
HAL Id: hal-04951448
https://cnrs.hal.science/hal-04951448v1

Submitted on 17 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Rewriting the Infinite Chase for Guarded TGDs
Michael Benedikt, Maxime Buron, Stefano Germano, Kevin Kappelmann,

Boris Motik

To cite this version:
Michael Benedikt, Maxime Buron, Stefano Germano, Kevin Kappelmann, Boris Motik. Rewriting the
Infinite Chase for Guarded TGDs. ACM Transactions on Database Systems, 2024, 49 (4), pp.1 - 44.
�10.1145/3696416�. �hal-04951448�

https://cnrs.hal.science/hal-04951448v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Rewriting the Infinite Chase for Guarded TGDs

MICHAEL BENEDIKT, Oxford University, Oxford, United Kingdom

MAXIME BURON, LIMOS, University Clermont Auvergne, Aubière, France

STEFANO GERMANO, Oxford University, Oxford, United Kingdom

KEVIN KAPPELMANN, Technical University of Munich, Munich, Germany

BORIS MOTIK, Oxford University, Oxford, United Kingdom

Guarded tuple-generating dependencies (GTGDs) are a natural extension of description logics and referen-
tial constraints. It has long been known that queries over GTGDs can be answered by a variant of the
chase—a quintessential technique for reasoning with dependencies. However, there has been little work on
concrete algorithms and even less on implementation. To address this gap, we revisit Datalog rewriting ap-
proaches to query answering, where a set of GTGDs is transformed to a Datalog program that entails the
same base facts on each base instance. We show that a rewriting consists of “shortcut” rules that circumvent
certain chase steps, we present several algorithms that compute a rewriting by deriving such “shortcuts” ef-
ficiently, and we discuss important implementation issues. Finally, we show empirically that our techniques
can process complex GTGDs derived from synthetic and real benchmarks and are thus suitable for practical
use.

CCS Concepts: • Information systems → Database design and models;

Additional Key Words and Phrases: guarded database dependencies, Datalog rewriting

ACM Reference Format:

Michael Benedikt, Maxime Buron, Stefano Germano, Kevin Kappelmann, and Boris Motik. 2024. Rewriting
the Infinite Chase for Guarded TGDs. ACM Trans. Datab. Syst. 49, 4, Article 14 (November 2024), 44 pages.
https://doi.org/10.1145/3696416

1 Introduction

Tuple-generating dependencies (TGDs) are a natural extension of description logics and referential
constraints, and they are extensively used in databases. For example, they are used in data integra-
tion to capture semantic restrictions on data sources, mapping rules between data sources and the
mediated schema, and constraints on the mediated schema. A fundamental computational prob-
lem in such applications is query answering under TGDs: given a query Q , a collection of facts I ,
and a set of TGDs Σ, find all the answers to Q that logically follow from I and Σ. This problem has

Authors’ Contact Information: Michael Benedikt, Oxford University, Oxford, Oxfordshire, United Kingdom; e-mail:

Michael.Benedikt@cs.ox.ac.uk; Maxime Buron, LIMOS, University Clermont Auvergne, Aubière, France; e-mail:

maxime.buron@uca.fr; Stefano Germano, Oxford University, Oxford, Oxfordshire, United Kingdom; e-mail: stefano.

germano@cs.ox.ac.uk; Kevin Kappelmann, Technical University of Munich, Munich, Bayern, Germany; e-mail:

kevin.kappelmann@tum.de; Boris Motik, Oxford University, Oxford, Oxfordshire, United Kingdom; e-mail:

boris.motik@cs.ox.ac.uk.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 0362-5915/2024/11-ART14

https://doi.org/10.1145/3696416

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

HTTPS://ORCID.ORG/0000-0003-2964-0880
HTTPS://ORCID.ORG/0000-0002-8227-4771
HTTPS://ORCID.ORG/0000-0001-6993-0618
HTTPS://ORCID.ORG/0000-0003-1421-6497
HTTPS://ORCID.ORG/0000-0003-2506-4118
https://doi.org/10.1145/3696416
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3696416
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696416&domain=pdf&date_stamp=2024-11-08

14:2 M. Benedikt et al.

long been seen as a key component of a declarative data integration systems [33, 41], and it also
arises in answering queries using views and accessing data sources with restrictions [27, 32, 45].

The chase is a quintessential technique for reasoning with TGDs. It essentially performs “for-
ward reasoning” by extending a set of given facts I to a set I ′ of all facts implied by I and a set of
TGDs Σ. To answer a query, one can compute I ′ using the chase and then evaluate the query in I ′.
Unfortunately, the chase does not necessarily terminate, and in fact query answering for general
TGDs is undecidable. Considerable effort was devoted to identifying classes of TGDs for which
query answering is decidable. One line of work has focused on TGDs where the chase terminates;
weakly-acyclic TGDs [28] are perhaps the best-known such class. Another line of work focused
on guarded TGDs (GTGDs). GTGDs are interesting since they can capture common constraints
used in data integration, and ontologies expressed in variants of description logic (DL) [8] can be
translated directly into GTGDs. Example 1.1 illustrates the use of GTGDs used in a data integration
scenario.

Example 1.1. The IEC Common Information Model (CIM) is an open model for describing power
generation and distribution networks. It is frequently used as a semantic layer in applications that
integrate data about power systems [29]. CIM is defined in UML, but its formal semantics has been
provided by a translation into an OWL ontology. The domain of CIM is described using classes

and properties, which correspond to unary and binary relations, respectively. Moreover, semantic
relationships between classes and properties are represented as OWL axioms, many of which can
be translated into GTGDs. A significant portion of CIM describes power distribution equipment
using GTGDs such as (1)–(4).

ACEquipment(x) → ∃y hasTerminal(x ,y) ∧ ACTerminal(y) (1)

ACTerminal(x) → Terminal(x) (2)

hasTerminal(x , z) ∧ Terminal(z) → Equipment(x) (3)

ACTerminal(x) → ∃y partOf(x ,y) ∧ ACEquipment(y) (4)

Data integration is then achieved by populating the vocabulary using mappings, which can be seen
as queries over the data sources that produce a set of facts called a base instance. A key issue in
data integration is dealing with incompleteness of data sources. For example, it is not uncommon
that one data source mentions two switches sw1 and sw2, while another data source provides
information about connected terminals only for switch sw1.

ACEquipment(sw1) ACEquipment(sw2) (5)

hasTerminal(sw1, trm1) ACTerminal(trm1) (6)

GTGDs can be used to complete the data. For example, if a user asks to list all pieces of equipment
known to the system, both sw1 and sw2 will be returned, even though the base instance does not
explicitly classify either switch as a piece of equipment. �

Even though the chase for GTGDs does not necessarily terminate, query answering for GTGDs
is decidable [42]. To prove decidability, one can argue that the result of a chase is tree-like—that is,
the facts derived by the chase can be arranged into a particular kind of tree. Next, one can develop
a finite representation of potentially infinite trees. One possibility is to describe the trees using a
finite tree automaton, so query answering can be reduced to checking automaton emptiness. While
theoretically elegant and worst-case optimal, this method is not amenable to practical use: building
the automaton and testing its emptiness are both complex and expensive, and moreover the best-
case and the worst-case complexities of such algorithms typically coincide. Alternatively, one can

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:3

use blocking to identify a tree prefix sufficient for query evaluation. Blocking is commonly used in
description logic reasoning [8], and it was later lifted to guarded logic [34]. However, blocking was
shown to be impractical for query answering: the required tree prefix can be much larger than the
base instance I so, as I grows in size, the size of the tree prefix becomes unmanageable.

More promising query answering techniques for GTGDs are based on Datalog rewriting. The
idea was initially proposed by Marnette [43], and it was later extended to broader classes of
TGDs [12, 31] and settings [13]. The aim is to transform a set of GTGDs Σ into a set rew(Σ)
of Datalog rules such that Σ and rew(Σ) entail the same base facts on each base instance. Thus,
given a base instance I , instead of computing the chase of I and Σ (which may not terminate),
we compute the chase I ′ of I and rew(Σ). Datalog rules essentially correspond to existential-free
TGDs, so I ′ is always finite and can be computed using optimized Datalog engines. Moreover,
Σ and rew(Σ) entail the same base facts on I , so we can answer any existential-free conjunctive
query (i.e., queries where all variables are answer variables) by evaluating in I ′. The restriction to
existential-free queries is technical: existentially quantified variables in a query can be matched to
objects introduced by existential quantification, and these are not preserved in a Datalog rewriting.
However, practical queries are often existential-free since all query variables are usually answer
variables.

