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Accurate small signal simulation of superconductor
interconnects in SPICE

Paul le Roux, Coenrad Fourie, Sasan Razmkhah, Pascal Febvre

Abstract—Superconductor electronics is gaining traction as the
increasing density of integration of recent and future digital
circuits pushes the limits of available simulation models. Design-
ers often make assumptions in the behavioral models of circuit
elements when simulating circuits. For instance high-frequency
effects have been neglected so far in the design of superconductor
digital circuits, while much has been done in the past to model
them. Indeed these effects had little influence on the accuracy of
digital circuits simulations until recently. The increase in clock
frequency, combined with longer paths between cells and higher
yield requirements for large scale circuits fabrication, has led to
the need of more accurate models, including in particular high
frequency effects such as quasi-particle losses. To do so, this work
uses a state-space model that describes the circuit under study
with internal state variables and a set of first-order differential
equations. We extract the state-space model while analytically
enforcing the DC requirements of superconductors that are
required to account for flux-trapping. The model accurately traps
flux at DC, and given the model is fitted with enough poles, the
high-frequency effects are also accurate relative to the reference
model. The high-frequency effects have been investigated on a
practical circuit: a long-distance Passive Transmission Line (PTL)
designed for the high-density MIT Lincoln Labs SFQ5ee process.
Results obtained in the time domain allow to observe the effects
of dispersion of pulses traveling on long paths of PTLs. Indeed
the energy of voltage pulses is sufficient to break Cooper pairs
for the highest clock frequencies.

Index Terms—Superconductor electronics, integrated circuits,
passive circuits, circuit analysis

I. INTRODUCTION

The high-frequency behavior of superconductor transmis-
sion lines has been investigated in the past for specific con-
figurations [1]–[4], based on parameters available at the time.
Smaller dimensions of contemporary superconductor circuits
have led us to re-examine previous assumptions. The require-
ment for accurate time-domain circuit simulation models for
digital circuits has been brought about by the development
of complex superconductor digital circuits. Previous accurate
time-domain methods utilized Fourier transforms to determine
time-domain responses [2], which is impractical for large scale
circuit simulations. We have recently developed a new quasi-
transverse magnetic(TM) numerical method to calculate the
properties of superconductor transmission lines [5]. In this
work, we will fill the gap between high-frequency supercon-
ductor frequency responses and time-domain circuit models.

We assume the frequency response of PTLs is considered
prior knowledge, but for specific examples we use the PTL
dimensions and the response obtained from our previous work.
First, the per-unit-length parameters previously calculated have
to be converted into a form that relates to voltage and current.

The PTL is a frequency-dependent transmission line. The
electrical response can be analytically described by solving the
telegraph equations. The transmission line admittance, from
[6], is given by

YTL =

[
1

ZL tanh(γl)
−1

ZL sinh(γl)
−1

ZL sinh(γl)
1

ZL tanh(γl)

]
, (1)

where ZL is the characteristic impedance of the line, γ its
propagation constant, while l is its length. Both ZL and γ are
frequency-dependent.

In this work we present superconducting vector fitting,
which extends traditional vector fitting to exactly include
superconductor effects. The superconductor vector fitting al-
gorithm finds a rational polynomial to the existing supercon-
ductor response. The rational polynomial approximation, or
state-space system, can be converted into an equivalent SPICE
model.

II. SANATHANAN KOERNER ITERATION

Linear time-invariant systems, such as PTLs, can be ap-
proximated using a rational polynomial function [7]. Finding
a rational approximation from measured or reference informa-
tion can be seen as a minimization problem, where the error
between the rational model and the reference data is minimized
[8], [9],

E(s) = H(s)−Hfit(s) (2)

= H(s)− N(s)

D(s)
. (3)

The minimization problem cannot be efficiently solved with
standard black box minimization techniques as small shifts in
the denominator can cause large variations in the error [8],
[9]. To overcome this, one can iteratively linearize the function
using the previous set of poles [8]–[10],

E′(s) =
E(s)Dn(s)

Dn−1(s)
=
H(s)Dn(s)

Dn−1(s)
− Nn(s)

Dn−1(s)
. (4)

