-1} U{B1,...,B0—2} such that ¢/ = 71---7i. Then we have the
composed isomorphism

T =1 0ol A(By, Ay) ~ Ai(Bi, Ag).

Corollary 3.4. With the above notation, the following diagram commutes:

-A(BzaA )4>"4t

g

Ay(B;, Ag) —= AN

In particular, the zsomorphzsm T = piop, L depends only on the pair (2,%"), and not on the
sequence T satisfying i = 11 -+ Tit.

Remark 3.5. By definition, the isomorphism 7* induces a bijection between cluster mono-
mials in Ay (By, Ayr) and those in Ay(B;, A;).

4. REMINDERS ON QUANTUM GROTHENDIECK RINGS

We give general reminders on quantum Grothendieck rings of the category % of finite-
dimensional representations of a quantum loop algebra. In particular, we recall quantum
T-systems, Q-data, and Kazhdan—Lusztig type conjectures in this context. We also recall
the monoidal subcategories ¢7 and €~ of ¢ (as defined in [HL10, HL16]) and we introduce
subcategories ¢<¢ generalizing ¢~ .

4.1. Quantum loop algebras and the category %;. Let g be a complex finite-dimensional
simple Lie algebra (it should not be confused with the Lie algebra g of the previous sections).
Let C' = (cij)i,jer denote the Cartan matrix of g, where I is the set of Dynkin indices. For
i,j € I, we write i ~ jif ¢;; < 0. Let r € {1,2,3} be the lacing number of g, and d: I — {1,7}
the function satisfying d;c;; = d;cj; for all 7, j € I, i.e., the minimal left symmetrizer of C.
Let Uy(Lg) be the quantum loop algebra associated to g. It is a Hopf algebra defined over
an algebraic closed field k = Q(g), where ¢ is a formal parameter. Let € denote the rigid
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monoidal category of finite-dimensional U,(Lg)-modules, with the standard type 1 condition.
It is endowed with the contravariant auto-equivalence ®*! which sends each module to its
left /right dual. Recall that the isomorphism classes of simple modules of the category &
are parametrized by the set (1 + zk[z])! of I-tuples of monic polynomials (called Drinfeld
polynomials) [CP94, CP95].

In this paper, we restrict ourselves to a nice monoidal subcategory %7 of % introduced by
Hernandez—Leclerc [HL10] as the Serre subcategory generated by a distinguished family of
simple modules. Precisely, we fix a function e: I — {0, 1} satisfying the condition

(4.1) €; = €j + min(d;,d;) (mod 2) whenever i ~ j,
which we call a parity function, and let
T={(i,p)eIxZ|p=¢ (mod?2)}.

We introduce a formal variable Y, for each (i,p) € 1/'\, and consider the ring of Laurent

polynomials ) = Z[Yil (i,p) € T]. Let M* C Y be the set of all the Laurent monomials.
An element m € M* is written as

(4.2) m= [[ vur™.

(i,p)ef

We say that m € M* is dominant if u; ,(m) > 0 for all (,p) € T. Let M C M* be the set of
dominant monomials. For each m € M, we have a simple module L(m) € € corresponding to
the Drinfeld polynomials ([],(1 — ¢Pz)"»(™));cr. The category 7 is defined to be the Serre
subcategory of € generated by the simple modules {L(m) | m € M}. It is closed under taking
tensor products and the auto-equivalences ©®*!, and hence forms a rigid monoidal category
in itself. Indeed, we have D*!L(m) ~ L(D*!'m) for any m € M. Here on the right hand side
D*! denotes the automorphism of ) given by Yip = Yie pappv for (i,p) € f, where 7 — *
is the involution of I induced by the longest Weyl group element and h" is the dual Coxeter
number of g. Moreover, every prime simple module of ¢ (that is a simple module which
can not be factorized into a non-trivial tensor product of modules) is in %7 after a suitable
spectral parameter shift.

The g-character homomorphism y, defined by Frenkel-Reshetikhin [FR99] gives an injective
ring homomorphism y,: K(¢7) — ). As a ring, the Grothendieck ring K(%7) is isomorphic
to the ring of polynomials in {[L(Yi’l’)]}(i,p)ef‘ A simple module of the form L(Y; ) is called
a fundamental module.

For each (i,p) € I x Z with (i,p — d;) € f, we define the element A;, € M* by

—1
Ai,p =Yip-d,Yip+a H Yj,s ’
(j,s) €T jriy|s—p|<d;

which is a loop analog of the i-th simple root [FR99]. For m,m’ € M*, we write m < m/ if

m'm~! is a monomial in various A;, for (i,p — d;) € I. This defines a partial ordering on

M*, called the Nakajima partial ordering. For any m € M, we have
(4.3) L) =m+ S almimm’
m/eEM*: m'<m

for some a[m;m’] € Ny. See [Nak01] and [FMO1] for the proof.
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4.2. Quantum Grothendieck ring of ¢7. The quantum Cartan matrix C(q) = (Cy;(q))i jer
is a Z[qT']-valued matrix given by

Cij(q) = 6i5(¢" + a~ %) + (1 = 6;3)[eily
for any ,7 € I, where [k], = (¢* —q7%)/(g — ¢71) is the standard g-integer. The matrix C(q)

is invertible as a Q(g)-valued matrix and we write C'(¢) = (Cj;(q))i jer for its inverse. For any
1,7 € I, we write
Cijla) = _Ej(u)g" € Z((q)
u€EZ
for the Laurent expansion at ¢ = 0 of the (i, j)-entry @J(q) In this way, we get a collection
of integers {¢;j(u) | i,j € I,u € Z}. We define a map A": (I x Z)?> — Z by
NG9, ) = Tiglp — 5 — i) — Tygp — 5 + i) — Ty (5 — p — ds) + Togs — p+ ).

It satisfies A (i,p;J,s) = —A (4, s;4,p) for any (¢,p), (j,s) € [ X Z.

Let ¢t be an indeterminate with a formal square root t!/2. We define the quantum torus
V; to be the Z[t*1/?]-algebra presented by the set of generators {Yi’j;l | (¢i,p) € I } and the

following relations:

o ﬁ-}f;;l :Yi;1 -Yip =1 for each (i,p) € I,

o Y, Y =t"ris)y; .Y, for each (i,p), (j,s) € I.
Note th@tg deformation of yﬁndeed, there exists a surjective Z-algebra homomorphism
evi—1: Yy — Y given by t1/2 — 1 and Yip — Yip forall (4,p) € I. An element m of )} is called

a monomial if it is a product of the generators Yiil for (i,p) € T and t£/2. A monomial m is
said to be dominant if ev;—1(m) is dominant. Following [Her04, §6.3], we define the Z-algebra
anti-involution (-) on )} by

/2 =712, Yip = Yip.
This is called the bar involution on );. For any m € M?*, we denote by m the unique

monomial in ), satisfying m = m and ev,—1(m) = m. The elements of this form are called
commutative monomials (cf. Appendix A.1). Note that we have (m™!) = (m)~!(= m™1).

The commutative monomials form a free basis of the Z[til/ 2]-module Y;. For any m, m’ € M*,
we have
m-m — tft/V(m,m’)/2m . m/ _ ZL/(/V(m,m’)/Qm/ ‘m

where A (m,m’) € Z is a skew-symmetric pairing given by
(4.4) N (mym!) = > wip(m)ug s (m))A (i, p; G, )
(i-p).(G.9) €l

in the notation of (4.2).
For each i € I, denote by K;; the Z[t*'/?]-subalgebra of ), generated by

{&(1 AL ) ‘ (i,p) € f} U {Yjﬁ;l (,s) € 1,5 # z} .

Following [Nak04, VV03, Her04], we define the quantum Grothendieck ring K;(%4%) to be the
Z[t*+1/?]-subalgebra of J; given by

K:t<cgz) = ﬂ ]Ci,t-

il



22 R. FUJITA, D. HERNANDEZ, S.-J. OH, AND H. OYA

Note that Kt(%7z) is stable under the bar involution. Moreover, we have ev;—;(K(67)) =
Xq(K(¢7)). For future use, we remark the following.

Lemma 4.1. Assume that two non-zero elements x € Ky(6z) and y € Y, satisfy vy € Ki(%z).
Then we have y € K(%7).

Proof. This is a quantum analog of an argument presented in [HL16]. Indeed, the assertion
follows from the fact that K;; is the kernel of the ¢-deformed i-th screening operator .S; ;.
Namely, there is a );-bimodule );; and a Z[til/ 2]—linear map S;¢: Vi — Vit such that
Sit(zy) = Sit(z)y + xSi(y) for any z,y € )y, and KerS;; = K;;. See [Her04, Theorem
4.10] for details. O

We have the following result due to the second named author which will be crucial for our
purposes.

Theorem 4.2 ([Her04, Theorem 5.11][Her05, Theorem 7.5]). For every dominant monomial
m € M, there exists a unique element Fy(m) of Kt(¢7) such that m is the unique dominant
monomial occurring in Fy(m). It satisfies Fy(m) = Fy(m). Moreover, the set {Fy,(m) | m €
M} forms a Z[t*Y/?]-basis of K(€7), and the set {Fy(Yip) | (i,p) € T} generates the Z[t+1/2)-
algebra K:(67z,).

We can construct the canonical basis Ly of Kt(%67), whose member L;(m) is conjecturally
a t-analog of the g-character x,(L(m)).

Theorem 4.3 ([Nak04, Theorem 8.1], [Her04, Theorem 6.9]). There exists a unique Z[t+'/?]-
basis Ly = {Li(m) | m € M} of Ki(6z) characterized by the following properties: for each
m € M, we have Li(m) = L(m), and

Li(m) =t <m>ﬁ [I FEpu ™ mod Y tZ[t]Li(m)

PEZ el (i,p)el m/<m

in the notation of (4.2) for some A (m) € 3Z. Explicitly, one has

1 . .

A (m) = ) Z wip(m)ujs(m)A (i,p; j, s).
(4,p),(j,s)el: p<s

Note that for a fixed p, the Fi(Y;p)’s (¢ € I) mutually commute, so the formula for L;(m)

is well-defined. The element L;(m) is called the (q,t)-character of L(m). As a t-analog of the

equation (4.3), for each m € M, we have
(4.5) Li(m)=m+ Z at[m;m'|m/
m'eM*: m/<m

for some a;[m;m’] € Z[t+'/?].
Conjecture 4.4 (cf. [Her04, Conjecture 7.3|). For all m € M, we have

(1) evi=1(Le(m)) = xq(L(m)), and

(2) ag[m;m’] € No[tF1/?] for all m' € M* with m' < m.

Conjecture 4.4 (1) is called the Kazhdan—Lusztig type conjecture and was motivated by the

results of Nakajima. At this moment, we know that Conjecture 4.4 is true when g is of type
ADE by Nakajima [Nak04], and when g is of type B by [FHOO22]. Moreover, Conjecture 4.4

(1) for general g holds true when m belongs to Mg for some Q-data Q for g (see Section 4.3
for the definition of Mg) [FHOO22].
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In this paper, we will prove Conjecture 4.4 (1) for reachable modules L(m) (see Definition
6.7) and Conjecture 4.4 (2), for general g. See Corollaries 6.10 and 6.12.

We have the following positivity result concerning the canonical basis L;, which is proved
by Varagnolo—Vasserot [VVO03] for type ADE and by the authors [FHOO22] in general.

Theorem 4.5 ([VV03, Theorem 4.1], [FHOO22, Corollary 10.7]). The structure constants of
Ki(€z) with respect to the canonical basis Ly belong to No[tF1/2].

Let @tﬂ be the Z[til/Q]-algebra automorphism of ), given by @tﬂm = D%l for all
m € M*. It satisfies evy—y o ”Dfl = ®* o evy—; and preserves the subalgebra Ki(%7) C V.
Moreover, we have

DF(Fy(m)) = Fi(®*F'm) and  DFY(Li(m)) = Ly(DF'm)
for any m € M (see [FHOO22, Lemma 3.11}).

4.3. Q-data and associated subcategories. With our simple Lie algebra g, we associate
a unique pair (A, o), which we call the unfolding of g, consisting of a simply-laced Dynkin
diagram A and a graph automorphism o of A as given in the Table 1, where id: Ay — Ag is
the identity map and the automorphisms V and V are given by the blue arrows in Figure 1
below.

r| g |Aforg)|o hY 14
A, A, id| n+1 |nn+1)/2
1| D, D, id| 2n—2 | n(n—1)

Esrs | Eers |id|12,18,30 | 36,63,120

B, Aoy | V] 2n—1 | n(2n—1)
20 G, Dpy1 | V| n+1 n(n+1)
Fy Eg v 9 36
3| Go Dy Vv 4 12

TABLE 1. Unfoldings and associated numerical data

Hereafter, we denote by g the simple Lie algebra associated with the simply-laced Dynkin
diagram A and apply the notation in §1.1 for this g except that we adopt the symbols ¢, 3, . ..
to denote elements of Ay in order to reserve the symbols 4, 7, ... for elements of I. Under
the above assignment g — (A, o), we identify the lacing number r of g with the order of
the automorphism o, and also identify the set I of Dynkin indices of g with the set Ag/(o)
of g-orbits in Ag as suggested by the dotted lines in Figure 1. Then the positive integer
d; € {1,r} coincides with the cardinality of the o-orbit i € I. We denote the natural quotient
map Ag — I = Ag/(o) by 1+ 7.