Example 1.2. A Datalog program consisting of rules (2)–(3) and (7) is a rewriting of GTGDs
(1)–(4).

ACEquipment(x) → Equipment(x) (7)

Rule (7) is a logical consequence of GTGDs (1)–(3), and it provides a “shortcut” for the inferences
of the other GTGDs. �

The advantage of rewriting-based approaches is scalability in the size of the base instance I .
Such techniques have been implemented and practically validated in the context of description
logics [35, 36], but practical algorithms for GTGDs have not yet been proposed. This raises several
theoretical and practical questions.

How to compute the Datalog rules needed for completeness? Existing Datalog rewriting algorithms
often prove their correctness indirectly. For example, completeness of a rewriting algorithm for
description logics [36] uses a proof-theoretic argument, which does not provide an intuition about
why the algorithm actually works. Our first contribution is to relate Datalog rewriting approaches

to the chase. Towards this goal, we introduce the one-pass variant of the chase, which we use
to develop a very general completeness criterion for Datalog rewriting algorithms. This, in turn,
provides us with a better understanding of how rewriting algorithms work, and it allows us to
discover new algorithms in a systematic way.

What does the space of rewriting algorithms look like? Computing the rewriting rew(Σ) usually
requires extending Σ with certain logical consequences of Σ. We show that we can select the
relevant consequences using different criteria. Some methods require deriving TGDs with existen-
tial quantifiers in the head, others generate Datalog rules directly, and yet other methods derive
logical implications with function symbols. We relate all of these methods to the one-pass chase
mentioned earlier, and we provide theoretical worst-case guarantees about their performance.

How do we ensure scalability of rewriting algorithms? Implementations of Datalog rewriting
algorithms have thus far been mainly considered in the setting of description logics [36, 46]. To

the best of our knowledge, we provide the first look at optimization and implementation of Datalog

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:4 M. Benedikt et al.

rewriting algorithms for GTGDs. We achieve scalability by developing and combining various
indexing and redundancy elimination techniques.

How do we evaluate rewriting algorithms? We provide a benchmark for GTGD query answering
algorithms, and we use it to evaluate our methods. To the best of our knowledge, this is the first
attempt to evaluate query answering techniques for GTGDs.

Summary of contributions. We present an extensive account of Datalog rewriting for GTGDs.
Specifically, we develop a theoretical framework that allows us to understand, motivate, and show
completeness of rewriting algorithms. Moreover, we present several concrete algorithms, establish
their worst-case complexity bounds, and discuss how different algorithms relate to each other. We
complement our theoretical analysis with a discussion of how to adapt techniques from first-order
theorem proving to the setting of GTGDs. Finally, we empirically evaluate our techniques using
an extensive benchmark and provide insights into the performance of different algorithms. Our
implementation, details about our experimental setup, and our test data are provided online [19].

Earlier publications based on this work. An extended abstract of this paper appeared in the VLDB
proceedings [18], and a short summary of the results was included into the informal proceedings
of the Datalog 2.0 workshop [17]. This paper complements these earlier publications in two main
ways. First, we include the full proofs of a number of nontrivial results, such as the completeness
proof of the one-pass chase and the completeness and complexity proofs of all rewriting algorithms.
Second, in addition to the algorithms we presented earlier, we introduce in this paper the FullDR
rewriting algorithm and we include it in our performance evaluation.

2 Related Work

Answering queries via rewriting has been extensively considered in description logics (DLs). For
example, queries over ontologies in the DL-Lite family of languages can be rewritten into first-
order queries [24]. Fact entailment can be rewritten to disjunctive Datalog for SHIQ ontologies
[36], and to ordinary Datalog for Horn-SHIQ ontologies [25]. Concept subsumption algorithms
for the EL family [7] of DLs can also be seen computing Datalog rewritings. These techniques
provide the foundation for the Ontop [23], KAON2 [46], and ELK [40] systems.

In the context of TGDs, first-order rewritings were considered in data integration systems with
inclusion and key dependencies [22], and frontier-guarded TGDs [15]. Datalog rewritings have
been considered for GTGDs [43], frontier-guarded TGDs [13, 14], and nearly frontier-guarded
and nearly guarded TGDs [31]. The focus in these studies was to identify complexity bounds and
characterize expressivity of TGD classes rather than provide practical algorithms. Existing imple-
mentations of query answering for TGDs are based on first-order rewriting for linear TGDs [56],
chase variants for TGDs with terminating chase [20], chase with blocking for warded TGDs [16],
chase with the magic sets transformation for shy TGDs [4], and Datalog rewriting for separable
and weakly separable TGDs [57]. All of these TGD classes are different from GTGDs, and we are
unaware of any attempts to implement and evaluate algorithms for query answering over GTGDs.

Our algorithms are related to resolution-based decision procedures for variants of guarded logics
[26, 30, 58]. Moreover, our characterization of Datalog rewritings is related to a chase variant used
to answer queries over data sources with access patterns [5]. Finally, a variant of the one-pass
chase from Section 4 was generalized to the broader context of disjunctive GTGDs [38].

3 Preliminaries

In this section, we recapitulate the well-known definitions and notation that we use to formalize
our technical results.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:5

TGDs. Let consts, vars, and nulls be pairwise disjoint, infinite sets of constants, variables, and
labeled nulls, respectively. A term is a constant, a variable, or a labeled null; moreover, a term is
ground if it does not contain a variable. For α a formula or a set thereof, consts(α), vars(α), nulls(α),
and terms(α) are the sets of constants, free variables, labeled nulls, and terms, respectively, in α .

A schema is a set of relations, each of which is associated with a nonnegative integer arity. A fact

is an expression of the form R(�t), where R is an n-ary relation and �t is a vector of n ground terms;
moreover, R(�t) is a base fact if �t contains only constants. An instance I is a finite set of facts, and I
is a base instance if it contains only base facts. An atom is an expression of the form R(�t), where R
is an n-ary relation and �t is a vector of n terms not containing labeled nulls. Thus, each base fact
is an atom. We often treat conjunctions as sets of conjuncts; for example, for γ a conjunction of
facts and I an instance, γ ⊆ I means that each conjunct of γ is contained I .

A tuple generating dependency (TGD) is a first-order formula of the form ∀�x[β → ∃�y η], where
β and η are conjunctions of atoms, η is not empty, the free variables of β are �x , and the free
variables of η are contained in �x ∪ �y. Conjunction β is the body and formula ∃�y η is the head of
the TGD. We often omit ∀�x when writing a TGD. A TGD is full if �y is empty; otherwise, the TGD
is non-full. A TGD is in head-normal form if it is full and its head contains exactly one atom, or
it is non-full and each head atom contains at least one existentially quantified variable. A TGD of
the form ∀�x[β → ∃�y η ∧A] where A is an atom with vars(A) ∩ �y = ∅ is equivalent to two TGDs
∀�x[β → ∃�y η] and ∀�x[β → A]; thus, each TGD can be transformed to an equivalent set of TGDs in
head-normal form by repeatedly applying this transformation. A full TGD in head-normal form is
a Datalog rule, and a Datalog program is a finite set of Datalog rules. The head-width (hwidth) and
the body-width (bwidth) of a TGD are the numbers of variables in the head and body, respectively;
these are extended to sets of TGDs by taking the maxima over all TGDs. The notion of an instance
satisfying a TGD is inherited from first-order logic. A base fact F is entailed by an instance I and
a finite set of TGDs Σ, written I , Σ |= F , if F ∈ I ′ holds for each instance I ′ ⊇ I that satisfies Σ.

A substitution σ is a function that maps finitely many variables to terms. The domain and the
range of σ are dom(σ) and rng(σ), respectively. For γ a term, a vector of terms, or a formula, σ (γ)
is obtained by replacing each free occurrence of a variable x in γ such that x ∈ dom(σ) with σ (x).

Fact Entailment for Guarded TGDs. Fact entailment for general TGDs is semidecidable, and many
variants of the chase can be used to define a (possibly infinite) set of facts that is homomorphically
contained in each instance that satisfies the TGDs and a given base instance.

