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In the oceanic surface layer, particulate organic carbon (POC) constitutes the

biggest pool of particulate material of biological origin, encompassing

phytoplankton, zooplankton, bacteria, and organic detritus. POC is of general

interest in studies of biologically-mediated fluxes of carbon in the ocean, and

over the years, several empirical algorithms have been proposed to retrieve POC

concentrations from satellite products. These algorithms can be categorised into

those that make use of remote-sensing-reflectance data directly, and those that

are dependent on chlorophyll concentration and particle backscattering

coefficient derived from reflectance values. In this study, a global database of

in situmeasurements of POC is assembled, against which these different types of

algorithms are tested using daily matchup data extracted from the Ocean Colour

Climate Change Initiative (OC-CCI; version 5). Through analyses of residuals,

pixel-by-pixel uncertainties, and validation based on optical water types, areas

for POC algorithm improvement are identified, particularly in regions

underrepresented in the in situ POC data sets, such as coastal and high-

latitude waters. We conclude that POC algorithms have reached a state of

maturity and further improvements can be sought in blending algorithms for

different optical water types when the required in situ data becomes available.

The best performing band ratio algorithm was tuned to the OC-CCI version 5

product and used to produce a global time series of POC between 1997–2020

that is freely available.
KEYWORDS

particulate organic carbon, ocean carbon cycle, biological carbon pump, essential
climate variable, ocean colour remote sensing, ocean colour climate change initiative
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Highlights
Fron
• Algorithms for retrieval of particulate organic carbon from

ocean-colour satellite data are compared, using a database

of in situ observations matched with concurrent products

derived from Ocean Colour Climate Change Initiative data.

• One of the best-performing algorithms is selected to

produce a time series of particulate organic carbon at the

sea surface from 1997 to 2020.
1 Introduction

Particulate organic carbon (POC) plays a fundamental role in

the ocean carbon cycle (Eppley and Peterson, 1979). The POC pool

is composed of both living organic carbon (phytoplankton,

zooplankton, bacteria, and other marine microorganisms) and

organic detritus in particulate form. While the standing stock of

POC in the epipelagic zone is relatively small compared with

dissolved inorganic and organic carbon pools, it drives large

carbon fluxes in the epipelagic ocean owing to its short turnover

time. A part of the POC pool can be exported from the epipelagic to

the deep pelagic zones through the ocean biological carbon pump,

hence playing a crucial role in long-term carbon sequestration

(Volk and Hoffert, 1985; CEOS, 2014; Brewin et al., 2021), while

serving as vital food for marine microbial communities and also for

marine organisms of higher trophic levels, ultimately sustaining

deep-sea ecosystems (Eppley and Peterson, 1979; Volk and Hoffert,

1985; Falkowski et al., 1998).

The POC pool in the upper layers of the ocean can be monitored

using satellite observations of ocean colour. Various satellite-based

algorithms have been proposed to estimate surface POC

concentration on a large scale. A recent comparison by Evers-King

et al. (2017) has shown relatively good performances of two types of

empirical algorithms: (i) those using band ratios of spectral remote

sensing reflectances (Stramski et al., 2008); and (ii) those based on

chlorophyll-a and particulate backscattering coefficients (Loisel et al.,

2002). Since the review by Evers-King et al. (2017), other algorithms

have emerged, such as that of (iii) Tran et al. (2019), which has a

focus on coastal or optically complex waters, (iv) the colour-index-

based algorithm of Le et al. (2018), and (v) the hybrid algorithm of

Stramski et al. (2022). In principle, these algorithms can be blended

according to their performances in particular regions or optical water

types, similar to the approach used to estimate the global satellite-

derived chlorophyll-a product in the European Space Agency’s

Climate Change Initiative (Jackson et al., 2017; Sathyendranath

et al., 2019). But this requires that the performance of each

algorithm be evaluated for each optical class (or region).

Before selecting a POC algorithm from the different options

available, one has to understand its conceptual basis and evaluate

the uncertainties associated with each algorithm to determine

whether they are appropriate for the applications envisaged. We

may anticipate differences when an algorithm developed for a
tiers in Marine Science 02
particular satellite sensor is applied to another one. Similarly, an

algorithm may also have some dependencies on the atmospheric

correction processors, since the water-leaving radiances that

underpin all POC algorithms could be a little different, depending

on atmospheric-correction algorithms (Müller et al., 2015). Such

considerations necessitate that algorithms be re-evaluated for

different sensors and atmospheric correction procedures

employed, as well as any merging of multiple sensors that might

have been implemented before algorithm development and testing.

Moreover, when a POC algorithm is applied to satellite products, it

not only depends on the quality of the algorithm itself but also the

quality of the satellite-derived optical variables that serve as input to

the algorithm. For example, the POC algorithm that uses inherent

optical properties, such as the backscattering coefficient from

satellite observations, may be prone to errors if the retrieval is

sensitive to the composition, size distribution, and other

characteristics of the POC particles and seawater properties

(Loisel et al., 2002; Loisel et al., 2018). It is also important that

the in situ POC data be representative of the ocean domain over

which the algorithm is to be applied, which may not always be the

case. However, such a complete evaluation of each of the POC

algorithms falls out of the scope of this paper.

