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Lying at the interface between the cryosphere, hydrosphere and 
pedosphere, glacier-influenced ecosystems are particularly 
sensitive to the impact of climate change1–4. Global warming 

has increased both the rate and extent of glacial melting in high-
latitude and high-altitude environments5, foreshadowing global 
changes in biodiversity patterns and functions, and leaving these 
ecosystems critically endangered6. Most glaciers have been shrink-
ing since the end of the Little Ice Age, about 150–250 years ago, 
but shrinkage rates have accelerated over the past five decades2,7, 
increasing threats to the environment and society3,8,9. These glacier-
fed systems are generally considered to be hostile, harsh habitats 
characterized by high levels of disturbance (for example, substrate 
removal and sedimentation) and low nutrient availability, resulting 
in low levels of diversity (coldspots) and productivity4,10, in particu-
lar near the glacier snout. However, as glacial contributions to ter-
restrial, freshwater and marine systems affect key abiotic conditions 
such as moisture, temperature and salinity, weak glacier influences 
have been shown to have positive effects on biodiversity further 
from the glacier5,8,11. At the regional scale, glaciers—in particular 
meltwater influences—create a mosaic of environmental conditions 
that are crucial for a large number of plants and animals12, in turn 
supporting economically important farmlands and fisheries13.

Nevertheless, several critical gaps in our knowledge preclude 
accurate predictions of biodiversity responses to glacial retreat at 
the global level. First, although glaciers are generally assumed to 
have a net negative effect on biodiversity and productivity (abun-
dance and biomass)14,15, positive effects of glaciers on the abundance 
of certain specialist taxa have been reported15–17. To clarify these 
inconsistencies, a global assessment of the proportion of ‘losers’ 
and ‘winners’ after glacier retreat across taxonomic groups (micro-
organisms, animals and plants) is therefore needed. Second, global 
syntheses covering a greater geographic range than local studies can 
test much broader latitudinal, altitudinal and climatic hypotheses 

about biodiversity response to glacier retreat. For example, it has 
been suggested that Antarctic fjords may differ from their Arctic 
counterparts because they are at an earlier stage of glacier retreat11, 
and that tropical freshwater and terrestrial communities may 
respond differently from their temperate (and Arctic) counterparts 
to glacier retreat due to differences in the harshness and seasonal-
ity of the environment18. This is particularly true for sites at high 
altitudes, at which low atmospheric partial pressures and high levels 
of ultraviolet radiation hinder rapid colonization by living organ-
isms4. Furthermore, biogeographical considerations, such as isola-
tion at high altitude and on islands, may reveal significant drivers of 
the biodiversity response to glacier retreat. Third, most ecological 
studies on glacier-influenced biota have focused on a single system, 
and there has been no synthetic analysis addressing the biodiver-
sity response to glacier retreat across marine, freshwater and ter-
restrial environments. Cross-system comparisons may shed light on 
general mechanisms and lead to the detection of specific (and/or) 
common biological traits accounting for the sensitivity of species 
to the influence of glaciers19 and, therefore, their potential vulner-
ability to glacier retreat. Marine, freshwater and terrestrial habitats 
differ in terms of their geomorphology, circulation processes and 
inputs (including glacial ice, meltwater and sediments), and they 
may, therefore, display substantially different physical forcing10.