Fact entailment is decidable for guarded TGDs (GTGDs): a TGD ∀�x[β → ∃�y η] is guarded if β
contains an atom (called a guard) that contains all variables of �x . Note that a guard need not be
unique in β . Let Σ be a finite set of GTGDs. We say that a set of ground terms G is Σ-guarded by
a fact R(�t) if G ⊆ �t ∪ consts(Σ). Moreover, G is Σ-guarded by a set of facts I if G is Σ-guarded by
some fact in I . Finally, a fact S(�u) is Σ-guarded by a fact R(�t) (respectively a set of facts I) if �u is
Σ-guarded by R(�t) (respectively I).

By adapting the reasoning techniques for guarded logics [6, 55] and referential database con-
straints [37], fact entailment for GTGDs can be decided by a chase variant that works on tree-like
structures. A chase tree T consists of a directed tree, one tree vertex that is said to be recently up-

dated, and a function mapping each vertex v in the tree to a finite set of factsT (v). A chase treeT
can be transformed to another chase tree T ′ in the following two ways.

• One can apply a chase step with a GTGD τ = ∀�x[β → ∃�y η] in head-normal form. The pre-
condition is that there exist a vertex v in T and a substitution σ with domain �x such that
σ (β) ⊆ T (v). The result of the chase step is obtained as follows.
– If τ is full (and thus η is a single atom), then chase treeT ′ is obtained fromT by making v

recently updated in T ′ and setting T ′(v) = T (v) ∪ {σ (η)}.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:6 M. Benedikt et al.

– If τ is not full, then σ is extended to a substitution σ ′ that maps each variable in �y to a
labeled null not occurring inT , and chase treeT ′ is obtained fromT by introducing a fresh
child v ′ of v , making v ′ recently updated in T ′, and setting

T (v ′) = σ ′(η) ∪ {F ∈ T (v) | F is Σ-guarded by σ ′(η)}.

• One can apply a propagation step from a vertexv to a vertexv ′ inT . Chase treeT ′ is obtained
from T by making v ′ recently updated in T ′ and setting T ′(v ′) = T (v ′) ∪ S for some set S
satisfying

∅ � S ⊆ {F ∈ T (v) | F is Σ-guarded by T (v ′)}.

A tree-like chase sequence for a base instance I and a finite set of GTGDs Σ in head-normal form
is a finite sequence of chase trees T0, . . . ,Tn such that T0 contains exactly one root vertex r that is
recently updated in T0 and T0(r) = I , and each Ti with 0 < i ≤ n is obtained from Ti−1 by a chase
step with some τ ∈ Σ or a propagation step. For each vertex v in Tn and each fact F ∈ Tn(v), this
sequence is a tree-like chase proof of F from I and Σ. It is well known that I , Σ |= F if and only if
there exists a tree-like chase proof of F from I and Σ (e.g., [42]). Example 4.3 in Section 4 illustrates
these definitions. One can decide I , Σ |= F by imposing an upper bound on the size of chase trees
that need to be considered [42].

Rewriting. A Datalog rewriting of a finite set of TGDs Σ is a Datalog program rew(Σ) such that
I , Σ |= F if and only if I , rew(Σ) |= F for each base instance I and each base fact F . If Σ contains
GTGDs only, then a Datalog rewriting rew(Σ) is guaranteed to exist (which is not the case for
general TGDs). Thus, we can reduce fact entailment for GTGDs to Datalog reasoning, which can
be solved using highly optimized Datalog techniques [1, 46]. For example, given a base instance
I , we can compute the materialization of rew(Σ) on I by applying the rules of rew(Σ) to I up to a
fixpoint. Doing so will compute precisely all base facts entailed by rew(Σ) (and thus also by Σ) on
I , and it can be done in time polynomial in the size of I .

Encoding Existentials by Function Symbols. It is sometimes convenient to represent existentially
quantified values using functional terms. In such cases, we use a slightly modified notions of terms,
atoms, and rules, as we detail next. It will be clear from the context which definitions are used in
different parts of this paper.

We adjust the notion of a term as either a constant, a variable, or an expression of the form f (�t)
where f is an n-ary function symbol and �t is a vector of n terms; thus, labeled nulls are not allowed
to occur in terms in this case. The notions of ground terms, (base) facts, and (base) instances, and
atoms are the same as before, but they use the modified notion of terms. A rule is a first-order
implication of the form ∀�x[β → H] where β is a conjunction of atoms whose free variables are
�x , and H is an atom whose free variables are contained in �x ; as for TGDs, we often omit ∀�x . A
rule thus cannot contain existential quantifiers, but it can contain function symbols; moreover, its
head must contain exactly one atom. Also, a Datalog rule, a function-free rule, and a full TGD in
head-normal form are all synonyms. Finally, a base fact still contains only constants.

Skolemization allow us to replace existential quantifiers in TGDs by functional terms. Specif-
ically, let τ = ∀�x[β → ∃�y η], and let σ be a substitution defined on each y ∈ �y as σ (y) = fτ ,y (�x)
where fτ ,y is a fresh | �x |-ary Skolem symbol uniquely associated with τ and y. Then, the Skolemiza-
tion of τ produces rules ∀�x[β → σ (H)] for each atom H ∈ η. Moreover, the Skolemization Σ′ of a
finite set of TGDs Σ is the union of the rules obtained by Skolemizing each τ ∈ Σ. It is well known
that, for each base instance I and each base fact F , we have I , Σ |= F if and only if I , Σ′ |= F .

Unification. A unifier of atoms A1, . . . ,An and B1, . . . ,Bn is a substitution θ such that
θ (Ai) = θ (Bi) for 1 ≤ i ≤ n. Such θ is a most general unifier (MGU) if, for each unifier σ of

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:7

A1, . . . ,An and B1, . . . ,Bn , there exists a substitution ρ such that σ = ρ ◦ θ (where ◦ is function
composition). An MGU is unique up to variable renaming if it exists, and it can be computed in
time O(

∑n
i=1 |Ai | + |Bi |) where |Ai | and |Bi | are the sizes of the encoding of Ai and Bi [49, 50].

4 Chase-Based Datalog Rewriting

Our objective is to develop rewriting algorithms that can handle complex GTGDs. Each algorithm
will derive Datalog rules that provide “shortcuts” in tree-like chase proofs: instead of introducing
a child vertexv ′ using a chase step with a non-full GTGD at vertexv , performing some inferences
inv ′, and then propagating a derived fact F back fromv ′ tov , these “shortcuts” will derive F in one
step without having to introduce v ′. The main question is how to derive all “shortcuts” necessary
for completeness while keeping the number of derivations low. In this section we lay the technical
foundations that will allow us to study different strategies for deriving “shortcuts” in Section 5.

Towards this goal, in Subsection 4.1 we show that, instead of considering arbitrary chase
proofs, we can restrict our attention to chase proofs that are one-pass according to Definition 4.1.
Then, in Subsection 4.2 we identify the parts of such proofs that we need to be able to circumvent
using “shortcuts”, and we present sufficient conditions that guarantee completeness of rewriting
algorithms. Finally, in Subsection 4.3 we present the proof of the main result of this section.

4.1 Tree-Like Chase Proofs

We start by describing formally the structure of tree-like chase proofs.

Definition 4.1. A tree-like chase sequence T0, . . . ,Tn for a base instance I and a finite set of

GTGDs Σ in head-normal form is one-pass if, for each 0 < i ≤ n, chase tree Ti is obtained by ap-

plying one of the following two steps to the recently updated vertex v of Ti−1:

• a propagation step copying exactly one fact from v to its parent, or

• a chase step with a GTGD from Σ provided that no propagation step from v to its parent is

applicable.

Thus, each step in a tree-like chase sequence is applied to a “focused” vertex. Steps with non-
full GTGDs move the “focus” from a parent to a child, and propagation steps move the “focus” in
the opposite direction. Moreover, once a child-to-parent propagation takes place, the child cannot
be revisited in further steps. Theorem 4.2 states a key property about chase proofs for GTGDs:
whenever a proof exists, a one-pass proof exists as well. The proof of Theorem 4.2 is lengthy, so
we defer it to Subsection 4.3.

Theorem 4.2. For each base instance I , each finite set of GTGDs Σ in head-normal form, and each

base fact F such that I , Σ |= F , there exists a one-pass tree-like chase proof of F from I and Σ.

Example 4.3 illustrates important aspects of Definition 4.1 and Theorem 4.2.