Let us recall the following notion introduced in [FO21] and which will be important in the
following. A Q-datum for g is defined to be a triple @ = (A, 0,&) such that (A, o) is the
unfolding of g and £: Ay — Z is a function satisfying the following properties:

(1) For 1,5 € Ag with ¢ ~ j and d; = dj, we have [§, — §,| = d; = d;.
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B, o—0 -+ 0———0—>—20 Fy o———O0—>—o0——0

oo 1T T e

2n—1 2n—-2 n+2 n+1 1 3
1 2 n—2 n-—1 n 2
Cn o—o0 -+ 0—0—=%—0 Go =——=0

n-+1 4

Ficure 1. Unfoldings for non-simply-laced g

(2) For i,j € I with i ~ j and d; = 1 < d;j = r, there is a unique 7 € j such that
& — &l =1 and §or(py = & — 2k for any 1 < k <r, where i = {1}.
We refer to the function & as a height function. Recall that we have chosen a parity function
e: I — {0,1} satisfying (4.1) in §4.1. In what follows, we always assume without loss of
generality that a Q-datum Q = (A, 0, ) satisfies the condition

(4.6) & =€ (mod2) forany e Ay.
For a Q-datum Q = (A, 0, &) for g, we define another Q-datum D*'1Q = (A, 0, DF1¢) for g
by
(4.7) (DFL), ==& £rhY for e A,
One can easily check that (D71¢), < &, < (DE), holds for each + € Ag and that D! Q satisfies

the condition (4.6) whenever Q does.
Now, given a Q-datum Q = (A, o, &) for g, we consider the following sets

Al ={(t.p) € Ao x Z | & — p € 24;Z},
Ace={(p) €Ay |p <&}, Ice = f(A<e),
Ag:={(np) €A | (@71 <p <&} To = f(Ro),

where f: Ag X Z — I X Z is the folding map (2, p) (1, p). Note that we have Ig C I<§ cl,
and f induces the bijections A[ﬂ ~ T, Agg I<5, and Ag ~ IQ Let Vi <¢ (resp. Vi)
be the Z[t*'/?]-subalgebra of the quantum torus ); generated by all the elements Yj[]L with

(i,p) € I<¢ (resp. Ig). Then the algebra YV<¢ = evi—1(V <¢) (resp. Vg = evi= 1()4 Q))
identical to the ring of Laurent polynomials in the variables Y; , with (i,p) € . <¢ (resp. I Io).
We set M<¢ = M N Y<e and Mg := MnN Vo.

Let €<¢ (resp. €g) be the Serre subcategory of 47 generated by all the simple modules
L(m) with m € M<¢ (resp. Mg). It is closed under taking tensor products. Moreover, the
category ¢<¢ is stable under the functor D~!, and we have Q_l%q = C<p-1¢. We define
Ki(€<¢) (resp ICt(‘KQ)) to be the Z[t*!/2]-subalgebra of K;(%7%) generated by all the F,(Y;,)

with (i,p) € Igg (resp. IQ) It is endowed with the canonical Z[t¥1/2]-basis L, <¢ (resp. Ly.0)
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consisting of all the elements Li(m) with m € M<¢ (resp. Mg). Moreover, the algebra

Ki(%<¢) is stable under the automorphism D; ', and we have D; 'K (F<¢) = Ki(C<n-1¢).-
Let us recall the following truncation procedure. For an element y € )}, we denote by

y<¢ the element of )i <¢ obtained from y by discarding all the monomials containing the

factors Yl-j;l with (i,p) € T\ IAgg. This assignment y — y<¢ defines a Z[t*!/?]-linear map

(\)<e: Y& — Vi<e, which is not an algebra homomorphism. However, it restricts to the
injective algebra homomorphisms IC;(¢<¢) — Vi <¢ and K(6o) — V0 (see [FHOO22, §5.4]).
For future use, we remark the following fact.

Lemma 4.6. Let Q = (A,0,€) be a Q-datum for g. We have

Ki(€<¢) = Ke(6z) N Vi <o¢-
In other words, an element x € Ki(6z) belongs to KCi(€<¢) if and only if it satisfies that
xggg =X.

Proof. We consider the subset fz—g ={(i,p) € I| (i,—p) € fﬁﬁ} of T and the corresponding
Z[t*1/?]-subalgebra Y, >_¢ of V. Then, for each (i,p) € fz_g, we have Fy(Y;p) € V>_¢ (see
[FHOO22, Proof of Corollary 5.12]). In particular, if we define K;(%>_¢) to be the Z[t*1/2]-
subalgebra generated by {Fi(Y;,) | (i,p) € ./7\2_5}, we have

Ki(C>—¢) = Ki(€z2) N Ve>—¢
Let w; be an algebra involution of Y; given by w;(t*1/2) = tT1/2 and wi(Yip) = Yij_lp for all

(i,p) € I. By definition, we have wi(Vr,<e) = Vi,>—¢. Moreover, it satisfies wi(F3(Y;p)) =
Fy(Y _prpv) for any (i,p) € T (see [FHOO22, §3.4]). Therefore, we have

wt(lCt(CKgg)) = ’Ct(%Z—'D{) = ’Ct((gz) N yt,z_gg = Wt(lct((gZ) N yt,g@.ﬁ)’
which yields the assertion. O

4.4. Kirillov—Reshetikhin modules. Recall that a Kirillov-Reshetikhin (KR) module is a
simple object of ¥ whose Drinfeld polynomials are of the form

!
(e
jel

k=0
for some i € I, 1 € N and a € k*.
Proposition 4.7. For a KR module L(m), we have evi—i(F;(m)) = xq(L(m)).

Proof. The g-character of a KR-module has a unique dominant monomial as proved in [Nak03,
Her06]. Moreover, the image of the quantum Grothendieck ring by ev,—; is the ring of
g-characters [Nak04, Her04]. But a g-character is characterized by the multiplicity of its
dominant monomial [FMO1]. This implies the result. O

Having Proposition 4.7, in view of Conjecture 4.4, one may expect the following.
Conjecture 4.8. For a KR module L(m), we have Fi(m) = L¢(m).

At this moment, we know that Conjecture 4.8 is true when g is of type ABDE by [Nak03]
and [FHOO22, Theorem 11.6]. We will prove Conjecture 4.8 for the remaining case as one of
the results of this paper, that is, when g is of type CFG. See Corollary 6.11.
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For our purpose, it is useful to introduce the following notation for KR modules. Let
Q = (A,0,¢) be a Q-datum for g. For ¢+ € Ay and integers a,b € Z with a < b, we define a
dominant monomial m®[a,b] € M by

mW|a,b] = H Yip-
(z,p)eﬁ[g] : pG[a,b]

The corresponding simple module L®[a,b] := L(m®][a,b]) is a KR module. Any KR module
in the category %7z is written in this form. In what follows, we use simplify the notation by

setting Ft(l) [a,b] == F;(m®[a,b]) and Lgl) [a,b] == Li(m®a,b]). Letting (a,b] == [a,b] \ {a},
[a,b) == [a,b] \ {b}, (a,b) = [a,b] \ {a,b}, we define F\"(a,b], F”[a,b), F"(a,b) in the same
way as Ft(z) [a, b].

The following states that certain truncations of these elements are just a single monomial.

Lemma 4.9 ([FHOO22, Lemma 6.7]). For any (1,p) € ﬁgg, we have

Ft(z) [p7 fl]ﬁf — m(z) [p’ é‘z]

The following generalizes the quantum T-system in simply-laced types [Nak03] and deforms
the general T-systems [Her(6].

Theorem 4.10 (Quantum T-system [FHOO22, Theorem 6.8]). Let Q = (A,0,&) be a Q-
datum for g and let (1,p), (2,5) € ﬁ[g] satisfy p < s. Then the elements in {Ft(J)(p, )}y are
mutually commutative up to powers of t¥1/2, and we have

%
(4.8) Fp, ) (p, 8] = tF (p, ) [p, s+t T Y (1, 9)

J~

in Ki(éz) for some a,b € %Z. Here the ordered product is taken with respect to any total
ordering of the set {3 € Ag | g ~1}.

Note that the factors of the last term do not commute in general but only t-commute, that
is why the product has to be ordered.

5. CLUSTER STRUCTURE ON /C;(%<¢)

We show that the quantum Grothendieck ring of the category 4<¢ has a structure of a
quantum cluster algebras isomorphic to an algebra 4; introduced above (Theorem 5.16).
This generalizes previous results [HL15, Qinl7, Bit21]. For our purposes, we use the quantum
affine quiver introduced in [HL16] and for which we discuss several technical results. Then
our proof is based first on an isomorphism of quantum tori that we establish (Corollary 5.13).
The isomorphism between the quantum Grothendieck ring and the quantum cluster algebra
is then obtained by identifying their respective image by the truncation of (g,t)-characters
and the natural inclusion, inside the quantum tori.

5.1. Adapted sequences. Throughout this section, we fix a Q-datum Q = (A, 0,§) for g.
A vertex 1+ € A is called a source of Q if we have §, > ¢, for any 73 € Ay with 7 ~ 4. In this
case, we define a new Q-datum s,Q = (A, 0, 5,§) by setting

(8,6), =& — 2dz0,, for 5 € Ay.

Note that, if Q satisfies (4.6), so does s,Q for any source 1 € A of Q. We say that a sequence
t = (11,22,...) in Ag is adapted to Q if 1, is a source of the Q-datum s, , - s,,5,, Q for all
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k€ {1,2,...}. We have the following combinatorial result, which is crucial for our purposes.
Recall the notion of commutation equivalence from Definition 2.5.

Proposition 5.1 ([FO21, §3.5]). For each Q-datum Q for g, there is a reduced word (u1, .. . , 1)
for the longest element wo adapted to Q, uniquely up to commutation-equivalence. Moreover,
we have 8, -+ 5,Q = D-10.

Let ¢ = (1 )gen € A(()oo)
use the notation

be a sequence satisfying the condition (1.1). In what follows, we

ni(u) = [{v e N|v <u, 1, =1,}|
Then we define the map p;: N — ﬁgg by
pi(uw) = (1, &, — 2dz,mi(u)).
By the condition (1.1/)\7 p; is a bijection. We set p; == fop;: N — fgg.
For (1,p), (3,8) € Ajg, write (2,p) < (5,5) if 2 ~ 7 and p = s + min(dz, d;). Taking the

transitive closure of this relation, we obtain a partial ordering < on the set ﬁ[g].

Remark 5.2. The Hasse diagram of the poset (ﬁgg, =) is identical to the repetition quiver
(restricted to A<¢) in the sense of [FO21, §3.4].

Lemma 5.3. An infinite sequence i € A is adapted to Q if and only if the condition (1.1)
is satisfied and the bijection p{lz (A<e, %) = (N, <) is a morphism of posets.

Proof. Tt is easy to see that the condition (1.1) is satisfied if ¢ € Al is adapted to Q. Then
the assertion follows from the following observation: (,p) € A<¢ is minimal if and only if
p =& and ¢ is a source of Q. Moreover, if this is the case, we have A<\ {(,&)} = A<ye. O

Lemma 5.4. Assume that two sequences © = (1y)yen and i’ = (1),)yen are both adapted to Q.
Then @ and i’ are commutation-equivalent by the transformation pz._,l 0 p;.

Proof. Letting m = p{,l o p; € Gy, we have 2, = 7/ (w) for all v € N. Assume that two
positive integers u,v € Z satisfy u < v and 7(u) > 7(v). By Lemma 5.3, p;(u) and p;(v) are

not comparable in (ﬁgg, =<). Then, we have 1, # 1, and 2, % 1, (see [FO21, Remark 3.17]
together with Remark 5.2). Therefore, we obtain the conclusion. O

Example 5.5. Let @ = (1y,)yen € AST be a sequence satisfying the condition

{(1) (21,...,1¢) is a reduced word for w, adapted to Q, and

(5.1)
(2) we have 1,4, =1, for all uw € N.
Then, the sequence 2 is adapted to Q by Proposition 5.1.

Example 5.6. Let {(uy,pu)} uen be an arbitrary total ordering of the set ﬁgg satisfying
p1 > p2 > ---. Then, the sequence @ = (1,)4en is adapted to Q by Lemma 5.3 and we have
pi(u) = (24, py) for all u € N.

Following [HL16], we define the quiver G as follows. The set of vertices of G is I. For
(1,p), (j,s) € I, we assign an arrow (i,p) — (J,s) if
cij 70 and s—dj =p—d; + dicij.
Let G<¢ denote the full subquiver of GG supported on the set fgg.
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Remark 5.7. We can always find a Q-datum ©Q for g whose height function £ satisfies
—2d; < & < 0for all v € Ag. In this case, the quiver G<¢ is identical to the quiver G~ defined
in [HL16]. In this sense, the quiver G<¢ is a generalization of the quiver G~.