In this study, we evaluate seven POC algorithms, when

implemented using products from the Ocean Colour - Climate

Change Initiative (OC-CCI) (Sathyendranath et al., 2019). These

products were developed for applications in climate research and now

extend to over two decades. The algorithms selected for the

comparison include those that performed well (Stramski et al.,

2008; Loisel et al., 2002) in an earlier comparison (Evers-King

et al., 2017), as well as promising new algorithms that have

emerged since then (Le et al., 2018; Stramski et al., 2022). The

uncertainties are evaluated using a large database of near-surface in

situ POC (0–10m) matched with the OC-CCI products for 1997-

2020. The candidate algorithms are evaluated using several

quantitative statistical metrics (Section 2.8). An additional

evaluation is performed after re-fitting of the original algorithms

using the global matchup data, such that all algorithms implemt a

common set of in situ and satellite observations, and for the same

satellite products to which they are to be applied. Recognising the

limitations of in situ POC and satellite matchup data, such as any

potential deficiencies in the representativeness of the matchup data

available, differences in spatial scales in situ and satellite observations,

and incomplete coverage of geographic regions, an indirect mode of

validation is also attempted, in which we examine whether the

algorithms reproduce faithfully the observed relationships between

POC and chlorophyll-a concentration.
2 Data and methods

2.1 In situ POC data

In situ POC data (0–10m) compiled by Evers-King et al. (2017) for

1997–2012 were supplemented with 2013–2020 in situ POC data from

the SeaBASS (Sea-viewing-wide-field-of-view-sensor Bio-optical
frontiersin.org
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Archive and Storage System), providing a more comprehensive spatio-

temporal coverage of POC measurements over the last two decades.

Most of the data contributors (see source in Table 1) followed the

general POC protocol recommended by the Joint Global Ocean Flux

Study’s international scientific steering committee (Knap et al., 1996).

In some cases, however, they modified the protocol or used different

instruments to measure in situ POC concentrations. Thus,

unaccounted uncertainties in the field measurements could persist

from differences in methodologies, which are difficult to identify even

with the protocol details being provided. Prior to comparisons with

satellite-derived POC data, a series of data quality controls (see section

2.5) were carried out, as the assessment of algorithm performance

depends on the quality of the in situ POC measurements, and on the

number of in situ POC data matched with satellite observations across

diverse oceanic environments.
2.2 Satellite data

Daily OC-CCI version 5 products (Sathyendranath et al., 2021)

at 4 km resolution were used for algorithm validation, and monthly

composites for indirect validation and for POC time-series product

generation (1997–2020). The OC-CCI products were generated

based on MERIS (MEdium-Resolution-Imaging-Spectrometer) as

the reference sensor. Remote sensing reflectance (Rrs) at multiple

wavelengths (l at 443, 490, 510, 560, and 665 nm), chlorophyll-a

biomass (B), and backscattering coefficient (bbp) at 490 nm were

extracted from the OC-CCI products according to algorithm

requirements. As some POC algorithms were initially developed

for different sensors and their spectral bands, the Rrs(l) retrieved
from the OC-CCI products were shifted in reverse to obtain those

wavebands (e.g., Rrs(555)) using the same band-shifting approach

that was used when generating the OC-CCI data (Mélin and Sclep,

2015; Jackson et al., 2017; Sathyendranath et al., 2019). The

memberships of each optical water class (1–14) (Jackson et al.,

2017) were also extracted from the OC-CCI for uncertainty

estimation, for mapping per-pixel uncertainties, and for

estimating dominant optical water classes.
2.3 In situ POC and satellite matchup data

In situ POC data were matched with the OC-CCI products,

following the approach of Evers-King et al. (2017) and Jackson et al.

(2017). Prior to the matchup process, the in situ POC data from the
Frontiers in Marine Science 03
same location and date were averaged over the top 10 m, and over

the day of sampling. The satellite pixel containing the same location

and date as the in situ POC observation was treated as the central

pixel for data extraction. When the central pixel was valid, a

window of 3 by 3 pixels around the central pixel were also

extracted, and their mean, median, and standard deviation were

computed for all relevant variables retrieved from the OC-CCI data.

The number of valid pixels in the window of 3 by 3 pixels was also

noted. The total number of matchup data between the in situ POC

and OC-CCI data was 5972 (Table 1, whole matchup data). These

data were then subjected to quality control and assessment. Only

the subset of data (Table 1, validation matchup data) that passed the

control and assessment was then used for further analyses,

including algorithms validation.

The geographical locations where the in situ POC

measurements were taken and successfully matched with the OC-

CCI products cover a wide range of oceanic environments,

including coastal and open oceans (Figure 1). The histogram of

the in situ POC data showed a bimodal positively-skewed

distribution pattern with median and mean of 90.3 and 154 mg

m−3, respectively (Figure 2A, blue). The highest peak is associated

with a large number of data collected in oligotrophic gyres during

the Atlantic Meridional Transect cruises (Rasse et al., 2017; Evers-

King et al., 2017). The second peak is associated with data collected

from the coastal waters of eastern and western North America.
2.4 Mixed-layer depth

A global, monthly climatology of mixed-layer depth from de Boyer

Montegut et al. (2004) was used to estimate the total standing pool of

POC in the mixed layer (http://dx.doi:10.1029/2004JC002378).
2.5 Quality control and assessment

Several quality control criteria were applied to the data sets

(Table 1, whole matchup data) for removing potentially erroneous

in situ POC and OC-CCI matchup data. First, all matchup data

points pertaining to inland waters were removed. Second, about 2.4%

(N = 147) of matchup data that contained less than four valid pixels

in the 3 by 3 pixel-box around the central pixel were excluded as

adjacency to invalid pixels might indicate potential pixel

contamination. Third, a group of some 24 in situ POC

observations collected from a small geographical area, and close
TABLE 1 Summary of the in situ POC data matched with the OC-CCI products (1997-2020).