We addressed these gaps in knowledge by conducting a global 
meta-analysis of biodiversity change across spatial glacial influ-
ence gradients based on more than 2,100 relationships (effect sizes) 
from the three major glacier-influenced systems (tidewater glacier-
fed fjords, glacier-fed freshwaters and glacier forefields), including 
regions with different rates of glacier retreat2 (Fig. 1). These effect 
sizes covered more than 500 animal taxa, 50 fungal taxa, 50 vascu-
lar plant taxa and 70 algal taxa, among which ~265, 40, 35 and 30 
identified at the species level, respectively. Effect sizes were defined 
as the population (taxon abundance) or community (richness) 
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Glaciers cover about 10% of the Earth’s land area but they are retreating rapidly and many will disappear within decades. Glacier 
retreat is a worldwide phenomenon increasing the threat to water resources, biodiversity and associated ecosystem services 
for hundreds of millions of people, mostly in developing countries. Our understanding of the ecological consequences of glacier 
retreat has improved significantly in the past decade, but we still lack a comprehensive framework for predicting biodiversity 
responses to glacier retreat globally, across diverse habitats and taxa. By conducting a global meta-analysis of 234 published 
studies, including more than 2,100 biodiversity surveys covering marine, freshwater and terrestrial assemblages, we show here 
that taxon abundance and richness generally increase at lower levels of glacier influence, suggesting that diversity increases 
locally as glaciers retreat. However, significant response heterogeneity was observed between study sites and species: 6–11% 
of the studied populations, particularly in fjords, would lose out from glacier retreat. Most of the losers are specialist species, 
efficient dispersers, uniquely adapted to glacial conditions, whereas the winners are generalist taxa colonizing from down-
stream. Our global analyses also identify key geographic variables (glacier cover, isolation and melting rates, but not latitude 
or altitude) and species traits (body size and trophic position) likely to modulate taxon sensitivity to glacial retreat. Finally, we 
propose mechanistic diagrams for model development to predict biodiversity change following glacier retreat.
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responses to glacial influence calculated as: (1) the Pearson’s corre-
lation coefficients (r) for studies recording biotic observations along 
a gradient of glacial influence; and (2) the standardized mean dif-
ference (g) for studies reporting means and variances between two 
zones (one close to and one further away from the glacier snout). 
A negative effect size designates a positive effect of the glacier on 
the population/community, indicating a high sensitivity to glacier 
retreat. Conversely, a positive effect size indicates a negative effect of 
the glacier and low sensitivity to glacier retreat. The heterogeneity of 
effect sizes was assessed with the Q statistic, with Qm indicating the 
contribution of moderators to the heterogeneity, and Qr the residual 
error variance.

Results and discussion
The meta-analysis revealed that, overall, glaciers had a negative 
effect on natural populations and communities living in fjords, 
freshwaters and forefields (Fig. 2). This suggests that most sites are 
likely to display a gain in local species abundance and richness as 
glaciers retreat—a pattern frequently reported in previous stud-
ies6,14,15. However, the local responses of populations and communi-
ties varied considerably. Glaciers significantly affected biodiversity 
in about one-quarter to one-half of the 2,116 surveys (26–37% for 

taxon abundance and 30–54% for taxon richness). For these signifi-
cant responses, we classified the corresponding populations/species 
as ‘winners’ (red bars; positive effect sizes) or ‘losers’ (blue bars; 
negative effect sizes) with respect to ongoing glacier retreat. Overall, 
loser populations accounted for 6–11% of all responses, the high-
est proportion being reported for fjords (Fig. 2). We also identified 
significant positive effects of glaciers at the community level (4–7%; 
Fig. 2). Winner populations accounted for 19–26% of all responses 
in the three systems, whereas winner communities accounted for 
about 45% of responses in both fjords and freshwaters, and 25% of 
responses in glacier forefields (see the list of significant species losers 
and winners in Supplementary Table 1). Most losers were specialist 
species, adapted to the glacial environment/habitat, among which 
some were restricted to isolated glacier-influenced ecosystems (for 
example, the foraminifer Cassidulina reniforme in fjords, the arthro-
pod Diamesa davisi in glacier-fed streams and the ground beetle 
Nebria nivalis in forefields). In contrast, the winners tended to be 
generalist/invasive taxa, generally colonizing from downstream12,15. 
The proportion of losers among taxa is probably underestimated 
because: (1) few studies have investigated organisms (for example, 
bacteria, algae and tardigrades) living at the surface of the glacier, 
and these populations will disappear completely with the loss of the 

1

2

3
8

10

13–15

1819

17
16

11

4 5 6

7
9

12

–1,000

–500

–100

100

10

Number of 
effect sizes

Mass budget
(kg m–2 yr–1) 

Fjords

Ecosystems

Freshwaters

Forefields

Fig. 1 | Global distribution of the biodiversity surveys analysed in this study. The map indicates the area of glaciers (orange), the rate of glacier retreat 
(red discs) and the number of effect sizes for abundance and richness (pie charts) for glacier-influenced fjord (blue), freshwater (grey) and forefield 
systems (green). Fjords are deep estuaries, carved by glaciers, that form important boundary zones between the cryosphere and the ocean. Freshwaters 
include streams and lakes influenced by periodic glacier melting. Glacier forefields are the leading edge of glaciers and moraines. We used the Randolph 
Glacier Inventory262,263, which defines 17 regions with different ice mass budget (kg m−2 yr−1)254. Photographs show (left to right) a fjord, freshwater, and 
forefield systems: O.D. and S.C.-F.
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glacier20; and (2) populations with low occurrence, many of which 
are located close to the glacier, could not be included in the meta-
analysis due to a lack of statistical power.