Lemma 5.8 ([KKOP21b, Proposition 7.27]). For any sequence & adapted to Q, the bijection
pi: N — I<¢ induces the quiver isomorphism

Fi >~ Ggf.

Proof. By Proposition 2.6 and Lemma 5.4, we may assume that ¢ satisfies (5.1) in Example 5.5.
Then, the assertion is identical to [KKOP21b, Proposition 7.27]. O

Example 5.9. We exhibit some examples of the quiver G<¢. Here the labeling of I is as in
Figure 1. The symbols * indicate the vertices (7,§,) for » € Ag.

e Type As:
(i\p) —24 —-23 —22 -21 -20 -19 —-18 —-17 —-16 —15 —14 -13 —-12 -11 =10 -9 -8 -7 -6 -5 -4 -3 -2 -1
1 . . . . . . . . . . . *
) NN NN NN NN NN LN \*/
3 NN N NN NN LN NN \*/
A 2./ \./ \./ \./ \./ \./ \./ \./ \./ \./ \*/
5 e \./ \./ \./ \./ \./ \./ \./ \./ \./ \*/
e Type D5
(i\p) —-23 -22 -21 -20 -19 -18 —-17 -16 —-15 —-14 —-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
1 .- . . ) . . ) . . ) ) *
) ‘;./ \./ \./ \./ \./ \./ \./ \./ \./ \./ \./ \*
X s \./ \./ \'/ \./ \./ \./ \./ \./ \./ \./ \*/
4 \‘\i./ “\\./ »‘\\o/ “\\./ “i\c/ i\./ “\\o/ ‘i\o/ “\\./ ‘\\o/ “\\o/ \*
5 e o/ -/ o/ ./ o/ o/ -/ o/ 0/ -/ */
e Type B3
(i\p) —24 -23 —22 -21 -20 —-19 —-18 —-17 —-16 —15 —14 —-13 —-12 —-11 =10 -9 -8 -7 -6 -5 -4 -3 -2 -1

o Type Cy:
(L\p) -24 -23 —-22 -21 -20 —-19 —-18 —-17 —-16 —15 —14 —-13 —12 —-11 =10 -9 -8 -7 -6 -5 —4 -3 -2 -1
! NS e ™~
NS . P
/

o> .

INININ NN NN NN
N NS NN NSNS NN TN SN
s S s J S

>

A W

/-




ISOMORPHISMS AMONG QUANTUM GROTHENDIECK RINGS AND CLUSTER ALGEBRAS 29

e Type Go:
(i\p) —24 —-23 -22 -21 -20 —-19 —-18 —-17 —-16 —15 —-14 —-13 —-12 -11 =10 -9 -8 -7 -6 -5 -4 -3 -2 -1
1 . . [ *
N S S N
2 . . . . . . . . . . . *
1 ) . . */
Loy / / 7

> e . . *

5.3. Technical complement. In this subsection, we often identify the automorphism o of
A with the linear operator on P given by w, — @, for any » € Ag. Given a Q-datum
Q = (A,0,¢), for each ¢ € I, let i° denote the unique vertex in the o-orbit i satisfying
& = max{&, |+ € i}. We consider the following condition on Q:

(5.2) For each i € I and k € [1,d; — 1], we have &,x(;0) = & — 2k.

Note that this condition is always satisfied unless g is of type B,, or F4 (we underline however
that our results and proofs below will be uniform for all types).

Proposition 5.10 ([FO21, Section 3.6]). There is a unique collection {ro}o C W x (o)
labelled by Q-data for g and characterized by the following conditions:
(1) If @ = (A, 0,8) satisfies (5.2), we have Tg = s;o - 890, where (i1, ..., i) is any total
ordering of I such that §s > -+ > &o.
(2) If v € Ay is a source of Q, we have Ts,0 = $,7QS,.

The element 7¢ is called the generalized Coxeter element associated with Q.

Lemma 5.11. Let Q = (A, 0,€) be a Q-datum for g, and i = (1,)uen € AN a sequence
adapted to Q. Then, we have

dr, (nz‘(u)'i‘l)w

(5.3) ww,, = 5 v for any u e N.

Proof. Let i’ = (1,)uen € AY be another sequence adapted to Q. Thanks to Lemma 5.4, it
follows that wiw,, = wf:,w% when 2, = 2, and n;(u) = ny(u’). Therefore, it is enough to
prove the assertion for a specific choice of 7 adapted to Q.

First we assume that Q satisfies the condition (5.2). Let I = {i1,...,i,} be a total ordering
such that e > -+ > &g holds as in Proposition 5.10 (1). Then, we define a sequence
t = (tu)uen by setting 2, =i, for u € [1,n] and 24y, == 0(2,,) for all u € N. It is easy to see
that the sequence ¢ is adapted to Q. For this ¢, (5.3) holds by a direct computation using
Proposition 5.10 (1).

Next, we shall prove that (5.3) holds for Q-datum s,Q assuming that it holds for Q, where
1 € Ay be a source of Q. Let ¢ = (2,)yen be a sequence adapted to Q such that 13 = 2. Then
the sequence @' = (4),)yen = 04+ is adapted to s,Q. Take any u € N and set j =2}, = 1,41.
Under these assumptions, we have

Tijgil(u)ﬂ)wj = Szng(ni(uH)_él’]H)szw] by Proposition 5.10 (2)
= sZng(ni(uH)H)w] by 8,5, = wiw, = ng(s’"w]
= slwzﬂwj by (5.3) for ¢
— wim,

Thus we get (5.3) for s,Q.

Finally, recall that every Q-datum can be obtained from one satisfying (5.2) by applying
source reflections (see [FO21, Equation (3.11)]). Therefore, we conclude that (5.3) holds for
any Q-datum @Q for g. O
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5.4. Isomorphism of quantum tori. We establish first isomorphisms of quantum tori.
Again, we fix a Q-datum Q = (A, 0,§) for g.

Proposition 5.12. Let i € Al be a sequence adapted to Q and N; = (Ayp)uven the skew-
symmetric matriz defined by (1.2). For any u,v € N, we have

(5.4) Aup = A (mW[p, &), mY)[s, &),

where (1,p) = pi(u) and (3,s) = p;(v).

Proof. Thanks to Proposition 2.6 and Lemma 5.4, it is enough to prove the assertion for a
specific sequence 4 adapted to Q. Therefore, we may assume that our ¢ is as in Example 5.6.
Moreover, since the both sides of (5.4) are skew-symmetric, we may assume that « < v. Under
these assumptions, we have s < p. Applying [FHOO22, Proposition 8.4], we find that

JV(m(’) [p’ &]’ m(]) [37 g]]) — (wz _ Tgi(ni(u)-‘rl)w“ w, + ng(ni(v)-‘rl)wj)’

where 7¢ denotes the generalized Coxeter element associated with Q (see §5.3 above). Here we
remind that p = & —2dyn;(u) and s = ,—2d;n;(v). Now, we obtain the desired equality (5.4)
by Lemma 5.11. O

Corollary 5.13. Let © € AON be a sequence adapted to Q. We have an isomorphism of
Z[t*1/?]-algebras

i T(As) = Vi<e  given by Xy > mP[p, &] foru €N,

where (1,p) = p;(uv). In addition, we have ;0 (-) = (-) o 7;.
Proof. For each (1,p) € ﬁgg, we have Y, = m®[p,&]/m®[p + 2d;, &]. This implies that the
Z[t£1/2]-algebra YV <¢ is generated by {m®p, gl]}(l PR Then, Proposition 5.12 asserts that

the presentation of Vi <¢ in terms these generators is identical to that of 7 (A;) in §1.3 under
the correspondence X,, — m® [p,&] as in the statement. Thus, we have the isomorphism 7;.
The compatibility with the bar involutions is obvious from the definition. O

We conclude this subsection by the following important observation.

Proposition 5.14 ([HL16, Lemma 4.15]). Leti € A be a sequence adapted to Q. Foru € N,
we set e, = (Opy)ken € ZON, and

b, = Eieu = Z bru€k-
keN
Then we have

ﬁi (Xbu) = A'il—di

1/7p

where (i,p) = pi(u).

Proof. We know that 7j; (X ) = t¢/2A41

ip—d; for some a € Z by Lemma 5.8 and the observation

similar to the proof of [HL16, Lemma 4.15]. We can conclude that a = 0 since 7; is compatible
with the bar involutions on 7 (A;) and V; <¢. O
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5.5. Cluster structure on K;(6<¢). We prove the main result of this section: K;(%<¢) has
a quantum cluster algebra structure. Using the isomorphism 7; of quantum tori in Corollary
5.13, we use the approach in [HL16, Bit21]: to identify the respective images in the quantum
tori, for the first inclusion we prove that the generators F;(Y;,) correspond to some quantum
cluster variables (by using quantum T-systems) and then we show a stability property of the
quantum Grothendieck ring by quantum cluster mutation for the other inclusion.

Recall one of the main results of [HL16].

Theorem 5.15 ([HL16, Theorem 5.1]). The Grothendieck ring K(€~) has a cluster algebra
structure so that the classes of Kirillov-Reshetikhin modules in K(€~) are cluster variables.

The proof of the following Theorem is a generalization of the proof of [HL16, Theorem
5.1] above, and that of [Bit21, Theorem 5.2.4] for the quantum Grothendieck ring /C;(4'~) of
type ADE. Here ¢~ is a special example of the category ¢<¢ with { satisfying the condition
—2d; < & <0 for all © € Ag (cf. Remark 5.7).

Theorem 5.16. Let Q = (A, 0,€) be a Q-datum for g and i = (1,)uen € A} a sequence
adapted to Q. There is a unique isomorphism of Z[t*'/?]-algebras n;: A; ~ Ki(€<¢) which
makes the following diagram commute:

A " Ky(C<)

(5.5) [ N £(-)<g

i
TA) —— Ve <e-
Moreover, when m is a dominant monomial of a KR module in €<¢, the element Fy(m)
corresponds to a cluster variable of A; under the isomorphism n;.

Proof. Let Kt <¢ C Vi <¢ be the image of K;(€<¢) under the truncation map (-)<¢. To establish
the isomorphism 7;, it is enough to show that 1;(A;) = K¢ <¢.

First, we shall show 7;(A;) D ICt <¢. Since Ky(€<¢) is generated by the elements Fi(Y;,),
it is enough to prove that Fy(Y; p)<¢ € 1;(A;) for all (i,p) € 125. It follows from the following
more general assertion: for any k € Ny, and u € N, we have

(5.6) B(00) X0 = F[p, (s -+ su)i<e i popg(u) = (1,1),

where (97)" denotes the composition of the homomorphisms

% % o1 ot
A@ii — Aa_lfli — A8+i — A;

and X, denotes the u-th initial cluster variable of .AB_;i ;- Once we have the assertion 5.6, it
follows that ﬁ;lFt(m)gg is a cluster variable for all dominant monomial m corresponding to

a KR module in €<, since every Ft(l)[p, sl<e (with (2, p), (2,8) € I;g, p < s) appears in the
RHS of the equality (5.6) when k and u vary. This proves the last assertion in the statement.

Let us outline the proof of (5.6), which is the same as those of previous works [HL16, Bit21].
It proceeds by transfinite induction on (k,u) € Ny x N along the lexicographic order. When
k =0, (5.6) holds for all u € N by Lemma 4.9 and the definition of 7; in Corollary 5.13. Let
us discuss the case when k = 1. We set ¢ := 2; and recall the notation g4 and o4 which
appeared in the definition of 07 in §2.3. For each v € N, let X = p* X, be the mutated
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cluster variable so that we have 0% X, () = X,,. Note that X; = X, if 2, # 1. Forany v € N
with 2,, = ¢, we have the exchange relation

*)
/ __ qa v/ b
(5.7) Xy Xy =1°X] X4 +1 Hxvm
g~

for some a,b € %Z (see the proof of Lemma 2.12 and Lemma 2.13). Now, we want to show that

(X)) = F[p, &)<e if ps(v) = (2, p+ 2d5), which is equivalent to (5.6) for (k,u) = (1,04 (v))
(note that ps,i(c4(v)) = (2,p) in this case). By induction, we assume that ﬁi(X;_) =

Ft(z) (p,&)<¢. Then, from (5.7), we deduce that 7;(X,,) is the unique bar invariant element of
the form

H
-1
(t“Ft(Z) b, &)<e Y (0, &) <e + thFt(]) (pafz)s.g) (Ft(l) (p, &}s&) :

J~
On the other hand, the truncation of the quantum 7T-system equation (4.8) tells us that the
same property also characterizes the element Ft(z) [p,&)<¢. Therefore, we obtain the equality
(X)) = Ft(l) [p,&)<¢, which completes the proof of (5.6) for k = 1. The proof for the case
k > 1 is similar and hence we omit it.

