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Denoising of Geodetic Time Series Using
Spatiotemporal Graph Neural Networks:

Application to Slow Slip Event Extraction
Giuseppe Costantino , Sophie Giffard-Roisin , Mauro Dalla Mura , Senior Member, IEEE, and Anne Socquet

Abstract—Geospatial data have been transformative for the
monitoring of the Earth, yet, as in the case of (geo) physical mon-
itoring, the measurements can have variable spatial and temporal
sampling and may be associated with a significant level of pertur-
bations degrading the signal quality. Denoising geospatial data is,
therefore, essential, yet often challenging because the observations
may comprise noise coming from different sources, including both
environmental signals and instrumental artifacts, which can be
spatially and temporally correlated, thus hard to disentangle. This
study addresses the denoising of multivariate time series acquired
by irregularly distributed networks of sensors, requiring specific
methods to handle the spatiotemporal correlation of the noise
and the signal of interest. Specifically, our method focuses on the
denoising of geodetic position time series, used to monitor ground
displacement worldwide with centimeter-to-millimeter precision.
Among the signals affecting global navigation satellite system
(GNSS) data, slow slip events (SSEs) are of interest to seismologists.
These are transients of deformation that are weakly emerging com-
pared to other signals. Here, we design SSEdenoiser, a multistation
spatiotemporal graph-based attentive denoiser that learns latent
characteristics of GNSS noise to reveal SSE-related displacement
with submillimeter precision. It is based on the key combination
of graph recurrent networks and spatiotemporal Transformers.
The proposed method is applied to the Cascadia subduction zone,
where SSEs occur along with bursts of tectonic tremors, a seismic
rumbling identified from independent seismic recordings. The ex-
tracted events match the spatiotemporal evolution of tremors. This
good space–time correlation of the denoised GNSS signals with the
tremors validates the proposed denoising procedure.

Index Terms—Deep learning, denoising, geodesy, geospatial
data, global navigation satellite system (GNSS), global positioning
system (GPS), graph neural networks, multistation, seismology,
slow slip events (SSEs), spatiotemporal, spatiotemporal attention,
time-series analysis.
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I. INTRODUCTION

G EOSPATIAL data represents a crucial resource for the
efficient acquisition of large-scale measurements, pro-

viding a detailed view of Earth processes across numerous
applications. In the past few decades, the use of geospatial
data [e.g., satellite imagery, global navigation satellite system
(GNSS), seismic data, climate data] has significantly contributed
to remote sensing, both for the monitoring of the environ-
ment [1] and natural processes [2], [3], [4], and for urban [5] and
infrastructure development [6], [7]. Geospatial data typically
incorporates information on the location of target objects with
the temporal tracking of some of their characteristics, allowing
for spatiotemporal analysis. However, these measurements are
strongly affected by various perturbations. These noises can be
spatially and temporally correlated, making it challenging to
extract useful information, i.e., to separate the characteristics of
target objects from those of external perturbations. Depending
on the specific application, the raw geospatial measurements can
be modeled as a mixture of several sources, e.g., atmospheric
interference, uncertainties and artifacts related to the sensor
measurements, and different tectonic or topographic signals.
Separating these mixed sources can be a difficult task, yet it
is key to performing successful signal extraction. Depending on
the structural type of geospatial data (e.g., images, time series),
different noise components arise, which require dedicated post-
processing, such as in the case of image-like data, e.g., satellite
images, or time-series-like data, e.g., GNSS data. In this article,
we focus on time-series-like data and, more specifically, we
address the problem of denoising multivariate time series in a
multistation setting. We target our analysis on the denoising
of GNSS position time series and we apply our method to the
extraction of transients of aseismic deformation. Albeit designed
for this specific task, the developed framework is general enough
to be applied to any time series denoising problem with multiple
measurement sites (array of sensors) and multiple nonindepen-
dent components or channels (multivariate), e.g., GNSS data,
seismic data, gravimeters, tiltmeters, strainmeters.

GNSS is an essential tool in modern geodesy, providing
accurate and precise positional information that has transformed
our understanding of Earth’s shape, movement, and processes.
Using satellite constellations, time series of displacement rel-
ative to a GNSS site (antenna) are calculated, which can have
high precision, usually of the order of the millimeter. GNSS
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time series usually fall into two categories: high-rate GNSS,
typically sampled at 5-min intervals, and daily GNSS, where
measurements are averaged to provide a daily displacement
value. GNSS sites are arranged as a network of antennas, re-
sulting in uneven regional sampling that is sparser than satellite
images, for instance.

The use of the GNSS has been transformative for various
remote sensing applications, such as the observation and mon-
itoring of soil moisture [8], [9], landslide monitoring [10], and
hydrology-related applications [11], opening a large number of
perspectives both toward societal and environmental advance-
ments [12], [13]. Also, several studies focus on improving the
precision of the GNSS positioning [14] as well as extracting
statistics from the noise affecting the data [15]. Recently, ad-
vanced signal processing methods (among which machine learn-
ing) have been explored for subsurface exploration with promis-
ing advances toward better imaging the Earth structure [16]. In
this direction, deep learning-based methods have been widely
used in remote sensing as a way to boost traditionally employed
strategies as well as to extract finer grained knowledge from
massive datasets. Diverse studies have used machine and in
particular deep learning in geoscience, e.g., for the detection
of volcano-seismic signals [17], [18], [19], [20], seismic signal
restoration [21], and full-waveform inversion [22]. Some works
also use GNSS data, e.g., for probabilistic source characteriza-
tion [23] or time series regression [24]. However, the number of
studies combining deep learning with GNSS data for tectonics
is still limited, probably due to its scarcity (in space, but also
in time: the acquisition frequency is between an hour and one
day) and because proper modeling of the noise in the GNSS
positioning remains a challenge.

