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h Eco&Sols, Univ Montpellier, CIRAD, INRAE, IRD, Montpellier SupAgro, Montpellier, France
i CIRAD, UMR Eco & Sols, BP1386, CP18524, Dakar, Senegal
j LMI IESOL, Centre IRD-ISRA de Bel Air, BP1386, CP18524, Dakar, Senegal
k Indo-French Cell for Water Science, ICWaR, Indian Institute of Science, Bangalore, India

A R T I C L E  I N F O

Keywords:
Evapotranspiration
West Africa
Remote sensing
Land surface models
Intercomparison

A B S T R A C T

Understanding the spatiotemporal variability of actual evapotranspiration (ET) is a critical issue for better water 
resources management from plot to basin scale. It is particularly true in the Sahelian region which is very 
vulnerable in terms of water and agricultural resources, but also very scarcely monitored. This study aims to 
improve understanding of ET in Sahelian agrosystems by comparing twenty ET products and collections on two 
areas in Central Senegal and South-Western Niger: Breathing Earth System Simulation (BESS), Derive Optimal 
Linear Combination Evapotranspiration (DOLCE) v2.1 and v3.0, ERA5 and ERA5-Land, FLUXCOM-RS, Global 
Land Data Assimilation System (GLDAS) on Noah and Catchment Land Surface Model (CLSM), Global Land 
Evaporation: the Amsterdam Methodology (GLEAM) v3.5a, v3.5b, v3.6a and v3.6b, Modern-Era Retrospective 
analysis for Research and Applications v2 (MERRA-2), MODIS Global Evapotranspiration products (MOD16/ 
MYD16), Penman-Monteith Leuning version 2 (PML_V2) v0.1 and v0.1.7, Reliability Ensemble Averaging (REA), 
Simplified Surface Energy Balance for operational applications (SSEBop) and Water Productivity through Open 
access of Remotely sensed derived data (WaPOR). In order to assess the abilities and drawbacks of each product, 
a multi-scale analysis is first performed at local scale with different temporal aggregation levels (daily, decadal, 
monthly). The best performing products, like GLEAM, MERRA-2 or GLDAS-Noah, have low spatial resolution 
(≥0.25◦), but shows really good agreement with ET measurements (RMSE ~ 0.5 mm.d-1, R2 ≥ 0.8). A multi-scale 
spatial analysis with different spatial aggregation levels (1, 10 and 25 km) is then performed on interannual 
composite maps of annual and seasonal ET. Results highlight the different spatiotemporal behaviour of all the 
products. Products such as ERA5-Land and PML_V2 0.1.7 stand out in this comparison as their higher resolution 
allows them to describe the spatial patterns of ET realistically and more precisely while having relatively good 
performances at local scale (RMSE ~ 0.6 mm.d-1, R2 ≥ 0.7). Overall, the comparison highlights the need to 
consider soil moisture to accurately estimate ET in the Sahelian region, as the products considering it generally 
show better performances. It also points out the lack of a high quality and resolution ET product over the Sahel. 
Future satellite missions, as well as data fusion techniques, could help to fill up this gap and propose a reference 
product on Sahelian ecosystems.
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1. Introduction

Evapotranspiration (ET) is the main component of the Earth surface 
water budget. It represents around 70 % of precipitation at global scale 
(Legates and McCabe, 2005; Trenberth et al., 2007; Zhang et al., 2018) 
and up to 85 % in semi-arid regions (Velluet et al., 2014; Zhang et al., 
2018). Given these proportions, estimating ET is of crucial importance 
for a wide range of applications like water resources management or 
agricultural production (Labedzki, 2011; Krishna, 2019; Wanniarachchi 
et al., 2022). It is particularly true in Sahelian regions, which are very 
vulnerable in terms of water and food supply security (Krishna, 2019). 
Furthermore, climate change deeply impacts the water cycle. Precipi
tation in the Sahel shows an increasing trend at annual scale, mainly due 
to an intensification of the extreme events (New et al., 2006; Panthou 
et al., 2014; Bodian et al., 2020; Chagnaud et al., 2022). The rain events 
are less frequent but more intense, generating more runoff (Li et al., 
2007; Amogu et al., 2010; Roudier et al., 2014). In addition, the tem
perature increase generates an increase of potential ET (PET, Ndiaye 
et al., 2020). However, it is not necessarily the case for actual ET, which 
seems to decline in semi-arid areas (Pan et al., 2020) due to the change 
in the precipitation regime and its impact on the land surface and 
vegetation. Accurately estimating ET is thus critical to understand the 
interactions between climate and vegetation, and assess the sustain
ability of the current agricultural systems in semi-arid regions, highly 
sensitive to water stress and drought occurrence. The lack of in-situ ET 
measurements in Sahelian region limits our knowledge to the local scale 
(Cappelaere et al., 2009; Bombelli et al., 2009; Pastorello et al., 2020) 
and on specific ecosystems (essentially agricultural plots). Yet, knowl
edge at larger spatial scales is mandatory for the management of water 
and agricultural resources. Indeed, local information may not be 
representative of the variety of ecosystems encountered at larger scale 
that may have different ET tendencies. Moreover, the scarcity of the ET 
measurement’s network in Sahel is not able to capture the spatial vari
ability of eco-climatic conditions that may affect ET estimation at 
landscape scale (Yuan et al., 2010).

To tackle these issues, nowadays, an increasing number of spa
tialized ET products have been developed (Liou and Kar, 2014; Zhang K. 
et al., 2016). There is a wide variety of approach and/or algorithms 
(Karimi and Bastiaanssen, 2014) that can be classified into three main 
categories. The first category concerns algorithms based on remote 
sensing data (Garcia-Santos et al., 2022). Remotely sensed optical and 
thermal infrared reflectances and products are used to determine ET at 
satellite overpass, either by solving the surface energy budget or by 
scaling estimated PET with a stress factor. Continuous series of ET are 
then produced by using different interpolation methods (Cammalleri 
et al., 2014; Alfieri et al., 2017; Delogu et al., 2021; Allies et al., 2022) 
mostly by including other data sources like meteorological reanalysis. 
The second category uses land surface models (LSM) forced by, or 
coupled with, meteorological analysis and constrained by assimilated 
observational data from in-situ measurements and/or satellite acquisi
tions (Rodell et al., 2004; Simoneaux et al., 2008; Gelaro et al., 2017; 
Hersbach et al., 2020, Ollivier et al., 2021). It simulates both the surface 
water and energy budgets, ET being one of the fluxes derived in the 
process. A third kind of approach uses machine learning methods to 
upscale in-situ ET measurements with meteorological and remote 
sensing data. It was first developed at regional scale (Papale and Val
entini, 2003; Yang F. et al., 2007) as a sufficiently dense ET measure
ments network is needed. However, the growth of the FLUXNET eddy- 
covariance network (Pastorello et al., 2020) has allowed to use such 
methods at global scale (Jung et al., 2009, 2019) as in the FLUXCOM 
initiative. Overall, the current literature does not reveal any consensus 
around an ET product and/or model performing well across all biome 
types. Moreover, many authors have demonstrated that an ensemble 
estimation from several models or products generally outperforms any 
individual product or model (Mueller et al., 2013; Ershadi et al., 2014; 
McCabe et al., 2016; Michel et al., 2016). These results have encouraged 

recent studies to propose a fourth category of algorithms for gridded ET 
estimations. These algorithms produce synthesis ET estimates based on 
data fusion of existing gridded ET products (Alemohammad et al., 2017; 
Hobeichi et al., 2018; Lu et al., 2021).

A number of more or less exhaustive comparisons of the aforemen
tioned ET estimation methods either at global scale (Jimenez et al., 
2011; Vinukollu et al., 2011a, 2011b; McCabe et al., 2016) or at regional 
scale (Hu et al., 2015; Bai and Liu, 2018; Weerasinghe et al., 2020; Chao 
et al., 2021) are available. Global studies highlight the wide range of 
estimations provided by the numerous ET products existing. Differences 
between products range from 10 to 40 mm.month− 1 at global scale 
(Jimenez et al., 2011; Vinukollu et al., 2011a, 2011b; McCabe et al., 
2016), representing around 30 % relative error compared to mean 
global ET. These studies also agree that the discrepancies between 
products increases both at low latitudes and during the hotter seasons, 
where PET is higher. Regional scale studies (Hu et al., 2015; Bai and Liu, 
2018; Weerasinghe et al., 2020; Chao et al., 2021) confirm these con
clusions, with similar quantitative results over Europe, CONUS, China 
and Africa. It also emphasizes that the best products often differ between 
eco-climatic regions, depending on their inputs and the specificities of 
each algorithm, with no worldwide consensus. Therefore, reference 
products need to be determined for each region. Moreover, to evaluate 
the products’ abilities to handle the wide range of applications and 
scientific issues related to ET from plot to landscape scale, products 
should be evaluated at different spatial and temporal scale. Indeed, 
products considered as well performing on specific ecoclimatic regions 
can be unfit for specific applications due to their spatiotemporal char
acteristics. However, very few studies evaluate ET products through 
multi-scale analysis (Cawse-Nicholson et al, 2021). Very few studies are 
devoted to Sahelian regions (Andam-Akorful et al., 2014; Adeyeri and 
Ishola, 2021, Allies et al., 2022; Guzinski et al., 2023) and only a low 
number of ET products have been used. The products were also 
compared only either at local scale or at a very integrated scale (>50 
km) in these studies. Added to the scarcity of in-situ measurements, it 
contributes to keep the Sahel as one of the regions where the response to 
climate evolution and land cover changes is the most poorly captured 
(Marshall et al., 2012; Zhang K. et al., 2015; Zhang X. et al., 2016). 
Therefore, there is a need to extensively compare ET estimates in West- 
African ecosystems in order to reliably assess climate and land surface 
changes effects on the hydrological cycle.