Data N Min. Max. Mean Median S.D. Source(s)

Whole 5972 2.7 4887 154 90.3 246 SeaBASS; BCO-DMO (Buesseler, 2007; Johnson and Bates, 2023; Perry, 2011; Lomas et al.,
2011; Wheeler, 2012); PANGAEA (2020); Thomalla et al. (2017); Martiny and Vrugt

(2014); Rasse et al. (2017)Validation 3287 11.1 2641 99.8 50.7 138
The number of whole (before QA/QC) and validation (after QA/QC) in situ POC and OC-CCI matchup data (N) are provided. The minimum (Min.), maximum (Max.), mean, median, and
standard deviation (S.D.) of in situ POC data are given in units of mg m−3. The data sources of in situ POC are given in the last column. The data sources from the prior compilation are available
publicly from the following locations (see acknowledgment section for more detailed information): https://seabass.gsfc.nasa.gov/ (SeaBASS), https://www.bco-dmo.org/ (BCO-DMO), https://
www.pangaea.de/ (PANGAEA).
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together in time, appeared as outliers when the in situ POC data were

plotted against corresponding chlorophyll-a data. These stations, with

POC concentration less than 10 mg m−3 and chlorophyll-a

concentration greater than 0.06 mg m−3 (N = 24), were removed as

being potentially erroneous. In addition, a data point with a very high
Frontiers in Marine Science 04
POC concentration (> 4000 mg m−3) was removed. Lastly, OC-CCI

variables for which the coefficient of variation (standard deviation

divided by the mean) exceeding 0.15 for the valid pixels in the 3 by 3

pixel-box (see Appendix A) were also removed. The high spatial

variability surrounding the central pixel could be indicative of
FIGURE 1

Geographical distribution of in situ POC data (0–10 m) that matched with valid satellite data for September 1997 to January 2020 (Table 1, whole
matchup data). The colour of circles indicate the POC concentration (mg m−3) of in situ data. Grey circles indicate the locations of unmatched data
point that were excluded in the analysis.
B

A

FIGURE 2

(A) Histograms of the in situ POC (mg m−3) values for the whole (blue) and validation (yellow) matchup data (1997–2020). The in situ POC and OC-
CCI matchup data that were retained after quality control and assessment constitute the validation data set (see section 2.5). The dashed and solid
lines represent the median and mean values for the whole (blue) and the validation (yellow) matchup data, respectively. (B) Frequency distributions
of the matchup data per dominant water class (1–14) derived from the OC-CCI products, for the whole (blue) and the validation (yellow) matchup
data. The numbers represent the number of validation matchup data per dominant water class. Note that only the validation data set is used in the
rest of the work.
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locations where uncertainties could be high because of mismatches in

time and space between in situ POC and satellite observations. The

quality control procedure is designed to ensure that the matchup data

used in validation and analysis are of high quality, and to eliminate

any data with significant bias (Bailey and Werdell, 2006).

After the quality control procedures, 3287 samples, or about 55%

of the initial in situ POC data matched with the OC-CCI products were

retained for use in validation and related analyses (Table 1, validation

data). The remaining matchup data of questionable quality were not

used in the rest of this work. Though many matchup data were lost

during this procedure, with a high proportion of data lost in optically

complex waters (Figure 2B, water classes 11–14), the histogram of the

validation matchup data (Figure 2A, yellow) show a distribution

pattern similar to that of the initial matchup data (Figure 2A, blue),

with median and mean of 50.7 and 99.8 mg m−3, respectively. The size

of the validation matchup data set of over three thousand observations

is one to two orders of magnitude higher than that of the data sets used

for the development of the candidate algorithms (see section 2.6). This

implies that advantages that any of the algorithms might have, because

of the overlap between the data used for development and validation, is

likely to be low. The validation matchup data may, however, still

contain some potentially low-quality in situ POC and satellite-derived

products due to a variety of factors, including differences in data

collection methods, calibration procedures, and instruments.

2.5.1 Per-pixel uncertainty estimates and optical
water classes

Each validation matchup data point (Table 1) was assigned to a

dominant optical water class (1–14) associated with its central pixel,

estimated from the water class membership values retrieved from the

OC-CCI products (Jackson et al., 2017). In general, the lower water

classes (1–2) correspond to oligotrophic waters with maximum Rrs at

the short wavelengths of the visible spectrum, whereas the high water

classes (13–14) correspond to turbid waters with relatively higher Rrs at

longer wavelengths (see Appendix B). The total number of validation

matchup data varied across the dominant optical water classes, with

water class 2 showing the largest number (N = 762) of data points,

followed by water classes 11 and 12 (Figure 2B, yellow). On the other

hand, water classes 7 and 14 show very low number of the data points

(N = 4 and 11, respectively). The segregation of the validation matchup

data into dominant optical water classes served two major purposes: (i)

it allowed us to evaluate whether the algorithm performance was linked

to the optical complexity of the water represented by the optical class,

especially as not all algorithms were originally intended to be used

indiscriminately across all types of waters; and (ii) to estimate

uncertainties for each water type, which could then be used to map

uncertainties on a per-pixel basis (Jackson et al., 2017; Evers-King et al.,

2017; Sathyendranath et al., 2019).
2.6 Candidate POC algorithms

Since the first development of an ocean-colour-satellite-based

POC algorithm in the late 1990s (Stramski et al., 1999), various

algorithms have been proposed to estimate POC concentration from

satellite observations in coastal and oceanic waters. These can be
Frontiers in Marine Science 05
categorised into algorithms that use Rrs band ratios (Stramski et al.,

2008), or a combination of maximum Rrs band ratio and band ratio

difference index (Stramski et al., 2022), or backscattering and

chlorophyll-a (Loisel et al., 2002), or the colour-index (Le et al.,

2018). These algorithms were formulated using different types of in

situ and satellite data sets. For example, while the colour-index

algorithm (Le et al., 2018) was formulated using satellite-derived

Rrs matched with the in situ measurements of POC, the other

algorithms were formulated using only in situ observations. Of

these, seven candidate algorithms were selected to be representative

of distinct algorithmic types in the analyses presented here, and they

are described below in sections 2.6.1–2.6.4. It is important to note that

in this paper the validation is carried out over the global ocean,

regardless of whether the algorithms were originally intended to be

used so broadly. For consistency, all algorithms were evaluated using

input variables derived from the same set of satellite products (OC-

CCI; version 5) and the same validation data set (Figure 2, yellow).