Next, we shall prove the opposite inclusion 7;(A;) C Kt <¢. Take a reduced word (y1, ..., )
of the longest element w, adapted to the Q-datum ©® Q. Then we define a sequence ¢’ = (2, )yeN
so that #, = g, for 1 <wu < £ and 4, =1, for any u € N. By Proposition 5.1, ¢’ is adapted
to ©®Q, and obviously we have 8f_i’ = ¢. Consider the following diagram:

Ay s Vi<o¢
(5.8) (Gi)ZT ic)gg
Ay s Vi <e.

A priori, it is not clear whether (5.8) commutes (but we will see that actually it does). Letting
¢ = 1ir0(0%)*, we shall prove that ((z) € Ki(%<¢) and {(x)<¢ = 7;(z) for any quantum cluster
variable x € A; by induction on the distance from the initial cluster. When z is an initial
quantum cluster variable, it follows from (5.6) (with k = ¢), Proposition 5.1 and Lemma 4.6.
Let z be a quantum cluster variable obtained by the exchange relation 2’ = 1, + 32, where
2’ is another quantum cluster variable and 1, y2 are quantum cluster monomials multiplied
by some powers of t¥1/2. By induction, we assume that ((2) € Ki(%<¢) and ((2)<¢ = 7i(2)
for z € {o/,y1,y2}. Since ( is an algebra homomorphism, we have

(5.9) C@)¢(a") = Cyr) + Cly2) € Ki(C<e)-

Then, Lemmas 4.1 & 4.6 imply that {(x) € K;(€<¢). Recall that the restriction of (-)<¢ to
KCi(€<¢) is an algebra homomorphism. We apply it to the equation (5.9) to find

C(@)<emi(z") = Ma(y1) + M (y2) = 7 ()7 ("),

which implies that {(x)<¢ = 7;(x). Thus, we have proved that 7;(x) € K; <¢ for any quantum
cluster variable x € A;. O

For future use, we remark the following.
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Lemma 5.17. Let Q = (A, 0,€) be a Q-datum for g and i € A} a sequence adapted to Q.
For each (i,p) € I<¢, the element ni_lFt(Y;p) is a quantum cluster variable whose degree is
€y — € -, where ﬁz(u) = (Zap)

Proof. By (5.6), we have n; ' Fy(Yi,) = (9%)""'X;. Therefore, the assertion follows from
Lemma 2.16. U

5.6. Relation to the HLO isomorphisms. Let ¢ = (21,...,1) be a reduced word for the
longest element adapted to Q (recall Proposition 5.1). We extend it to be an infinite sequence
t = (1)uen adapted to Q. Such an extension always exists, see Example 5.5. From the
discussion in [FHOO22, §8.2], we can deduce that the isomorphism 7;: A; ~ Ki(%<¢) in

Theorem 5.16 restricted to A, (B;, A;) yields the isomorphism of Z[t+!/2]-subalgebras
nit AL = A (By, Ag) ~ Ky(6o),
which does not depend on the choice of extension i of 4. Moreover, the composition
Do =ni0p; " AN_] ~ A(Bi, Ag) ~ Ki(%0)

only depends on the Q-datum Q (that is, it does not depend on the reduced word i adapted
to Q, see Propositions 2.6, 3.3, & 5.1) and it is identical to the isomorphism in [HL15, §6],
[HO19, §10], [FHOO22, §8.2], which is called the HLO isomorphism in [FHOO22].

6. ISOMORPHISMS AMONG QUANTUM GROTHENDIECK RINGS AND APPLICATIONS

We give in Theorem 6.3 a cluster theoreticalal interpretation of the isomorphisms among
the quantum Grothendieck rings constructed in [FHOO22], together with their canonical basis
(Corollary 6.4). This leads to a quantum version of the monoidal categorification Theorem of
[KKOP21b] for the categories ¥<¢ (Theorem 6.6): the quantum cluster monomials belong to
the canonical basis. We obtain several applications, including the proof of the positivity con-
jecture of (g, t)-characters (Corollary 6.12) and the proof of the Kazhdan—Lusztig conjecture
for reachable modules (Corollary 6.10).

6.1. Isomorphisms among quantum Grothendieck rings. We recall the isomorphisms
among the quantum Grothendieck rings constructed in [FHOO22].

Let @ = (A, 0,¢) be a Q-datum for g. Take another complex simple Lie algebra g’ and a
Q-datum Q' = (A’,0',¢’) for g’. We assume A ~ A’ that is, we assume either that g and ¢’
are related by (un)folding, or that g ~ g’ holds. In what follows, we identify A with A’, and in
particular we have Ay = A{. To avoid a possible confusion, we often denote a mathematical
object X by X’ when it is associated with g’. For example, we denote by %’ the category
of finite-dimensional U, (Lg')-modules of type 1, and by ©'*! the duality functors on ¢”. In
[FHOO22], we proved the following.

Theorem 6.1 ([FHOO22, §10.3]). With the above assumption, there exists a unique isomor-
phism of Z[tF'/?]-algebras

U =0(0Q,9): Ki(%y) ~ Ki(6z)
satisfying the following properties:
(1) restricted to the subalgebra /Ct(‘g’g), it coincides with the isomorphism

(I)Q o q)é,l ICt(Cg/Q/) >~ At[Nf] >~ Kt((gg),
(2) we have ¥ o DF! = DFl o W,
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Moreover, the isomorphism ¥ induces a bijection between the (q,t)-characters of simple mod-
ules.

Note that the isomorphism W restricts to the isomorphism
’Ct(%é@/kgl) = ’Ct(%<©k§)

which induces a bijection between the canonical bases L/ 1<k and L, <ore for all k € Z.

We conclude this section by mentioning a related work by Kashiwara, Kim, Park and
the third named author. Though this observation will not be used in this paper, it is of
interest itself. In [KKOP21a], a collection of automorphisms {o,},ea, is constructed on the
localized quantum Grothendieck ring K(%7) ®z+1/2) Q(t'/?), which satisfies the braid group
relations. When g = ¢’ and Q = s,Q" with 2 € Ag being a source of Q', it is easy to see
that the isomorphism ¥(Q, Q') in Theorem 6.1 is identical to the automorphism o, after the
localization. In particular, we obtain the following.

Proposition 6.2. The braid group symmetry given by the automorphisms {o, },ea, in [KKOP21a]
respects the canonical basis of Ki(%7).

6.2. Cluster theoretical interpretation of the isomorphisms. Let us choose an infinite
sequence @ = (2y)yen (resp. ¢ = (2,)uen) satisfying the condition (5.1) in Example 5.5 with
respect to Q (resp. Q'). Recall the notation ~; and S from §2.1 and §2.2 respectively. We
choose and fix a finite sequence 7 = (71,...,7) in {y1,...,Y%-1} U{PB1,..., Be—2} such that
(hyeocay) =711 (01,5 20).

For each n € Ny, we have the Z[t*!/2]-algebra isomorphism

Fx A(” AT 5 AT
where we set

Note that eje; = e3¢] whenever ; € {Yryn;e}rep,e—1] U {Brtnie}refi,e—2) and ny1 # na. Recall
that we have A; = J, A and Ay = |J, A%, Taking the inductive limit, we obtain the
Z[t*+1/?]-algebra isomorphism

7= lim 7*; Ay — A;.

By construction, the isomorphism 7* induces a bijection between the sets of quantum cluster
monomials.

The following is one of the main theorems of this section and gives a cluster theoretical
interpretation of the isomorphism W. Our proof has two steps: we study first the result for
subcategories ¢, and then we extend it to the categories €<¢ using the dualities D;.

Theorem 6.3. In the situation described above, the following diagram commutes:

(6.1) l | |

Proof. Let T = n; 07" o m_/l- We have to show T = W. By the characterization of the
isomorphism ¥ in Theorem 6.1, it suffices to prove
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(1) T = ¥ after restricted to K;(%},), and
(2) TOC‘D;;1 :Q;loT.
Restricting (6.1) to Aj ~ Ay(By, Ays), we obtain

Ay(Bir, Ay Cor)

\/
/\

We know that all of the 4 small triangles in the diagram (6.2) commute thanks to Corollary 3.4,
the discussion in §5.6, and Theorem 6.1 (1). Thus, the large square in (6.2) also commutes,
which proves (1).

Next, we shall prove (2). Note that ¢ = 9{4* with i* = (2}))yen. Since B; = B;+ and
A; = Ay, there is the obvious isomorphism v: A;« ~ A; identifying X, for all u € N. Then,
we have the identity

(6.3) niovo (9}) =9, o

which relates the homomorphisms (0%)%: A; — A« and ;' K (G<e) — Ki(€<¢). Indeed,
by Lemmas 2.16 & 5.17 and Proposition 5.1, we see that the cluster variables

0 O, F(Yi,) and () Fi(Y,)

Ay(B;

share the same degree, and hence they coincide for all (i, p) € I. <¢ (see Theorem A.8). Since the
elements {F;(Y; »P)}(i el generate the Z[t*!/2]-algebra K;(%<¢), we get (6.3). In the same

way, we have the analogous identity for 4. In addition, for any cluster monomial z € Aj;
whose degree belongs to the cone Cy (see (2.5) for its definition), we have

(6.4) (0% = v(07) .

Indeed, the degrees of both sides of (6.4) coincide by Lemmas 2.16 & 2.17 and the definition
of 7*. Now, we have

T, ' Fi(Yip) = mit ny D Fi(Yip)

= nﬁ*V(@i)fn;lFt(Yi,p) by (6.3) for 7'
= nv(07) 7 1" Fi(Yip) by (6.4)
=D, 'nit 0y Fi(Yip) by (6.3) for 4

=07 ' TF(Yip)

for any (i,p) € fgg. Since the elements {Ft(Yi,p)}(i p)ei., generate the Z[t*1/?]-algebra
Ki(€¢<¢), we obtain the claim (2). - O

Corollary 6.4. Let Q = (A,0,€) and Q' = (A, 0, &) be two Q-data such that A = A’ as
above. For any sequences 1,1 € AON adapted to Q and Q' respectively, the Z[til/Q]—algebm is0-
morphism ni_lo\IJ(Q, Q")ony induces a bijection between the set of quantum cluster monomials
in Ay and the set of quantum cluster monomials in A;.
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Proof. In view of Proposition 2.6, Lemma 5.4 and Example 5.5, it is enough to prove the
assertion when both 7 and ¢’ are satisfying the condition (5.1). In this case, it is immediate
from Theorem 6.3. g

6.3. Quantization of monoidal categorification theorem. Let Q = (A,0,§) be a Q-
datum for g, and ¢ € A} a sequence adapted to Q. Let A; = A(Ez) denote the (classical)
cluster algebra associated with Ei, which comes with the evaluation map evi—i: A; — Aj;.
Specializing ¢ to 1, in Theorem 5.16, we obtain the isomorphism of commutative algebras
it Ai — K(%<¢). For example, this is the isomorphism of [HL16] for the category €.
Precisely, we define 7; to be the unique isomorphism which makes the following diagram
commute:

Ai — Ky(Cce) = Vi
(65) th:l\L evi—1
A; s K (6ee) .

Here, we remind the important monoidal categorification theorem established by Kashi-
wara, Kim, Park, and the third named author.

Theorem 6.5 ([KKOP21b, §8]). The isomorphism 7j; sends each cluster monomial of the

cluster algebra A; to the class of a simple object of the category C<¢.
Now, we shall prove a quantum analog of this result.

Theorem 6.6. The isomorphism 1; sends each quantum cluster monomial of the quantum
cluster algebra A; to an element of the canonical basis Ly <¢ of the quantum Grothendieck ring
Ki(€<¢). More precisely, we have n;(x) = Ly(m) for any quantum cluster monomial x € A;,
where m € Mcg is the unique dominant monomial such that 7;(evi—1(x)) = [L(m)].

Proof. Our proof has two main steps: first we prove the result for simply-laced types, and
then we use a (un)folding argument for general types which is based on the new ingredients
discussed above. As the first step also works directly for type B, it is also included.