It is particularly true in agrosystems, where the evolution of practices 
is on the frontline to tackle water and food security issues. Indeed, many 
concerns arise about the sustainability of the needed agricultural 
intensification (Keatinge et al., 2001; Jayne et al., 2019). In this context, 
the impact of agricultural practices on surface fluxes is more and more 
studied. For example, agroforestry commonly appears to be a great 
option in systems where subsidence farming is dominant (Droppelmann 
et al., 2017; Kuyah et al., 2021), both in terms of crop yields and climate 
change mitigation. However, the current studies over West-Africa 
mainly focus on yields (Bado et al., 2021) and carbon sequestration 
(Tschora & Cherubini, 2020) at local scale. Soil practices like tillage or 
bench terracing are also increasingly used in Sahelian agrosystems to 
limit soil erosion and improve the infiltration of water in the soil 
(Maisharou et al., 2015). Agroforestry as well as soil practices are ex
pected to limit direct evaporation from the soil, to the profit of crop 
transpiration. It could thus locally affect ET, either with higher ET rates 
during the crop season or with a longer ET cycle. However, the actual 
impact of such practices’ development on water and energy cycle re
mains poorly documented (Rhoades, 1995; Siriri et al, 2012), especially 
at larger scale. Gridded ET products can help monitor the effect of the 
generalisation of such practices on surface fluxes and its impact on water 
cycle and crop productivity. It could help conclude on whether these 
practices would be sustainable in regions highly dependent on subsi
dence farming, such as the Sahel, in a context of climate change.

The present study thus aims at bringing a fuller and actualized 
overview of existing ET products over Sahel and their abilities to tackle 
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scientific and societal issues inherent to Sahelian agroecosystems from 
plot to landscape scale. Twenty gridded ET products from all the 
aforementioned categories are evaluated over two typical Sahelian 
agropastoral areas in Central Senegal and Niger and recommendation on 
their potential applications is proposed. The evaluation is firstly per
formed at pixel scale against eddy-covariance measurements of ET in 
typical agropastoral plots. Then a mesoscale analysis over the areas 
(~130x130km) is performed. As the products present a wide range of 
spatial and temporal resolutions, they are analysed at different spatial 
and temporal aggregation levels. Given its greater variety of ecosystems, 
the focus is done in this study on the Central Senegal area while the 
Niger area helps supporting the generalizability of the conclusions. It 
allows to emphasize products which describes well the main ET signal 
components and those which describe well the spatiotemporal varia
tions. Thus, the discrepancies and uncertainties of the ET products over 
West Africa are highlighted.

2. Study area

The first study area is a 130x130km zone (13.8◦N-17.1◦W/15◦N- 
15.9◦W) located in the Central-Western part of Senegal (Fig. 1). It is 
characterized by a semi-arid climate with a rainfall gradient from the 
North-East to the South-West linked to the oscillations of the West- 
African Monsoon. Precipitation occurs during a unimodal rainy season 
spanning from June to September, with annual rates ranging from 450 to 
800 mm (Diop et al., 2016). The mean annual minimal and maximal 
temperatures are respectively around 20 ◦C and 37 ◦C (1981–2020 mean 
at Fatick). The topography is relatively flat as the highest point of the 
study area is only 137 m Above Mean Sea Level (AMSL). The area is 
located in Senegal’s Groundnut Basin which is one of the main agro
pastoral regions of the country. Croplands constitute the main land 
cover type (Fig. 2.a, cf. section 3.2.2) while the natural ecosystems are 
mainly shrubby and herbaceous savannah. The main crop types are 
groundnut, millet, sorghum, cowpea and watermelon. Most of the 
croplands are scattered with trees like baobabs (Adansonia digitate L.) or 
acacias (Faidherbia albida (Delile) A. Chev.). Agroforestry is thus common 
in the area. A flux tower, that monitor hydrometeorological variables at 
the plot scale, including ET, is located near the city of Niakhar (cf. 

section 3.3.1). The area also includes the Saloum river delta, which is 
home to mangrove forests that protect a unique biodiversity.

The second study area is 175x145km (12.85◦N-1.55◦E/14.15◦N- 
3.15◦E) and located in the South-Western part of Niger, around the 
capital Niamey (Fig. 1). The rainfall regime is similar to the Central 
Senegal area but with a mean annual rainfall ranging from 470 mm to 
570 mm from South to North. The topography is also relatively flat, 
ranging from 177 to 274 m AMSL. The area is crossed by the Niger river, 
draining the plateau area in the South-West, while the Eastern part of the 
area is mostly endoreic. The plateau zones have very degraded soils with 
bare soils and seasonal herbaceous vegetation while the rest of the area 
is a typical Nigerian agropastoral area (Fig. 2.b) with an alternance of 
rainfed millet crops and shrubby savannah (Guiera Senegalensis), form
ing the main rotation system. A minority of vegetable farming areas are 
also located on the banks of the Niger river. The area is historically 
monitored in the frame of the French Observatory of African Monsoon 
(AMMA-CATCH). Therefore, a flux measurement site is installed near 
the village of Wankama to monitor the rotation system (cf. section 
3.3.2).

3. Data

3.1. Evapotranspiration products

In this study, twenty products and collections are considered, namely 
BESS, GLEAM 3.5a, 3.5b, 3.6a and 3.6b, MOD16A2v061, 
MYD16A2v061, PML_V2 0.1 and 0.1.7, SSEBop, WaPOR, ERA5, ERA5- 
Land, GLDAS-Noah, GLDAS-CLSM, MERRA-2, FLUXCOM RS, DOLCE 
v2.1 and v3.0, and REA. All algorithm categories previously mentioned 
are represented, with a wide variety of working principles, versions, 
spatiotemporal features and time availability (Table 1). A detailed 
description of the products can be found in appendix A.

3.2. Additional gridded data

To analyse the spatial patterns of the ET products, they were visually 
compared with a gridded precipitation and a land cover dataset in this 
study.

Fig. 1. Location of the study areas (Sources: Natural Earth/GeoSenegal).
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3.2.1. Climate Hazard group InfraRed precipitation with station data 
(CHIRPS)

CHIRPS (Funk et al., 2015) is a global gridded precipitation product 

with a 0.05◦ spatial resolution and daily to monthly temporal resolution. 
It provides data from 1981 to now. The algorithm of CHIRPS relies on 
three main components: i) a gridded climatology of precipitations based 

Fig. 2. Land cover map of the Central Senegal (a) and Niger (b) areas in 2018 (Theia OSO).

Table 1 
Main features of the evapotranspiration products.

Category Product Name Algorithm principle Spatiotemporal 
features

Time 
period

Reference

Remote sensing BESS Radiative transfer with photosynthesis & canopy conductance 
models. ET is then derived by the Penman-Monteith equation.

Global 
8-days / 1 km

2000–2015 Ryu et al., 2011; Jiang et 
Ryu., 2016

GLEAM v3.5a Priestley-Taylor formulation with a stress factor based on soil 
moisture and vegetation water content

Global 
Daily / 0.25◦ x 
0.25◦

1980–2021 Miralles et al., 2011; 
Martens et al., 2017GLEAM v3.5b 2003–2021

GLEAM v3.6a 1980- 
present

GLEAM v3.6b 2003- 
present

MOD16A2v061 Penman-Monteith formulation with biome-specific canopy 
conductance model.

Global 
8-days / 500 m x 
500 m

2001- 
present

Mu et al., 2007, 2011
MYD16A2v061

PML_V2 0.1 Penman-Monteith formulation with Leuning surface 
conductance model

Global 
8-days / 0.05◦x 
0.05◦

2002–2019 Zhang Y. et al., 2010, 
2016, 2019

PML_V2 0.1.7 8-days / 500 m x 
500 m

2000–2020

SSEBop ET from ET0 scaled with evaporative fraction derived from per- 
pixel land surface temperature and air temperature

Global 
10-days / 1 km x 1 
km

2000–2015 Senay et al., 2013

WaPOR Penman-Monteith formulation with soil and canopy resistances 
controlled by land surface temperature

Africa 
10-days / 250 m x 
250 m

2009- 
present

FAO, 2020

Climate Reanalysis: 
Global Circulation 
Model + Land Surface 
Model

ERA5 Assimilation of satellite- and ground-based observational data in 
a Global Circulation Model with a Land Surface component

Global 
Hourly / 0.25◦ x 
0.25◦

1950- 
present

Hersbach et al., 2020, 
2023

ERA5-Land Hourly / 0.1◦ x 0.1◦ Muñoz-Sabater et al., 
2019, 2021

GLDAS-Noah Assimilation of satellite- and ground-based observational data in 
LSMs

Global 
3-hours / 0.25◦ x 
0.25◦

2000- 
present

Rodell et al., 
2004Beaudoing and 
Rodell, 2020

GLDAS-CLSM 1-day / 0.25◦ x 
0.25◦

2003- 
present

MERRA-2 Assimilation of satellite- and ground-based observational data in 
a Global Circulation Model with a Land Surface component

Global 
Hourly / 
0.5◦x0.625◦

1980- 
present

GMAO, 2015; Gelaro 
et al., 2017

Machine-learning FLUXCOM RS Median of ensemble estimates from 9 machine-learning 
algorithms using only remote sensing data as predictors and flux 
tower data acquired on 224 FLUXNET sites as training dataset

Global 
8-days / 0.0833◦ x 
0.0833◦

2000–2015 Jung et al., 2019, 2020

Data fusion DOLCE v2.1 Linear combination of existing gridded ET products minimizing 
root mean square error against flux measurements from 
different flux tower networks

Global 
Monthly / 0.25◦ x 
0.25◦

1980–2018 Hobeichi, 2020
DOLCE v3.0 Hobeichi, 2021

REA Weighted average of 3 existing gridded product using a 
reliability ensemble averaging method.