Example 4.3. Let I = {A(a,b)} and let Σ contain GTGDs (8)–(13).

A(x1,x2) → ∃y B(x1,y) ∧C(x1,y) (8)

C(x1,x2) → D(x1,x2) (9)

B(x1,x2) ∧ D(x1,x2) → E(x1) (10)

A(x1,x2) ∧ E(x1) → ∃y1,y2 F (x1,y1) ∧ F (y1,y2) (11)

E(x1) ∧ F (x1,x2) → G(x1) (12)

B(x1,x2) ∧G(x1) → H (x1) (13)

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:8 M. Benedikt et al.

Fig. 1. Tree-Like Chase Sequence for Example 4.3

Fig. 2. One-Pass Chase Sequence Obtained from Figure 1

A tree-like chase sequence for I and Σ is shown in Figure 1, and it provides a proof of the base
fact H (a) from I and Σ. The recently updated vertex of each chase tree is shown in red. We denote
the root vertex by r , and its left and right children by v1 and v2, respectively. The step producing
T7 fromT6 does not satisfy the requirements of one-pass chase: it propagates the factG(a) from v2

to v1, where the latter is a “sibling” of the former.
To obtain a one-pass chase sequence, we could try to “slow down” the propagation of G(a): we

first propagate G(a) from v2 to r , and then from r to v1. The former step is allowed in one-pass
chase, but the latter step is not: once we leave the subtree rooted atv1, we are not allowed to revisit
it later. Note, however, that B(a,n1) andG(a) must occur jointly in a vertex of a chase tree in order

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:9

to derive H (a). Moreover, note that no reordering of chase steps will derive H (a): we must first
produce v1 to be able to derive v2, and we must combine G(a) from v2 and B(a,n1) from v1.

The solution, which is used in the proof of Theorem 4.2, is to replace propagation to the child
by “regrowing” the entire subtree. In our example, we replace the steps producing T7 and T8 with
the steps shown in Figure 2. Chase tree T 1

7 is obtained from T6 by propagating G(a) from v2 to r .
Then, instead of propagating G(a) from r to v1, a new vertex v3 is created in T 2

7 by reapplying (8)
and fact G(a) is pushed to v3 as part of the chase step with a non-full GTGD. This allows H (a) to
be derived in vertex v3 of T 1

8 .
Fact D(n3) can be derived in vertex v3, but this is not needed to prove H (a). Moreover, our

chase is oblivious [42]: a non-full TGD can be applied to the same facts several times, each time
introducing a fresh vertex and fresh labeled nulls. The number of children of a vertex is thus
not naturally bounded, and our objective is not to apply all chase steps exhaustively to obtain a
universal model of Σ. Instead, we are interested only in chase proofs, which must only contain steps
needed to demonstrate entailment of a specific fact. �

4.2 Shortcutting Loops in One-Pass Chase Proofs

One-pass chase proofs are interesting because they can be decomposed into loops as described in
Definition 4.4.

Definition 4.4. Let T0, . . . ,Tn be a one-pass tree-like chase sequence for some base instance I and a

finite set of GTGDs Σ in head-normal form. A loop at vertex v with output fact F is a subsequence

Ti , . . . ,Tj with 0 ≤ i < j ≤ n such that

• Ti+1 is obtained by a chase step with a non-full GTGD,

• Tj is obtained by a propagation step that copies F , and

• v is the recently updated vertex of both Ti and Tj .

The length of the loop is defined as j − i .

Example 4.5. Subsequence T0,T1,T2,T3,T4 of the chase trees from Example 4.3 is a loop at the
root vertex r with output fact E(a): chase treeT1 is obtained by applying a non-full GTGD to r , and
chase tree T4 is obtained by propagating E(a) back to r . Analogously, T4,T5,T6,T

1
7 is another loop

at vertex r with output factG(a). Finally,T 1
7 ,T

2
7 ,T

1
8 ,T9 is a loop at vertex r with output fact H (a).�

Thus, a loop is a subsequence of chase steps that move the “focus” from a parent to a child
vertex, perform a series of inferences in the child and its descendants, and finally propagate one
fact back to the parent. If non-full TGDs are applied to the child, then the loop can be recursively
decomposed into further loops at the child. The properties of the one-pass chase ensure that each
loop is finished as soon as a fact is derived in the child that can be propagated to the parent, and
that the vertices introduced in the loop are not revisited at any later point in the proof. In this way,
each loop at vertex v can be seen as taking the set Ti (v) as input and producing the output fact F
that is added to Tj (v). This leads us to the following idea: for each loop with the input set of facts
Ti (v), a rewriting should contain a “shortcut” Datalog rule that derives the loop’s output.

Example 4.6. One can readily check that rules (14)–(16) provide “shortcuts” for the three loops
identified in Example 4.5.

A(x1,x2) → E(x1) (14)

A(x1,x2) ∧ E(x1) → G(x1) (15)

A(x1,x2) ∧G(x1) → H (x1) (16)

Moreover, these are all relevant “shortcuts”: the union of rules (14)–(16) and the Datalog rules from
Example 4.3—that is, rules (9), (10), (12), and (13)—is a rewriting of the set Σ from Example 4.1. �

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:10 M. Benedikt et al.

These ideas are formalized in Proposition 4.7, which will provide us with a correctness criterion
for our algorithms.

Proposition 4.7. A Datalog program Σ′ is a rewriting of a finite set of GTGDs Σ in head-normal

form if

• Σ′ is a logical consequence of Σ,

• each Datalog rule of Σ is a logical consequence of Σ′, and

• for each base instance I , each one-pass tree-like chase sequenceT0, . . . ,Tn for I and Σ, and each

loop Ti , . . . ,Tj at the root vertex r with output fact F , there exist a Datalog rule β → H ∈ Σ′

and a substitution σ such that σ (β) ⊆ Ti (r) and σ (H) = F .

Proof. Let Σ and Σ′ be as specified in the proposition, let I be an arbitrary base instance, and
let F be an arbitrary base fact. Since Σ′ is a logical consequence of Σ, it is clear that I , Σ′ |= F
implies I , Σ |= F . Thus, we assume that I , Σ |= F holds, and we prove that I , Σ′ |= F holds as well.
By Theorem 4.2, there exists a one-pass tree-like chase proofT0, . . . ,Tn of F from I and Σ. Without
loss of generality, we can assume that F is produced in the last step of the proof, and so the recently
updated vertex of Tn is the root vertex r . Let i0 < . . . < im be exactly the indexes between 0 and
n such that the recently updated vertex of Ti j

is r . We next construct a tree-like chase sequence

T 0, . . . ,T k for I and Σ′ such that Tn(r) ⊆ T k (r). To formalize our inductive construction of this
chase sequence, we shall also construct a sequence of indexes �0, . . . , �m such that �m = k and, for

each j with 0 ≤ j ≤ m, we have Ti j
(r) ⊆ T �j

(r); in other words, each index �j helps us establish

the inductive property by relatingTi j
andT �j

. For the base case, i0 = 0 holds by the definition of a

tree-like chase proof; thus, we setT 0 = T0 and �0 = 0, and the required property clearly holds. For
the inductive step, we consider arbitrary 0 < j ≤ m such that the claim holds for j − 1, and assume

that the sequence constructed thus far is T �0 , . . . ,T �j−1 . We have the following two cases.

• The recently updated vertex ofTi j−1 is r . Thus, i j − 1 = i j−1, andTi j
is obtained fromTi j−1 by

a chase step with a full GTGD β → H ∈ Σ producing a factG ∈ Ti j
(r). The second condition

of the proposition ensures that β → H is a logical consequence of Σ′, so G can be derived

from T �1 (r) and the Datalog rules of Σ′ using ℘ steps. We then define �j = �j−1 + ℘, and we

append the corresponding steps to obtain the sequence T 0, . . . ,T �j−1 , . . . ,T �j
.

• Otherwise, Ti j−1 , . . . ,Ti j
is a loop at the root vertex r with some output fact G ∈ Ti j

(r). The
third condition of the proposition ensures that there exists a Datalog rule β → H ∈ Σ′ and a
substitution σ such that σ (β) ⊆ Ti (r) and σ (H) = G. We define �j = �j−1 + 1, and we define

T �j
as the chase tree containing just the root vertex r such thatT �j

(r) = T �j−1 (r) ∪ {G}; thus,

T �j
is obtained from T �j−1 by applying the Datalog rule β → H ∈ Σ′ to the root vertex r .