So first, we discuss the case when g is of type ABDE. In this case, we know that Con-
jectures 4.4 & 4.8 are true. In particular, it follows that, for any my, me € M, the tensor
product module L(m1) ® L(mg) is simple if and only if we have

Lt (ml)Lt (m2) = taLt (mlmQ)

in K;(67z) for some a € 3Z (see [HL15, Corollary 5.5], [FHOO22, Lemma 11.5]). Thanks to
this fact, it is enough to show that n;(x) € L; <¢ for every quantum cluster variable x € A;
(rather than monomial). We prove this by induction on the distance from the initial cluster.
When z is an initial quantum cluster variable, it follows because Conjecture 4.8 is true for
type ABDE. Assume that z is a quantum cluster variable obtained by the exchange relation

(6.6) za' =ty + 1%y,

where 2’ is another quantum cluster variable, y1,7s are quantum cluster monomials, and
a,az € %Z. Let m,m/,m1, my € M<¢ be the unique dominant monomials satisfying

Mi(evi=1(x)) = [L(m)],  Mi(evi=1(2))) = [L(m")],  Mi(eve=i(yr)) = [L(mx)]
for k = 1,2. We note that the relation (6.6) goes to
(6.7) Xq(L(m))xq(L(m)) = xq(L(ma)) + xq(L(m2))
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under the homomorphism x4 o 7; o ev;—;. By induction, we assume that

ni(x') = Le(m'),  ni(ye) = Le(my)

for k =1,2. Then, by the relation (6.6), we see that the element n;(x) is characterized as the
unique bar invariant element of the form

(6.8) (t" Ly(ma) + 2 Ly(ma)) Ly(m/) ™" for some a1,as € 37

in the fraction field F();). On the other hand, in K;(¢<¢), we have

(6.9) Li(m)Ly(m!) = Y cour(t)Ly(m”)
m/'eMc<e

with some ¢, (t) € No[t*1/2] for m" € M<¢ by Theorem 4.5. Since Conjecture 4.4 is verified
for type ABDE, we can compare the specialization of (6.9) at ¢ = 1 with the relation (6.7).
Then, the positivity forces that

to for some by, € %Z if m” =my, k € {1,2},
Cm//(t) = .
0 otherwise.

This implies that the element L;(m) is also the bar invariant element of the form (6.8) in
F()%). Therefore, we obtain n;(x) = Li(m), which completes the proof for type ABDE.
Next, we consider the other case, that is, when g of type CFG. Let x € A; be an arbitrary
quantum cluster monomial, and m € M<¢ the dominant monomial satisfying 7;(ev;—1(x)) =
[L(m)]. Let @ = (A,id,&’) be a Q-datum for the simply-laced Lie algebra g whose Dynkin
diagram is A. Take a sequence i’ € Al adapted to Q' and set 2’ := 1, U(Q', Q)n;(z) € Ay
By Corollary 6.4, this 2’ is a quantum cluster monomial. Since we already know that the
assertion of the theorem is true for simply-laced type, we have 7y (') € Ly <¢/. Since ¥(Q, Q')
respects the canonical bases (Theorem 6.1), we have 7;(z) = ¥(Q, Q" )(ns(z')) € Ly<¢. In
other words, there is a dominant monomial m’ € M<¢ such that n;(x) = Li(m’). By the
commutativity of (6.5), we have evi—; Li(m') = x4(L(m)). By comparing (4.3) and (4.5), it
implies that m’ = m. O

Let us consider the following notion of reachable simple modules, that is of simple modules
corresponding to cluster monomials.

Definition 6.7. We say that a simple module L(m) is reachable if there is a Q-datum Q =
(A, 0,€) for g such that m € M<¢ and 7; '[L(m)] is a cluster monomial in A; for some (or
any) sequence % € Ag’ adapted to Q.

Remark 6.8. Thanks to Theorem 6.6 above, L(m) is reachable if and only if there is a O-
datum Q = (A, 0,§) for g such that m € M<¢ and ni_lLt(m) is a quantum cluster monomial
in A; for some (or any) sequence i € A} adapted to Q.

Corollary 6.9. The isomorphism V: Ki(€y) — K¢(6z) in Theorem 6.1 induces a bijection
between the sets of (q,t)-characters of reachable modules.

Proof. This is immediate from Corollary 6.4. 0
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6.4. Corollaries. We explain several applications of our main results. The statements of
Corollaries 6.10, 6.11, 6.12 are known in types ADE [Nak04] and type B [FHOO22] but are
new for general types.

We first state the Kazhdan—Lusztig type conjecture (= Conjecture 4.4 (1)) for reachable
modules. Note that reachable modules include KR-modules, and when g is of types CFG, the
following result is new even for KR-modules.

Corollary 6.10. If L(m) is reachable, we have evi—1(L¢(m)) = xq(L(m)).

Proof. Noting the commutativity of the diagram (6.5), this is an immediate consequence of
Theorem 6.6. Il

Then we establish Conjecture 4.8 for any g.
Corollary 6.11. If L(m) is a KR module, we have Fy(m) = Li(m).

Proof. Assume that L(m) is a KR module. Theorems 5.16 & 6.6 tell us that Fy(m) € L.
Thus, there exists m’ € M such that Fi(m) = Li(m’). The characterization of Fy(m) in
Theorem 4.2 and the equation (4.5) force that m’ = m, which proves the assertion. O

We also obtain the positivity of the coefficients of (g, t)-characters of simples modules, that
is, we prove Conjecture 4.4 (2) for any g, which was formulated for non-simply-laced types
almost 20 years ago in [Her04]. For types CFG, the statement was only known for fundamental
representations and was derived from a computer calculation in [Her05]. Hence we obtain an
explanation of these computational results and a vast generalization of the statement.

Corollary 6.12. The coefficients of (q,t)-characters of simple modules are positive. Precisely,
for any m € M and m' € M* (with m’ < m), we have az[m;m’] € No[t*'/?] in the notation

of (4.5).

Proof. The idea of the proof is to identify the coefficients a;[m;m’] with structure constants of
the quantum Grothendieck ring with respect to the canonical basis L; by using Corollary 6.11
and Lemma 4.9. Then the desired positivity of a;[m; m/] follows from the positivity of structure
constants (Theorem 4.5). Since it is the same argument as for the proof of [FHOO22, Theorem
11.7], we omit the details. O

6.5. Cluster structure on K;(%7). In this subsection, as an application of the results from
the previous subsections, we briefly discuss how one can lift the cluster algebra structure on
the Grothendieck ring K(%7) of the whole category ¢7 fully investigated by [KKOP21b], to
the quantum Grothendieck ring K;(%67).

First, we recall the cluster algebra structure on K(%7). In the original paper [KKOP21b],
it is described by a combinatorial gadget called the admissible chains of i-boxes. Here, let us
explain it with an equivalent but a little bit different terminology to make the things more
suitable with our notations. Let Q = (A,0,¢) be a Q datum for g. Recall the sets A<5 C

A[g] C Ag X Z from §4.3 and the partial ordering < on A[ﬂ from §5.1. Put A>§ = A \A<5
We say that a bijection e: N — A is a Q-adapted enumeration if the restrictions of its

inverse ¢! to the subsets 355 and A give the morphisms of posets (ﬁg, <) — (N, <) and

(3>§, =) — (N, <) respectively (cf. Lemma 5.3). Given such a Q-adapted enumeration e,
for each u € N, we write e(u) = (24, pu) € Ao X Z and define

u* = max({v € [1,u] | 1y = 2v,5gn(u) # sgn(v)} U {0}),
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where

() =0 1 i e(u) € Aee.

With this notation, we have a collection {L(m,)}uen of KR modules in %7 given by
m)[py, pur]  if sgn(u) = —1 and u* # 0,
m®)p,, &, if sgn(u) = —1 and u* =0,
m®) [pys,p,]  if sgn(u) = 1 and u* # 0,
m) (&, p.]  if sgn(u) =1 and u* = 0.
)

By [KKOP21b, Theorem 5.5], the collection {L(m
simple modules, i.e., for any u,v € N, we have

L(my) ® L(my,) ~ L(mg, - my).
Now, we define a skew-symmetric matrix A® = (Aj, ,)uven by
Ay = A (my, my).
Theorem 6.13 ([KKOP21b, Theorem 8.1]). Let Q = (A, 0,&) be a Q-datum for g. For any

Q-adapted enumeration ¢: N — A, there is a unique exchange matriz B* = (b%,4)u,ven such
that Yoy by ALy = 20u,0 for all u,v € N. Moreover, we have a ring isomorphism

iie: A(BY) ~ K(%y)

under which the initial cluster variable X,, corresponds to [L(m)] for any w € N, and every
cluster monomial corresponds to the class of a simple module.

{1 if e(u) € £>§,

(6.10) ms, =

}uen forms a commuting family of real

Examples are given in Appendix B.

Proposition 6.14 ([KKOP21b, §8]). The isomorphism i, in Theorem 6.13 induces a bijection

between the cluster monomials in A(B*) and the classes of reachable modules in the sense of
Definition 6.7.

Proof. Let x be an arbitrary cluster monomial in A(Ee) Then, the discussion in the proof of
[KKOP21b, Theorem 8.1] 1mphc31tly tells us that, for any Q-datum Q = (A, o,&) such that
fe(r) € K(%<¢), the element 7; '7(z) is a cluster monomial in A; for any sequence i € A
adapted to Q. Therefore, 7.(x) is reachable. Similarly, for any reachable L(m), we see that
the element 7, 1([L(m)]) is a cluster monomial in A(B"). O

Now, we shall prove a quantum analog of Theorem 6.13.

Theorem 6.15. Let Q = (A,0,€) be a Q-datum for g. For any Q-adapted enumeration
e: N — Ay, we have an isomorphism of Z[t*/?)-algebras

Ne: At(Ae,Ee) ~ K (67)
under which the initial quantum cluster variable X, corresponds to Liy(m,) for any u € N,
and every cluster monomial corresponds to the (q,t)-character of a simple module. Here B*
is the unique exchange matriz in Theorem 6.13 above.

Proof. The proof is similar to the former part of the proof of Theorem 6.6. Thanks to
Theorem 4.5 and Corollary 6.10, for any mutually commuting pair of reachable modules
L(m) and L(m'), we have

Li(m)Ly(m) = ¥ )2 L ().
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In particular, we have an embedding 7,: F(T(A%)) < F()}) of skew fields over Q(t'/?) given
by 1.(Xy) = Li(m!)) for all w € N. By a similar argument as in the proof of Theorem 6.6, using
Theorem 4.5, Corollary 6.10 and Proposition 6.14, we can show that 7,(X) = L¢(m) holds for

any quantum cluster variable X in A(AS, é“), where m € M the dominant monomial such
that 7, (evi=1(X)) = [L(m)] in the notation of Theorem 6.13 above. Therefore, the image of

A (A, Ee) under the embedding 7, is included in IC;(%7%). Since every fundamental module
is reachable, the above discussion also tells us that L.(Y;,) = Fy(Yip) € ne(Ai(AS, B)) for
any (i,p) € I. Since the set {Ft(Yw)}(i p)ef 18 generating the Z[t+1/?]-algebra Ki(€7), we

conclude that (A, (A, BY)) = Ki(€2). O

7. SUBSTITUTION FORMULAS

In Theorem 6.3, we gave a cluster theoretical interpretation of | (ELy): As an application

of it, we show in this section that ¥ comes from an explicit birational transformation among
the variables in )} and Y}, which we call substitution formulas. It reveals a non-trivial relation
among the (g, t)-characters of simple modules which are mutually related under .

Let us state the main result of this section more precisely. We return to the assumption
and the notation in Sections 6.1 and 6.2. Recall that we have

Ki(z) Ve CF(Q),  Ku(€z) € V; CF(Yy),
where F()}) and F()}) denote the skew field of fractions of ); and )], respectively. The main
theorem in this section is the following:
Theorem 7.1 (Substitution formulas). With the above assumption, there exists an isomor-
phism of skew fields
U =1(Q,Q): F) = F(),

such that

(1) ’Dto\fl:\iogg,

(2) U(Yip) € F(V,on0) for k € Z and (i,p) € I, o

(3) the following diagram commutes.

F(V)) ——F())

Ki(6}) —= Ki(%2)

In particular, there exists a birational transformation between the variables in Y| and those
in V¢ which makes the (q,t)-characters of simple modules in €}, into those in 6z.

Our proof of Theorem 7.1 is valid under the setting when ¢ = 1. Hence we obtain the
parallel result at ¢ = 1 by the same proof. Let F()) (rep. F()”)) be the field of fractions of
Y (resp. )'). Denote by W,y the Z-algebra isomorphism which makes the following diagram
commutative:

Ki(€7)

K(¢7)

~
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We call the image of the (g, t)-characters of simple modules under ev;—; the (g, 1)-characters
of simple modules.

Theorem 7.2 (Substitution formulas at ¢ = 1). With the above assumption, there exists an
isomorphism of fields

~

Uiy = U(Q, Q)i FY) S F(Y),
such that
(1) Doy = Vg 0D,
(2) Ui1(Yip) € F(Vorg) for k € Z and (i,p) € I o
(3) the following diagram commutes.

oy

FQ) ———F)

Xa(K(€}) 5 xo(K(%2)).

In particular, there exists a birational transformation between the variables in )’ and those
in Y which makes the (q,1)-characters of simple modules in €y, into those in €z.

Remark 7.3. We can calculate ¥ and \Tltzl explicitly by tracing a specific mutation sequence.
See Appendix C.

The coincidence of the (g, 1)-characters and the g-characters are now known in many cases.
See Conjecture 4.4, Corollary 6.10, and expositions around them. Hence the substitution
formulas at ¢t = 1 reveal several non-trivial relations among the g-characters of simple modules
which are mutually related under W;_;.