Our meta-analysis also showed that the biodiversity response 
to the influence of the glacier was independent of the latitude and 
altitude of the study site (Supplementary Table 2), suggesting that 
environmental filtering linked to glacial influence dominates over 
regional factors. However, regional glacier area, melting rate and 
site isolation were significant predictors of the biodiversity response 
to glacier influence, although their effects were not consistent 
between systems and metrics (richness versus abundance). Indeed, 
we found: (1) more winners in fjords (richness; Qm = 5.5; d.f. = 1; 
P = 0.019) and glacier forefields (abundance; Qm = 4.4; d.f. = 1; 
P = 0.035) in regions with high melting rates; (2) more losers in 
freshwaters (abundance; Qm = 4.7; d.f. = 1; P = 0.031) in regions with 
extensive areas covered by glaciers; and (3) more winners (richness; 
Qm = 4.5; d.f. = 1; P = 0.034) in continental fjords than on islands 
(Supplementary Table 2), supporting the importance of dispersal 
limitation for structuring the glacier-influenced communities.

In forefields, taxonomic group significantly explained the overall 
variability in population responses to glacier influence (Qm = 21.9; 
d.f. = 9; P = 0.009; Supplementary Table 3). Nevertheless, the magni-
tude and direction of the mean effects of glacier influence on abun-
dance were highly variable across taxonomic groups (Fig. 3). For 
example, in both fjords and freshwaters, glaciers had a significantly 

negative mean effect on annelids (z = 4.6 and P < 0.001 for fjords; 
and z = 3.5 and P = 0.005 for freshwaters). Glaciers also had negative 
effects on cnidarians, echinoderms, foraminifers and arthropods 
in fjords. A low glacial influence had a significant positive mean 
effect on arthropods in freshwaters (z = 5.8; P < 0.001), on vascular 
plants (z = 5.2; P < 0.001), bryophytes (z = 2.7; P = 0.007) and fungi 
(z = 2.4; P = 0.016) in forefields, and on bacteria in both freshwaters 
(z = 2.2; P = 0.026) and forefields (z = 3.2; P = 0.001). These taxo-
nomic groups would therefore be predicted to be overall winners 
in situations of glacier retreat, although they also include loser taxa. 
Glaciers also had positive effects on bacteria, chordates and nema-
todes in fjords, diatoms in freshwaters, and tardigrades, nematodes 
and rotifers in forefields. Body size and trophic levels were two traits 
significantly accounting for the observed patterns, with smaller taxa 
(Qm = 9.8; d.f. = 1; P = 0.002 for freshwaters; and Qm = 7.7; d.f. = 1; 
P = 0.006 for forefields) and heterotrophs (forefields: Qm = 3.0; 
d.f. = 1; P = 0.085) more abundant under conditions of strong  
glacial influence.

Very few studies have experimentally tested the mechanisms 
underlying the biodiversity response to glacier retreat21, yet func-
tional approaches identifying the physical and biological processes 
are crucial for ecological predictions. We therefore constructed 
mechanistic diagrams for each study system, based on informa-
tion found in the 234 publications studied (Supplementary Table 4). 
By identifying pathways for the negative (red arrows) and positive 
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(blue arrows) effects of glacier influence on biota, these diagrams 
reveal a number of mechanisms by which glaciers affect biodiversity 
in all systems (Fig. 4).