Global 
Daily / 0.25◦ x 
0.25◦

1980–2017 Lu et al., 2021
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on a spatialization method of meteorological stations climatology 
(CHPclim), ii) a satellite-only estimation of precipitation based on cloud 
temperature estimates to derive precipitation duration and intensity 
(CHIRP), and iii) a blending procedure to include meteorological station 
data. We chose to use CHIRPS data to analyse the spatial patterns of 
precipitation as it is proven to be one of the best products over West 
Africa in the literature, especially at monthly to annual scale (Dembélé 
and Zwart, 2016; Poméon et al., 2017; Obahoundje et al., 2020; Satgé 
et al., 2020). CHIRPS annual precipitation spatial patterns are thus used 
to study the annual evapotranspiration spatial patterns.

3.2.2. Theia OSO Land cover map
The Theia OSO Land Cover Map over Sahel (Vincent et al., 2022) 

provides a land cover classification at 10 m resolution over the year 
2018. This land cover map is produced with the IOTA2 (Inglada et al., 
2015) supervised classification algorithm on Sentinel-2 images. As there 
are very few reference data at Sahelian scale, the algorithm training was 
performed on the Copernicus Global Land Service Land Cover maps 
(Buchhorn et al., 2020). The land cover is thus divided in 24 classes. As 
for the precipitation product, land cover map is used to analyse the 
spatial patterns of annual and seasonal evapotranspiration.

3.3. Local flux site observations

3.3.1. Niakhar flux site (Senegal)
Data acquired on the “Faidherbia-flux” ecohydrological observatory 

(https://lped.info/wikiObsSN/?Faidherbia-Flux, data available at 
FLUXNET ID: SN-Nkr or https://bd.amma-catch.org/main.jsf) located 
near the village of Niakhar (14.4958◦N-16.4536◦W) are used in this 
study. It aims at proposing a long-term survey of a semi-arid agro-silvo- 
pastoral ecosystem, in terms of productivity, ecosystem services, 
greenhouse gases fluxes and plant and practices adaptation, in link with 
the climate evolution (Roupsard et al., 2020; Siegwart et al., 2023). The 
ecosystem monitored is a typical cropland under acacia trees (Faidherbia 
albida (Delile) A. Chev.). Two eddy-covariance measurements are 
implemented at different levels (4.5 and 20 m) to dissociate the whole 
ecosystem behaviour from the crop underneath (Diongue et al., 2022). It 
estimates the energy and carbon turbulent fluxes, including the ET, with 
a LI-COR LI-7500 gas analyser combined to a GILL WindMaster 3D sonic 
anemometer. In this study, we used the 20 m level as it is the most in
tegrated level and thus the most representative of the integration level of 
gridded ET products. The quality of the measurements is good as the 
mean annual energy budget closure is 0.94. As it is only possible to 
compare continuous ET products to in-situ measurements with contin
uous timeseries, a gap-filled timeseries of ET was used. The gap-filling 
method used is the one implemented in the REddyProc R package 
(Wutzler et al, 2018). It is based on look-up tables linking meteorolog
ical variables to ET on available periods. The principle is to gather ET 
fluxes with similar meteorological conditions into separate meteoro
logical classes. Gaps are then filled by determining each gap’s meteo
rological conditions and attribute the ET mean of the corresponding 
class. However, the gap rate in the Niakhar timeseries is reasonable 
(<35 % after filtering).

3.3.2. Wankama flux site (Niger)
The Wankama flux site (13.6440◦N-2.6299◦E) data are gathered 

since 2005 in the frame of the AMMA-CATCH observatory (https:// 
amma-catch.osug.fr/). It aims for a long term monitoring the millet- 
shrubby savannah rotation system typical of the Nigerian agropastoral 
areas (Velluet et al., 2014). Two eddy-covariance systems are imple
mented on two plots with opposite crop rotations. Both measures tur
bulent fluxes half-hourly, including ET, with a LI-COR LI-7500 gas 
analyser combined to a Campbell Scientific CSAT-3 sonic anemometer at 
5 m above ground. The ET data cover the 2005–2018 time period. The 
mean between both plots have been used for the study as they are tens of 
meters away from each other. The consequent gap rate in ET timeseries 

is around 13 %. As no gap-filled data is proposed on this station, we only 
used complete days, leading to around 17 % missing days. The mean 
annual energy budget closure is acceptable, at 1.1 over millet and 1.25 
on the fallow plot.

4. Methods

4.1. Uniformization of products spatio-temporal characteristics

The large variety of spatial and temporal resolution of the products, 
added to the fact that their original grids are not necessarily aligned, is a 
challenge to perform direct cross-comparison. Choosing a single spatial 
and temporal resolution for the comparison would be unfair either for 
low-resolution products (in the case of high-resolution comparison) or 
high-resolution products (in case of low-resolution comparison). Best 
option is then to use different aggregation levels for the comparison, 
including in each level only products with higher resolution. For 
example, for a 10 km aggregation scale, only products with a spatial 
resolution higher or equal to 10 km would be considered, whereas a 25 
km aggregation scale would additionally include products with resolu
tions between 10 and 25 km. Common practice in this case is to first 
resample all the products on a reference high-resolution grid with the 
nearest neighbour method in order to keep the resampled products as 
close as possible to the original products. Then resampled products are 
aggregated at the different levels defined previously. This general 
methodology is illustrated in Fig. 3. A similar approach should be 
adopted to cope with the different temporal resolutions (Fig. 4) by first 
resampling the values at high temporal resolution, using previous, next 
or nearest neighbouring value, depending on the product’s original time 
format, i.e. if its values are representative respectively of the next, the 
past or the surrounding time period of the given date. In both cases, best 
practice is then to only compare the products with native resolutions 
higher or equal to the aggregation levels considered. In our study, the ET 
products are resampled at 1 km/daily resolutions, assuming this 
spatiotemporal scale is a good compromise for agricultural or small 
basin hydrology issues. The target kilometric grid chosen is the MODIS 1 
km grid. Native products with a lower resolution (>=1km) are thus 
resampled using the nearest neighbour approach as described previ
ously. Products with a higher resolution (<1km) but aligned with the 
MODIS 1 km grid (PML_V2 0.1.7, MOD16/MYD16) are resampled with 
bilinear resampling, allowing for an arithmetic averaging of the four 
pixels present in a 1 km pixel. Only WAPOR have both a higher reso
lution (500 m) and a grid that is not aligned with MODIS. In this 
particular case, a calculation of the covering portion of each native 
resolution pixel on the 1 km pixel is used and a weighted average based 
on these portions is performed (Eq. (1). 

ET1km =
∑n

i=1

surf i × ETi
∑n

i=1surf i
(1) 

“n” represents the number of native pixels having a value (to exclude 
masked areas of the calculation) that partially or entirely covers a 1 km 
pixel, “surfi” the covering surface of the native pixel “i” on the 1 km pixel 
and ETi the ET value of the native pixel “i”. These methods allow for a 
comparison of all the products without altering the native information 
they contain with the use of more complex aggregation or disaggrega
tion methods, which often use external data to recreate an artificial 
spatial variation.

The temporal resampling to daily resolution is then performed. 
Native products with infra-daily temporal resolution (GLDAS-Noah, 
ERA5, ERA5-Land, MERRA-2) are summed over the day. On the other 
products, with lower temporal resolution, the mean daily ET value over 
their native timestep is first computed, when not provided. This value is 
then duplicated each day within the timestep. The unit of all ET products 
is finally harmonized to mm.d-1.
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4.2. Products comparison at station scale

Products are first evaluated with observations acquired on the Nia
khar and Wankama flux stations. To this end, the pixel including each 
station is extracted for each product. To check the capabilities of the 
products to reproduce observed seasonality and interannual variability 
on available measurements period, interannual average of the daily ET 
of each product and of the observations is computed over the ET mea
surement period on both sites. Moreover, resampled ET products and 
observations are also temporally aggregated at daily, decadal and 
monthly scales to perform multi-scale temporal analysis. At each ag
gregation scale, only products with a native temporal resolution higher 
or equal to the aggregation level are considered for comparison. Finally, 
three statistical scores between each product and the observations are 
computed at each aggregation level: the bias, the correlation coefficient 
R2 and the Root-Mean Square Error (RMSE). RMSE and bias are also 
calculated separately for both the dry (January-February-March) and 
wet (July-August-September) seasons.