2.6.1 Band ratio algorithms: S1, S2, S3, and S4
Stramski et al. (2008) developed empirical POC algorithms based on

the blue-green band ratio of Rrs(l). The band ratio empirical algorithms

were developed using in situ measurements of Rrs matched with in situ

POC collected from the oligotrophic and upwelling waters of the eastern

South Pacific and Atlantic Oceans. In the 53 data points used for the

algorithm development, POC ranged from 10–270 mg m−3 (Stramski

et al., 2008). The band ratio algorithm that uses Rrs(443) and Rrs(555)

(see Equation 1 below) is currently adopted by NASA to generate their

standard POC products. While the NASA has adopted the band ratio

algorithm to generate global POC products, these algorithms are

originally intended to be used for open oceans, where POC is less

than 300 mg m−3. Similar band ratio algorithms have been also

developed for the Southern Ocean (Allison et al., 2010) and South

China Sea (Hu et al., 2016), to improve performance in those regions.

Here, we have selected the following four band ratio algorithms (S1–S4;

Equations 1–4) from Stramski et al. (2008) that performed well in an

earlier evaluation (Evers-King et al., 2017).

Ĉ p(S1)(mg m−3) = 203:2
Rrs(443)
Rrs(555)

� �−1:034
; (1)

Ĉp(S2)(mg m−3) = 308:3
Rrs(490)
Rrs(555)

� �−1:639
; (2)

Ĉp(S3)(mg m−3) = 423:0
Rrs(510)
Rrs(555)

� �−3:075
; (3)

Ĉp(S4)(mg m−3) = 219:7 ·Max
Rrs(443)
Rrs(555)

,
Rrs(490)
Rrs(555)

,
Rrs(510)
Rrs(555)

� �−1:076

: (4)

Here, Ĉp represents satellite-derived POC.

2.6.2 Hybrid algorithm: ST
Stramski et al. (2022) developed ocean color sensor-specific hybrid

algorithms based onmechanistic principles to improve satellite-derived

POC products across a continuum of water bodies with varying optical

properties and particle composition. The hybrid algorithm was
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developed using field data sets collected in various water types, with

POC ranging 11.9–1022 mg m−3 (Stramski et al., 2022). The algorithm

uses a blending of maximum band ratio and band ratio difference

index: the band ratio difference index component is used for POC less

than 15 mg m−3, the maximum band ratio algorithm is used for POC

greater than 25 mg m−3, and the weighting approach of these two

components is applied for the region of transition (Stramski et al.,

2022). In the implementation here, we used the hybrid algorithm

(hereafter, labelled ST) developed for the MERIS sensor, since the OC-

CCI version 5 products are reported for MERIS wavebands.

2.6.3 Particle backscattering and chlorophyll-a
based algorithm: LO

Loisel et al. (2002) developed a semi-analytical algorithm based

on the assumption that the particle backscattering (bbp) covaries

with POC concentration for oceanic waters (Equation 5). This

algorithm (labelled LO here) exploits the relationship between

bbp/bp (where bp is the particle scattering coefficient) and B

developed by Twardowski et al. (2001), which allows the slope of

bbp versus POC to vary with tropic status. To take this into account,

a fixed mean POC/bp value of 400 is used in the algorithm (Loisel

et al., 2002), leading to the following relationship.

Ĉ p(LO)(mg m−3) = 41666:7 · bbp(490) · (B)
0:253 : (5)

The algorithm LO (Equation 5) was initially implemented on

POLDER (Polarization-and-Directionality-of-the-Earth’s-

Reflectances) and SeaWiFS (Sea-viewing-Wide-Field-of-View-

Sensor) satellite data. This algorithm was validated using a set of

matchup data collected from the North Pacific Subtropical gyres (N

= 24) and North Atlantic Central gyre (N = 30) (Loisel et al., 2002).

This algorithm performed relatively well in the analyses of Evers-

King et al. (2017) that used the in situ POC and OC-CCI matchup

data. In the implementation here, we used the chlorophyll-a data

from the OC-CCI. The bbp at 490 nm was estimated using the

algorithm of Loisel et al. (2018), rather than using the bbp data from

the OC-CCI, for algorithm consistency.

2.6.4 Colour-index algorithm: LE
Le et al. (2018) developed a POC algorithm based on differences in

two pairs of Rrs values, known as the colour-index. In contrast to other

approaches, this algorithm was developed using satellite-derived Rrs
and in situ POC data. The colour-index algorithm was tested for three

satellite sensors: SeaWiFS, MERIS, andMODIS (Moderate-Resolution-

Imaging-Spectroradiometer). As for the other algorithms, we chose the

MERIS algorithm here (Equations 6, 7):

D = Rrs(560) − Rrs(490) +
(560 − 490)
(665 − 490)

·
�
Rrs(665) − Rrs(490)

�� �
; (6)

where D stands for the colour-index. The D is then used to

estimate the concentration of POC using algorithm LE:

D < −0:0005 : log10(Ĉ p)(LE)(mg m−3) = 1:97 + 185:72 · D;

D => −0:0005 : log10(Ĉ p)(LE)(mg m−3) = 2:1 + 485:19 · D:
(7)
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2.7 Statistical metrics