Moreover, Ti j
(r) ⊆ T �j

(r) clearly holds, as required. �

Intuitively, the first condition ensures soundness: rewriting Σ′ should not derive more facts than
Σ. The second condition ensures that Σ′ can mimic direct applications of Datalog rules from Σ at
the root vertex r . The third condition ensures that Σ′ can reproduce the output of each loop at
vertex r using a “shortcut” Datalog rule.

We finally present a property that will be needed in the correctness proofs of the algorithms we
present in Section 5. Intuitively, this property ensures that, as soon as a fact F is derived in the
child vertex of a loop such that F does not contain any labeled nulls introduced by the child, the
loop is completed and fact F is propagated to the parent vertex.

Proposition 4.8. For each loopTi , . . . ,Tj at a vertexv in a one-pass tree-like chase proof for some

I and Σ, for i < k ≤ j, and forv ′ the vertex introduced inTi+1, the set terms
(
Tk (v

′)
)
\ nulls

(
Ti+1(v

′)
)

is Σ-guarded by Ti (v).

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:11

Proof. Consider an arbitrary loopTi , . . . ,Tj at a vertexv in a one-pass tree-like chase proof for
some base instance I and a finite set of GTGDs Σ in head-normal form, and let v ′ be the child of v
introduced by the chase step producingTi+1. We prove the claim by induction on k with i < k ≤ j.
For the induction basek = i + 1, the definition of a chase step with a non-full GTGD clearly ensures
this claim for Ti+1(v

′). For the induction step, consider an arbitrary k such that the claim holds.
Our claim holds trivially ifTk+1(v

′) = Tk (v
′), so we assume thatTk+1(v

′) \Tk (v
′) contains exactly

one fact F , which can be derived in one of the following two ways.

• Assume F is obtained by a propagation step to vertex v ′. Then, F is Σ-guarded byTk (v
′), so

terms(F) ⊆ terms
(
Tk (v

′)
)
∪ consts(Σ) holds.

• Assume F is obtained by applying a full GTGD τ ∈ Σ toTk (v
′) using a substitution σ . Then, τ

contains a guard atom A in the body such that σ (A) ⊆ Tk (v
′); moreover, the head τ contains

all variables of A, and so we have terms(F) ⊆ terms
(
Tk (v

′)
)
∪ consts(Σ).

Either way, terms
(
Tk+1(v

′)
)
⊆ terms

(
Tk (v

′)
)
∪ consts(Σ). By the induction assumption, set

terms
(
Tk (v

′)
)
\ nulls(Ti+1(v

′)) is Σ-guarded by Ti (v), so the set terms
(
Tk1 (v

′)
)
\ nulls(Ti+1(v

′)) is
also Σ-guarded by Ti (v), as required. �

4.3 Proof of Theorem 4.2

We now prove Theorem 4.2. For convenience, we recapitulate the theorem’s statement below.

Theorem 4.2. For each base instance I , each finite set of GTGDs Σ in head-normal form, and each

base fact F such that I , Σ |= F , there exists a one-pass tree-like chase proof of F from I and Σ.

Throughout this section, we fix an arbitrary base instance I and a finite set of GTGDs Σ in head-
normal form. It is known that I , Σ |= F if and only if there exists a tree-like chase proof of F from
I and Σ. We prove Theorem 4.2 by showing that each such proof can be transformed to a one-
pass chase proof of F from I and Σ. This argument was developed jointly with Antoine Amarilli,
and it is related to proofs by Amarilli and Benedikt [5] and Kappelmann [38]; however, note that
Definition 4.1 imposes slightly stronger conditions on one-pass chase sequences than the related
definitions in those works.

Towards our goal, we first state two basic properties of tree-like chase sequences. The first claim
is a variation of the well-known fact that any chase tree for GTGDs represents a tree decomposition
[21]. The second claim captures the idea that, as the chase progresses, facts may be added within
a vertex, but this will not produce new guarded sets of terms.

Lemma 4.9. Let T0, . . . ,Tn be an arbitrary tree-like chase sequence for I and Σ.

(1) For each 0 ≤ i ≤ n, all vertices v1 and v2 inTi , each setG of ground terms that is Σ-guarded by

both Ti (v1) and Ti (v2), and each vertex v3 on the unique path in Ti between v1 and v2, set G is

Σ-guarded by Ti (v3).
(2) For each 0 ≤ i ≤ n, each vertex v in Ti , each set G of ground terms that is Σ-guarded by Ti (v),

and each 0 ≤ j ≤ i such that Tj contains v , set G is Σ-guarded by Tj (v).

Proof of Claim 1. The proof is by induction on i with 0 ≤ i ≤ n. For i = 0, chase tree T0 con-
tains just one vertex so the claim holds trivially. Now assume that the property holds for some
0 ≤ i < n and consider ways in which Ti+1 can be derived from Ti . First, Ti+1 can be obtained by
applying a chase step to Ti at vertex v with some GTGD τ ∈ Σ. Let v1 be the recently updated
vertex ofTi+1; thus,v1 is eitherv or a fresh child ofv . Moreover, consider each fact R(�t) derived by
the step, each set of ground terms G ⊆ �t , each vertex v2 such that G is Σ-guarded by Ti+1(v2), and
each vertex v3 on the unique path in Ti+1 between v1 and v2. If G contains a labeled null that is
freshly introduced in Ti+1, the claim holds trivially because v2 and v3 are necessarily the same as

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:12 M. Benedikt et al.

v1. Otherwise, τ is guarded, soTi (v) contains a fact S(�u) such thatG ⊆ �u. But then,G is Σ-guarded
byTi (v3) by the induction assumption. Moreover,Ti (v3) ⊆ Ti+1(v3) ensures thatG is Σ-guarded by
Ti+1(v3), as required. Second, Ti+1 can be obtained by applying a propagation step to Ti , but then
the property clearly holds. �

Proof of Claim 2. The proof is by induction on i with 0 ≤ i ≤ n. The base case for i = 0 is
trivial. For the induction step, assume that the property holds for some i . If Ti+1 is obtained from
Ti by a chase step with a non-full GTGD, then the claim clearly holds for Ti+1 because the step
introduces a fresh vertex that does not occur in any Tj with 0 ≤ j ≤ i . Otherwise, Ti+1 is obtained
by extending some Ti (v), so consider an arbitrary fact F ∈ Ti+1(v) \Ti (v). Clearly, F is Σ-guarded
by Ti (v): if the step involves a full GTGD, then a body atom of the GTGD is matched to a fact
F ′ ∈ Ti (v) such that F is Σ-guarded by F ′; moreover, if the step involves propagation, then by
definition there exists a fact F ′ ∈ Ti (v) such that F is Σ-guarded by F ′. Thus, each set of ground
terms G that is Σ-guarded by Ti+1(v) is also Σ-guarded by F ′ ∈ Ti (v), so the claim holds. �

In the rest of this section, we show how to convert an arbitrary tree-like chase proof into a
one-pass proof through a series of transformations. Before proceeding, we next describe formally
the types of chase sequence that we consider in our transformations.

Definition 4.10.

• A chase sequence is local if each propagation step in the sequence copies just one fact to either

the parent or a child vertex.

• A chase sequence is rootward if each propagation step in the sequence copies just one fact from

a child to its parent.

• A chase sequence is almost one-pass if it is rootward, each chase or propagation step is

applied to the recently updated vertex or an ancestor thereof, and a chase step is applied

only if a propagation step is not applicable to the recently updated vertex or an ancestor

thereof.

Note that facts can still be copied from a parent to a child in a rootward chase sequence, but this
can be done only in chase steps with non-full GTGDs that introduce a child. Furthermore, the use
of “almost” in “almost one-pass” reflects the caveat that, in an almost one-pass chase sequence, a
step can be applied to an ancestor of the recently updated vertex, thus “jumping rootward” in the
tree, whereas such steps are forbidden in a one-pass chase sequence.

We capture formally the relationship between the chase sequences produced by our transfor-
mations using the notion introduced in Definition 4.11.

Definition 4.11. A chase tree T is a subset of a chase tree T ′, written T ⊆ T ′, if the tree of T is a

subtree of T ′ (i.e., the root of T is the root of T ′, and whenever vertex v is a parent of vertex v ′ in T ,

then v is a parent of v ′ in T ′), and T (v) ⊆ T ′(v) holds for each vertex v of T .