First, the harsh abiotic conditions generated by the glacier hin-
der the survival of many unadapted species living in terrestrial and 
aquatic environments. For example, low temperature selects for 
cryophilous species14,16,22 and high concentrations of suspended 
sediments bury sessile organisms (for example, bryophytes and 
echinoderms), clog the filtering organs of filterers (for example, 
crustaceans and cnidarians) and enhance organism abrasion15,23. 
Moreover, substrate instability linked to glacier movement impedes 
the establishment of attached organisms, and both ice scouring and 
meltwater outflows dislodge and kill these organisms (for example, 
bryophytes, bryozoans and plants24) or their burrows (for example, 
for tube-dwelling polychaetes)15. Importantly, low temperatures in 
both terrestrial and aquatic systems, and the reduction of light by 
glacial flour, decrease primary production23. This indirectly favours 
heterotrophic organisms feeding on dead organisms unable to sur-
vive glacial conditions (for example, marine snow plankton killed 
by turbid freshwater25 and attached organisms scoured by ice) or 
allochthonous matter (for example, wind-blown fallout of organ-
isms and organic debris16), part of it being accumulated on the gla-
cier and further dispersed downstream through meltwater26.

Second, glaciers create habitable areas for many range-restricted 
species dependent on the unique thermal and hydrological condi-
tions found in glacier-influenced fjords, freshwaters and forefields 

(for example, refuges for cold-adapted species22). At more local 
scales, organic or inorganic sinks on and below glaciers provide 
nutrients and microorganisms27, and dropstones in fjords may be 
important habitats for several taxa11. Moreover, in aquatic systems, 
glacial flour absorbs ultraviolet radiation23, which is particularly 
strong in high mountains, and acts as a habitat for bacteria28. The 
expansion of the ice-free area releases substantial quantities of new 
potential habitats for species5,29, but the decrease in meltwater levels 
decreases water availability for both superficial and aquifer recharge 
(for example, freshwater fish habitat4) and increases the risk of des-
iccation in glacier forefields29.

Third, the earliest stages of succession below glaciers help to 
reduce interspecific competition. The taxa benefiting from empty 
niches are mostly strong dispersers that are able to colonize isolated 
ecosystems (for example, small organisms passively transported by 
wind or water currents15,16,30) and are resilient to disturbance (for 
example, rapid recolonization of small mobile organisms from the 
hyporheic zone31). With glacier retreat, changes in the abiotic con-
ditions and increases in between-habitat connectivity linked to the 
loss of glaciers and glacier-fed outflows acting as dispersal barri-
ers within and between systems12,15 would be expected to favour the 
spread of competitive taxa (for example, aquatic and terrestrial low-
land and marine invasive species32) and pathogens33, leading to spe-
cies extinction and biotic homogenization at the regional scale6,12.

Our study reveals that climate change will cause extensive 
changes to glacier-fed biota across marine, freshwater and terrestrial 
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systems. The differences in mean sensitivity between communities 
result from the tremendous diversity of individual species responses, 
suggesting that the sensitivity of each species depends on multiple 
internal species traits (for example, dispersal capacity and feeding 
habit) and external drivers of change. In the next few decades, as 
anthropogenic climate change signals become more pronounced 
and glaciers disappear completely, more substantial changes in the 
biodiversity of glacier-fed systems will occur, with unclear conse-
quences for ecosystem function and services to human populations.

Methods
Literature survey and data requirements. Studies on the three glacier-influenced 
ecosystems—fjords, freshwaters and forefields—were identified through a 
comprehensive search of the Web of Science last updated in January 2018, based 
on the following search string: (biodivers* OR biological diversity OR species 
richness OR species diversity OR taxonom* OR phylogen* OR animal diversity 
OR mammal diversity OR bird diversity OR fish diversity OR reptile diversity OR 
amphibian diversity OR frog diversity OR insect* diversity OR plant diversity OR 
weed diversity OR microbial diversity OR bacteria* diversity OR fung* diversity 
OR virus diversity OR ecosystem diversity OR habitat diversity OR landscape 
diversity OR biological conservation OR species conservation OR habitat 
conservation OR genetic resource* OR functional diversity OR functional trait* 
OR invasive species OR biological invasion* OR functional type OR functional 
group) AND (glac* OR deglac*) NOT (postglacia* OR post-glacia* OR last glacia* 
OR interglacial period* OR penultimate glacial period* OR glacier period* OR 
glaciation* OR late-glacia* OR late glacia* OR glaci* cycles OR past glacia* OR 
glacial relic* OR glacial refug* OR glacial till OR palae* OR paleo* OR glacial 
history OR Pleistocene OR Quaternary OR Miocene OR Holocene OR Wisconsin* 
OR Toarcian OR Pliocene OR Hirnantian OR Cryogenian OR Precambrian OR 
Marinoan) NOT (sea ice OR ice floe* OR ice field* OR cream OR polyglactin OR 
glaciei OR glacialis OR glacialia OR glacial acetic OR glacialepis OR glacontryphan 
OR glaciecola). This search provided 1,396 records. We then removed all irrelevant 
publications (that is, those not assessing biodiversity change across a spatial 
gradient of glacial influence based on contemporary observations) and obtained 
626 articles. We then carefully screened the reference lists of all of these articles to 
ensure that no studies were missed.