This iteration scheme, shown in equation (4), is known as
Sanathanan-Koerner iteration [8]. A weighting term can also
be added to equation (4) to assign relative importance. Each
iteration is a linear least-squares problem,

0 ≈ w(s)H(s)Dn(s)

Dn−1(s)
− w(s)Nn(s)

Dn−1(s)
. (5)



The numerator coefficients are also solved in (5), but after
every iteration a newer and better set of poles is available.
Once the poles have been found, the numerator should be
updated again with the final poles. After iteration n, the
minimization of (3) corresponds to the solution of the overde-
termined weighted set of equations

H(s) ≈ w(s)N(s)

Dn(s)
. (6)

This method can be easily extended to handle vector-valued
functions [9], [10].

During the pole relocation routine, we used orthogonal
basis functions to speed up convergence and avoid numerical
stability issues [11]. For the final fitting, we used the standard
rational basis functions to reduce the size of the final state-
space matrices [9].

III. SHORTCOMING OF VECTOR FITTING

Vector Fitting, unfortunately, cannot directly be applied to
superconductor frequency responses. We illustrate this short-
coming through an example showcasing the response of a short
PTL segment. We used the cross-sectional PTL dimensions of
our previous work [5], and varied the length of the PTL. We
started by looking at a 10 µm-long PTL.

0 250 500 750 1000 1250 1500

Frequency [GHz]

−0.10

−0.05

0.00

0.05

0.10

<
{Y
}

Y11, Y22

Y12, Y21

0 250 500 750 1000 1250 1500

Frequency [GHz]

−5

0

5

=
{Y
}

Y11, Y22

Y12, Y21

Fig. 1. Reference admittance of a 10 µm-long PTL.

Fig. 1 shows the high-frequency response of a 10 µm-long
PTL. The standard Vector Fitting routine finds a rational
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Fig. 2. SFQ pulse waveform produced by a DCSFQ cell used as a test signal.
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Fig. 3. Inductive response to the SFQ pulse test waveform.

approximation which is visually indistinguishable from the
reference plot. Due to the short distance of the PTL, the
attenuation is almost negligible. The short PTL can, therefore,
be approximated with an inductor segment. The fitted model
can be converted to an equivalent SPICE circuit and simulated
[12]–[14]. The fitted model’s response can then consequently
be compared with the inductor model’s response. We extracted
an SFQ pulse from a DCSFQ circuit [15] to use as a test signal
shown in Fig. 2.

The inductor’s short circuit response to the SFQ pulse
is shown in Fig. 3. The vector fitted model’s short circuit
response to the SFQ pulse is shown in Fig. 4.

The vector fitted model does not trap flux and continues
to slowly decay until it reaches a zero current steady state.
This is because a superconductor has zero DC resistance,
which is not enforced in the vector fitted model. The standard
vector fitting algorithm will therefore never exactly enforce
the superconductor properties.

IV. SUPERCONDUCTOR VECTOR FITTING

The inaccuracies of fitting a function with a pole outside
the fitting range are already mentioned in [9]. We observe
precisely the error that is observed in [9]. The fit is accurate
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Fig. 4. Vector Fitted response to the SFQ pulse test waveform.

in the fitting range with large errors outside of the fitting range
around the external pole.

It would be tempting to fit the impedance with w = 0
included in the fitting range, but the system of equations is
enforced in a least-squares sense. The impedance would not
be exactly 0, which is the requirement for the model to behave
like a superconductor. For superconductor vector fitting the
superconducting effect has to be exactly enforced.

Given an n-port system where port i is connected to the
ground with a superconductor then

lim
ω→0

Yii(ω) = lim
ω→0

1

jωLii
= −j∞, (7)

where Lii is the equivalent inductance to ground of the ith
port. The ports of the admittance are considered shorted, and
(7) is also true if it is connected with a superconductor to
another port.

Given an n-port system where port i is connected with a
superconductor to ports jx then

lim
ω→0

Yij(ω) = lim
ω→0

−1
jωLij

= j∞. (8)

We can therefore subtract the DC inductance response from
the superconductor to get a response which can then be fitted
using standard vector fitting techniques. This is analogous to
modelling a black box system with a known inductor system
in parallel with another black box system.