Statistical metrics recommended by the algorithm developers

and those in general use in the ocean-colour community (Brewin

et al., 2015; Evers-King et al., 2017; Seegers et al., 2018; Stramski

et al., 2022; Joshi et al., 2023) were used to assess the performance of

candidate algorithms. The statistic metrics were applied between

the in situ POC and satellite-derived POCmatchup data (N = 3287):

the root-mean-square difference (j), centred-pattern-root-mean-

square difference (D), and bias (y) for both log-transformed and

non-transformed POC matchup data (see Appendix C for the

equations used). The Pearson’s parametric correlation coefficient

(r) was calculated for log-transformed data, and Spearman’s

correlation coefficient (rs) was calculated for non-transformed

data. The median ratios (d) and median absolute percentage

difference (t) were estimated for non-transformed data. The

median symmetric accuracy (k) was estimated for log-

transformed data. Compared with the other statistics, the k does

not penalize both over-and under-prediction differently (Joshi

et al., 2023). The slope (S) and intercept (I) of the linear fit

between in situ POC and satellite-derived POC matchup data

were estimated from the standard major axis of model type II

linear regression (Ricker, 1973; Sokal and Rohlf, 1995). Condorcet’s

pair-wise comparisons of residuals (Seegers et al., 2018; Stramski

et al., 2022) were performed for log-transformed and non-

transformed data as an additional test.
3 Results

3.1 Performance of the
candidate algorithms

The satellite-derived POC data were plotted against the in situ

POC validation matchup data for each candidate algorithm (S1, S2,

S3, S4, ST, LO, and LE) under consideration, along with the fitted

linear regression line, for algorithm validation (Figure 3; Table 2).

The dominant water classes (1–14) associated with each point are

also indicated using colours, to assist assessment of algorithm

performance across different optical water classes. It is

particularly important to check algorithm performance in those

water classes that are poorly represented in the validation matchup

data (e.g., water classes 7 and 14). In general, the POC

concentration increased with the number of the optical water

classes associated with them, as seen from the progression of

colours in the scatter plots from blue to red, or from water classes

1 to 14 (Figure 3).

Overall, algorithms S2, S3, and ST performed well, with high r

values (0.91–0.92) for the log-transformed matchup data, and with

lower uncertainties than the other algorithms (Figure 3; Table 2).

Some differences were observed among band ratio algorithms (S1,

S2, S3, and S4), especially in water classes 13–14, where algorithm

S4 tended to underestimate POC concentrations. Although the

differences between these band ratio algorithms are statistically
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small, algorithm S2 presented the lowest uncertainties over the

whole dynamic range of POC concentration for log-transformed

matchup data in this analysis, with the fitted regression lying closest

to the 1:1 line (Figure 3C). The performance of algorithm S2 is

statistically similar to algorithm ST, but with intercept and slope

closer to 0 and 1 respectively, for log-transformed matchup data.

The modified Taylor diagram (Taylor, 2001) (Figure 4), which

combines information on four key statistical metrics — the

Pearson’s correlation coefficient, the standard deviation,

the centred-pattern-root-mean-square difference (unbiased), and

the bias — also conveys the same message: algorithms S2, S3, and

ST are clustered together and lie close to the in situ observation

curve with high correlation coefficient, indicating statistically

similar performances, consistent with the results seen in Figure 3.

The algorithms S1 and S4 lie close to these algorithms with similar

statistical performances for both non-transformed and log-

transformed matchup data sets. The algorithm LO also lies close

to these algorithms, albeit with higher errors and lower r for non-

transformed matchup data (Figure 4A). When divided into

dominant water classes, the performance of all candidate

algorithms were lower than when examined as whole data sets,

especially for water classes 1–10 with r below 0.5 (see Appendices

D, E).

Although the uncertainties associated with algorithm LE were

generally relatively high (Figure 4), the spread of data points is most

elongated for this algorithm, showing a better separation among the

different optical classes (Figure 3). This suggests the algorithm LE has

a higher sensitivity, compared with all the other algorithms, especially

for low POC concentrations (Figure 3). The main issue with

algorithm LE was the deviation of the slope of the regression

equation from the 1:1 lime. This could have occurred simply (i)

from the differences between the modest set of data that was used

initially to develop the algorithms, compared with the data set
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employed here for testing them; (ii) from implementing the

algorithms on different satellite products from the ones used for

the development, even though we took care tominimise errors arising

from this source; or (iii) from the formulation of the algorithm itself,

as it was established with a specific set of satellite-derived Rrs. When

we applied a linear transformation to each of the algorithm outputs

using the slope and intercept of the fitted linear regression for that

algorithm, this had the effect of rotating the adjusted outputs to the

1:1 line when re-plotted against the matchup data (which can no

longer be considered validation data at this stage). This adjustment

(results not shown) had the most positive impact on algorithm LE,

bringing it close to the band ratio algorithms on the Taylor diagram

for the adjusted outputs, implying that this algorithm has the

potential for further improvement.

3.1.1 Analysis of residuals
A detailed analysis of residuals, the differences between in situ

POC and satellite-derived POC data, was conducted to compare the

performances of candidate algorithms (Figure 5). All candidate

algorithms presented near-normal distributions of residuals, with a

peak near zero (result not shown). The band ratio algorithms

(S1, S2, S3, and S4), as well as algorithms LO and ST, showed

relatively small residuals compared with the other algorithms, but

there was a distinct systematic pattern of change in residuals with

the water types (Figure 5). Such water-type-dependent residuals

might offer possibilities for further reductions in residuals,

especially if algorithm development could be carried out

independently for each water type. But such developments must

await the availability of sufficient numbers of high-quality matchup

data in each water class.