4.3. Spatialized intercomparison

The capabilities of each product to represent the spatial patterns of 

ET, according to the landscape features, are evaluated through a multi- 
scale spatial comparison. Three spatial aggregation levels are consid
ered: 1 km, 10 km and 25 km. Only the products with higher or equal 
native spatial resolution are considered in each case. These aggregation 
levels were chosen because they are representative of three main groups 
of products in terms of spatial resolution. Each group has specific 
intended applications, respectively agriculture and small basin hydrol
ogy, region scale meteorology and large basin hydrology, and global 
climatological studies. Then, for both study areas, the mean annual ET, 
as well as the mean seasonal ET over the dry season (January, February, 
March) and the rainy season (July, August, September), are computed 
over the common period of all the products (2009–2015) for every ag
gregation level. A statistical cross comparison of the products is also 
performed by comparing the medians and the Pearson correlation co
efficient (Eq. (2) between their spatial distributions at both yearly and 
seasonal temporal aggregation scales. 

r =
∑m

j=1(ET1(j) − ET1)(ET2(j) − ET2)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1
(ET1(j) − ET1)

2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1
(ET2(j) − ET2)

2

√ (2) 

“m” represents the number of pixels with values in the map, “j” the jth 

Fig. 3. Illustration of the resampling and aggregation steps for two products with different spatial grids and two aggregation levels. In this case, both products should 
be compared at aggregation level 1 whereas only product B should be compared at aggregation level 2.

Fig. 4. Illustration of the temporal resampling and aggregation steps. In this example, an 8-day resolution product is first resampled daily and then 
monthly aggregated.
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pixel in the map (conserving the order of the pixels within the map), 
“ET1” the first ET product to be compared and “ET2” the second one. ˝
ETi˝ is the spatial mean of product “i” over the entire map.

5. Results

5.1. Local comparison

To illustrate the temporal behaviour of each product, the interannual 
daily ET cycle of the products over the measurement period 
(2018–2021) at the Niakhar flux station are compared in Fig. 5. 

Fig. 5. Interannual (2018–2021) daily ET cycle at the Niakhar flux station, smoothed with a 10-days moving mean. Shaded areas represent the interannual minimal- 
maximal values for each day.
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Complete timeseries are presented in appendix B. BESS, FLUXCOM RS 
and REA are not represented due to the disjunction between their 
timespans and the measurement period. Also, DOLCE products have no 
interannual variability represented because only a single year is avail
able in this period. As the measurements begin at the start of the wet 
season, scores during dry season are not available for these two prod
ucts. PML_V2 0.1 product also has no interannual variability on the 
year’s second half, because only a year and a half is available in the 
measurements period. The statistical scores of the products compared to 
measurements at the different temporal aggregation levels are summa
rized in Fig. 6.

Highly biased products (ERA5, GLDAS-CLSM, MOD16, MYD16, 
PML_V2 0.1.7, SSEBop) are clearly identified in Fig. 6, with absolute 
biases between 0.5 and 0.8 mm.d-1. ERA5 and GLDAS-CLSM exhibit a 
permanent positive bias. On one hand, the bias is pretty constant for 
GLDAS-CLSM (Fig. 5), allowing it to describe well ET seasonality, which 
is confirmed by R2 over 0.7. Moreover, its interannual variability is 
comparable to the measurements. On the other hand, ERA5 only has a 
good representation of ET during the peak of the rainy season until the 
beginning of the dry season. Then ET is increasingly overestimated 
across the dry season. It translates into a drop of the performances with 
R2 around 0.6 and RMSE around 1 mm.d-1. Its interannual variability is 
also high during dry season. For negatively biased products, MOD16 and 
MYD16 have the largest bias of all products at annual scale (~0.8 mm.d- 

1) but seemingly proportional to ET. They thus represent quite well the 
temporality of the ET cycle, with R2 over 0.7. Their interannual vari
ability is however small. PML_V2 0.1 and 0.1.7 exhibit about the same 
bias behaviour, in smaller proportions (respectively ~ 0.3 and ~ 0.7 
mm.d-1). It is worthy to note that, despite only having respectively one 
and a half and two years in common with the measurement period, the 
interannual variability in early wet season is high, especially for PML_V2 
0.1.7. Another point that stands out about the PML products is that they 
have the greatest degradation of the scores through temporal resolution 
increase out of all products, especially for PML_V2 0.1. The temporality 
of ET is the most impacted, with a drop of R2 of about 0.2.

Fig. 6 also highlights that SSEBop has seasonality problems, with R2 

under 0.4. The amplitude of the proposed ET cycle is too high, with daily 
ET rates over 6 mm.d-1 in the heart of the wet season, causing bias just 
under 3 mm.d-1 during this season. The seasonality is also advanced by 
about a month compared to the measurements, be it on the rise or the 
drop of ET. During dry season, ET is equal to 0 mm.d-1 during months 
every year, without interannual variations. It translates into a 0.6 mm.d- 

1 bias during dry season. This behaviour shows that SSEBop seems 
highly sensitive to the near-surface soil hydric state, despite having no 
representation of soil moisture in its algorithm.

Best performing products appears to be the GLEAM products, 
GLDAS-Noah, MERRA-2 and the DOLCE products, closely followed by 
ERA5-Land, with R2 above 0.8, limited bias (<0.4 mm.d-1) and RMSE 
(<0.5 mm.d-1). WaPOR is the runner up, not showing the best scores but 
being the best within the products that have an under-kilometric spatial 
resolution. Both DOLCE products represent quite well the seasonality of 
the ET cycle, despite their monthly resolution. However, they present a 
noticeable underestimation in the transition from wet to dry season. 
GLDAS-Noah capture well the ET seasonality. The interannual vari
ability is also comparable to the measurements. However, GLDAS-Noah 
shows an overestimation during the wet season, with a bias around 1 
mm.d-1. ERA5-Land exhibits good performances on ET during the entire 
vegetation cycle (D150-D320) but a slight underestimation during the 
dry period. GLEAM products seem to be the closest ones to the mea
surements, especially during wet season. Particularly, GLEAMa products 
show better behaviour than GLEAMb products in the transition from wet 
to dry season. The interannual variability seems comparable to the 
measurements except at the end of the wet season. Indeed, GLEAM 
products tend to have lower interannual variability in the drop of the ET 
cycle than the measured ET. MERRA-2 presents performances on par 
with GLEAM at annual scale, having slightly lower performances during 

wet season but compensating it with the best representation of ET dy
namics during transition from wet to dry season and during dry season, 
exhibiting bias under 0.6 mm.d-1 in this latter. Its interannual variability 
is however higher than the measurements during wet season. MERRA-2 
also shows signs of typical out-of-season rainfall events around D100 
which is not present in the measurements, illustrating the mismatch 
between flux tower scale and MERRA-2 low spatial resolution. More
over, the degradation of its scores when going from decadal to daily 
resolution is slightly higher than other products, apart from PML_V2 
products. Finally, WaPOR shows a good timing of the ET cycle but with a 
slight delay in the peak timing and a steeper decrease of the cycle. ET is 
then underestimated in early dry season. The interannual variability 
during the rise of the ET cycle is also greatly overestimated. It is inter
esting to note that, while DOLCE products only provide monthly reso
lution, the other aforementioned products have limited degradation of 
their scores (<0.1) through the increase of temporal resolution, even 
when reaching the daily scale (Fig. 6).

Table 2 shows the same statistical scores as Fig. 6 but on the Wan
kama flux station. It shows that ET products have mostly very similar 
behaviours on both sites. GLEAM products and GLDAS-Noah remain the 
best performing products at all temporal scales. However, the over
estimation of GLDAS-Noah seen on the Niakhar flux site is still observ
able with bias up to 0.4 mm.d-1 in wet season, leading to higher RMSE 
than GLEAM products. MERRA-2, ERA5-Land and the two DOLCE 
products are the runner ups, despite having large negative biases during 
wet season (~ 0.6 mm.d-1) for the three latter. GLDAS-CLSM and ERA5 
still have positive bias, especially during dry season (>0.5 mm.d-1). 
However, unlike on the Niakhar site, their bias is largely negative (~0.5 
mm.d-1), leading to a drop of correlation (R2 ~ 0.5, 0.7 and 0.8 at daily, 
decadal and monthly scale respectively). On the other hand, MOD16/ 
MYD16 still have the largest negative bias (− 1.2 mm.d-1 overall, − 2.7 
mm.d-1 during wet season). SSEBop displays similar behaviour than on 
Niakhar, with ET underestimation during dry season and brief peaks of 
ET during wet season, leading to maximal ET rates of 7 mm.d-1 (not 
shown here). However, the occurence of such peak is lower, leading to a 
large negative bias during wet season (>0.5 mm.d-1), unlike on the 
Niakhar site. Its R2 is largely affected, with values between 0.4 and 0.6 
across scales. This erratic behaviour also leads SSEBop to have the 
greatest degradation of its scores across scales. Unsurprisingly, MOD16/ 
MYD16 and SSEBop thus have the largest RMSE (>1 mm.d-1). PML_V2 
products performs better on the Wankama site than on the Niakhar site 
when it comes to bias, but with a middling R2 (~0.75). The main dif
ference between both sites is the large degradation of performances of 
WaPOR on the Wankama site compared to the Niakhar site. Indeed, it 
shows a very different behaviour with large positive bias during dry 
season (~0.3 mm.d-1) and negative bias during wet season (~1 mm.d-1), 
leading to quite low R2 (~0.65) and large RMSE (~0.8 mm.d-1) at 
decadal and monthly scale.