Position time series derived from GNSS are affected by dif-
ferent signals generally characterized by spatial and temporal
correlation. The challenge in GNSS data denoising lies in de-
veloping a method able to learn how to decorrelate these signals
by separating what we consider as noise and the different signals
from each other. Two major families of signals can be identified
as follows. 1) Geophysical (e.g., tidal or hydrological loading)
and tectonic signals ( e.g., earthquakes and related processes,
such as aseismic deformation and postseismic relaxation). 2) Un-
certainties in the position (e.g., errors on the calculation of the
orbits of the satellites, clock synchronization, multipath errors,
ionospheric, and tropospheric delays [25], [26], [27]). Most
studies use parametric models at each station [28], [29] or blind
source separation methods [30] to model signals constituting
the GNSS position, yet these methods may not be able to fully
reproduce the complexity of the signals.

Recent works have shown promising results in seismology
to address the problem of denoising seismic waveforms or
high-rate GNSS time series for seismological applications. Saad
et al. [31] developed a deep autoencoder to attenuate the random
noise affecting time-series seismic data. The model works by
first encoding the time series to several levels of abstraction
and then decoding the compressed information to reconstruct
the noiseless seismic signal. Zhou et al. [32] designed a deep
learning-based decomposition/denoising method named Deep-
Denoiser. The method is a U-Net trained to learn a sparse

representation of the data in the time–frequency domain and
nonlinear-mapped masks to separate the signal of interest from
the noise. Thomas et al. [33] used a modified version of DeepDe-
noiser adapted to work with three-component high-rate GNSS
data. They test three versions of DeepDenoiser to account for
amplitude distortions and phase differences. All the previous
methods employ single-station time series as input, to provide
clean time series for each station separately. However, the main
limitation arising from the use of single-station methods is that
the spatial variability of the data is not exploited. Multistation
methodologies have been also explored in seismology as an
attempt to take into account the spatial coherency of the mea-
surements, for several tasks in which this would translate into
an improvement of the performance [34], [35].

In the case of GNSS data, and especially for the identification
of slow slip events, exploiting the spatial variability of the GNSS
position becomes critical because of the lower signal-to-noise
ratio compared to seismic data or high-rate GNSS. Moreover,
both the GNSS noise perturbations and the interesting tectonic
signals are spatially and temporally correlated and, therefore,
the spatial and temporal analysis should not be decoupled. In
previous works, we tested several GNSS data representations
aiming to explicitly inject spatial information in the context of
earthquake characterization [36] and we developed a multista-
tion attentive deep neural network for slow slip event identifica-
tion [37]. We found that multistation approaches achieve better
performance when targeting the ground deformation with daily
position GNSS time series and should be generally preferred
over single-station methods.

The aforementioned approaches rely on single-station analy-
sis, which represents a limitation for GNSS, being the measured
displacement correlated in the spatial and temporal dimensions.
In this work, we aim to develop a deep learning-based method for
the denoising of raw GNSS data with a multistation approach.
One way to deal with sparse GNSS measurements is to arrange
them as a matrix, where each row is a time series, sorted for
example by latitude (or longitude), and to use 2-D convolutional
neural networks (CNNs), specifically developed for image-like
data [see the representation in Fig. 1(a)]. With this method, 2-D
convolutions (time and station dimension) can model both local-
and large-scale spatial relationships between stations, but no
explicit information coming from the geometry of the GNSS
network is enforced: one out of the two spatial dimensions is
lost. To this end, spatiotemporal graph neural network (STGNN)
methods [38], which, to the best of our knowledge, have never
been applied to remote sensing, can learn these relationships and
take full benefit of the spatial information, with the potential
of outperforming the 2-D-CNN approach. However, developing
such models requires setting up explicit joint processing of
the information in the temporal and spatial domains. Classical
graph-based approaches rely on message passing to propagate
the information between neighboring nodes. Time-varying fea-
tures can be handled by using a recurrent neural network (RNN)
cell as an aggregation function, e.g., long short-term memory
(LSTM) or gated recurrent unit, but extending this mechanism
to multivariate time series analysis for spatiotemporal methods
is not straightforward since GNSS measurements usually have
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Fig. 1. Overview of the synthetic data generation. (a) Each row of the matrices represents a synthetic detrended GNSS position time series (E-W component)
color-coded by the amplitude of displacement, created using the proposed synthetic data generation technique. Starting from the left: artificial noise n(t), modeled
SSE signals d(t), synthetic GNSS time series ξ(t) = n(t) + d(t). (b) Red triangles represent the location of the GNSS stations (MAGNET GNSS network) used in
this study. The arrows show the static synthetic displacement modeled at each GNSS station. In this example, the SSE signal is modeled through three dislocations,
shown with different colors (red, green, blue), slipping in an elastic half-space with a different slip amount, slip initiation time, and slip duration. The synthetic
displacement time series associated with each dislocation are identified by rectangles in the d(t) matrix in the (a) panel with the same color. The light blue contour
represents the SSE area, e.g., the locations of the generated synthetic slow slip events.

more than one temporal channel (here, we use North–South
displacement and East–West displacement components). One
solution is to consider the different components as statistically
independent and enforce classic message-passing approaches
on each component independently. Yet, the assumption of inde-
pendence between components is too strong since the different
GNSS components are generally correlated.

Spatiotemporal approaches have thus been developed to
jointly rely on multiple sensor measurements and multiple com-
ponents. They can be classified in RNN-based and attention-
based methods, and are capable of dealing with 3-D data (here,
[stations, time, directions]). The first family of approaches uses
RNNs to extract temporal features [39], while the second fo-
cuses on attention mechanisms in the time and/or space di-
mension [40]. Also, spatiotemporal methods usually consider
that the graph connectivity (adjacency matrix) is available be-
forehand. Most of the previous works compute the adjacency
matrix based on distance metrics (e.g., traffic forecasting) [38]
or prior information on the nodes (e.g., skeleton-based action
recognition) [40]. However, relying on precomputed connec-
tivity might not be the optimal choice, since additional edges
could be learned from the data, and superfluous connections
could also be removed. Moreover, graph connectivity is not
always available, as in our case, and computing a satisfactory
adjacency matrix is challenging since it could require connecting
nodes both within a homogeneous mesh and with long-range
connections, which are not easy to model. Hence, the solution
of learning the adjacency matrix during the training, following
the same approach by Bai et al. [39], is often relevant.