For all candidate algorithms, the highest residuals are associated

with water classes 13–14 (Figure 5). Algorithm LE, for example,

presented a small number of residuals exceeding 10,000 mg m−3 for
B C D

E F G

A

FIGURE 3

Relationships between in situ POC and corresponding satellite-derived POC matchup data (mg m−3) estimated from candidate algorithms (A) S1, (B)
S2, (C) S3, (D) S4, (E) ST, (F) LO, and (G) LE. The solid line is the 1:1 line. The dashed line is the best fit for linear regression. The colour assigned to
the data points indicate the corresponding dominant optical water classes (1–14). The number of validation matchup data points (N) is shown. The
Pearson’s parametric correlation coefficient (r), root-mean-square difference (j), centred-pattern-root-mean-square difference (D), and bias (y), as
well as slope (S) and intercept (I) for the linear fit to log-transformed validation matchup data are shown.
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these classes, which adversely affected its performance. The

residuals were further analysed using Condorcet’s pair-wise

comparison of residuals (Seegers et al., 2018; Stramski et al.,

2022). In this analysis, the residuals of pairs of candidate

algorithms were compared, and in each comparison, the
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algorithm for which the residuals were lower the most number of

times is considered as the ‘winner’. The final ‘winner’ is the

algorithm with the highest % wins (> 50%) for all pair-wise

comparison of residuals. According to this test, algorithm S3

performed the best, followed by algorithms ST, LO, and then S2
BA

FIGURE 4

Modified Taylor diagrams comparing the (A) non-transformed and (B) log-transformed satellite-derived POC data estimated from candidate
algorithms (S1, S2, S3, S4, ST, LO, and LE) and their relationship to the in situ POC data (blue dotted curve) in terms of the Pearson’s parametric
correlation coefficient, standard deviation, and centred-pattern-root-mean-square difference (red dotted curves). The colour bar indicates the bias
between the in situ POC (mg m−3) and satellite-derived POC data (mg m−3).
TABLE 2 Summary of statistical performance of the candidate algorithms.

Algorithm(s) S1 S2 S3 S4 ST LO LE

log-transformed matchup data

N 3287 3287 3287 3287 3287 3287 3287

r 0.91 0.92 0.91 0.91 0.92 0.87 0.89

y 0.05 0.02 -0.004 0.05 0.02 0.13 0.39

j 0.16 0.15 0.16 0.16 0.15 0.23 0.53

D 0.16 0.15 0.16 0.16 0.15 0.19 0.36

I 0.12 0.01 0.04 0.15 0.13 -0.04 -1.68

S 0.91 0.98 0.98 0.89 0.92 0.95 1.72

Non-transformed matchup data

N 3287 3287 3287 3287 3287 3287 3287

rs 0.89 0.89 0.87 0.89 0.89 0.86 0.88

y 20.1 7.59 -3.75 22.8 10.3 17.1 -10.3

j 94.4 78.3 77.8 102.4 73.9 179.1 878.7

D 92.2 77.9 77.7 99.8 73.2 178.2 878.6

d 0.65 0.82 0.84 0.58 0.79 0.61 0.76

t 37.5 29.1 36.4 41.5 27.7 46.2 35.6

I 25.2 18.6 -7.58 31.6 16.2 -81.5 -530.1

S 0.54 0.73 1.11 0.45 0.73 1.65 6.47
The number of validation matchup data points (N), the root-mean-square difference (j), bias (y), centred-pattern-root-mean-square difference (D), intercept (I), and slope (S) for both log-
transformed and non-transformed validation matchup data are shown. The Pearson’s parametric correlation coefficient (r) for the log-transformed and Spearman’s correlation coefficient (rs) for
the non-transformed matchup data are shown, accordingly. The median ratios (d) and median absolute percentage difference (t) for the non-transformed matchup data are presented. The units
for j, y, D, and d are in mg m−3 and for t are in %. The bolded values represent the values that are statistically significant.
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for non-transformed data (Figure 6A), consistent with the results

shown in Figure 3. For the log-transformed data, the algorithm ST

was the ‘winner’, but the % win was relatively low except when

compared against algorithm LE (Figure 6B).
3.2 Relationship between POC and
chlorophyll-a biomass

Comparison of satellite-derived products against in situ

observations is an essential step in the validation of algorithms,

but it is not necessarily a sufficient step. Paucity of matchup data;

mismatches in the times of observations (though the matchup

criteria are designed to minimise such errors); differences in

spatial scales of satellite and in situ observations; lack of

representative samples from all relevant regions and seasons —

all these introduce uncertainties into such validation exercises.

Therefore, as a complement to matchup comparisons, we have

attempted here an indirect validation by comparing the patterns in

the relationship between POC and chlorophyll-a concentration. We

examine whether the relationship observed when in situ POC is

plotted against satellite-derived chlorophyll-a is reproduced when

satellite-derived POC is plotted against corresponding chlorophyll-

a concentration, as in Evers-King et al. (2017).

In the left panel of Figure 7, the satellite-derived POC is plotted

against the corresponding matchup satellite-derived chlorophyll-a.

Since the relationship appears to be piece-wise linear with

discontinuities at 0.1 and 1 mg m−3, linear regressions were fitted

to the data for chlorophyll-a concentration ≤ 0.1 mg m−3 (range 1),

1 mg m−3 (range 2), and chlorophyll-a ≥ 1 mg m−3 (range 3). The in

situ POC is also shown as a background in grey in all the panels.