5.2. Spatial cross-comparison

To illustrate the spatial cross-comparison, the Senegal area has been 
chosen, as it has a wider ecosystem diversity and precipitation gradient. 
Fig. 7 shows the maps of mean annual ET of each product over their 
common period (2009–2015) over the central Senegal. These maps are 
also compared to the mean annual precipitation from CHIRPS over the 
same area and period (Fig. 8). All the products except for three, GLDAS- 
CLSM, GLDAS-Noah and FLUXCOM-RS, seem to be able to capture the 
increase in ET rates expected over the mangrove of the Saloum delta 
(Fig. 2). For GLDAS products, it is hard to conclude because of the 0.25◦

spatial resolution but they seem to be more influenced by the general 
precipitation gradient (Fig. 8) than the difference in ecosystem. Indeed, 
the gradient in ET rates follows a North-West to South-East direction. It 
is interesting to note that the CHIRPS precipitation product seems 
influenced by the delta. This effect does not seem to be present in the 
GLDAS products, either because of the precipitation forcing or because it 

J. Etchanchu et al.                                                                                                                                                                                                                              Journal of Hydrology 651 (2025) 132585 

8 



Fig. 6. Statistical scores of the ET products compared to the Niakhar ET measurements at different temporal aggregation scales (day, decade and month). Bias and 
RMSE are expressed in mm.d-1.
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is dampened by the biomes’ parameters used in this deltaic area. As for 
FLUXCOM-RS, ET rates are lower in the delta than in the rest of the area. 
It is unrealistic for wetland ecosystems where ET is expected to be near 
potential ET. This behaviour could be explained by the fact that there are 
no ET observations over tropical mangrove ecosystems in the FLUXNET 
network. The neural network used in FLUXCOM-RS is thus in an 
extrapolation case and does not perform well in such case. For the rest of 
the products, as expected, the ET rates over the delta are higher than on 
the remaining area, but with very different increases from a product to 
the other. BESS, DOLCE v2.1 and v3.0, and MOD16/MYD16 show small 
increases in ET over the delta compared to the agricultural areas, be
tween 100 and 200 mm.yr− 1. Conversely, ERA5, ERA5 Land, the 
different GLEAM versions, MERRA-2, REA and WaPOR show increases 
ranging from 500 mm.yr− 1 to 800 mm.yr− 1 over the delta, which can be 
deemed as realistic values. Finally, the two versions of PML_V2 and 
SSEBop show increases around or over 1500 mm.yr− 1 over the delta. It 
confirms that SSEBop is highly sensitive to the near-surface hydric state. 
This is also highlighted by the coastal ET rates. As for PML_V2, ET rates 
over 2000 mm.yr− 1 are reported on very specific patches, probably 
linked to the ecosystem map used to derive the ET algorithm parame
terization. ET rates on the delta for both these products are way higher 
than the annual rainfall and seems more in accordance with potential 
ET, which should be the case over wetlands.

Apart from the representation of the delta, most of the products show 
a North-West to South-East ET gradient which agrees with the precipi
tation gradient (Fig. 8), once again with various levels depending on the 
products, except BESS and FLUXCOM-RS. These two products show 
almost no ET gradient and very few changes between ecosystems beside 
the delta. BESS also has high ET values around masked areas (urban 
areas, open water). It seems due to a technical problem in the production 
of ET maps around masked areas. Most of the products also show higher 
ET rates on the croplands located to the south-east of the delta. This 
area, besides having higher precipitation, hosts intensive agriculture 
practices while essentially subsistence farming is practiced in the rest of 
the study area. Despite being too sensitive to wet conditions, the spatial 
distribution of SSEBop annual ET rates over the area seems quite good as 
it clearly highlights the main ecosystems and the precipitation gradient. 
Concerning the PML_V2 products, the spatial distribution, including the 
delta, is quite homogeneous over specific areas with a clear delineation 
between them and very abrupt transitions in-between. PML_V2 0.1.7 
even shows this kind of behaviour within the delta, with an erratic 
spatial distribution.

More specifically, the coastal pixels of DOLCE v3.0, ERA5, GLEAM 
and MERRA-2 are deeply influenced by the presence of open water, 
which is realistic but could be a problem for a range of coastal studies (e. 
g. coastal hydrology and hydrogeology, saline inclusions, coastal agri
culture) due to their low spatial resolution. Same problem occurs with 
low resolution products that uses large margins on coastal areas to avoid 
mixed sea/land pixels, like GLDAS products.

A quantitative cross comparison of the ET products is then performed 
by analysing the spatial median of each product on both areas (Fig. 9, 
Fig. 10) as well as the Pearson correlation coefficients (Fig. 11) on the 
spatial distributions of the mean annual and seasonal ET over Central 
Senegal, as described in section 4.3.

The spatial medians (Fig. 9) on Central Senegal allows to identify 
biases between products without being too influenced by the extreme 
values. The separation of the results between dry and wet season gives 
insight about whether the local scale behaviours (Sect. 5.1) of the 
products between each other are observable at larger scale or not. 
Therefore, SSEBop’s high ET estimates in wet season (50–70 mm. 
month− 1) and low estimates in dry season (5–15 mm.month− 1) 
compared to other products is visible at all aggregation levels. It leads to 
a general over estimation (100–200 mm.yr− 1) compared to the majority 
of other ET products at annual scale. ERA5, GLDAS-CLSM, MERRA-2 and 
REA also tend to have higher ET estimates than other products at annual 
scale (150–500 mm.yr− 1). It is particularly due to their positive bias Ta
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(~20 mm.month− 1) in dry season, reproducing the behaviour already 
seen at local scale. Concerning MERRA-2, the results show a different 
behaviour than at local scale. On the other side of the spectrum, 
MOD16/MYD16 tend to have lower ET estimates than other products at 
all scales and throughout the seasons with median differences ranging 
from 100 to 500 mm.yr− 1. DOLCE v3.0 have such trend too (150–200 
mm.yr− 1) compared to other product. WaPOR also displays such trend, 
with similar underestimation throughout the seasons, showing different 
behaviour compared to other product than at local scale. FLUXCOM-RS 
is not amongst the highest ET estimates at annual scale compared to 
other products but, as ERA5, MERRA-2, GLDAS-CLSM and REA, it stands 
out when it comes to the dry season, with a median difference around 15 
mm.month− 1 compared to other products (besides the four aforemen
tioned). Same goes for BESS, which has middling ET estimates at annual 
scale but with relatively high estimates compared to other products 
during dry season (+5–10 mm.month− 1). The rest of the products, 
namely DOLCE v2.1, ERA5-Land, GLDAS-Noah, the GLEAM versions 

and the PML_V2 products, all show quite the same median amplitude of 
annual and seasonal ET, with few differences at all scales. The spatial 
medians of ET on South-Western Niger (Fig. 10) shows that this area is 
generally dryer than Central Senegal, with lower ET rates, especially 
during dry season. However, the ET products rank similarly to Central 
Senegal when it comes to annual ET. Few products show noticeable 
differences in their behaviour between both areas. For example, 
MOD16/MYD16 products appears to be too strongly influenced by the 
dryer conditions on Niger, with extremely low ET rates throughout the 
year (<50 mm.yr− 1). FLUXCOM-RS ET also seems to be on the lower 
side of the products compared to Central Senegal, despite having one of 
the highest dry season ET (~10 mm.month− 1). GLDAS-Noah also ap
pears to have higher estimations compared to other products than in 
Central Senegal, joining the group formed by ERA5, MERRA-2, GLDAS- 
CLSM, SSEBop and REA. As in Central Senegal, GLDAS-Noah and SSE
Bop wet season ET (~90 mm.month− 1) even if the gap with other 
products is deeply reduced for SSEBop. As in Central Senegal, ERA5, 

Fig. 7. Mean annual ET (2009–2015) in mm over Central Senegal.
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GLDAS-CLSM and REA have high dry season ET compared to other 
products (~15 mm.month− 1), explaining their ranking at annual scale. 
Similarly, BESS and FLUXCOM-RS still have one of the highest ET rates 
in dry season in South-Western Niger, as well as in Central Senegal. It is 
compensated at annual scale by their low ET rates during wet season 
(~40 mm.month− 1). WaPOR also seems in this case in South-Western 
Niger, with the lowest wet season ET rates, although it was not the 
case in Central Senegal. GLEAM products, PML products and DOLCE 

v2.1 shows a good agreement of annual and seasonal ET while DOLCE 
v3.0 is on the lower side of the products, as in Central Senegal. These 
spatial results on South-Western Niger also correlates well with the local 
scores on the Wanakama flux station.

An illustration of spatial patterns analysis on Central Senegal, with 
the Pearson correlation coefficient, is shown in Fig. 11. It allows to 
identify the differences between products in the spatial repartition of ET 
(Fig. 7). Some products stand out in terms of spatial decorrelation with 
other products. Particularly, FLUXCOM-RS is strongly decorrelated 
(R<=0) from the other products during the wet season, which is due to 
the low ET rates produced over the Saloum delta. It leads to a general 
decorrelation (R≈0.6) at annual scale. Interesting enough, this decor
relation is much stronger (R≈0.2) at smaller aggregation scale (10 km), 
meaning the finer the spatial resolution is, the less FLUXCOM-RS per
forms. In a similar way, SSEBop also decorrelates (R≈0.3) during the 
wet season, throughout the spatial scales. The analysis of the interannual 
maps of wet season ET (not shown in this paper) confirms the high 
sensibility of SSEBop to the rain patterns, leading to a quite realistic 
spatial distributions but with very high ET rates and strong contrasts 
between zones, which affects the Pearson correlation coefficient calcu
lation. However, during the dry season, and consequently at yearly 
scale, its spatial distribution seems quite similar, leading to a small 
decorrelation overall. Nonetheless, it should be noted that the decorre
lation of SSEBop with respect to the other products becomes stronger 
with the improvement of the spatial resolution. GLDAS-CLSM has a 
slight decorrelation (R≈0.5) during the wet season but a stronger one 
during the dry season (R≈0.3), leading to an overall decorrelation at 
annual scale (R≈0.5). This may be explained by the fact that GLDAS- 
CLSM does not seem to capture the Saloum delta effect on ET. There
fore, there is a strong decorrelation in dry season compared to other 
products which capture it. It confirms the analysis highlighted in Fig. 7. 
Finally, BESS shows large scale decorrelation compared to the other 

Fig. 8. Mean CHIRPS annual precipitation (2009–2015) in mm over Cen
tral Senegal.