The rest of this section is devoted to the proof of Theorem 7.1. We consider the following
commutative diagram:

(7.1)
{I\;S&S&/
, it G M4, F
F(Y; <¢1) = F(T(Ai)) = F(T(As)) ~ F(Vi<¢)
Ve N T(Ax) T(As) u Vi <e
( )<5/ J ( )<E
’Ct((g\igl)SE’ ]Ct(cgég/) 7;, 3! TN Ai ; ’Ct((ggf) = ’Ct(cggg)q
JA Vlkycer ) j

ICt(‘K\g@,,lg,) —id_ Ki(€Lg1e) ~ Ki(C<p-1¢) 4 ’Ct(%\;zflg)

wlmt(%/gg/—lgl)

Here the morphisms 7; v, i/ 7, T, and \nggég are uniquely defined so that the diagram be-
comes commutative. The hooked arrows denote the inclusion maps. Note that the restriction
of (-)<¢ (resp. (-)<¢r) to Ki(C<p-1¢) (resp. Kt(%ég,_lé,)) is the identity map by Lemma 4.6.
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The key step for the proof of Theorem 7.1 is to show the compatibility of \Tlggég with the
dual operations, that is, D; ' o W <o = Ve < 0 D) ! on F(¥; <¢) (Lemma 7.4 (1)). Once
we established it, we can extend \Tlgg’g/ to ¥ by using the dual operations. Note that we can

not deduce the compatibility of W<¢ <¢ with the dual operations directly from Theorem 6.3
because the truncation map (-)<¢: Ki(G<¢) < Vi.<¢ does not commute with D; .

Lemma 7.4.

t,éé’).

—1 3 3 -1
(1) D7 gy, o © Yeecer = Ye<e © D gy
(2) For k € Ny and (i,p) € f’g,,kQ,, we have @Sé,ﬁé’(&) € F(Vio-r0)-

Proof. The statement (2) immediately follows from (1) since we have \Ifggég (F(Vo)) C

F(Y;,0) by the construction of @3555/. Hence we shall prove (1).
Let us define the homomorphisms of skew fields as

i = ﬁ;% o @;1 o 777;7[{?2 F(T(Az)) — F(T(Az)),
Y =y 5 0@ o fyp: F(T(Ay)) = F(T(Av)).

Let &, %: Z®N — 78N be Z-module homomorphisms determined by

z(eu) = e’u+£7 i(eu) = eu+[ - e(é-l—l)._(z,*) fOI' all u e N
Note that we have
(7:2) ¥(a) =X(a) = D _ pilain)eq )
1€A0

for @ € Z®N by the notation defined in (2.7). Recall p;: N — Agg defined in Section 5.1.
Then, for u € N with p;(u) = (2, p), we have

(7.3) S(X0) = ;3 (D7 (7lir(Xu))
= ;5 (D (mY[p, &)
= (m"[p—rh¥, & — rhY))
= 7 (m"p = rhY, &) (m" (D79, &) )
_ X)E(eu)

by the condition (5.1). Therefore, we have $(X%) = X=(@ for a € Z®N. Moreover, in the
notation of Proposition 5.14, we have
(7.4) B(X®) =5 (O (p(X°))) = T (D7 (A5, _4)) = Diw(Ail g, ) = X0

for v € N with p;(u) = (i, p) by Proposition 5.14 and the condition (5.1).

For u € N, set Z,, .= 7*(X/,). Then, by the definition of 7*, Z,, is a quantum cluster variable
in A;. Therefore, by [Trall, Theorem 5.3], there exist ¢, € Z[t*/?] for n € NY™ \ {0} and
gu € 75N such that

Zy=X9 [ 1+ Z Cu,nXZkGN nibg

n=(n)rNG"\{0}
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For k € Ny, set

A g ={(, (@ ), +2d5) |1 € Ao,

A uf N A f

A vg =ADpkg\ Ay kg
For u € N, there exists k € Ny such that the quantum cluster variable Z, is obtained from
the initial cluster {X; | s € N} by the mutations only at the vertices labelled by A%f_k o
See the construction of 7* in Section 6.2 and recall the fact that eje; = e3e] whenever
€i € {Vhrnittren,e—1 Y {Brtnittren,e—2) and ny # no. (If Z,, belongs to the initial cluster,
then we may take arbitrary k € Nj.)

Moreover, if Z,, is obtained from the initial cluster by the mutation sequence fhp o) * My (w)
Su 1
for kg“), ceey ké’:) € p;I(A%f_ X Q), then Z, . is obtained from the initial cluster by the mutation
Sequence [ w) ,* Hy ) by the construction of 7*. Since c¢,n € Z[til/Q] and g, are
Su 1

determined only from B; and the sequence kgu), ce k:gff) [Trall, Theorem 5.3], this periodicity
together with the periodicity of B; coming from the condition (5.1) implies that

=X(9u) ifu>£loru=(l+1);() for 1€ Ay,
€ X(gu) + 2ien, L€ (py1)-(,) otherwise,

Cux-1(ny 1f € X(NFY),
0 otherwise,

(7'5) Gu+e {

(7'6) Cu+tn = {

for u € N. (Here the statement for g,., is divided by cases since the vertices in 315 does

not have a neighborhood corresponding to E%Q in I';.) Note that Z(€+1) W= X(£+1);(z) and

Ze41); 0+ = X(ern); @)+
Therefore, for u € N, we have

(7.7) S(Zy) = XTe0) [ 14 3 Cun X Zhen bt e by (7.4)
n=(ny)ENF\{0}

_ Xf(gu) 1+ Z cu_,'_g’z(n)XZkeNnkbk-M by (7.6)
n=(n)r NG \{0}

— X o) |14+ 3 Cup b X Zken b by (7.6)
n=(ny)r NP\ {0}

~ Xi(gu)_gu+€ Zu—i—f
Here ~ stands for the equality up to multiplication by ¢t*/2 for some a € Z. (We use this nota-
tion throughout this proof.) Note that, by (7.2) and (7.5), £(gu) — Gu+e € Y., Ze (i 1)- (1)

and every Zs (s € N) t-commutes with XE(90)=9ute since pi((L+1);(2) € ﬁfé for v € Ap.
To show the statement (1), it suffices to prove

(7.8) D7 (Ve < (Yip)) = Ve <o (D7 (Vi)
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Let (i,p) € I

for all (i,p) € f’gf,. First, we show the equality (7.8) for (i,p) € f’< ot

and u == p;,'((i,p)) € N. Then u™ = u; € N, and

@/715/‘

D, (\I/<g <§'( p) =9, (z,IF( (m/F(Y )
=9, zJF(TE(X'e“ “)))
~ ;! (1, ,IF( Zu))
=ir(S(Z, ))
m,ﬂXﬂgu Ot ROzl Z),
Ve <o (D) (Yip)) = M (75 (7 1(D1 (i)
= 77,0 (75 (% (7 5 (Yip)))
= i p (7 (2 (X700 %))
= Miw( ]g( X'€uwtt=€u=+r)) by the argument parallel to (7.3),
~ ir (2,2 Zust)-

Let us show that
2(9u) = Gurt — E(Gu-) + Gu-10 =0
for all u > ¢. By the iterated application of Lemmas 2.4, 2.11, and 2.18, we have
Pi(gu;?) = pir(€u;r) = b0 and  pi(gy-;2) = pir(€y-32) = by o = Ou 0

Note that, when applying Lemma 2.18, we used the fact that the s-th components of g,, and
g.- are equal to zero for all s € p{l(Ag) by the definition of 7* and our assumption on u.

Therefore, by (7.2) and (7.5), we have
Y(gu) = Gure = X(Gu-) + Gu-t
= 2(9u) = ey (@) T Gurt = 2(Gum) F €z () T Iumt
= 0.
Then we have B
D (Ve <er(Yip) = U <er (D] (Yip))-
Since D¢, D}, and \Tlggég are compatible with the bar involution, @;1((173558 (Yip)) and
\I!<5 < (D7 1(Y; Y;p)) are bar-invariant. Therefore, we have
D (Ve ce (Yip)) = Ve <o (D) (Yi)),
which completes the proof of (7.8) for (z,p) € I<®, 10
Next, we show the equality (7.8) for (i,p) € IQ,. For u € N, set

F,=|1+ > Cum X 2oken Tk
n=(n)x NG\ {0}
Then the calculation in (7.7) shows that
S(Fu) = Fute



ISOMORPHISMS AMONG QUANTUM GROTHENDIECK RINGS AND CLUSTER ALGEBRAS 45

for u € N. We prepare the following claim.
Claim. For (i,p) € Igse, Y<e <o (Yip) € F(Vy <p2)-
Proof of Claim. Write u := ﬁi_,l((z',p)) and u~ := u;,. Then,
Uee <o (Yip) = M (T3 (X' %)) Nip(Z, 1 Zy) = iy p(F, 1 X979 F,).
By Proposition 5.14 and (7.6), we have

niw(F - Y, Tim(Fu) € F(Y, <o-2¢)-

Hence it suffices to show that 7; p(X94 79~ ) € ()} <p-2¢). Since we already proved (7.8) for
(Z7p) 6 f/<@/—1§-/, we haVe

Ve <o (FV] <o) = Ve <o (D)7 (F(Y, <o)
=9, (\I/SE,SE’( (yt,ggy—lg/))) CF(V<o-1¢)-
Therefore, ﬁin(F;ngufgu_ F,) = \Tlgfég (Yip) € F(V,<p-1¢), hence we have
(7.9) 1if (X979 ) € F(Vy <o-1¢)-
1|

The property (7.5) implies that 7; (X949~ ) is a monomial in the variables {m®[p, &,]
p < (D72), + 2d;,1 € Ap}. Hence, we can write the monomial 7; (X9 9.~ ) as

i (X9 79) = M - HzEAo (D7), + 2d3, &)

for some k, € Z and a monomial M in J<g-2¢. Here the property (7.9) implies k, = 0 for all
1 € Ag. Therefore, 7; (X979~ ) € F(V, <p-2¢)- O

Assume that 1 < u < /. Since we already proved (7.8) for u > ¢, it suffices to show that
D, (Ve <o (M p (X)) = Vg <o (D)2 (7l 1(X1)))-
Indeed, since D} ! (7 #(X.,)) € yg <o-1¢:> this equality implies
D, (Ve <o (T 1 (X)) = Ve <o (D)2 (7 1(X1))) = Dy (Vg <o (D) (7 (X)),
which is equivalent to ;1 (Wee <o (i 7 (X21))) = Ve <o (D)L (T (X1)))-
Write f = (204 1); (2,) and f" := (2¢ +1);,(2,). Note that X; = Zy. Then
Q;Q@g,ge(m,F(Xq:))) -2 (ie(Za))
i 2 (X9 F))
= m',lF(EQ(Xg“ Fu))
= Tip (X7 0 F ).
Vg <o (D) (M #(X,)) = Vg <o (M6 (57 (X))
= Ueg <o/ (T p (X en2 701 ))
~ i 0 (X} Zurar)
~ 1 p (XTI Fy o).



46 R. FUJITA, D. HERNANDEZ, S.-J. OH, AND H. OYA

By Claim, we have

o (XT @) -ausarter)

~ ~ -1
~ D (Ve <o (5 (X)) (‘l’gf,gf'(332_2(771",1F(XL)))> € F(Vy<o-2¢):
On the other hand, by (7.5),

2%(9u) — Gurac +ef € ) Ze i1y + > Ze (1) ()

1€A0 1€A¢

Hence ﬁi,F(XiQ(g“)fng’”ef) is a monomial in the variables Yfgl for (j,s) € Ig U Ip-1g.
Therefore,
ﬁi F(XiQ(gu)—gu+2z+ef) =1,

which implies EQ(gu) = gu+2¢ — €. Therefore,

D 2 (Vg <o (T 7 (X1))) = Weg <o (D 2 (1 #(X1,))).
Then, by taking the bar-invariance into account again, we obtain

D72 (Vg <o (T p(X7))) = Vg <o (D (7w (X)),
which completes the proof. O

We are now in the position to define ¥ in Theorem 7.1. Define the map ¥: F(V)) — F()))
as follows. For y € F())), there exists k € Ny such that D, *(y) € F(V) <¢). Then we set

W) = 0 (Veeze (7).

Let us check the well-definedness of . If k, k' € Zsq with k < k' satisfy D% (y), ngkl(y) €
F(Y} <¢), then by Lemma 7.4 (1),

o (Ejggl <©£—k’(y))) =¥ (iffggégl (@Q’(kum (@Q*k(y))»
= (9747 (Ve (917w)) )
— ok (‘T’gf,ge (92_k(y)>> ’

which shows the well-definedness of . B

The property (1) in Theorem 7.1 immediately follows from the definition of ¥. The property
(2) in Theorem 7.1 follows from Lemma 7.4 (2).