GNSS time series are affected by data gaps and missing
stations, making it necessary to interpolate the missing infor-
mation or to set up specific techniques to account for data
discontinuities effectively. Here, we use static graphs and set
the data gaps to zero (as in our previous work [37]). Dynamic
graphs (e.g., [41] and [42]) offer another significant strategy to

define finer and more robust spatiotemporal modeling. However,
it is not straightforward to make existing STGNNs dynamic, and
computationally expensive because a distinct graph needs to be
built at each time step. Here, we will focus on static graphs.

In this article, we apply the denoising of GNSS position time
series to identify slow slip events. These tectonic events are
characterized by slip on faults, as are earthquakes, yet, unlike
them, they do not produce ground shaking and they last over
days to years. However, most of the occurrences of slow slip
transients have low amplitude and remain undetected, since other
signals (either geophysical signals or noise) prevail in the GNSS
time series. Thus, this represents a relevant case study for the
denoising of GNSS data, which can be extended to many other
applications dealing with the extraction of low-amplitude signals
mixed with other noise components.

Here we present SSEdenoiser, a spatiotemporal graph-based
deep neural network designed to extract spatiotemporal features
from multistation raw (daily) GNSS position time series and to
leverage them to isolate the aseismic slip contribution from the
rest of the tectonic and nontectonic signals.

The originality and novelty of this work lie in 1) the coupled
processing of the spatial and temporal information through a
STGNN with a learned graph connectivity, aimed to uncover
hidden relationships between GNSS sites based on the GNSS
recordings themselves and 2) the use of a spatiotemporal trans-
former, aimed to filter the relevant information encoded by the
graph neural network both in space and time.

The rest of this article is organized as follows. In Section II,
we present the methodology. We first introduce our overall
approach, then we describe the data generation strategy and the
architecture of the proposed model. In Section III, we present
the experimental results, in terms of: results on the synthetic data
set (with a comparison with several baseline methods), an abla-
tion study to test the robustness of the proposed methodology,
analysis of the learned graph connectivity, results on real GNSS
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data in the Cascadia subduction zone and qualitative comparison
between the proposed approach and a previous single-station
slow slip event detector for the Cascadia subduction zone. Fi-
nally, Section IV concludes this article.

II. METHODOLOGY

A. Overall Approach

In this study, we build SSEdenoiser, a multistation deep
learning-based method aimed at denoising raw GNSS position
time series to extract aseismic transients of deformation. We
train SSEdenoiser on synthetic data because of the paucity of
previously catalogued slow slip events, by following the same
approach previously designed for slow slip event detection [37].
We generate synthetic data by relying on an underlying additive
model. The displacement ξi(t) ∈ RNc at a given station si, with
Nc the number of components, is obtained as the sum of a noise
term ni(t) and a synthetic slow slip signal di(t)

ξi(t) = ni(t) + di(t). (1)

We generate the noise term (here, everything that is not the
displacement of interest) n(t) from raw GNSS time series using
a principal component analysis (PCA) and a Fourier phase
randomization and amplitude matching technique, as described
in [37]. As a result, the generated noise will have the same spatial
covariance and the same spectral and statistical characteristics
as the real noise. We generate the synthetic slow slip signal
d(t) by relying on known characteristics of slow slip events and
by drawing random events along the subduction interface, with
various nuances of signal-to-noise ratio and randomly generated
physical parameters, having a depth between 20 and 40 km
(with ±10 km variability). We design the database to contain
four different settings: (zero events, one event, two events, three
events). The final database includes 25% of each setting. We
detail the data generation strategy in the following paragraph.

SSEdenoiser is a deep denoising neural network, made of
the combination of a graph-based RNN, extracting spatial and
temporal features from the data in a multistation fashion, and
a spatiotemporal transformer, designed as a cascade of tem-
poral and spatial self-attention, capable of focusing on precise
space–time relationships. We train the method to extract the
slow slip event signals in a temporal window with a fixed size
of 60 days. We test the method both on synthetic and real data.
On synthetic data, we feed 60-day samples to SSEdenoiser to
test the performance both on negative samples (zero events in
the window) and on positive samples (up to three events in the
window). On real data, we use a sliding window approach, by
collecting the denoised data for each window and by aggregating
them afterward. The rationale for choosing the window length
follows the same motivations as our previous work [37].

B. Synthetic Data Generation

In [37], we introduced SSEgenerator, a method for generating
synthetic GNSS noise time series and synthetic slow slip events,
based on synthetic surface displacements output by physical
models. Here, we improve and adapt this method for a denoising
pipeline and we detail the technique in the following paragraphs.
We present an overview of the synthetic data generation in Fig. 1.

We use 200 raw GNSS position time series from the Cascadia
subduction zone from 2007 to 2022. We choose the stations
with the least missing data [37]. As opposed to SSEgenerator,
we use the full 15-year sequence to generate the geodetic noise,
to have longer sequences and thus a more realistic artificial noise
time series. Moreover, we allow each sample to belong to one
out of four different settings. 25% of the synthetic samples are
considered as negative samples, thus they do not contain any
slow slip event (SSE) signal. These are achieved by training the
model to output a zero-displacement signal, thus focusing on
extracting an enhanced representation of the input noise. When
addressing denoising, this is key to learning the noise structure
at best and can be used to better denoise the positive samples.