We are now ready to present our transformations, which we capture in a series of lemmas. We
next summarize the main intuitions.

• In Lemma 4.12, we show that an arbitrary chase sequence can be transformed into a local
chase sequence by “slowing down” propagation steps so that facts are copied only between
vertices that are adjacent in a chase tree.

• In Lemma 4.13, we show that each local chase sequence can be transformed into a rootward
chase sequence. Intuitively, instead of propagating a fact from a parent to a child, we “regrow”
a clone of the relevant child and the entire subtree underneath. The relevant fact is then
copied as part of the chase step with the non-full GTGD that “regrows” the child’s clone.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:13

• In Lemma 4.14, we show that each rootward chase sequence can be transformed to an almost
one-pass chase sequence. The main difficulty arises due to the fact that steps in a rootward
chase sequence can be applied to arbitrary vertices. We address this problem by shuffling
and regrowing parts of the chase trees.

• Finally, in Lemma 4.15, we show that each almost one-pass chase proof can be transformed
to a one-pass chase proof by pruning irrelevant parts of the chase sequence.

Lemma 4.12. For each tree-like chase sequence T0, . . . ,Tn for I and Σ, there exists a local tree-like

chase sequence T 0, . . . ,Tm for I and Σ such that Tn ⊆ Tm .

Proof. Each propagation step in T0, . . . ,Tn that copies more than one fact can clearly be “ex-
panded” into several steps, each copying just one fact. Moreover, due to Claim 1 of Lemma 4.9,
each propagation step that copies a fact F between vertices v and v ′ that are further apart can be
“expanded” into steps that propagate F to all vertices on the unique path between v and v ′. �

Lemma 4.13. For each local tree-like chase sequenceT0, . . . ,Tn for I and Σ, there exists a rootward

tree-like chase sequence T 0, . . . ,Tm for I and Σ such that

(S1) Tn ⊆ Tm , and

(S2) for each vertex v in Tn that is introduced by a chase step with a non-full GTGD τ ∈ Σ and

substitutions σ and σ ′, vertex v is introduced into some T k with 0 ≤ k ≤ m by a chase step with the

same τ , σ , and σ ′.

Proof. Let T0, . . . ,Tn be an arbitrary local tree-like chase sequence for I and Σ. We prove the
claim by induction on 0 ≤ i ≤ n. The induction base i = 0 holds trivially. For the induction step, we
assume that the claim holds for some i with 0 ≤ i < n. By the inductive assumption, there exists

a rootward chase sequence T 0, . . . ,T j for I such that Ti ⊆ T j and property (S2) holds. Let v be
the vertex of Ti to which a chase or propagation step is applied to derive Ti+1. By Definition 4.11,

chase treeT j contains vertex v andTi (v) ⊆ T j (v) holds. We now consider ways in whichTi+1 can
be derived from Ti .

Assume that Ti+1 is obtained from Ti by a chase step with non-full TGD τ ∈ Σ, and let v ′ be
the child of v introduced by the step. Without loss of generality, we can choose v ′ and the fresh

labeled nulls such that they do not occur in T j . Now let T j+1 be obtained from T j by adding v ′ as

a child of v and setting T j+1(v
′) = Ti+1(v

′). Clearly, T 0, . . . ,T j ,T j+1 is a rootward chase sequence

such that Ti+1 ⊆ T j+1 and property (S2) hold, as required.
Assume that Ti+1 is obtained from Ti by a chase step with a full TGD τ ∈ Σ deriving a fact F ,

or by a rootward propagation step that copies a fact F from Ti (v) to the parent of v . Let v ′ be

the recently updated vertex ofTi+1. Chase treeT j clearly contains v ′. If F ∈ T j (v
′), then sequence

T 0, . . . ,T j satisfies the inductive property. IfTi+1 is obtained fromTi by a propagation step, then F

is Σ-guarded byTi (v
′). But then,Ti (v

′) ⊆ T j (v
′) ensures that F is also Σ-guarded byT j (v

′) and thus

the propagation step is applicable to verticesv andv ′ inT j . Now letT j+1 be the same asT j but with

T j+1(v
′) = T j (v

′) ∪ {F } and with v ′ being the recently updated vertex. Clearly, T 0, . . . ,T j ,T j+1 is

a rootward chase sequence satisfying Ti+1 ⊆ T j+1, as required. Moreover, property (S2) holds by
the induction hypothesis.

The only remaining case is when Ti+1 is obtained from Ti by applying a propagation step that

copies one fact F to a child v ′ of v . By Definition 4.11, chase tree T j contains vertex v ′ and

Ti (v
′) ⊆ T j (v

′) holds. Sequence T 0, . . . ,T j satisfies the inductive property if F ∈ T j (v
′) holds, so

we next assume F � T j (v
′). We next show that we can simulate propagation by “replaying” the

chase steps that generate v ′ and all of its descendants. Towards this goal, let Tk be the chase tree

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:14 M. Benedikt et al.

in the original sequence where v ′ is first introduced by applying a chase step with the non-full
GTGD τ = ∀�x[β → ∃�y η] ∈ Σ, and let σ and σ ′ be substitutions used in the step. By the inductive

property (S2), there exists �0 with 0 < �0 ≤ j such thatv ′ is introduced inT �0 as the result of apply-

ing a chase step with the same non-full TGD τ and substitutions σ and σ ′. Finally, letT �0 , . . . ,T �m

be the subsequence of T 0, . . . ,T j consisting of precisely those chase trees that were obtained by
applying a chase or a propagation step to v ′ or a descendant of v ′. In other words, the chase steps

producingT �0 , . . . ,T �m
are exactly the steps that we need to “replay” to simulate the propagation

of F from v to v ′.
Our objective is to “replay” the steps producing T �0 , . . . ,T �m

so that they introduce exactly the
same vertices and labeled nulls, which is needed because property (S1) talks about exact contain-
ment of the final chase trees of the two sequences (rather than containment up to isomorphism).

A technical issue is that these vertices and labeled nulls already occur in the sequence T 0, . . . ,T j ;
thus, if we extended this sequence directly, we could not “reapply” the chase steps with non-full
GTGDs, which by definition introduce fresh vertices and labeled nulls. To get around this, we first
perform the following renaming step. Let N be the set of labeled nulls introduced by the chase

steps with non-full TGDs in subsequenceT �0 , . . . ,T �m
, and letW be the set of introduced vertices

(thus, W contains v ′ and all of its descendants). Moreover, let U 0, . . . ,U j be the chase sequence

obtained by uniformly replacing in T 0, . . . ,T j each labeled null in N with a distinct, fresh labeled
null, and by uniformly replacing each vertex w ∈W by a fresh vertex.

We next describe the chase trees that will be produced by “replaying” the steps producing the

subsequenceT �0 , . . . ,T �m
. Intuitively, we must “graft” the results of these steps ontoU j : for v ′ or

a descendant of v ′ we take the results of the chase steps in the subsequence, and for each other

vertex we copy the content from U j . Formally, let V 0, . . . ,Vm be the sequence obtained from the

subsequence T �0 , . . . ,T �m
using the following steps.

(R1) For each 0 ≤ p ≤ m and each vertex w in U j such that w is neither v ′ nor a descendant of

v ′ in U j , we set V p (w) = U j (w).

(R2) For each 0 ≤ p ≤ m and each vertex w that occurs in T �p
such that w is v ′ or a descendant

of v ′ in T �p
, we set V p (w) = T �p

(w).

(R3) We add to V 0(v
′) each fact G ∈ U j (v) that is Σ-guarded by σ ′(η).

(R4) We analogously extend each V p with 1 ≤ p ≤ m to ensure that each chase step with a non-
full GTGD correctly propagates all relevant facts to a child.

We now argue thatU 0, . . . ,U j ,V 0, . . . ,Vm is a rootward chase sequence that satisfies properties
(S1) and (S2). Towards this goal, we make the following observations.

• SequenceU 0, . . . ,U j is a rootward chase sequence produced by the same steps asT 0, . . . ,T j ,
but with the vertices inW and labeled nulls in N uniformly renamed. Also, due to step (R4),

V 0, . . . ,Vm is a rootward chase sequence produced by the same steps as T �0 , . . . ,T �m
.