Let y1,y2 € F(}), and choose k € Zsq satisfying D, % (y1), 0} % (y2) € F(¥; <¢)- Then

D1 *(y1y2) € F(V, <), and we have
U(y1y) = OF (Veeze (D7 me)) )
=D (‘T’sg,sgf (92_’“@1))) of (‘T’ss,sg' <@i_k(y2)))
= U(y1)¥(y2)-

We can show the linearity of U in the same way. Therefore, U is a homomorphism of skew
fields.
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Moreover, for z € Ki(%4), we can take k € Zsq satisfying ;" (z) € Ke(Clp- 16)(C
F(¥; <¢)). Then, by the commutativity of the diagram (7.1) and Theorem 6.1 (2),

V(@) = f (Ve (977 ()))
—2f (v (97H@))) = 0F (97" (@) = ().

Hence W satisfies the property in Theorem 7.1 (3).
__ Finally, by reversing the role of g and g, we can construct a homomorphism of skew fields
" F(),) = F(Y)) which gives an inverse of W. Therefore ¥ is an isomorphism, which
completes the proof of Theorem 7.1.
We provide some explicit examples of substitution formulas in Appendix C.

APPENDIX A. QUANTUM CLUSTER ALGEBRAS

In this appendix, we fix our notation around the quantum cluster algebras.

A.1. Quantum torus. Let ¢ be an invertible indeterminate with a formal square root ¢'/2.
Let J be a (possibly countably infinite) set. For a Z-valued skew-symmetric J x J-matrix
A = (Ayj)ijes, we define the quantum torus T(A) to be the Z[t*1/?]-algebra presented by the
set of generators {inl | 7 € J} and the relations:

o« X;X:'=X"'X;=1forjeJ,
o X;X; =thiX;X, fori,jeJ.
We define the Z-algebra anti-involution (-) of 7(A) b
/2 = t_1/2, Yj:: X

for all j € J. This is called the bar involution of T(A). For a = (a;)jecs € Z%/, we define the
commutative monomial

5
SIS A a;
X = ¢ 2 gy %Ny H X7,
jeJ
where we fixed an arbitrary total ordering < of the set J. Note that the resulting element
X% € T(A) is independent from the choice of total ordering <, and invariant under the bar
involution. The set {X® | a € Z%/} forms a free Z[t*1/?]-basis of T(A). Since T(A) is an Ore
domain, it is embedded into the skew field of fractions F(T(A)).

A.2. Quantum cluster algebra. Let J; C J be a subset and put J. = J\ Jy. Let
B = (bij)icsjes. be a Z-valued J x Je-matrix whose principal part B = (b;;); je. is skew-
symmetrizable, i.e., there is a diagonal matrix D with positive integer entries such that the
product DB is skew symmetric. We assume that the set {i € J [ b;; # 0} is finite for all
j € J. Such a matrix B is called an exchange matriz. We say that a pair (A, B) is compatible
if we have

Zbkz’Akj = diéi,j (Z € Je,j€ J)

keJ
for some positive integer d;. In this case, B is skew-symmetrizable by the diagonal matrix
D = diag(d; | i € Je).

Given a compatible pair (A, E) and an element k € J,, we define a new pair

pr(A, B) = (A, i B) == (E"AE, EBF),
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where the matrices E = (e;5)i jes and F = (fij)ijes. are given by

i j if j £k, i j if i # k,
(A.1) eij =4 —1 ifi=j=k, fij =4 —1 ifi=j5=F,
max(0, —b;r) ifi # j =k, max (0, —bp) ifi=Fk#j.

The pair pg(A, B) again forms a compatible pair. The operation fi, is called the mutation
at k and it is involutive, i.e., we have uy(us(A, B)) = (A, B). In addition, we define an
isomorphism of Q(t1/2)—algebras wi s F(T (ueA)) = F(T(A)) by

X 4 x" if j =k,

(A2) pi(X;) = {X, o
J )

where a’ = (a})jes and @’ = (af) e, are given by

, -1 ifi =k I -1 ifi=k
a; ‘= a. =
J max(0,b;,) if i # k, I max(0, —b;r) if ¢ # k.

Note that the definition of u} does depend on the exchange matrix B. The isomorphism fy, is
often called the cluster transformation at k. We have ju;; oy, = idp(7(ay) and pjo(-) = (-) o -

Definition A.1. Let (A, B) be a compatible pair. We say that an element of F(7(A)) is a
quantum cluster variable (resp. quantum cluster monomial) if it is written as

ey Wy~ M, (X)) (resp. g, pgy - - i, (X%)),

for some finite sequence (k1,ks,... ,kn) in Je and j € J (resp. a € N§/). The quantum

cluster algebra Ay(A, B) is defined to be the Z[t¥!/2]-subalgebra of F(T(A)) generated by all
the quantum cluster variables.

Note that each quantum cluster monomial is invariant under the bar involution.

Theorem A.2 (The quantum Laurent phenomenon [BZ05, Corollary 5.2]). The quantum
cluster algebra A:(A, B) is contained in the quantum torus T (A).

By definition, the cluster transformation at k € J, gives a Z[til/ 2]-algebra isomorphism
pis A(pk(A, B)) = A(A, B),
which induces a bijection between the sets of quantum cluster monomials.
A.3. Permutation. Let 7 be a permutation of the index set J satisfying 7r(Jf) C Jy. Given a
compatible pair (A, B) as above, we can consider another compatible pair w(A, B) = (7A, 7B),

where A = (A;-13) =—1(j))ijes and 7B = (bx=1(s),7—1(j))iesjet.- Then we have the isomor-
phism of Z[t*/?]-algebras

7 A(m(A, B)) & Ay (A, B) given by 7*(Xj;) = X -1(; for all j € J.

Clearly, this isomorphism 7* induces a bijection between the sets of quantum cluster mono-
mials.
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A.4. Classical limit. Let B be an exchange matrix as above. Consider the (commutative)
ring of Laurent polynomials Z[Xj»[l | 7 € J] and let Q(X; | j € J) be its fraction field. For

each k € J., we have an algebra involution puj of Q(X; | j € J) defined by the same formula
as (A.2).

Definition A.3. Let B be an exchange matrix. An element of Q(X; | j € J) is called a
cluster variable (resp. cluster monomial) if it is written as

My By " M, (X)) (vesp. pg, iy -+ 1, (X)),
for some finite sequence (k1, ka,...,k,) in Je. and j € J (resp. a € NSBJ). The cluster algebra

A(B) is defined to be the Z-subalgebra of Q(X; | j € J) generated by all the cluster variables.

Now, let (A,E) be a compatible pair. By specializing t'/2 to 1, we obtain the surjec-
tive algebra homomorphism evi—;: T(A) — Z[Xjil | 7 € J]. By definition, it induces the
surjection

evier: A(A, B) — A(B).
under which a quantum cluster monomial goes to a cluster monomial. See [GLS20, Lemma
3.3].

Lemma A.4 (cf. [BZ05]). The homomorphism evi—1 gives a bijection between the set of
quantum cluster monomials in Ay(A, B) and the set of cluster monomials in A(B).

Proof. The surjectivity is obvious from the definition. The injectivity follows from an argu-
ment similar to the proof of [BZ05, Theorem 6.1]. O

A.5. Degrees. Let (A, E) be a compatible pair. We say that an element x of the quantum
torus T (A) is pointed if it is written in the form

r=X9+ Z Cp X9+ BT
neNS e\ {0}

for some g € Z®/ and ¢,, € Z[tT'/?]. In this case, we write degz = g and call it the degree of

x. Note that this notion of degree does depend on the exchange matrix B, not only on the
quantum torus 7 (A).

It is known that every quantum cluster monomial z in A; (A, B ) is pointed [Trall, Theorem
5.3]. Its degree is often called the g-vector of x.

Theorem A.5 ([FZ07, (7.18)], [DWZ10], [GHKKI18]). Let (A, B) be a compatible pair and
k€ J.. Let x € A(A,B) and 2’ € Ai(ur(A, B)) be quantum cluster monomials whose
g-vectors are g = (g;)jes and g' = (g;)jes respectively. If py(z') = z, we have

9 ifi="k,
g; = g;. + maX(b}k,O)g;€ if j #k and g;c >0,
g — min(t),, 0)g, if j # k and g}, < 0.
Here juyB = (b3;)iesje. -

Remark A.6. In particular, under the assumption of Theorem A.5, we have g = Eg' if
g; > 0. Here FF = (€ij)l‘7jej is the matrix given by (Al) with B = (bz'j)z‘e(]’je(]e.

Remark A.7. Let m € & be a permutation such that 7(J¢) C J; as in Section A.3. From
the definition, it is clear that we have deg(7*x) = (gr(;)) e if degx = (g;)jeu-
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Theorem A.8 ([FZ07, Conjecture 7.10(1)], [DWZ10], [GHKK18]). Let (A, B) be a compatible
pair and x,x’" € Ai(A, B) be two cluster monomials. If degz = dega’, we have x = x’.

Proof. Note that we have the similar notion of degrees for classical cluster algebra A(E ) [FZ07]
and we have degx = degev,—1(x) for any quantum cluster monomial z thanks to [Trall,
Theorem 5.3(2)]. For the classical cluster algebra A(B), the assertion is proved by [DWZ10]
when B is skew-symmetric and by [GHKKI18] in general. Therefore, the assertion for the

quantum cluster algebra A;(A, B) also follows in view of Lemma A .4. O

Remark A.9. In the main body of the present paper, we consider the degrees only for
skew-symmetric quantum cluster algebras. Therefore, we do not really need the results of
[GHKK18] for our purpose.

APPENDIX B. CLUSTER STRUCTURE ON K(%7%)

We give examples for Theorem 6.13.

Example B.1 (Type A). Let Q = (Ay,,,id,§) be a Q-datum of type A,, such that

€ — 0 if:=1 (mod 2),
" l-1 ifte=0 (mod?2),
and take a Q-adapted sequence

= (1) (1,3,...,n,2,4,....,n—1,1,3,...,n,2,4,...,n—1,...) ifn=1 (mod?2),
(A 1 =
TN (L8, n—1,2,4,. .., 1,3, on—1,2,4,...,n,...) ifn=0 (mod?2).

The map ¢ defined below is a Q-adapted enumeration of ﬁ[g]: For u = kn+ s with k € Z>¢
and 0 < s < n, set

(15, &0, + k) (i) k (mod 2) and 0 < s < [n/2],
() = (15, &, — k) (ii) k=0 (mod 2) and [n/2] < s <mn,

(15,6, —(k+1)) (iii)) k=1 (mod 2)and 0< s < [n/2],

(15,6, +k+1)  (iv) k=1 (mod 2) and [n/2] < s <n.

Then each mf, in (6.10) becomes
i),

(

(ii),
&s - (k + 1)7£ZS +k— 1] (iii)7

(iv)

iv),

and the exchange matrix B° is given as follows (see [KKOP22, Theorem 6.14]):

;

1 if (a) u — v = +n and wu satisfies (i) or (iv),

or (b) |lu—wv| <n, 2, ~ 1, and u satisfies (iii) or (ii),
(B )y =< —1 if (¢) u—v = £n and u satisfies (iii) or (ii),

or (d) |u—wv| <n, 1, ~1, and u satisfies (i) or (iv),
0 otherwise.
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Using {my, }uen as the set of vertices for the corresponding quiver I', of Be I' 5. is isomorphic
to the the product of sink-source Dynkin quivers of type A and A, usually denoted by

—

H
Ao ® Ay (see [Kell3, §3.3]). For instance, I', for n = 3 can be drawn as follows:

mM[=2,2] mP[-2,00 ——— = m{V[0,0]
P31 P11 —————— m{P[-1, 1]
—_——> mé‘;)[ 2,2 <——— m({;)[ 2,0 ———— m2 [0 0]

()

Here my,[p, s] means ms, = m®|p, s].

Example B.2 (Type B). Let Q = (Aa,, ,,V,&) be a Q-datum of type B,, such that

1 ifn—s= 2
gns:{gn—i_ T X (mOd )’ £2nfs:§s_2 fOI‘lSSSTL—l,

&n+3 ifn—s=1 (mod2),
and take Q-adapted sequence

T= (21,22, -+, Iny bt 1 Ut 2, 920—1, 1205 W20t 1s - - =)

such that (1) w = 19, for any k& > 2n, (2) {u,...,wm} = {1,...,n}, 3) 1w, = n, (4)
tntk = V(1) for 1 <k <n—1and (5) &, > &, > - > &, (recall Subsection 5.3). Then the
map ¢ defined below is a Q-adapted enumeration of 3[5]: For u = 2kn +s € N with k € Z>¢
and 0 < s < n, set

(1s,&, — 2k) (i) k=0 (mod 2) and &, — &, =3 (mod 4),

) (15,&, + 2k) (i) k=0 (mod 2)and &, — &, =1 (mod4),
W= (b £ 206+1)) (i) k=1 (mod 2) and &y —£, =3 (mod 4),
(15,6, —2(k+1)) (iv) k=1 (mod2)and ¢, —&, =1 (mod 4),

and, for u =tn € N with t € N, set

e(u) == (n,&n +1) (v)t=0 (mod 2),
(ny&n — (t—1)) (vi)t=1 (mod 2).