The challenge in constructing the slow slip signal di(t) lies
in employing a synthetic displacement model that generates
surface displacements that mimic well the features expected
for slow slip events. To do so, we use Okada [43] equations,
that link the slip on a dislocation buried in an elastic medium
to surface displacements. This allows us to generate synthetic
surface displacements that can resemble the expected physical
properties of slow slip events. Because SSEs can have a complex
source, including variable slip or lateral propagation of the slip
pulse at depth, we impose, for each 60-day window, a variable
number of synthetic dislocations per window between 0 and 3
(25% each), with independent source parameters

We uniformly generate the SSE sources within a band along
the subduction between 20 and 40 km depth [see Fig. 1(b)], with
uniformly generated source parameters (magnitudes uniformly
drawn between 6 and 7, strike and dip angles enforced by the slab
geometry with ±10 km variability on the depth and rake angle
variable from 80°to 100°to produce a thrust focal mechanism).
For more details, we refer the reader to our previous work [37].

The temporal signature of the SSE signals is assumed to be a
logistic function [37]. We allow the SSEs to last between 10 and
30 days. We model the SSE temporal evolution (one component
is shown for simplicity) as follows:

di(t) =
D

1 + e−β(t−t0)
(2)

where D is the static displacement output by the dislocation
model [43], β is associated with the growth rate of the curve
and t0 is the time corresponding to the inflection point of the
logistic function. The value of D modulates the amplitude of
the surface displacement and depends on the source parameters
(e.g., magnitude, depth). By generating surface displacements
corresponding to randomly generated source parameters, we
explore different nuances of signal-to-noise ratio to train the
denoising method. We generate t0 randomly between 0 and
60 days. We obtain β as a function of the SSE duration T ,
which can be rewritten as T = tmax − tmin, where tmax is the
time corresponding to the post-SSE displacement (i.e., D), and
tmin is the pre-SSE displacement (i.e., 0). We set a threshold
γ, such that tmax and tmin are associated with ds(D − γD) and
ds(γD), respectively, and γ = 0.01. We finally obtain

β =
2

T
ln

(
1

γ
− 1

)
. (3)

We generate the SSE duration T as a uniform random variable
from 10 to 30 days. We further extract 60-day windows of noise



COSTANTINO et al.: DENOISING OF GEODETIC TIME SERIES USING STGNNS: APPLICATION TO SSE EXTRACTION 17571

Fig. 2. High-level architecture of SSEdenoiser. GNSS time series are first processed by a graph-based RNN, where temporal features are extracted and spatial
relationships are inferred by learning the adjacency matrix. A spatiotemporal transformer is then used, where temporal and spatial self-attentions attend to the
learned temporal features and the spatial relationships. At the end of the pipeline, a fully connected network reprojects the transformer’s output to the input
dimension to produce the denoised GNSS time series.

ni(t) to be added to the slow slip signals di(t). We also account
for missing data by relying on the data gap distribution of the real
data, i.e., we use the data gap distribution of real data, and we
shuffle it, meaning that a given station will be assigned the data
gap distribution of another station (more details in our previous
work [37]). In this way, the model learns to account for realistic
data gaps with the same number of missing stations as in real
data.

C. Architecture of SSEdenoiser

SSEdenoiser is a deep neural network consisting of two main
modules: a graph-based RNN and a spatiotemporal transformer.
A high-level architecture is provided in Fig. 2.

The graph-based RNN module has been taken from the work
by Bai et al. [39]. The method relies on a learnable adjacency
matrix A, computed as

A = softmax(ReLu(EET )) (4)

where E ∈ RN×dN are learnable node embeddings. N is the
number of nodes in the graph and dN is the node embedding
dimension. We set N = 200, corresponding to the number of
GNSS stations, and dN = 32. The adjacency matrix is learned to
be symmetric, as in the case of undirected graphs. The adjacency
matrix is used by the graph convolutional recurrent unit, having
the following constitutive equations [39]:

z(t) = σ (A [X(t),h(t− 1)]EWz +Ebz) (5)

r(t) = σ (A [X(t),h(t− 1)]EWr +Ebr) (6)

ĥ(t) = tanh
(
A [X(t), r� h(t− 1)]EWĥ +Ebĥ

)
(7)

h(t) = z� h(t− 1) + (1− z)� ĥ(t) (8)

where X(t) and h(t) are the input and output at time t, [·] is
the concatenation operation, σ(·) the sigmoid function and �
the Hadamard (elementwise) product. Wz, Wr, Wĥ, bz, br,
and bĥ are learnable parameters. We set the hidden size of the
recurrent unit to 128 and we use one-hop graph convolution.

The output of the first module, i.e., the output of the last hidden
layer h(t) is then used as input of a Transformer neural network.
Usually, transformers are used to attend either to the temporal or
the spatial dimension. Here, we use a novel approach, consisting
of a cascade of two self-attention mechanisms, one for the tem-
poral and one for the spatial dimension. The proposed strategy
first attends to the temporal dimension. The temporal attention
output is then fed to the spatial self-attention. As a result, the
stacked attentions attend both time and space axes. Mathemat-
ically, we define the temporal αt and spatial αs self-attention
layers [44] as

αt(x) = softmax

(
(Wq,tx)(Wk,tx)

T

√
dk

)
(9)

αs(x) = softmax

(
(Wq,sx)(Wk,sx)

T

√
dk

)
(10)

where x denotes the generic input to the attention layer.
Wq,t,Wk,t and Wq,s,Wk,s are learnable projection matrices
for query and key for the temporal and spatial self-attentions,
respectively. The output of the temporal self-attention layer is
then computed as

ot = αt(x)Wv,tx (11)

and the output of the stacked self-attentions is then computed as

ot,s = αs(ot)Wv,sot (12)

where Wv,t,Wv,s are learnable projection matrices for the
value. We set the output and embedding size of the trans-
former to 128. After the self-attention, we use a dropout layer
to avoid overfitting (dropout rate ρ = 0.1). We do not derive
here the equations of the feedforward network following the
self-attention, nor the normalization layers used inside the self-
attention: we refer the reader to the general transformer formula-
tion [44]. The output of the transformer is then linearly projected
using a linear transformation Wo (fully connected layer) to
output a 2-D (N-S, E-W) denoised time series, obtained from a
weighted average of the previous 128 feature maps, modulated,
during training, by a dropout layer (dropout rate ρ = 0.5). Please
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note that here we use the term “feedforward” instead of “MLP”
by following the original formulation of Vaswani et al.’s [44]
work, indicating a modified MLP that includes skip connections,
layer normalization, and dropout.