To be included in the meta-analysis, all of the publications had to meet the 
following criteria: (1) quantitative primary data reported in a usable form;  
(2) study including various study sites/zones at different known distances from 
the glacier snout; (3) study based on measurements/observations in the field 
(no experiments); and (4) the response variable had to be a measurement of 
biodiversity at the community level, characterizing taxonomic diversity (for 
example, taxon richness and Shannon diversity) and/or at the population level, 
characterizing taxon abundance (for example, density, biomass and abundance). 
Datasets analysed several times in different publications were included only  
once in our final database. After this selection process, we obtained a total  
of 234 studies11,12,14,15,17,22–250. For fjords, we excluded study sites in the open sea.  
The primary explanatory variable of glacial influence in the meta-analysis was the 
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supraglacial organic and inorganic deposits provide nutrients and 
microorganisms. Ice scours the substrate, organic matter and sessile taxa. 
Unstable glaciomarine mud prevents the establishment of attached taxa 
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dilutes organic matter and provides habitats for bacteria (potential 
foraminifer food). Sedimentation buries organic matter, sessile taxa and 
fish eggs, and impedes substrate irrigation, thereby reducing oxygenation. 
Freshwater provokes an osmotic shock in marine taxa. Cold water provides 
a refuge for cold-adapted taxa. Detritus from ice scouring and marine 
snow feed detritivores. In freshwaters, supraglacial organic and inorganic 
deposits provide nutrients and microorganisms. Glacial flour clogs the 
filtering apparatus (mostly in lakes), reduces light availability and primary 
production, protects against ultraviolet radiation and can serve as a source 
of bioavailable phosphorus. Sedimentation buries sessile taxa. Unstable 
substrates impede the establishment of attached taxa. Cold water 
provides a refuge for cold-adapted taxa. The supply of meltwater provides 
a habitat for aquatic taxa. Floods dislodge organic matter, substrate and 
taxa. Flowing glacial flour scours the periphyton and taxa (abrasion). In 
forefields, supra- and subglacial organic and inorganic matter provide 
nutrients and microorganisms. Meltwater provides moisture, prevents 
desiccation and disperses nutrients, organisms and seeds. The cooling 
effect of the glacier favours cold-adapted taxa. The unstable substrate 
impedes the establishment of attached taxa. Floods erode protosoils 
and dislodge organic matter and organisms. Wind-blown fallout feeds 
predators and detritivores. Far from the glacier, soil development and 
trophic interactions are maximized.
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distance of the study sites from the glacier snout. For both freshwaters and glacier 
forefields, we also used a glaciality index and age since deglaciation, respectively, 
when no information about distance was provided.

Effect sizes. Effect sizes were defined as the population (taxon abundance) or 
community (taxonomic diversity) responses to glacial influence. For studies 
reporting biotic observations at various distances from the glacier snout, effect sizes 
were determined as Pearson’s correlation coefficients (r) between the population or 
community response and glacial influence (explanatory variable). These coefficients 
were either: (1) directly extracted from the study; (2) converted from Spearman’s 
rank correlation coefficients251; or (3) calculated from raw data or data extracted 
from figures with GetData Graph Digitizer 2.25. For studies reporting means, 
variances and sample sizes of biotic observations in two study zones (one close 
to and one further away from the glacier snout), effect sizes were first calculated 
as the standardized mean difference (g)252, and then converted to r253. Finally, we 
transformed all correlation coefficients (r) to Fisher’s scale (ESZr) as previously 
described253. Negative effect sizes imply a positive effect of the glacier on a population 
or community. For single studies reporting results for more than one taxon, we 
entered the effect size of each taxon as an independent estimate. For each study, 
only taxa occurring in more than 60% of sites were included in the analyses. We also 
recorded the latitude and altitude of each of the glacier-influenced systems studied, 
assigning a corresponding estimated regional total glacier area (km2) and mass budget 
(calculated in kg m−2 yr-1 and Gt yr−1 for 2003–2009), as previously described254, and 
clustering the systems according to their isolation (island or continent).