Fig. 9. Median of each product’s spatial distribution on mean (2009–2015) annual and seasonal ET over dry (January to March) and wet (July to September) seasons 
over Central Senegal at different spatial aggregation levels: 1 km (a), 10 km (b), 25 km (c).

J. Etchanchu et al.                                                                                                                                                                                                                              Journal of Hydrology 651 (2025) 132585 

12 



products, with a quite consistent decorrelation throughout the seasons 
(R≈0.6). This decorrelation is also exacerbated at higher resolution with 
(R≈0.2). It may partly be due to the artefacts spotted around masked 
areas, but also and mainly by the low spatial variability displayed in 
Fig. 7. Beside these products, other products show good agreement on 
the spatial distribution at 25 km aggregation scale (R≈0.8–0.9) as well 
as at higher resolution, with R≈0.6–0.7 even at kilometric scale, despite 
the expected degradation of the correlation with the increase in 
resolution.

6. Discussion

The biggest challenge in evaluating gridded ET products is the 
scarcity of eddy-covariance measurements, which give very limited 
insight about the spatial patterns of ET. It is particularly true in Sahelian 
region, where the ET measurement network is very scarce. It raises the 
question of the representativity of such measurements at larger scale. In 
our study, the Faidherbia-flux and Wankama flux stations monitor 
ecosystems widely present in their respective study areas, thus providing 
good confidence on the generalizability of the conclusions on similar 
ecosystems at larger scale. It is shown by the good agreement between 
local scale scores and area scale cross-comparison of the products. 
However, conclusions could be very different on the wetland ecosys
tems, as in the Saloum delta or on the Niger river banks, that have a very 
different hydrometeorological behaviour. Another challenge to tackle is 
the mismatch between flux tower footprint and product’s spatial grid 
(Miralles et al., 2011; Majozi et al., 2017; Allies et al., 2020). Indeed, the 
coarser the resolution, the higher the heterogeneity within the consid
ered pixel and the mismatch between tower and satellite pixel footprints 
(McCabe and Wood, 2006). The openET initiative (Melton et al., 2022) 
aims at filling this gap by proposing methods, such as the DisALEXI al
gorithm (Anderson et al., 2011), to derive field scale ET from satellite 
data. But this initiative is up-to-now limited to the CONUS and needs to 

be adapted to other regions. The comparison with flux tower measure
ments is also prone to measurements uncertainties, linked to the sensors’ 
precision, the discrepancies between the different energy fluxes sensors 
(i.e. radiation, turbulent fluxes, ground heat flux) and the turbulence 
determination uncertainties, which often leads to an imbalance in the 
energy budget closure. The good energy budget closure of both flux 
tower’s fluxes should limit the risk of having such uncertainties, 
although a good energy closure does not necessarily mean that ET is 
good in particular.

To this end, many studies have assessed the products capacities by 
comparing them to the monthly or yearly ET derived from water balance 
calculations on river catchments (Andam-Akorful et al., 2014; Bai and 
Liu, 2018; Chao et al., 2021). While it can be a relevant indicator, this 
type of comparison has many limitations. Firstly, ET is assumed to be the 
residual of the water balance, namely precipitation over the catchment 
minus discharge at its outflow, with the assumption that storage in the 
system is neglectable at the time scale considered. Hence, it depends 
heavily on the quality of discharge measurements. In addition, this 
assumption is particularly untrue over small aggregation time periods 
(under the month) or in catchments with groundwater fluctuations 
within the time period (Imbach et al., 2010). Chao et al. (2021) tackled 
this issue by using the GRACE satellite data to derive the groundwater 
fluctuations. Finally, such comparisons are catchment dependent and do 
not allow for comparisons outside these catchments, even though they 
may not sample every remarkable ecosystem. This emphasizes the ne
cessity to analyse the spatial patterns of ET, although the wide variety of 
spatial and temporal resolution between products render it difficult. 
While good performing products should have a great temporal repre
sentation of the ET cycle while providing a realistic spatial distribution, 
their spatiotemporal characteristics can make them unfit for specific 
applications.

A multi-scale analysis is thus needed to evaluate the strengths and 
weaknesses of each product at different aggregation level and determine 

Fig. 10. Median of each product’s spatial distribution on mean (2009–2015) annual and seasonal ET over dry (January to March) and wet (July to September) 
seasons over South-Western Niger at different spatial aggregation levels: 1 km (a), 10 km (b), 25 km (c).
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each product’s most suitable field of application. For example, despite 
their low spatial and temporal resolution (0.25◦, monthly), the DOLCE 
products, especially DOLCE v2.1, show good performances at local scale 
and good agreement with other good-performing products at mesoscale. 
It makes them particularly well fitted to long term trend analysis over 
large areas or to hydrological regime studies over very large catchments, 
such as in Hobeichi et al. (2021). The products with the highest temporal 
resolution, such as ERA5s, MERRA-2 and GLDAS are all dedicated to 

large scale studies, making the link between Global Circulation Models 
and LSMs or hydrological models, explaining their low spatial resolution 
(≥0.25◦). In this category, GLDAS-Noah seems to be one of the best 
performing products over croplands and savannah, probably due to the 
greater precision of their land surface scheme, but miss important effects 
on ET over the deltaic area in Central Senegal with wetland ecosystems. 
MERRA-2, despite having better scores at local scale, is hindered by its 
low spatial resolution (>0.5◦), mixing too many ecosystems and even 

Fig. 11. Pearson correlation coefficient between each product spatial distribution on mean (2009–2015) annual (first row) and seasonal (second and third rows) ET 
over dry (January to March) and wet (July to September) seasons over Central Senegal at different spatial aggregation levels (1 km, 10 km, 25 km).
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open water (delta or coastal areas). Thus, its spatial analysis displays 
high over-estimations during the dry season. ERA5 product show similar 
behaviour than MERRA-2. Therefore, ERA5-Land seems to be the best 
compromise in this category, providing the best spatial resolution (0.1◦), 
satisfactory performances at local scale and a realistic representation of 
spatial ET patterns. GLEAM products seem to be the best performing, 
even when looking at the local scale, despite their 0.25◦ resolution, 
confirming them as reference products in tropical semi-arid areas (Khan 
et al., 2020; Salazar-Martinez et al., 2022). However, as shown in the 
spatial analysis, the GLEAM products have a hard time describing the 
spatial patterns, even if the 0.25◦ pixels seem to be realistically influ
enced by their inner spatial heterogeneity. GLEAM products can thus be 
used in large scale hydrological studies as well as climate trends study, 
due to their great time span. But they can also be used for agricultural 
management purposes, allowing long term diagnostic studies with good 
temporal precision, provided the ecosystem is sufficiently homogeneous 
at the 0.25◦-pixel scale (Allies et al., 2022). Higher resolution remote 
sensing products, such as BESS, MOD16/MYD16, PML_V2, SSEBop and 
WaPOR all displays lower performances. As these products provide data 
to a near kilometric resolution with weekly to decadal temporal reso
lution, their main field of application is the agricultural and water 
management at smaller scale (small catchments or agricultural perim
eters). However, most of them do not seem adapted to Sahelian climate 
and ecosystems. That is particularly true for BESS, SSEBop and MOD16/ 
MYD16 which show large biases and/or low spatial correlations with 
other products. These behaviours have been observed in other studies on 
different semi-arid ecosystems (Majozi et al., 2017; Bennour et al., 
2022). WaPOR seems to be the best compromise within these high- 
resolution products in Central Senegal, showing middling perfor
mances at local scale but a realistic spatial distribution. For agricultural 
studies, which is the main scope of WaPOR, good local scale perfor
mances in agrosystems should however prevail over good spatial dis
tribution. However, its performances drop in South-Western Niger. It 
should be noted that WaPOR beneficiates of hyper-resolute versions (30 
m and 100 m) on parts of the Senegal, meaning the algorithm has been 
thoroughly calibrated in ecosystems very similar to the Niakhar station. 
It could explain the discrepancy on WaPOR ET performances on both 
sites/areas. Recent literature (Bennour et al., 2022) also suggests that 
WaPOR performances are quite lower on other areas, especially dryer 
ones.

Apart from spatiotemporal resolution differences, products perfor
mance discrepancies can be due to: the algorithms’ principles, param
eterization or forced/assimilated data. As shown in Section 5.2, products 
using precipitation fields might display spatiotemporal differences 
depending on this forcing. It seems to be the case for GLDAS products, 
which do not follow the precipitation spatial patterns of CHIRPS (Fig. 8). 
Several studies have shown that GLDAS precipitation forcing is not 
performing as well as CHIRPS when describing the spatio-temporal 
distribution of the precipitation over different region of the world, 
including African semi-arid countries (Wang et al., 2020, Degefu et al., 
2022). Similar uncertainties can occur with other gridded data, e.g. 
vegetation indices, soil properties or other meteorological forcing. For 
example, PML_V2 products seem to have very different responses to 
parameterization between ecosystems, meaning they are very sensitive 
to input land cover maps. It is probably due to its algorithm functioning 
with separate plant functional types, derived from MCD12 land cover 
product (Friedl & Sulla-Menashe, 2022), with parameters calibrated 
over FLUXNET measurements with corresponding types. Concerning, 
MOD16/MYD16 and BESS products, land cover parameterization could 
also be a problem. Indeed, they also use MCD12 land cover product, or 
its past versions, which could be the source of their low spatial varia
tions. The fact that, contrarily to BESS, MOD16/MYD16 algorithm does 
not use thermal information as a proxy of the water stress may explain 
its trend to deeply underestimate ET in our study areas, characterized by 
low vegetation indices, even in wet season. PML_V2 avoid this problem 
by including an information about anterior precipitations in its forcing. 