The proposed method has a total of 3 396 226 trainable param-
eters, with 3 213 568 parameters associated with the graph-based
RNN module and 182 400 with the spatiotemporal transformer.
The last linear projection layer has 258 trainable parameters.

D. Training Details

The input of SSEdenoiser is given by the time series ξ(t). We
train the model via mini-batch training (batch size of 128) by
minimizing the mean squared error (MSE) between the target
(clean) d(t) and the output (denoised) d̂(t) time series

MSE
(
d(t), d̂(t)

)

=
1

n ·Ns ·Nt ·Nd

n∑
i=1

Ns∑
j=1

Nt∑
t=1

Nd∑
k=1

(
di,kj (t)− d̂i,kj (t)

)2
(13)

where n is the number of samples in the minibatch, Ns is the
number of stations, Nt is the window length (60 days) and Nd

is the number of components (2, N-S, and E-W). We choose the
MSE as error loss since it is a standard regression error loss and it
is effective in penalizing large denoising errors during training.
The training database consists of 60 000 samples, which are split
into training (80%), validation (10%), and test (10%) sets.

We use the validation set to perform the hyperparame-
ter selection, notably of the node embedding dimension dN ,
the size of the hidden state of the recurrent unit hR, and
the embedding dimension of the spatiotemporal transformer
hT . We tested the following parameters for dN , hR, and
hT : [8, 16, 32, 64], [32, 64, 128, 256], [32, 64, 128, 256], respec-
tively. The best parameters were selected as those corresponding
to the lowest validation loss.

III. RESULTS

A. Overall Results on Synthetic Data

We compare SSEdenoiser against both traditional signal pro-
cessing techniques and deep learning strategies. We adopt mov-
ing mean and median filtering as a baseline comparison, with
different kernel sizes, here {3, 7, 15} days. We will refer to
these models as moving_avg_k and moving_med_k, where k
indicates the kernel size. Furthermore, we test the following
two deep learning-based methods, which we will refer to as
single_station_RNN and 2D_conv_u_net.
� single_station_RNN. This model has been adapted from

Xue and Freymueller (2023) [45] and it was originally
intended as a detector of transient deformation signals in
GNSS time series. We modify the last layer to match the
size of the input for our denoising application. The model
applies an RNN with a bidirectional LSTM (BiLSTM)
cell to each station separately and it is followed by two
fully connected layers. We keep the same parameters as

the original model, notably 64 for the BiLSTM embedding
dimension and 16 for the fully connected layer.

� 2-D_conv_u_net. This model works on GNSS time series
stacked to form a matrix representation of dimensions
(Ns, Nt) for each component, where the time series are
sorted by latitude. The idea is to create a multistation
method working on image-like data, since the rows rep-
resent stations that are close in space. To this end, we
develop a standard U-Net architecture following its original
formulation [46] and using four blocks (we will refer to
this as a convolutional block) with 2-D convolution, ReLu
activation, and batch normalization with [32, 64, 128, 256]
feature maps for the contraction path. We interleave the
convolutional blocks with 2-D max pooling layers. We
replace the 2-D convolution and the 2-D max pooling with
2-D transposed convolution and upsampling layers for the
expanding path, respectively. Other approaches could be
used, such as image time series [36], possibly easing the
processing in the spatial domain ( e.g., by spatial convolu-
tions), although dependent on the interpolation method, yet
way more expensive in terms of training time and memory
consumption.

We use the MSE and the mean absolute error (MAE) as error
metrics, which we report along with their standard deviation.
We use the MSE definition already presented in (13). We first
define the squared error relative to the ith sample as

SEi

(
d(t), d̂(t)

)
=

Ns∑
j=1

Nt∑
t=1

Nc∑
k=1

(
di,kj (t)− d̂i,kj (t)

)2
. (14)

The corresponding mean and standard deviation are computed
as

MSE
(
d(t), d̂(t)

)
=

1

n

N∑
i=1

SEi

(
d(t), d̂(t)

)
(15)

σSE =

√√√√ 1

n

N∑
i=1

(
SEi(d(t), d̂(t))− MSE

(
d(t), d̂(t)

))2
.

(16)

The absolute error is defined similarly

AEi(d(t), d̂(t)) =

Ns∑
j=1

Nt∑
t=1

Nc∑
k=1

|di,kj (t)− d̂i,kj (t)| (17)

MAE
(
d(t), d̂(t)

)
=

1

n

N∑
i=1

AEi

(
d(t), d̂(t)

)
(18)

σAE =

√√√√ 1

n

N∑
i=1

(
AEi

(
d(t), d̂(t)

)
− MAE

(
d(t), d̂(t)

))2
.