• Chase treeV 0 coincides withU j on each vertex that is notv ′ or a descendant ofv ′. Moreover,

U j does not contain a labeled null in N , and it does not containv ′ or a descendant ofv ′; thus,

V 0 can be seen as the result of applying to U j a chase step with the non-full GTGD τ and
substitutions σ and σ ′ that introduces vertex v ′ as a child of v .

• We now show that property (S2) is satisfied—that is, that Ti+1 ⊆ Vm holds. To this end,
consider an arbitrary vertex w occurring in Ti+1; by the induction assumption, we have

Ti (w) ⊆ T j (w). If w is neither v ′ nor a descendant thereof, then neither w nor a labeled

null occurring in Ti (w) was renamed in U j , so we have T j (w) = U j (w) = Vm(w), where

the last equality is ensured by step (R1); thus, Ti+1(w) = Ti (w) ⊆ Vm(w) holds, as required.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:15

Now assume that w is v ′ or a descendant thereof. Then, T j (w) = T �m
(w) holds by the fact

that T �m
is the last place in T 0, . . . ,T j where v ′ or a descendant of v ′ was modified, and

T �m
(w) = Vm(w) holds by step (R2); putting it all together, we have Ti (w) ⊆ Vm(w). If w

is not v ′ (i.e., w is a descendant of v ′), then Ti+i (w) = Ti (w) ⊆ Vm(w) holds, as required.
We finally consider the case when w is v ′, so Ti+1(v

′) = Ti (v
′) ∪ {F }. Since the propagation

step is applicable to Ti , fact F is Σ-guarded by Ti (v
′). By Claim 2 of Lemma 4.9, fact F is

also Σ-guarded byTk (v
′). Finally, by the definition of a chase step with a non-full TGD, fact

F is Σ-guarded by σ ′(η). But then, step (R3) ensures F ∈ V 0(v
′) ⊆ Vm(v ′). Consequently,

Ti+i (v
′) ⊆ Vm(v ′) holds, as required.

• We now show that property (S2) is satisfied. To this end, consider an arbitrary vertex w
in Ti+1 introduced by a chase step with a non-full GTGD τ and substitutions σ and σ ′. If
w is not v ′ or a descendant thereof, then the labeled nulls introduced by the chase step

are not renamed in U 0, . . . ,U j , so the claim holds by the induction assumption. Otherwise,

the chase steps producing V 0, . . . ,Vm are exactly the same as the chase steps producing

T �0 , . . . ,T �m
, so the claim holds by the induction assumption too. �

Lemma 4.14. For each rootward tree-like chase sequence T0, . . . ,Tn for I and Σ, there exists an

almost one-pass chase sequence T 0, . . . ,Tm for I and Σ such that Tn ⊆ Tm .

Proof. LetT0, . . . ,Tn be an arbitrary rootward tree-like chase sequence for I and Σ. The induc-
tion base i = 0 holds trivially. For the induction step, we assume that the claim holds for some i with

0 ≤ i < n. By the induction assumption, there exists an almost one-pass chase sequenceT 0, . . . ,T j

for I and Σ such that Ti ⊆ T j holds. Now assume that Ti+1 is obtained by applying a chase or a
propagation step to some vertex v ofTi , and let k be the maximal number such that 0 ≤ k ≤ j and

v is recently updated in T k . Such k clearly exists since v occurs in T j , and Ti (v) ⊆ T k (v) holds
because k is maximal. We now consider ways in which Ti+1 can be derived from Ti .

Assume that Ti+1 is obtained from Ti by a chase step with non-full GTGD τ ∈ Σ and substi-
tutions σ and σ ′, and let v ′ be the child of v introduced by the step. Without loss of generality,

we can choose v ′ and the fresh labeled nulls such that they do not occur in T j . We shall now

“move” this chase step so that it is performed immediately afterT k . Towards this goal, we describe

the chase trees that are obtained by this move. For each p with k ≤ p ≤ j, let U p be the chase

tree obtained from T p by adding vertex v ′ and letting U p (v
′) = Ti+1(v

′). We now argue that

T 0, . . . ,T k ,U k , . . . ,U j is an almost one-pass chase sequence satisfying the conditions of the
lemma.

• Chase tree U k can be seen as obtained from T k by a chase step with τ and substitutions

σ and σ ′. Moreover, for each p with k ≤ p < j, chase tree U p+1 is obtained from U p in the

same way asT p+1 is obtained fromT p . Thus, all preconditions of all chase steps are satisfied.

• Chase treeU k is obtained fromT k by applying the chase step to the recently updated vertex

v of T k . Moreover, if k < j, then T k+1 is obtained from T k by applying a step to v or an

ancestor of v , and so U k+1 is obtained from U k by applying a step to an ancestor of the

recently updated vertex of U k . Thus, the sequence is almost one-pass.

• The construction clearly satisfies Ti+1 ⊆ U j .

In the rest of this proof we consider the case when Ti+1 is obtained from Ti by a chase step
with a full GTGD τ ∈ Σ deriving a fact F , or by a propagation step that copies a fact F from Ti (v)

to the parent of v . Let v ′ be the recently updated vertex of Ti+1. Chase tree T j clearly contains

v ′. If F ∈ T k (v
′), then sequence T 0, . . . ,T j satisfies the inductive property, so we next assume

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:16 M. Benedikt et al.

that F � T k (v
′) holds. We shall now transform T 0, . . . ,T j so that this step is applied immediately

after T k , and fact F is propagated towards the root as far as possible. Since this will move the

recently updated vertex towards the root, we will then “reapply” all relevant steps fromT 0, . . . ,T j

to “regrow” the relevant part of the sequence. In each case, we specify the structure of the chase
trees and discuss the steps that produce these trees.

Let U 0 be obtained from T k by adding F to T k (v). We argue that U 0 can be seen as being

obtained from T k by the same step that produces Ti+1 from Ti .

• If Ti+1 is obtained from Ti by a chase step with a full GTGD, then F � T k (v
′) ensures that

the same step is applicable to T k (v
′) (where v ′ = v).

• If Ti+1 is obtained from Ti by a propagation step, then F is Σ-guarded by Ti (v
′). But then,

Ti (v
′) ⊆ T j (v

′) ensures that F is also Σ-guarded by T j (v
′), and Claim 2 of Lemma 4.9

ensures that F is Σ-guarded by T k (v
′). Thus, the propagation step is applicable to vertices

v and v ′ in T k .

Moreover, let U 1, . . . ,U s be the chase trees obtained by propagating F starting from U 0 towards

the root using local steps as long as possible. Clearly, T 0, . . . ,T k ,U 0,U 1, . . . ,U s is a correctly

formed almost one-pass chase sequence. Let v ′′ be the recently updated vertex of U s ,

We cannot simply append the step producing Tk+1 after U s because this step might not be
applicable to v ′′ or an ancestor thereof. Thus, to obtain the chase sequence satisfying the claim

of the lemma, we shall find a place in the sequence T 0, . . . ,T j where vertex v ′′ is introduced,
and we shall “replay” all steps from that point onwards. In doing so, we shall use chase steps
that introduce the same vertices and labeled nulls, so we will first need to rename these in the
sequence T 0, . . . ,T k ,U 0,U 1, . . . ,U s .

Let � be the smallest integer such that T � contains v ′′. Clearly, � ≤ k holds. Let N be the set
of labeled nulls introduced by applying a chase step to v ′′ or a descendant thereof, and let W

the set of descendants of v ′′ in the sequence T 0, . . . ,T j . Also, let T
′

0, . . . ,T
′

k ,U
′

0,U
′

1, . . . ,U
′

s be

the chase sequence obtained by uniformly replacing in T 0, . . . ,T k ,U 0,U 1, . . . ,U s each labeled
null in N with a distinct, fresh labeled null, and by uniformly replacing each vertex w ∈W by a
fresh vertex.

We now transform chase trees T �+1, . . . ,T j into chase tress V �+1, . . . ,V j that reflect the result

of “replaying” after U
′

s the steps producing the former sequence. Intuitively, each V p is a “union”

of U s and T p . Formally, for each p with � < p ≤ j, we define V p as follows.

(T1) The chase tree V p contains the union of the vertices of U
′

s and T p .

(T2) For each vertexw occurring only inU
′

s (resp.T p), letV p (w) = U
′

s (w) (resp.V p (w) = T p (w)).

(T3) For each vertex w occurring in both U
′

s and T p , let V p (w) = U
′

s (w) ∪T p (w).