The surface incoming radiation, used as an input by almost all products, 
is also recognized to be an important source of uncertainty in most ET 
model (Mira et al., 2016). The case of SSEBop is a great example of 
parameterization issues. Indeed, the SSEBop algorithm has been broadly 
tested and validated over a variety of ecosystems and input data (Chen 
et al., 2016; Dias Lopes et al., 2019; Zhuang et al., 2021; Senay et al., 
2022). However, it relies on determining the ratio of surface tempera
ture between actual and potential ET conditions. An overestimation of 
the temperature at potential ET conditions should induce greater ET 
over the entire area, especially during wet period. An underestimation of 
this temperature would conversely lead to ET underestimation in dry 
conditions. This is the behaviour observed on SSEBop in our study. 
Finally, some algorithms are more adapted to specific climatic condi
tions than others. Our results suggest that products that explicitly 
consider soil moisture evolution, like GLEAM, ERA-5 Land or GLDAS- 
Noah, tend to have better performances in the Sahelian region. This is 
not surprising as in semi-arid areas, ET is mainly water limited. The end 
of the crop season illustrates this point. Products that consider soil 
moisture tends to have longer ET cycle, that better fit local observations 
than other products. Indeed, rain usually stops two to three weeks before 
the ET cycle does in Sahel. Hence, this period’s ET only consists in 
transpiration. Including soil moisture in the parameterization may then 
be an asset to better capture phases with transpiration only. Hence, 
accurately evaluating the soil moisture availability is crucial to ET 
estimation. It explains why products like MOD16/MYD16, which only 
uses vapor pressure deficit and relative air humidity to derive water 
stress, do not work well in semi-arid areas (Velpuri et al., 2013; Hu et al., 
2015). Another problem for remote-sensing based algorithm is that 
visible and thermal Earth observation, on which these algorithms rely, is 
deeply affected by satellite revisit frequency and cloud coverage. It 
emphasizes even more the need for soil-moisture accounting to derive 
accurate continuous ET time series in periods with low satellite data 
availability.

7. Conclusion

The comparison of several ET products conducted in this study 
allowed to assess the qualities and drawbacks of each product to handle 
various scientific questions and applications in Sahelian context. This 
comparison was performed with a multi-scale analysis rarely seen in ET 
comparison studies but that is needed to tackle the spatio-temporal 
characteristics discrepancies between products. First, the temporal 
behaviour of the products was assessed through a local comparison to 
eddy-covariance measurements on ecosystems representative of Sahe
lian croplands in Central Senegal and South-Western Niger. Some 
products, like GLDAS-Noah, MERRA-2, the GLEAM products or ERA5- 
Land, stood out as good candidates to become reference products over 
these areas. The spatial analysis gave more credit to the two latter, 
having a more realistic representation of the spatial patterns of ET. Their 
long timespans are a strong asset for long term diagnostic analysis, be it 
for climatic studies or large-scale hydrology. However, their low spatial 
resolutions, respectively 0.25◦ and 0.1◦, as well as their timing of pro
duction limits their usage for fine scale applications, such as agricultural 
monitoring and water management or small basin hydrology. On the 
other hand, more spatially resolute products (≤5km), dedicated to such 
applications, did not display good performances at local scale. In this 
category, all of the six products concerned (MOD16, MYD16, WaPOR, 
BESS, PML_V2 0.1.7 and SSEBop) have visible flaws, may it be on the 
temporal or spatial representativity. PML_V2 0.1.7 however seems to be 
the best compromise between local scale performances and spatial and 
temporal representativity. Overall, the comparison showed quantitative 
discrepancies between the products on par with the recent literature on 
semi-arid areas. This comparison should however be extended to larger 
scale in order to derive generalized conclusions to the entire climatic 
region and bring consensus about the reference products at such scale. 
Similar work is in progress over other West-African sites, sampling the 
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latitudinal and longitudinal climatic gradients. Nevertheless, the study 
highlights the need for products adapted to the Sahelian eco-climatic 
region, with both high spatiotemporal resolution and good representa
tion of spatiotemporal ET patterns. It would be particularly relevant for 
agricultural and water management in a region where subsistence 
farming with sub-kilometric plots is predominant. Hydrological appli
cations in the numerous small endoreic catchments would also be 
facilitated. A first promising approach to produce such product revolves 
around data fusion methods. The performances of the DOLCE products 
seem in line with this. Allies et al. (2022) already showed that 
combining large scale information from GLEAM with finer scale esti
mates from other algorithm drastically improves both the local scale 
performances and ET spatial distribution accuracy. Similar concepts 
could be used to combine the good temporal ET representation of 
GLEAM or GLDAS-Noah with the spatial information of more resolute 
products like WaPOR or SSEBop. A daily fusion product with kilometric 
resolution could thus be envisaged. By the way, recent and near future 
satellite missions, like TRISHNA (CNES/ISRO, Lagouarde et al., 2018), 
LSTM (ESA, Koetz et al., 2018) or SBG (NASA, Thompson et al., 2022), 
will provide even higher resolution data with spatial resolution of nearly 
50 m and revisit frequency of two to three days each. Their combination 
should allow for the generation of well constrained ET products with 
remote-sensing based algorithms, such as contextual methods (Roerink 
et al., 2000; Carlson, 2007; Gallego-Elvira et al., 2013; Allies et al, 2020) 
or single pixel methods (Bastiaanssen, 1995; Senay et al., 2013; Boulet el 
al., 2015) with less uncertainty due to interpolation/extrapolation be
tween clear sky acquisitions.
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Appendix A:. Description of the gridded ET products

A.1. Breathing Earth system Simulation (BESS)

BESS (Ryu et al., 2011; Jiang et Ryu., 2016) is an ET and Gross Primary Production (GPP) product generated globally on a 1 km resolution grid 
matching the MODIS products 1 km grid. Its temporal resolution is 8 days. Its estimations rely on a radiative transfer model within the atmosphere and 
the canopy, coupled with photosynthesis and canopy conductance models. ET is derived with the quadratic form of the Penman-Monteith equation 
(Monteith, 1965; Paw U & Gao, 1988) for latent heat flux. Most of the atmospheric and surface characteristics are derived from MODIS products. 
Missing atmospheric variables are derived from NCEP/NCAR meteorological reanalysis (Kalnay et al., 1996) while global classification maps are used 
to define the biomes and photosynthesis types (C3, C4).

A.2. Global Land Evaporation: The Amsterdam methodology (GLEAM)

GLEAM is a method to derive global ET at a daily timescale and 0.25◦ resolution from a wide range of satellite observations (Miralles et al., 2011). 
The GLEAM algorithm estimates the potential ET with a modified Priestley-Taylor formulation (Priestley and Taylor, 1972). The actual ET is then 
derived through the use of three main modules. In the first one, canopy interception is computed using a Gash model (Miralles et al., 2010). The second 
one consists of a soil module describing rain water infiltration where microwave-derived soil moisture data are assimilated in the top soil layer through 
a Kalman filter. The last module computes a stress factor function of root zone soil moisture derived from the soil module and remotely sensed 
vegetation optical depth. Actual evapotranspiration is finally computed as the sum of evaporation from the water intercepted by the canopy and 
potential ET multiplied by the stress factor. In this study, the 3.5a, 3.5b, 3.6a and 3.6b versions are used (Martens et al., 2017). In the GLEAM 3.5a and 
3.6a products, inputs are taken from reanalysis (incoming radiation and air temperature), remote sensing data (soil moisture, vegetation optical depth 
and surface vegetation cover), field survey (soil properties) and merged remote sensing and ground-based precipitations. In the 3.5b and 3.6b versions, 
all inputs, except soil properties are derived from remote sensing data. The difference between the 3.5 and 3.6 products is the use of more up-to-date 
precipitation, soil moisture, vegetation optical depth, radiation and temperature data.

A.3. MODIS Global evapotranspiration products (MOD16/MYD16)

The MODIS Global Evapotranspiration product (MOD16, Mu et al., 2007, 2011) is provided by the Earth Observing System of the National 
Aeronautics and Space Administration (NASA/EOS). The MOD16 algorithm is based on a modified Penman-Monteith (Monteith, 1965) approach to 

J. Etchanchu et al.                                                                                                                                                                                                                              Journal of Hydrology 651 (2025) 132585 

16 



derive potential ET. A biome specific model is then used to compute surface resistance to evapotranspiration on plants and bare soil, and consequently 
actual ET, without calculating the entire surface water and/or energy budget. The biomes and vegetation variables are derived from MODIS products 
on land cover and vegetation indices (LAI/FPAR) while atmospheric conditions are derived from the GMAO reanalysis data (Zhao et al., 2005). In this 
study the MOD16A2v061 and MYD16A2v061 versions are used, which provide ET at 8-day with a spatial resolution of 500 m, respectively using the 
TERRA and AQUA satellites.