(19)

We evaluate the denoising performance of the aforementioned
models on a synthetic test set composed of 6000 samples and
we present the numerical results in Table I. Traditional methods
(mean and median filtering) are associated with a much higher
error than deep learning-based methods. The error decreases as
the kernel size increases, yet not significantly, probably because
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TABLE I
DENOISING ERROR OF THE TESTED METHODS (MEAN ± STANDARD

DEVIATION) ON THE SYNTHETIC TEST SET

the GNSS noise cannot be eliminated through simple mean or
median filtering. This is particularly true for signals having a
low signal-to-noise ratio, which are masked by the noise, where
a mean or median filter, especially with a relatively large kernel,
would not be able to extract the signal from the noise. We also
observe that, when the kernel size increases, the error associated
with the median filtering is lower than the mean one, probably
because the mean filter has an intrinsic smoothing that increases
with the kernel size, failing to preserve the amplitude of the
denoised signal. Conversely, deep learning-based methods are
associated with a much lower error, both absolute and MSE.
Among the deep learning-based methods, the single-station ap-
proach outperforms the traditional methods, yet it is less precise
than the multistation ones (2-D_conv_u_net and SSEdenoiser),
probably because it cannot distinguish between signals that are
registered by multiple stations as well as properly accounting
for the spatial variability of the noise. As to the multistation
approaches, SSEdenoiser achieves superior performance, with
an average error ten times lower than 2-D_conv_u_net, thanks
to the graph representation that helps in leveraging the network
geometry as well as intra-station properties emerging from the
data. In the 2-D_conv_u_net the convolution is applied blindly to
stations that are close in latitude and that may not be necessarily
more informative than a farther station. Hence, a graph turns out
to be more accurate and flexible.

We also discuss the sensitivity of the models as a function of
the signal-to-noise ratio of the input time series. We focus this
analysis on the deep learning models only. First, we define the
(average) signal-to-noise ratio for a multistation setting as the
average signal-to-noise ratio over the stations that recorded a
displacement for all components

SNR =
1

|S′| ·Nc

|S′|∑
j∈S′

Nc∑
k=1

10 log10

(∑Nt

t=1 |ξkj (t)|2∑Nt

t=1 |nk
j (t)|2

)
(20)

S′ = {j : dkj (t) �= 0},
∀k ∈ (0, Nc), ∀t ∈ (0, Nt), ∀j ∈ (0, Ns)

where S′ indicates a set of indices relative to the stations where
a nonzero displacement occurred. Hence, stations that did not
record any displacement are not taken into account. To compare
the denoising performance, we define the denoising error as the
MAE relative to the maximum amplitude displacement for the

Fig. 3. Evaluation of the denoising power as a function of the signal-to-
noise ratio for the tested deep learning models, namely single_station_RNN,
2-D_conv_u_net, and SSEdenoiser. The average absolute error [see (21) and
(22)] for a given SNR bin is plotted.

ith sample

E(i) = 1

Nt ·N ′
s ·Nc

|S′|∑
j∈S′

Nc∑
k=1

∑Nt

t=1 |di,kj (t)− d̂i,kj (t)|
maxt |di,kj (t)| (21)

and we compute the average denoising error as

Ē =
1

n

n∑
i=1

E(i). (22)

This allows us to compare the denoising power of the mod-
els regardless of the displacement amplitude, so that statistics
can be made. Fig. 3 shows the average denoising error as a
function of the (binned) signal-to-noise ratio for the three deep
learning-based models. In all models, the average error natu-
rally decreases as the signal-to-noise ratio increases. Globally,
SSEdenoiser performs the best among the three models, as
also seen in Table I. For low values of signal-to-noise ratio
(e.g., SNR < 1), the three models behave differently and the
performance is much more degraded for the single_station_RNN
model, with an average error on the displacement which is 1.3
times higher than the one obtained for SNR > 1. The other two
models, namely 2-D_conv_u_net and SSEdenoiser, are more
stable. For SNR < 1, their average error is 0.4 and 0.1 times
larger than for SNR > 1, respectively. SSEdenoiser exhibits
better performance and stability for all values of SNR, with
the average error for SNR = 0 being four times lower than
2D_conv_u_net and 12 times lower than single_station_RNN.

B. Ablation Study

The novelty of SSEdenoiser lies in the combination of a graph-
based RNN [39] with a spatiotemporal transformer module. We
thus perform an ablation study to test the robustness of the pro-
posed spatiotemporal transformer. We test SSEdenoiser against
three ablated models, obtained by completely removing the
transformer, by using temporal and spatial attention mechanisms
separately, namely no_transformer, spatial_attention_only,
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TABLE II
DENOISING ERROR (MEAN ± STANDARD DEVIATION) ON THE SYNTHETIC

TEST SET FOR THE ABLATION STUDY

Fig. 4. Evaluation of the denoising power as a function of the signal-to-noise
ratio for the ablated models, namely no_transformer, spatial_attention_only and
temporal_attention_only, against SSEdenoiser. The average absolute error for a
given SNR bin is plotted.

and temporal_attention_only. We train and test each ablated
model with the same configuration as SSEdenoiser and we
report the results in Table II and Fig. 4. Here, we do not test
SSEdenoiser ablated from the graph-based RNN. The removal
of this component must be supported by the addition of a
spatiotemporal embedding, which is particularly challenging
and, thus, is kept as future work.

Removing the transformer results in a higher global error,
almost two times higher than that of SSEdenoiser. When adding
the spatial attention, the global error decreases, with the model
incorporating the temporal attention corresponding to the lowest
misfit among the ablated models. Compared to SSEdenoiser, the
temporal attention configuration exhibits the same squared error,
yet a higher absolute error.

We further compare the four models by evaluating the de-
noising power (similarly to what is done in Section III-A), by
computing the average relative error as a function of the signal-
to-noise ratio, which can better highlight the superior denoising
power of SSEdenoiser. The no_transformer model exhibits
lower performance for any value of SNR, further motivating
the need for incorporating an attention mechanism. The spa-
tial_attention_only and temporal_attention_only have almost
equivalent performance. The combination of both spatial and
temporal attention (SSEdenoiser) results in higher performance
at almost every scale of SNR, showing that, regardless of the
noise level, the proposed model can have superior denoising
power by coupling attention on the spatial and temporal axis,

which cannot be decoupled without resulting in a loss of reso-
lution.