Meta-analysis models. For each analysis, and separately for the three glacier-
influenced systems, we used multilevel meta-analysis models with random effects 
to account for differences between studies (for example, variation in sampling 
strategy), assuming they do not share a common (true) effect size but that there 
is random variation between studies, in addition to within-study sampling 
variation253,255. A publication-level random effect as a nesting factor was included 
to handle the potential lack of independence of our data as multiple effect sizes 
were obtained from the same study256,257. We first used two separate random-effects 
models to assess the overall responses (mean effect) of both populations (taxon 
abundance) and communities (diversity) to glacial influence. We then used separate 
mixed-effects models, including altitude, absolute latitude, regional glacier area and 
mass budget (continuous variables), as well as isolation (island versus continent) 
as fixed factors (moderators) for both the population and community levels. For 
populations, we performed the same analyses with taxonomic group (about ten 
groups; see Supplementary Table 3), species (see Supplementary Table 1), trophic 
level (autotroph versus heterotroph) and organism size (microorganisms ≤ 2 mm 
with high passive dispersal capacity versus macroorganisms > 2 mm258) as fixed 
factors. Mixed-effects models were used to determine whether moderators explained 
the heterogeneity of effect sizes, to compare the mean effect for different groups 
(for categorical moderators) and to assess the relationship between continuous 
moderators and effect sizes. We discarded the taxonomic groups occurring in only 
one system and for which fewer than seven effect sizes were available.

Effect sizes were considered to be significantly different from zero if their 95% 
confidence intervals did not include zero252. We assessed the heterogeneity of effect 
sizes with the Q statistic, calculated as the weighted sum of squares, comparing 
the results obtained with a chi-squared distribution253 to determine whether the 
proportion of the variance of observed effect sizes accounted for by the model 
was greater than that expected by chance. A significant Q statistic indicates 
heterogeneity in effect sizes. For mixed-effects models, total heterogeneity can be 
partitioned into the variance explained by the moderators in the model (Qm) and 
the residual error variance (Qr). A significant Qm statistic indicates that moderators 
contribute to the heterogeneity in effect sizes. Models were fitted by restricted 
maximum-likelihood estimation. All analyses were performed in R with the 
metafor and esc packages259 (R Core Development Team, 2015, version 3.6.1).

Sensitivity analysis. We explored the possibility of publication bias, defined as a 
greater likelihood of publication for studies reporting statistically significant effects 
than for those reporting non-significant effects, graphically (by plotting contour-
enhanced funnel plots260) and statistically (with Egger’s regression261 test adapted to 
multilevel meta-analysis; see ref. 256 for details). We also compared random-effects 
models with (multilevel models) and without modelling non-independence (simple 
models), and assessed the impact of potential publication bias on simple models 
by the trim and fill method255. We checked that the nature of explanatory and 
response variables had no significant effect on our results by comparing, for studies 
providing various metrics, the summary effect size obtained with: (1) the glaciality 
index and distance to glacier front for freshwaters; (2) the time since deglaciation 
and distance to glacier front for forefields; and (3) the Shannon diversity and taxa 
richness for the three systems. We also tested whether spatial scale affected effect 
sizes using mixed-effects models with the maximum distance from glacier snout as 
a fixed factor (see Supplementary Table 5 and Supplementary Fig. 1).

Review. To deepen the interpretation of our results, we recorded all physical and 
biological processes mentioned in the 234 studies, and combined them into a 
mechanistic diagram for each glacier-influenced ecosystem.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data are available at https://doi.org/10.7910/DVN/ZAREWT.

Code availability
Code from this study is available at https://doi.org/10.7910/DVN/ZAREWT.

Received: 23 May 2019; Accepted: 15 October 2019;  
Published online: 18 November 2019

References
	1.	 Hock, R. et al. in IPCC Special Report on the Ocean and Cryosphere in a 
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