We want to reformulate the weighted fitting function with
a known parallel system. We assume Hfit is the summation
of an unknown system, H ‘

fit and a known system, Hprior.
By subtracting the known system multiplied by the weight
function from (9) we manipulate (9) into

wHfit ≈ wH (9)

wH ‘
fit ≈ w(H −Hprior). (10)

The final state-space system can be constructed by adding
the two in parallel. The state-space system is given by
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Fig. 5. Superconductor Vector Fitted response to the SFQ test waveform

sX(s) =

[
Aprior 0

0 A

]
X(s) +

[
Bprior

B

]
U(s), and (11)

Y(s) =
[
Cprior C

]
X(s) + (Dprior +D)U(s). (12)

We can now fit superconductor responses and exactly en-
force the required DC conditions. Using the newly developed
superconductor vector fitting we again fit the 10 µm long PTL
and excite it using our test signal.

Fig. 5 shows that the model correctly traps flux and has zero
DC-losses. We now move on to a more complex 1mm-long
PTL example.

Fig. 6 shows the reference admittance of the 1mm-long
PTL. The superconductor vector fitting algorithm finds a fit
which is visually indistinguishable from the curve of Fig. 1.

V. MODALITY

For the model to be accurate under all loading conditions,
the model’s eigenvalues have to be accurate [16]. To investi-
gate the model’s modal accuracy, we calculate its inverse to
get the impedance and compare it to the expected impedance.
Fig. 7 and Fig. 8 show respectively the reference impedance
of the 1mm-long PTL, and the impedance obtained by the
superconductor vector fitted method. One sees that this second
impedance deviates significantly from the expected curve, as
displayed in Fig. 9 with the eigenvalue error of the 1mm
long PTL model. This extreme error instils doubt into any
time-domain simulation results and has to be addressed.

Existing modal vector fitting techniques [16], [17], cannot
be applied verbatim to superconductor vector fitting. Since the
PTL is a reciprocal, and symmetrical 2-port system, we can
use the real transform method [16].

T2 =

[
− 1√

2
1√
2

1√
2

1√
2

]
(13)

The transform matrix, T2, is unitary and symmetric. The
transformed admittance of the transmission line is then
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Fig. 6. Reference admittance of a 1 mm-long PTL

T2 ·YTL ·T2 =

[
1
ZL

coth(γl2 ) 0

0 1
ZL

tanh(γl2 )

]
, (14)

where the diagonal entries are the eigenvalues of the re-
sponse. To enforce the superconductor response we, again,
subtract the superconductor response,

T2 ·YTL ·T2 =

[
1
ZL

coth(γl2 )−
2

ZLγl
0

0 1
ZL

tanh(γl2 )

]
.

(15)
To enforce modal accuracy, the eigenvalues should be

weighted inversely proportional to their magnitude before the
superconductor effect was subtracted. Looking at the second
eigenvalue, we see that

lim
ω→0

{
1

ZL
tanh(

γl

2
)

}
= 0. (16)

This implies that the weight function should be infinite
at DC. Alternatively stated, the second eigenvalue should be
exactly zero. Conveniently, the first eigenvalue is also zero
after the superconductor effect has been subtracted.

lim
ω→0

{
1

ZL
coth(

γl

2
)− 2

ZLγl

}
= 0 (17)

0 250 500 750 1000 1250 1500

Frequency [GHz]

−103

−102

−101

0

101

102

103

<
{Z
}

Z11, Z22

Z12, Z21

0 250 500 750 1000 1250 1500

Frequency [GHz]

−103

−102

−101

0

101

102

103

=
{Z
}

Z11, Z22

Z12, Z21

Fig. 7. Reference impedance of a 1 mm-long PTL

We now want to reformulate the weighted fitting problem to
enforce zeros at the origin. We assume Hfit has a zero at the
origin and can be defined as Hfit = sH ‘

fit. By multiplying
the right hand side of (9) with 1 = s

s we manipulate (9) into

(sw)H ‘
fit ≈ (sw)

H

s
. (18)

Equation (18) corresponds to fitting the integrated system.
The integrated system can then be differentiated to get the
final system.

We, therefore, need to find the state space representation of
a differentiated system. We start from the transfer function to
derive the state space representation of a differentiated system.