C. Results on Synthetic Data: Learned Station Connectivity

Our multistation approach also allows access to spatial and
temporal relationships between GNSS stations for further inter-
pretation. During training, SSEdenoiser learns which stations
(nodes of the graph) should be connected and how strong
their connections should be: this information is synthesized in
the adjacency matrix, that provides the edge strength of the
graph. In Fig. 5(a), we show the learned adjacency matrix, with
nodes sorted by latitude (each pixel represents a relationship
between two stations). The number of edges in the graph is
N + N(N−1)

2 = 20100 including self-loops. We see that SSEde-
noiser has learned to connect nodes that are mostly spatially
close to each other (near the diagonal), yet it also allows for
weaker long-range connections (e.g., they are assigned a lower
edge strength). This suggests that the method could generally
rely on information available within a neighborhood and then
compare information coming from different subnetworks. More-
over, this information is entirely learned from the data, since the
model is not fed with any explicit information about the station
location. Also, it is difficult to model station connections a priori,
especially to find a meaningful balance between short- and long-
range connections, because we need reference stations that are
not moving to obtain the “absolute” value of the displacement as-
sociated with a given SSE. We tested several choices for the prior
edge distribution, such as k-nearest-neighbors, k-neighbors in a
given distance range, k-neighbors in an optimal azimuthal cov-
erage. None of these gave satisfactory results, probably because
precomputing long-range connections is not straightforward.

To visualize the backbone of the graph structure, we further
filter the adjacency matrix by selecting edge strength values
higher than 0.008, corresponding to the connections with strong
edge weights. We found 878 connections (excluding the self-
connections on the diagonal) to which we will refer in the
following as “strong connections.” These connections represent
2.2% of the total connections in the graph (20 000, excluding
the self-connections). We show their spatial distribution between
GNSS stations in Fig. 5(b). We first see that these connections
are such that the azimuthal coverage is as high as possible
between neighboring stations. Also, the method has learned how
to produce a mesh connecting all the stations that are located on
top of the slow slip area used in the training phase [between 20
and 40 km depth, see Fig. 1(b)]. Stations located further inland
(longitude < 122◦W) do not have strong edge weights, suggest-
ing that they are not very informative for slow slip detection
given the location of the SSE area. Also, the stronger edges
connect stations that are in areas where the station coverage is
sparse. When the network is dense, the high weights are indeed
less useful because the information can already be included in
the signal coming from the numerous nearby stations.

Fig. 5(c) shows the 200 GNSS stations color-coded by the
value of the adjacency matrix diagonal term. It indicates the
strength of the self-loop connections for each station, which can
be thought of as a measure of the learned station’s self-relevance
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Fig. 5. Graph connectivity learned by SSEdenoiser. (a) Learned adjacency matrix. Nodes are sorted by latitude and color-coded by the learned edge strength.
(b) Geographic representation of the strongest connections [edge strength values in the range (0.008, 0.0234) color-coded by edge strength]. (c) GNSS stations
used in this study, color-coded by the learned station importance, i.e., the value of the diagonal of the adjacency matrix for each node.

(or importance). We can see that the importance of further inland
stations is low compared to stations that are located above the
SSE area. The highest importance values are assigned to stations
located in Vancouver Island and at latitudes between 42.5◦N and
45.2◦N, probably linked to a learned tradeoff between slow slip
occurrence and coverage of GNSS stations. This can be seen as
a proxy of the distance to the SSE source area combined with
the local density of stations.

It should be noted that the analysis of the edge weights
should not be overinterpreted, since the “strong connections”
are further modulated by the spatiotemporal transformer and
the MLP modules, thus multiple nodes playing different roles
in the graph could still express aggregated features that are not
necessarily represented by the specific nodes. Also, the stations’
relevance should be taken as a qualitative result, since it does
not directly reflect the station’s influence on the whole graph.

D. Denoising of Real Nonpostprocessed GNSS Time Series
in Cascadia in 2007–2022

We test SSEdenoiser on real nonpostprocessed GNSS time
series from 2007 to 2022. We take 60-day windows of data and
apply SSEdenoiser on each of them, by sliding the window with
a stride of one day and collecting the resulting denoised GNSS
time series. In practice, nonoverlapping sliding windows can
be used (stride of 60 days). Here, we prefer relying on multiple
denoising outputs (stride of one day) to provide a better estimate
of the displacement by averaging the contributions coming from
all the possible sliding windows. We compute the temporal
derivative of the estimated denoised time series in each window
to obtain the displacement rate and we keep the 20 days in
the middle of the window to exclude potential border effects.
For each time step, we take the mean of all 20-day overlapping
windows (20 windows). With this procedure, we obtain the daily
average displacement rate.

Fig. 6(a) shows the obtained denoised GNSS time series of
daily (E-W) displacement rates at all stations in matrix form,
over the period 2007–2022. For simplicity, only displacement

rates larger than 0.01 mm/day are shown. The retrieved dis-
placement rate has a coherent spatiotemporal distribution: it
occurs by bursts that are clustered in latitude and time, consistent
with previous studies [30], [49]. The amplitude is nearly always
negative (meaning a displacement in the west direction), that is
the direction of expected motion. The largest SSEs are associated
with large displacement rates, such as the May 2011 or the Jan-
uary 2016 SSE [see zoom in Fig. 6(c)]. We see that SSEdenoiser
is also able to constrain slow slip occurring in South Cascadia,
which is more difficult than in the northern area because of the
known lower signal-to-noise ratio.

The denoised displacement rates have a good correlation
with the spatiotemporal distribution of tremors (shown in black
in the figures). Tremors are low-frequency and low-amplitude
seismic events that have been observed to accompany SSEs in
Cascadia, e.g., [50]. SSEdenoiser is blindly trained on GNSS
time series, without incorporating any information from tremors
in the model: this means that our method is validated thanks
to this independent information. The displacement distribution
follows the tremor propagation in space and time, both for large
and smaller SSEs as well as for propagating events, as can be
seen in the zoom in Fig. 6(c). Our method can effectively retrieve
slip migration, such as in the case of the 2016 or 2018 SSEs as
well as recognizing events that are close in time and space, such
as the Feb.–Apr. 2017 or June–Aug. 2018 events. This suggests
that SSEdenoiser has effectively learned what the noise structure
looks like to retrieve the concealed deformation associated with
SSEs at a wide range of space and time scales, especially by
comparing the denoised displacement with the raw data that
was fed in input to the model, as we see in Fig. 6(b).