Ideally, in this comparison, we are looking for algorithms that

reproduce the fits and the spread of data around the fits that are
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observed for the in situmatchup data, for all the three chlorophyll-a

ranges. The in situ POC (grey colour in Figure 7) was poorly

correlated with chlorophyll-a in range 1, but the correlation was

stronger in ranges 2 and 3. The algorithms S1, S2, S3, S4, ST, and LO

(Figure 7) followed a similar pattern to that of the in situ

relationship. Algorithms LE (Figure 7) showed stronger

deviations from the in situ relationships, especially for water

classes 1 to 10 (range 1 and range 2 of chlorophyll-a concentration).

We also plotted the satellite-derived POC data against the

satellite-derived chlorophyll-a for all valid pixels for a randomly

selected monthly OC-CCI image (June 2020) (Figures 7H–N), to

see whether the satellite-derived POC and chlorophyll-a

relationships resembled that of matchup data Figures 7A–G). The

regression equations are fitted for the same three ranges of

chlorophyll-a, as in the left panel. The regression line of in situ

POC and chlorophyll-a estimated for the validation matchup data

(solid line in left panel of Figure 7) is also reproduced in the middle

panel as a common reference line. The number of valid satellite

pixels obtained from the monthly image of 9 km resolution

was 4,126,389.

In the comparison for the global data (middle panels,

(Figures 7H–N), algorithms S1, S2, S3, S4, ST, and LO presented

satellite-derived POC and chlorophyll-a relationships that are fairly

similar to the matchup results on the left. However, the middle

panels revealed some differences among these four algorithms that

were not so evident when only the matchup data were plotted in the

left panels. For example, the spread of the data points in the vicinity

of 1 mg m−3, is high for algorithm S1, whereas such a feature is not

seen in the left panel of Figure 7A, and may be related to increased

noise in the Rrs values at 443nm, as chlorophyll-a concentration

increases, and when satellite viewing angles are unfavourable: we

found that most of these data points were located in high-latitude

waters (40 °S and above) during the southern hemisphere winter
B C D
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FIGURE 5

Scatter-plots of residuals, computed as the difference between in situ POC and satellite-derived POC for candidate algorithms (A) S1, (B) S2, (C) S3,
(D) S4, (E) ST, (F) LO, and (G) LE, are plotted as a function of in situ POC. The colours of the data points indicate the associated dominant water
types (1–14) estimated from the OC-CCI products. The dashed line indicates where the residual equals to zero. The units for residuals and in situ
POC are in mg m−3.
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(data not shown). It is also seen that the scatter of points in range 1

is less for algorithms S1 and S4 than for algorithms S2 and S3.

To investigate the performance of candidate algorithms in high-

latitude waters from where we lack sufficient in situ POC and

satellite-derived matchup products for point-by-point comparison,

we examined the monthly sea-surface POC concentration in sub-

Antarctic waters derived from algorithms ST and S2 (two of the

algorithms that performed well in the comparisons) with the POC

data derived from BGC-Argo (see Appendix G). The comparison

mirrors that carried out by Galı ́ et al. (2022), and is carried out for

the Sub-Antarctic region, as defined by them. In Galı ́ et al. (2022),
POC was estimated using mixed layer depth and bbp(700) obtained

from a monthly climatology from BGC-Argo data (2014-2019). For

comparison, we combined monthly POC concentrations (1998-

2020) derived from ST and S2 algorithms at each location with

mixed-layer depth data (section 2.4) to estimate the POC pool in the

layer. Both algorithms, ST and S2, showed values similar to BGC-

Argo POC data from April to October. However, the winter average

for the area (months 1 and 12 in the figure) overestimates BGC-

Argo-based estimates and the model-based estimates of Galı ́ et al.
by a factor of two to three, which could reflect the poor sampling of

high-latitudes by satellites during the winter months, such that the

satellite-based estimates are biased towards the higher POC values

at lower (less southern) latitudes. While it is difficult to carry the

comparison further, it provides some reassurance that the satellite-

derived estimates are not unreasonable in regions from where there

are no to little matchup data.
4 Discussion

In this paper, we have compared a number of algorithms that

have been proposed for estimating POC from satellite data with the
Frontiers in Marine Science 10
objective of finding the best performing algorithm when used in

conjunction with the OC-CCI time series data, for global

applications, especially in the context of studying the impact of

climate change on the marine environment. In doing this, we have,

in some instances, taken some algorithms beyond the specific

purposes for which they were designed. For example, some of the

algorithms were designed for specific localities. If such algorithms

that were tuned for excellence in a particular environment under-

performed in the global context, it may not be totally surprising,

and it should not be taken as indicative of their value and usefulness

when they are used for the application for which they were

originally designed. Nevertheless, such comparisons could provide

new insights into how the various types of algorithms might be

improved further, and where future efforts might be targeted.

Given the objective of applying the algorithm to the OC-CCI

version 5 products, which were developed with MERIS as the

reference sensor and with Rrs values reported for the MERIS

wavebands in the visible domain (412, 443, 490, 510, 560, and

670nm), Rrs values from the OC-CCI products had to be shifted to

the bands used in the initial implementation of the algorithms,

which could have added to the differences between algorithms and

in situ matchup data. In spite of all such problems which made the

algorithm-data comparisons difficult, it was algorithms S2 and ST

that performed consistently well, though several other algorithms

performed almost as well.