Then each mf, in (6.10) becomes as follows:

W, — 2k, &, + 2k] (
e, =20k —1),&, +2(k+ 1)) (
m[glé 2k +1),&, +2(k—1)] (iv),
(
(

m

3

3
I
3

e — (E=2),&n + 1]
n)[&n - (t_ 1)7511 +t]

3

(
(
¢ . (
(n)
(

3
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In this case, one can prove that the following skew-symmetric matrix is B*® in Theorem 6.13:
For u,v € N such that {u,,2,} # {n,n + 1},

1 if (a) u — v = +2d;,n and w satisfies (ii), (iii) or (v),
r (b) |u—wv| <2dg,n, 2, ~ 1, and u satisfies (i), (iv) or (vi),
(B )y =14 —1 if (¢) u—v = £2d;,n and w satisfies (i), (iv) or (vi),

r (d) |u—wv| < 2dg,n, 2, ~ 1, and u satisfies (ii), (iii) or (v),
0 otherwise.

\

and the remained entries —(Ee)mu = (ée)um for 2, = n + 1 and 2, = n are given as follows:

1 if (g) |u —v| <n, and v satisfies (v),
(B = -1 if (e) lu —v| < 3n, 1, =n — 1, u satisfies (ii) and v satsifies (vi),
o or (f) lu —v| < 3n, 1, =n+ 1, u satisfies (iv) and v satsifies (vi),

0 otherwise.

Interestingly enough, the quiver I' 5. corresponding to Bt in the above is isomorphic to the
quiver Qoo(By,) in [[TIKT13a, Figure 1] which is related to the periodicity of cluster algebras.

Let us see the particular example for n = 3. In this case, we can take £&3 = —3 and
1=(1,2,3,5,4,3,1,2,3,5,4,3,...).
Using {m}, },en as the set of vertices for the corresponding quiver T’ Be of Ee, 'z, can be drawn
as follows:

] -1 Y ] ) [ O ) oY ) S

7 — 7

w262« — P62 > mP[2,-7

// ~ 7 // N
3) 3)[r

g [— 73]<7m|5[ 71]‘>m()[ 5, 1] <——my 1)471]‘>m,(: -3 ,—1]<—7n:)[ 3,-3|
(B.l) o ~ o e
s mr[ 8,0] m“)[ 4,0 771(4)[ 4,-4]

m(l‘z)[fﬁ,Q] 7!!5%)[*6,*2]—>m40)[ 2,-2]

Remark B.3. As Example B.1, there exist admissible chains of i-boxes and Q-data with
— —

o = id, whose corresponding quivers are isomorphic to the product quivers Ao, ® D,, (n > 4)

— —
and A, ® E,, (n =6,7,8) in [Kell3], for simply-laced types g. Similar to Example B.2, for
non simply-laced type g, there exist admissible chains of i-boxes and Q-data with o # id,
whose corresponding quivers are isomorphic to Qoo (g) in [IIKT13a, IIK*13D].

APPENDIX C. EXAMPLE OF SUBSTITUTION FORMULAS

In this appendix, we show some examples of our substitution formulas. We mainly consider
the situation when ¢t = 1 for simplicity, that is, the morphism Uy, Its quantum analogue v
can be calculated in a parallel manner.

Example C.1. Let us calculate explicitly the substitution formula from type As to type Ao
itself arising from a braid move. Consider the height functions &', £ given as follows:

(51)5&) = (07 _1)7 (51752) = (07 1)‘
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Then the followings are the infinite sequences i’ = (2, )uen, % = (2u)uen € {1,2}" satisfying
the condition (5.1) in Example 5.5:

i=1(1,2,1,21,21,21,...), i=(212121,212...).
duced d f duced d fi

The quiver I'; corresponding to ¢ can be depicted as

(t\p) -~ —-12 =11 —10 -9 -8 -7 —6 -5 -4 -3 -2 -1 0 1

1

2 NSNS NSNS NSNS

The infinite sequence 4 can be obtained from %', and vise versa, by applying the braid moves.
Hence applying the mutations at the following vertices

(C.1) (2,1),(1,-2),(2,-5),(1,-8),(2,—11),...
we obtain the quiver I';/.
(\p) -+ —-12 —11 =10 -9 -8 -7 -6 -5 -4 -3 -2 —1 0
1 ° ° ° ° ° ° °
) NN NN AN TN
Here the correspondence of the labelling of vertices is given by
(2,1 —6m) — (1,—6m), (1,—6m) — (1,—2 — 6m),
(C.2) (2,-1—6m)— (2,-1—6m), (1,-2—6m)— (2,—3—6m),

(2,-3—6m)— (2,-5—6m), (1,—4—6m)— (1,—4 —6m).
By the exchange relation of cluster algebra and (C.2), we have

_ Xo23-6mX1,—6m + X12-6mX2,-1-6m

(X0 ) fon ,
+*(X{,—2—6m) = Xl,fﬁma
+*(X{,—4—6m) = X1,—4-6m;
(X3, 1-6m) = X2,-1-6m;
o X1,—6mX2—3-6m + X2 _1-6mX1,—4—6m
T (Xé,—3—6m) = X1 —2—6m )
(X3, —5-6m) = X2,~3-6m
Here X5 3 = X7 9 := 1. Hence,
Weg<e(mp, &)
(Yo gm Y1,—6m + Yo —1-6m)m V]2 — 6m, 0] if (2,p) = (1, —6m),
m(l)[—6m,0] if (2,p) = (1,—2 — 6m),
m) [—4 — 6m, 0] if (2,p) = (1,—4 — 6m),
Y m@ =1 6m, 1] if (1,p) = (2, —1 — 6m),
(Y Lo Y2, —3-6m + Y1,—a—6m)mP[=1 — 6m,1]  if (2,p) = (2, -3 — 6m),
| mP[-3 — 6m, 1] if (1,p) = (2,5 — 6m).
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Here m()[2,0] := 1. This calculation implies that, for (z,p) € I’ “ers

Vg e (Yip) = Vg <o (mO[p, €)W <o (mWp + 2, €))7

Therefore, for (2,p) € f’,

\I’tzl(yz,p) =

\

~1
Yo 1 6mY1,—6m + Y2,—1-6m
1

Y2T176m + Y72,7176mY1T,16m
Yi_4-6mY1,—2-6m

Yo 1 6mY21-6m
Y1T_12_6m5/2,—3—16m + Yl,—4—6m

=) =)
Y) S0 6m T Y1,—a—6mY5 "3 6m

\

Ygfl—emyl,f&f + Y2 1-6m

Y2,11—6m + Y2,7176mY1T—16m
Yi_4-6mY1,—2-6m

Yo 1-6mY2,1-6m
Y1T_12_6myv2,—3—16m + Yl,—4—6m

=) =)
Yi 2o om + Y1,—a-6m¥s5 "5 _6m

This is the substitution formula from As to itself.
For an instance, we have

By applying the above formula, we have

Yo 7Ys 5+ YQT_I5Y1,76YT_12 + Y2,77Y1,7—12

+ Y, Y16V aYs g+ Yo oY1 Yy 4+ Y LY = X (L(Ya, 72 o5)).

We remark here that the isomorphism W;_; is categorified by the autofunctor .#5 on €7 4, in

[KKOP21a] (see also Proposition 6.2).

Example C.2. We illustrate an example of our substitution formula from type Bs to type

if (vap) = (1’ *6m)7

if (v,p) = (1, —2 — 6m),

if (2,p) = (1,—4 — 6m),

if (1,p) = (2,—1—6m

if (1,p) = (2,—3 — 6m

if (2,p) = (2,—5 —6m
if ('Lap) = (17 —6TTL),
if (2,p) = (1,—2 — 6m),
if (2,p) = (1,—4 — 6m),
if (2,p) = (2,—1 — 6m),
if (v,p) = (2, —3 — 6m),
if (2,p) = (2,—5 — 6m)

Xg(L(Ya, 7)) =Yo7+ Y1 _6Y5 ‘s + Vi Ly

Aj3. Consider the height functions £ of type Bs and £ of type Ag given as follows:

(53) gé? &,’,) = (_3a Oa _1)a

Then the followings are the infinite sequences i’ = (2/,)uen, % = (1 )uen € {1,2, 3} satisfying

the condition (5.1) in Example 5.5:

(51752753) = (_1, 0, —1)

i=(2,3,2,1,2,3,2,1,2,3,2,1,2,3,2,1,2,3,...),

reduced word for wo

i=(2,3,1,2,1,3,2,1,3,2,3,1,2,3,1,2,1,3,...).

-~ -~
reduced word for we
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The quiver I'; corresponding to ¢ can be depicted as

(t\p) -~ —13 =12 =11 =10 -9 -8 -7 —6 -5 —4 -3 -2 -1 0

NSNS NSNS SN SN
SN NN N IN NS

3

The infinite sequence 2 can be obtained from #’, and vise versa, by applying the braid moves
in the red parts of 2 and 4’ above. Hence, by applying the mutations at the following vertices

(C.3) (1,-1),(3,=5),(1,=9), (3,=13),...,(1,—1 — 8m), (3, =5 — 8m), .. .

we obtain the quiver I'; .

(:\p) -~ —-13 =12 —11 =10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
1 ° ° °

2 ‘—>/o \o‘/o \o/ \o °
5 e

Here the correspondence of the labelling of vertices is given by

(1,-1—8m) > (2,2 —12m),  (1,—3 —8m) > (1, -3 — 12m),
(1,-5—8m) > (1,7 —12m), (1, —7 —8m) > (1,11 — 12m),
(C4) (2, —4m) — (2, —6m), (2,—2 —4m) — (2,—4 — 6m),
(3,—1—8m) > (3,—1—12m),  (3,—3 —8m) > (3,-5 — 12m),
(3,-5— 8m) s (2,-8 — 12m),  (3,—7 —8m) — (3, —9 — 12m),

for m € Ny. Note that 8 and 12 are the numbers 2rh" for types A3 and By respectively. By
the exchange relation of cluster algebras and (C.4), we have

ok / ok /
T (Xl,—3—12m) = X1,-3-8m; T (Xl,—7—12m) = X1,-5-8m,
Ak / -k /
T (X1,—11—12m) = X1,-7-8m; T (Xz,—e‘m) = Xo,—am
S (! - Xo o smX11-8m + X1,-3-8m X2 —8m
7 2,—2—12m) = X, 18
,—1-8m
Ak / Ak /
T (X —a—om) = Xo,—2-am, T (X3 _1_12m) = X3,-1-8m,
Ayl ak (v
7TH(X3 5 19m) = Xs—3-sm: T (X3 _9_19m) = X3—7-8m,
O X3, —7-8mX2,—4—8m + X2 _6-8mX3,—3-8m
(X )=
T 2,—8—12m) = X3 5 s .
,—5—8m

Here X171 = 1. Hence,

]
]
Ve <o (mV[-11 — 12m, —3]
Ve <o (mP[—6m, 0]

Ve cor(m®[=2 —12m,0]
Ve <o (mP[—4 - 6m, 0]

= (Yo,~2-8m Y] }_gpm + Y1,-3-8m)m ) [~8m, 0],
= m®[—2 —4m, 0],
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= mW[=7 = 8m, —1],

=

JAN

axY

JAN

m

El
3 GG

R

Ut

\

—

[\]

E
U

Therefore, for (i,p) € f’,

(Y1 _3-8mY1—1-8m if (i,p) = (1, -3 — 12m),
Yl,—5—8m if (Z,p) (1, -7 - 12m)
Yi,-7-sm if (i,p) = (1,—11 — 12m),
Y2 —8m if (ivp) - (2a _12m)7
Yy, o smY 'y _gm + Yi—3-sm if (i,p) = (2,2 — 12m),
1
_ — if (Z7p) - (27 —4 - 12m)7
‘T/tﬂ(Y‘ ) _ Yl,flme + YVQ,EQmeYL—?)—Sm
P Yo, —4-sm if (4,p) = (2, —6 — 12m),
Y3 7 gm+ Yo 6-8mYs 5_gm i (i,p) = (2,—8 —12m),
1
— — if (i,p) = (2,—10 — 12m),
Y2,—16—8mY37—7—8m + Yg,—ls—sm
Ys 1-sm if (i,p) = (1,1 — 12m),
}/3,7378171 if (Z7p) = (]-a -5 — 12m)7
K’),—?—SmYS,—S—Sm if (Z p) (1 -9 — 12m)

for some m € Z, as Example C.1. This is the substitution formula from type Bo to type As.
For example, we have

Xq(LP2(Y1,7) = Yi,o7 + YooY, aY Ly + YooYy Ly + V155 L4 Ys 1 + ¥ 1
By applying the above formulas, we have
Yo 4 Y2 —4
(Y + Y, oY1 8)Y1 sV Y2 LY+
Y3 3(Yy] 1+Y2 2Y1— ) N
Ys, 2Y i S -t

Yi-5+

YI—YI—1+Y2 .
=Y, 5+Ys 4 NI CI) I
Yo 1+Y2 Y1, 9,—2 1T ¥3 1

=Yi5+ Y2,—4Y1,—3 + V3 3V, Ly + Yl = xg (LM (Y1,-5)).
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