A.4. Penman-Monteith Leuning version 2 (PML_V2)

PML combined the Penman-Monteith equation and the surface conductance model of (Leuning et al., 2008) to derive evapotranspiration as a sum 
of canopy transpiration, soil evaporation and evaporation of precipitation intercepted by the vegetation. In this study we used the PML_V2 (Zhang Y. 
et al., 2010, 2016, 2019) product that uses a water-carbon coupled canopy conductance to derive canopy transpiration and gross primary production. 
It uses GLDAS_v2.1 meteorological forcing (Beaudoing and Rodell, 2020) and MODIS collection 6 products (LAI, albedo, surface emissivity and land 
cover types) as forcing data. PML_V2 ET is provided at 8-day with both 0.05◦ (PML_V2 0.1) and 500 m (PML_V2 0.1.7) resolution.

A.5. Simplified surface energy balance for operational applications (SSEBop)

The SSEBop (Senay et al., 2013) ET product is based on the one-source surface energy balance model. In this model actual evapotranspiration per- 
pixel is derived from the evaporative fraction. The latter is computed by a linear relationship on the difference between land surface temperature (LST) 
of the pixel and the coldest/wettest surface temperature limit in the satellite image. The evaporative fraction is multiplied by the reference evapo
transpiration for alfalfa to obtained actual evapotranspiration. SSEBop global ET product used decadal 1-km MODIS LST and surface/vegetation 
products (NDVI, albedo, emissivity) while air temperature is derived from WorldClim (Fick and Hijmans, 2017). ET0 was provided by the USGS 
Famine Early Warning Systems Network (FEWS NET) Data Portal (https://earlywarning.usgs.gov/fews/product/81) at 100 km spatial resolution and 
downscaled at 10 km spatial resolution using spatial patterns and statistics derived from potential ET provided by the InternationalWater Management 
Institute (IWMI) (Senay et al., 2007). SSEBop ET is provided at 1 km spatial resolution and 10-days timestep.

A.6. Water productivity through open access of remotely sensed derived data (WaPOR)

WaPOR ET (FAO, 2020) is based on a modified version of the ETLook model developed by (Bastiaanssen et al., 2012). ETLook uses a Penman- 
Monteith (Monteith, 1965) approach to determine actual ET separately for bare soil evaporation and canopy transpiration by solving the energy 
budget in each case, with a classical surface resistance scheme (Jarvis, 1976). The surface and root-zone soil moisture are also considered by a stress 
factor in the canopy resistance computed on the base of NDVI/LST relationship, also known as triangle method (Carlson, 2007), with a method 
described by Yang Y. et al. (2015). WaPOR uses MODIS daily surface reflectance, LST and emissivity, Climate Hazards Group Infrared Precipitation 
with Station Data (CHIRPS) precipitation data and Digital Elvetation Model from the Shuttle Radar Topography Mission (SRTM) as inputs. WaPOR ET 
for continental Africa is provided at 250 m resolution and decadal timestep. Some subregions are provided at 100 m but as this does not include all of 
our study area, we did not use it. A research version at 30 m resolution is also available on very specific areas.

A.7. ERA5 and ERA5-Land

ERA5 (Hersbach et al., 2020, 2023) is a global climate and weather reanalysis proposed by the European Center for Medium-range Weather 
Forecasts (ECMWF). It uses a data assimilation system to constrain a global circulation and atmospheric model with various observational data. The H- 
TESSEL (Balsamo et al., 2009) Land Surface Model (LSM) is used to determine the surface boundary condition fluxes, including ET. The variables are 
provided hourly at a 0.25◦ spatial resolution. ERA5-Land (Muñoz-Sabater et al., 2019, 2021) is derived from ERA5 atmospheric variables by rerunning 
the land surface model at higher resolution (0.1◦).

A.8. Global Land data Assimilation system (GLDAS)

The Global Land Data Assimilation System (GLDAS, Rodell et al., 2004) provides gridded land surface state variables and fluxes by assimilating 
satellite and ground based observations into different LSMs. In the 2.1 version (Beaudoing and Rodell, 2020), used in this study, four LSMs are driven 
in GLDAS: Noah (Ek et al., 2003), Catchment Land Surface Model (CLSM, Ducharne et al., 2000; Koster et al, 2000), Community Land Model (CLM, Dai 
et al., 2003) and Variable Infiltration Capacity (VIC, Liang et al, 1994). These models are forced with the National Oceanic and Atmospheric 
Administration (NOAA) atmospheric reanalysis. Only the two first LSMs (Noah and CLSM) are used in the study as they run at 0.25◦ resolution instead 
of 1◦ for the two last (CLM and VIC). The temporal resolution of GLDAS-Noah is 3 h while GLDAS-CLSM provides daily estimations.

A.9. Modern-Era Retrospective analysis for research and applications v2 (MERRA-2)

MERRA-2 (GMAO, 2015; Gelaro et al., 2017) is a reanalysis dataset produced by the NASA Global Modeling and Assimilation Office (GMAO). It 
uses a data assimilation system to incorporate various ground-based and remotely sensed observation datasets within the Goddard Earth Observing 
System version 5 (GEOS-5) general circulation model (Rienecker et al., 2008; Molod et al., 2015). The land surface component is computed with the 
CLSM (Ducharne et al., 2000; Koster et al, 2000) model. The variables, including ET, are distributed hourly at a 0.5◦ by 0.625◦ resolution.

A.10. FLUXCOM-RS

The FLUXCOM initiative (Jung et al., 2019, 2020) provides gridded surface flux products globally. The concept is to upscale FLUXNET flux tower 
measurements (Pastorello et al., 2020) with machine learning methods (Tramontana et al., 2016). These upscaling methods use satellite remote 
sensing and meteorological data as inputs. They were trained using field measurements from 224 flux tower beforehand corrected from energy balance 
non-closure using three correction variants. Two versions of products are delivered by considering different setups of input drivers. The FLUXCOM-RS 
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product fluxes are estimated using exclusively MODIS remote sensing data in the upscaling methods. It allows for a precise spatial resolution (0.0833◦) 
but with an 8-day temporal resolution and a reduced timespan (2000–2015). The FLUXCOM-RS + METEO uses the gridded meteorological data 
combined with mean seasonal cycles derived from MODIS remote sensing data. This setup allows for a better temporal resolution (day) and a greater 
timespan (1980–2013) but with a coarser spatial resolution (0.5◦). As the spatial resolution is lower and the timespan only goes to 2013 for this 
product, only the FLUXCOM-RS is used in this study.

A.11. Derive Optimal linear combination evapotranspiration (DOLCE)

DOLCE (Hobeichi et al., 2018) is a monthly 0.25◦ gridded ET product generated by computing a linear combination of several existing ET products. 
The method consists in an ensemble weighting and rescaling technique that allows the linear combination of the ensemble members. The aim is to 
minimize the mean square error when compared to a dataset composed of ground measurements acquired on 260 flux tower sites from different global 
and regional flux tower networks. These measurements have been previously corrected from energy imbalance using the Bowen Ratio method (Twine 
et al., 2000). Two versions of the DOLCE products are used in this study. DOLCE v2.1 (Hobeichi, 2020) combines the following datasets: BACI 
(Bodesheim et al., 2018), FLUXCOM-RS and RS + METEO (Jung et al., 2019, 2020), ERA5-Land (Muñoz-Sabater et al., 2019, 2021), GLEAM versions 
3.3a and 3.3b (Miralles et al., 2011; Martens et al., 2017) PML-CSIRO (Zhang K. et al., 2016), PSLH, MOD16A2 (Mu et al., 2011), SEBS (Su, 2002) and 
SRB-GEWEX (Cox et al., 2017). On the other hand, DOLCE v3.0 (Hobeichi, 2021) only combines 4 datasets: ERA5-Land, FLUXCOM-RS and RS +
METEO and GLEAM v3.5a and 3.5b, in order to ensure temporal consistency over the entire proposed period (1981–2018).

A.12. Reliability ensemble averaging (REA)

The REA ET product (Lu et al., 2021) is based on the weighed combination of ECMWF ERA5 (Hersbach et al., 2020), GLDAS2-Noah (Beaudoing and 
Rodell, 2020; Rodell et al., 2004) and MERRA2 (Gelaro et al., 2017) estimations using Reliability Ensemble Averaging (REA) method considering both 
model performance and model convergence as reliability criteria. Model convergence is based on the distance between the ET product ensemble 
member and the ensemble average. Model performance is the bias between simulated ET and a reference. Instead of flux tower measurements, REA 
used GLEAM v3.0 (Martens et al., 2017) ET estimates as reference allowing a merging at pixel scale. REA ET are provided at 0.25◦ spatial resolution 
and daily timescale. 
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Fig. B1. Temporal series of the products at the Niakhar flux station over the 20182021 period

Data availability

Datasets are available on their producers sites, indicated by the links 
provided in the article
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Amogu, O., Descroix, L., Yéro, K.S., Le Breton, E., Mamadou, I., Ali, A., Vischel, T., 
Bader, J.-C., Moussa, I.B., Gautier, E., Boubkraoui, S., Belleudy, P., 2010. Increasing 
River Flows in the Sahel? Water 2, 170–199. https://doi.org/10.3390/w2020170.

Andam-Akorful, S.A., Ferreira, V.G., Awange, J.L., Forootan, E., He, X.F., 2015. Multi- 
model and multi-sensor estimations of evapotranspiration over the Volta Basin, West 
Africa. Int. J. Climatol. 35, 3132–3145. https://doi.org/10.1002/joc.4198.

Anderson, M.C., Kustas, W.P., Norman, J.M., Hain, C.R., Mecikalski, J.R., Schultz, L., 
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