POC estimates computed using algorithm S2 have been

implemented with OC-CCI data version 4.2, based on its

performance in an earlier comparison (Evers-King et al., 2017)

and also because of its excellent performance in the comparisons

presented here (the data are openly available here (Sathyendranath

et al., 2022a): https://catalogue.ceda.ac.uk/uuid/299b1bb28eaa440f9

a36e9786adfe398). The global average over the entire time series of

POC concentration (1998-2020) estimated from algorithm S2 was
BA

FIGURE 6

Condorcet’s pair-wise comparison of residuals between a pair of candidate algorithms (S1, S2, S3, S4, ST, LO, and LE) for (A) non-transformed and
(B) log-transformed POC data. Blue colour represents instances when residuals of an algorithm win over another algorithm. The % win is shown in
both colours and numbers. White and red colours represent when the residuals of an algorithm tie or lose against another algorithm, respectively.
The magnitude of the wins (>50%) and losses (<50%) are indicated by the intensity of the blue and red colours, respectively. The number of total
wins or losses is counted horizontally.
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1.07 ± 0.05 PgC (where the uncertainty is the standard deviation

associated with the year-to-year differences). This is similar to

estimates from the past inter-comparison study (Evers-King et al.,

2017), which lay in the range from 0.77 to 1.3 PgC. Since the

original algorithm S2 was developed with a small number of

matchup data (of order 100), and also because of the differences
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in wavebands used for algorithm development and those available

on the OC-CCI version 5 products, we used the extensive matchup

data sets consisting of in situ POC and satellite products assembled

here to re-tune the algorithms to the OC-CCI data, before

implementation (see Appendix H). The excellent performance of

the tuned algorithm, with the low uncertainties associated with the
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FIGURE 7

Satellite-derived POC estimated from candidate algorithms (S1, S2, S3, S4, ST, LO, and LE) compared with corresponding satellite-derived
chlorophyll-a data. The (i) POC and chlorophyll-a relationships from the validation matchup data [left panels, (A–G), (ii) the POC and chlorophyll-a
from a sample monthly composite OC-CCI image (June, 2020) (middle panels, (H–N)], and (iii) the spatial maps of the POC estimated from the
same monthly composite OC-CCI images (right panels, (O–U). The solid lines in the scatter plots (i) and (ii) represent the linear regressions
estimated from the in situ POC and satellite-derived chlorophyll-a matchup data for three different chlorophyll-a ranges: chlorophyll-a less than or
equal to 0.1 mg m−3 (range 1), between 0.1 and 1 mg m−3 (range 2), and equal to or greater than 1 mg m−3 (range 3) (see Appendix F). The dashed
lines represent the corresponding linear regressions estimated for the satellite-derived POC and the same satellite-derived chlorophyll-a values.
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POC product, gives confidence in its quality, especially for those

optical classes for which a large number of matchup data were

available (the tuned algorithm S2 data are openly available here

(Sathyendranath et al., 2022b): http://dx.doi.org/10.5285/

5006f2c553cd4f26a6af0af2ee6d7c94). Our results indicate that

algorithm ST also merits to be implemented as a global time series.

The optical classes that are poorly represented in the in situ data

direct us to areas where future validation exercises should be

prioritised. Certainly, the next big challenge is to improve the

performance of POC algorithms in coastal waters, for which there

is a need for enhancement in the number of observations available

from under-represented coastal water classes and from under-

represented geographic areas, such as the Indian Ocean and high-

latitude waters (Figure 1).

While we consider the needs for a step change in the number of

in situ observations, and where they are needed, we should also

highlight the importance of high-quality data. Empirical POC

algorithms depend heavily on the quality of both the Rrs and in

situ POC data. Most of the in situ data assembled in this study were

measured following the protocols established during the Joint

Global Ocean Flux Study (Knap et al., 1996). Even though the

data had been subjected to rigorous quality checking by data

providers and by us, some data points with high bias could have

gone undetected in the data, which is a compilation of data from

various investigators collected from different oceanographic cruises

covering a period of over two decades. Residual errors can be

difficult to identify, though we were able to spot a small number of

outliers on the basis of a comparison with corresponding

chlorophyll-a data. The comparison allowed us to identify data

with unrealistic carbon-to-chlorophyll ratios. Additional

uncertainties are introduced at the matchup step, when

discrepancies can stem from differences in temporal and spatial

scales of in situ and satellite observations. We employed rigorous

satellite-matchup criteria to minimise errors from this source. The

downside was that it removed over 2000 matchup data points.

While the quality control added confidence in the results, it also

pointed to the need for consistency in methodology and data

management to ensure the high quality of in situ POC data. In

addition, improvements to methodologies used for in situ data

collection are also needed, as the works of Novak et al. (2018) and

Stramski et al. (2022) indicate.

Given the limitations of direct validation of satellite algorithms,

we explored indirect modes of testing the products, by comparing

relationships between POC and chlorophyll, similar in approach to

that of Evers-King et al. (2017) and by comparing regional estimates

of POC in the sub-Antarctic region. These comparisons were

helpful in identifying problems not only with the algorithms per

se, but also in highlighting instances when an increase in

uncertainties in satellite products under unfavourable viewing

conditions could translate into enhanced errors in the POC

product. Whereas such errors are not a limitation of the

algorithm itself, it illustrates conditions when such algorithms

may not be applicable. They also point to instances where

consistent gaps in satellite data (such as in high latitudes) could

limit interpretation of data aggregated at large scales.
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5 Concluding remarks

The results presented here confirm earlier conclusions that POC

algorithms have reached a state of maturity where they meet user

requirements (Evers-King et al., 2017). But one could envisage

further developments to algorithm performance by blending

multiple POC algorithms according to the performance of each

algorithm in different optical water types, as is being done in the

OC-CCI chlorophyll-a product (Jackson et al., 2017); or as

demonstrated by the hybrid algorithm of Stramski et al. (2022).

However, we lack sufficient matchup data from many optical water

types, especially water classes 1, 7, and 14 (Figure 2B), and

development of water-type-based blended algorithms must await

a significant increase in matchup data, especially in these

optical classes.
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