E. Comparison Between SSEdenoiser and the Single-Station
Method by Xue and Freymueller (2023)

We qualitatively compare the denoised displacements com-
puted from the output of SSEdenoiser with the results obtained
by Xue and Freymueller (2023) [45]. They developed a single-
station deep learning method [cf., Section III-A)] whose output
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Fig. 6. Denoising of real GNSS time series in Cascadia from 2007 to 2022. (a) Denoised displacement rate (E-W component) as a function of time. The
displacement rate computed from the output of SSEdenoiser is shown for each GNSS station, sorted as a function of the latitude. Tremor epicenters are also shown
as black points (we use the catalogue from Ide, 2012 [47] until 5 August 2009, and the tremor catalogue from the Pacific Northwest seismic network in the following
period [48]). (b) Example of raw GNSS data for the period 2016–2019. Each row of the matrix represents a detrended GNSS time series, color-coded by the amount
of displacement in the E-W component. Stations are sorted by latitude. (c) Denoised displacement field computed from the output of SSEdenoiser from the same
input time series as in the (b) panel. The displacement rate is shown by the colored points. The black points represent tremor epicenters. Denoised displacements
are very well correlated with the occurrence of tremors, which is an expected feature that provides independent validation of the results.

is the probability of occurrence of an SSE for each separate
GNSS time series. Fig. 7(a) shows the SSEdenoiser denoised
displacements along with this SSE probability. There is, glob-
ally, good accordance between our denoised time series and the
SSE probability obtained by Xue and Freymueller, which can
be thought of as a proxy of the SSE-driven displacement.

Xue and Freymueller’s prediction probability (in red) has a
good correlation with tremor epicenters, yet it exhibits some
level of noise and inconsistencies along the stations. For in-
stance, the horizontal cluster of points at latitude 47◦N seems to
suggest that, in the case of perturbed time series (which seems
likely the case), the ability to discern coherence in the signal
is not properly constrained due to the absence of corroborative
data from other stations. Also, another limitation inherent in
single-station analysis is that these models tend to produce
isolated points, as we see in Fig. 7. These isolated points are
associated with a high probability, yet there is no agreement

from neighboring stations. Hence, these can be likely considered
false positives.

Conversely, SSEdenoiser gains in accuracy thanks to the
multistation approach. The denoised displacement output by
SSEdenoiser follows the tremor distribution in space and time,
suggesting that our approach has the potential to provide finer
scale observations of slow slip by leveraging the spatial cor-
relations between the GNSS time series as well as the GNSS
geometry. Fig. 7(b) shows a zoom in the period ranging from
August 2009 to December 2011. Our method seems to show
a better ability to constrain the spatial consistency of the SSE-
driven displacement, such as in the case of big events, e.g., the
September 2009 SSE, where the probability of the Xue and Frey-
mueller’s approach does not exceed the detection threshold for
all the stations at latitudes between 47◦N and 48◦N, as opposed
to the displacement retrieved by SSEdenoiser, consistent with
tremor recordings. The same seems to happen also for smaller
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Fig. 7. (a) Qualitative comparison between SSEdenoiser and the single-station method by Xue and Freymueller (2023) [45] in Cascadia from 2007 to 2016.
Black points represent tremor epicenters, sorted by latitude. Red points are associated with the probability of SSE occurrence by Xue and Freymueller [45] and
blue points represent the denoised displacement field obtained by running SSEdetector on the raw data in Cascadia from 2007 to 2016. (b) Zoom in the period
ranging from Aug. 2009 to Dec. 2011.

events, e.g., the November 2011 SSE (average latitude of 41◦N)
and the June 2011 event (latitude 47◦N), where our method
shows the potential of revealing slow slip with improved detail
thanks to a multistation approach. Yet, SSEdenoiser also has
some limitations, such as the latitudinal clusters [e.g., early 2014
or late 2018 in Fig. 6(c)], which can be ascribed to the fact that
the synthetic training set may not reflect all the complexity of
real data. These narrow latitudinal clusters are most probably
the signature of GNSS common mode errors in the real data,

which might not be perfectly modeled by our noise generation
strategy and need further improvement.

IV. CONCLUSION

We develop SSEdenoiser, a graph-based deep learning
method for denoising nonpostprocessed GNSS position time
series. We build a synthetic database, consisting of realistic noise
and synthetic SSE signals. We first compare SSEdenoiser to
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traditional denoising methods as well as single- and multistation-
based deep learning models. We find that our method has
superior accuracy and stability also for very low values of
signal-to-noise ratio. We also analyze the characteristics of
SSEdenoiser by looking at the learned adjacency matrix. We
find that SSEdenoiser learns to connect stations based on the
region where SSEs are located in the training samples and to the
density of GNSS stations.

When tested on real data, SSEdenoiser proves effective in
isolating the displacement related to SSEs, with remarkable
spatial and temporal correlation with tremors, which are not
given as input to the method. By using tremors as independent
validation, we conclude that our method can denoise GNSS data
and retrieve concealed transient deformation across a wide range
of scales of both duration and signal amplitude.

We finally perform a qualitative test between SSEdenoiser and
the single-station method by Xue and Freymueller (2023) [45]
and we find that SSEdenoiser exhibits superior performance in
terms of spatiotemporal distribution of the denoised displace-
ment as well as consistency with tremor episodes in space and
time.

Our approach also has the advantage that denoised time series
could be used as input for traditional slip inversion techniques
as well as to better constrain the source parameters. Since the
level of noise in GNSS time series is such that regularization
constraints must be used to guarantee temporal smoothness, our
denoised time series could be also used for inverting the slip on
the subduction interface more easily than the nondenoised data.
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