H(s) = C(sI−A)B+D

h(t) = CeAtB+Dδ(t)

d

dt
h(t) = CAeAtB+

d

dt
Dδ(t)

sH(s)− h(0+) = CA(sI−A)B+ sD−Dδ(0+)

sH(s) = CA(sI−A)B+CB+ sD

(19)

We now have everything we need to implement a program
that can determine a PTL model while enforcing modal accu-
racy. Fitting the PTL using modal superconductor vector fitting
we get a model which is, again, visually indistinguishable
from the reference admittance. The model’s impedance is also
visually indistinguishable from the reference impedance.
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Fig. 8. The impedance of the 1 mm-long PTL Superconductor Vector Fitted
model.
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Fig. 9. Eigenvalue error of the 1 mm-long PTL Superconductor Vector Fitted
model

Fig. 10 shows the eigenvalue error of the Modal Supercon-
ductor Vector Fitted PTL model. From the error plot, we can
see that most of the error sits around the gap frequency. This
is due to the discontinuous derivative at the gap frequency,
which cannot be exactly enforced by any rational polynomial
model. Fortunately, the error is still small, and SFQ pulses
have little energy in the bandwidth around the gap frequency.
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Fig. 10. Eigenvalue error of the 1 mm-long PTL Superconductor Modal
Vector Fitted PTL model
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Fig. 11. Conductance eigenvalues of the 1 mm-long PTL Superconductor
Modal Vector Fitted model.

VI. PASSIVITY

For a time-domain model to be stable, it must be pas-
sive [18]. Non-passive circuits can cause result in runaway
amplification of numerical error, which prevents any useful
simulation. We must, therefore, ensure our model is passive
in addition to the above accuracy requirements.

For a system to be passive, the eigenvalues of the conduc-
tance should be positive.

eig(<{Y}) >= 0 (20)

Fig. 11 shows the conductance values of superconductor
modal fitted PTL. It is clear that our model is currently not
passive and generates energy in the low GHz range.

Fortunately, the standard passivity enforcement techniques
that are used in standard vector fitting can be directly applied
to the modal superconductor vector fitting algorithm. Many
methods exist for passivity enforcement [18]–[21]. Due to its
effectiveness, we will use residue perturbation to passivate
the PTL model. When performing the final fit, linearized
constraints are added to ensure that the eigenvalues of the
conductance are positive [18].
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We used the half-size singularity test matrix [22] to de-
termine the frequency bands in which the passivity condition
is violated. We added constraining equations in the centre of
each violation band. The resulting constrained least-squares
problem is a special case of the quadratic programming prob-
lem. We used cvxopt [23] to solve the quadratic programming
equivalent of the constrained least-squares problem. If the
model still has passivity violations, the residue is perturbated
again.

Fig. 12 shows the conductance values of the passivated
superconductor modal fitted PTL. The model no longer has
any passivity violations.

VII. RESULTS

With an accurate time-domain model, we can investigate
how long-distance PTLs shape SFQ pulses.

Fig. 13 shows the SFQ pulse as it travels on a PTL.
We used JoSIM [24] for the simulation. The pulse spreads
and develops an oscillating tail. It deviates significantly from
an ideal transmission line response in which the waveform
remains unchanged. This is in line with results obtained using
the Fourier transform [2].

We can also see that the SFQ pulse remains quantized. Even
though the SFQ pulse remains quantized, it does dissipate
energy as it moves along the line. This dissipation in energy
will directly influence the ability of a receiving junction to
trigger.

VIII. CONCLUSION

We have demonstrated Superconductor Vector Fitting as an
extension to standard Vector Fitting. With the Superconductor
Vector Fitting algorithm, we can find an accurate, rational
approximation of a PTL from the PTL’s frequency response.
The rational approximation can then easily converted into a
SPICE subcircuit. In addition, we have shown how to enforce
modal accuracy in the superconductor case, and that standard
passivization algorithms are applicable. The resulting SPICE
subcircuit was used to investigate the effect that the PTL has
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Fig. 13. Voltage and phase of a travelling SFQ pulse along the PTL, simulated
with the Passivated Superconductor Modal Vector model

on an SFQ pulse. The pulse was shown to remain quantized,
but lose energy and spread out as it travels along on a PTL.
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