(T4) If T p is obtained by applying to a vertex w of T p−1 a chase step with a non-full GTGD
τ = ∀�x[β → ∃�y η] and substitutions σ and σ ′, then, for w ′ the child of w introduced by the step,

we extend V p (w
′) with each fact G ∈ V p−1(w) that is Σ-guarded by σ ′(η).

We now argue that T
′

0, . . . ,T
′

k ,U
′

0,U
′

1, . . . ,U
′

s ,V �+1, . . . ,V j contains an almost one-pass chase
sequence for Σ and I that satisfies the conditions of this lemma.

• Sequence T
′

0, . . . ,T
′

k ,U
′

0,U
′

1, . . . ,U
′

s is clearly a valid almost one-pass chase sequence.

• For � ≤ p < j, either V p+1 is obtained from V p (or U
′

s in case p = �) by the same step that

produces T p+1 from T p , or the step is not applicable. In the latter case, we can simply drop

such V p+1 from the sequence. By dropping all such V p+1, we clearly obtain a valid almost
one-pass chase sequence.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:17

• We have Ti ⊆ T j by the induction assumption, and steps (T1)–(T3) clearly ensure Ti ⊆ V j .
Moreover,Ti+1 differs fromTi only in vertexv ′, whereTi+1(v

′) = T (v ′) ∪ {F }. Our construc-

tion clearly ensures F ∈ U
′

s (v
′′), and step (T4) ensures that F is propagated in each chase

step with a non-full GTGD introducing a vertex on the unique path from v ′′ to v ′. Thus,

Ti+1 ⊆ V j holds. �

Lemma 4.15. For each base fact F and each almost one-pass tree-like chase proof of F from I and

Σ, there exists a one-pass tree-like chase proof of F from I and Σ.

Proof. Consider an arbitrary base fact F and an arbitrary almost one-pass tree-like chase proof
T0, . . . ,Tn of F from I and Σ. Since F is a base fact, without loss of generality we can assume that all
arguments of F occur in the facts of the root vertex. Now letTi be the first chase tree that contains
F in the root, and letW be the set containing each non-root vertexv occurring in any of the chase
trees such that no propagation step is applied to v . We transform this proof to a one-pass proof as
follows. First, we delete each Tj with i < j ≤ n. Next, in each remaining Tj , we delete each vertex
v ∈W and each descendant of v . Finally, we delete each remaining Tj that is equal to Tj+1. After
this transformation, every vertex has a propagation step applied to it. It is straightforward to see
that the result is a one-pass tree-like chase sequence. Moreover, since F occurs in the root of the
sequence, the sequence is a tree-like chase proof of F from I and Σ. �

5 Rewriting Algorithms

In this section we consider several possibilities for producing “shortcut” Datalog rules that satisfy
Proposition 4.7. In particular, in Subsection 5.1 we present the FullDR algorithm that manipulates
GTGDs, but derives only Datalog rules. We also present three algorithms that can produce inter-
mediate GTGDs/rules outside Datalog: in Subsection 5.2 we present the ExbDR algorithm that
manipulates GTGDs directly, and in Subsections 5.3 and 5.4 we present the SkDR and HypDR
algorithms, respectively, that manipulate rules obtained by Skolemizing the input GTGDs.

Each algorithm is defined by an inference rule Inf that can be applied to several TGDs/rules to
derive additional TGDs/rules. For simplicity, we use the same name for the rule and the resulting
algorithm. Given a set of GTGDs Σ, the algorithm applies Inf to (the Skolemization of) Σ as long
as possible and then returns all produced Datalog rules. This process, however, can derive a large
number of TGDs/rules, so it is vital to eliminate TGDs/rules whenever possible. We next define
notions of redundancy that can be used to discard certain TGDs/rules produced by Inf.

Definition 5.1. A TGD τ1 = ∀�x1[β1 → ∃�y1 η1] is a syntactic tautology if it is in head-normal form

and β1 ∩ η1 � ∅. TGD τ1 subsumes a TGD τ2 = ∀�x2[β2 → ∃�y2 η2] if there exists a substitution μ
such that dom(μ) = �x1 ∪ �y1, μ(�x1) ⊆ �x2, μ(�y1) ⊆ �y1 ∪ �y2, μ(y) � μ(y ′) for distinct y and y ′ in �y1,

μ(β1) ⊆ β2, and μ(η1) ⊇ η2.

A rule τ1 = ∀�x1[β1 → H1] is a syntactic tautology if H1 ∈ β1. Moreover, rule τ1 subsumes a rule

τ2 = ∀�x2[β2 → H2] if there exists a substitution μ such that μ(β1) ⊆ β2 and μ(H1) = H2.

A set S of TGDs/rules contains a TGD/rule τ up to redundancy if τ is a syntactic tautology or some

τ ′ ∈ S subsumes τ . Moreover, S contains a set S ′ of TGDs/rules up to redundancy if S contains each

τ ∈ S ′ up to redundancy.

The following example illustrates Definition 5.1.

Example 5.2. Rule A(x) ∧ B(x) → A(x) is a syntactic tautology: applying a chase step with it
cannot produce a new fact. A non-full TGD in head-normal form cannot be a syntactic tautology
since each head atom of such a TGD contains an existentially quantified variable that does not
occur in the TGD body.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:18 M. Benedikt et al.

Our definitions of syntactic tautologies and rule subsumption are the same as in first-order
theorem proving [10]. For example, consider the following rules.

A(f (x1), f (x1)) ∧ B(x1) → B(f (x1)) (17)

A(x2,x3) → B(x2) (18)

Rule (17) is subsumed by rule (18) using substitution μ1 that maps both x2 and x3 to f (x1). This
ensures that, if rule (17) derives B(f (t)) in one step from a set of facts I by a substitution σ where
σ (x1) = t , then rule (18) also derives B(f (t)) from I in one step by substitution σ ◦ μ1. Thus, rule
(17) is not needed when rule (18) is present, so rule (17) can be discarded.

In contrast, our notion of TGD subsumption is not standard and is slightly more involved. To
illustrate the details, consider the following TGDs.

A(x1,x1) ∧ B(x1) → ∃y1 C(x1,y1) (19)

A(x2,x3) → ∃y2,y3 C(x2,y2) ∧ D(x3,y3) (20)

TGD (19) is subsumed by TGD (20) by substitution μ2 where μ2(x2) = μ2(x3) = x1, μ2(y2) = y1,
and μ2(y3) = y3. The conditions on substitution μ2 in Definition 5.1 ensure that y2 and y3 are not
mapped to each other or to x1. Thus, as in the previous paragraph, the result of each chase step
with TGD (19) and substitutions σ and σ ′ can always be obtained (up to isomorphism) by a chase
step with TGD (20) and substitutions σ ◦ μ2 and σ ′ ◦ μ2. �

In Definition 5.3 we formalize the notion of applying Inf exhaustively up to redundancy. The
definition, however, does not say how to actually do it: we discuss this and other issues in Section 6.

Definition 5.3. Let Inf be an inference rule and let Σ be a finite set of GTGDs. Then, Inf(Σ) is the

smallest set that contains up to variable renaming each TGD/rule obtained by

• transforming Σ into head-normal form if Inf manipulates TGDs or Skolemizing Σ if Inf manip-

ulates rules, and

• selecting an adequate number of premises in Σ′, renaming any variables shared by distinct

premises, applying Inf to the renamed premises, and transforming the result into head-normal

form.

Finally, for each Σ′ ⊆ Inf(Σ) such that Σ′ contains Inf(Σ) up to redundancy, the subset of the Skolem-

free Datalog rules of Σ′ is an Inf-rewriting of Σ.

Since inference rule application is monotonic, set Inf(Σ) is unique up to variable renaming for
each Inf and Σ. In contrast, redundancy allows dropping conclusions of certain inferences and
is thus not monotonic; consequently, an Inf-rewriting is not necessarily unique. Note, however,
that each set contains itself up to redundancy, so the subset of the Skolem-free Datalog rules of
Inf(Σ) is an Inf-rewriting of Σ. Smaller Inf-rewritings can be obtained by interleaving inference
rule application with deletion of redundant TGDs/rules. In Section 6, we present a systematic way
to do so and produce a subset-minimal subset Σ′ of Inf(Σ) that contains Inf(Σ) up to redundancy,
and consequently obtain a smaller Inf-rewriting of Σ.

5.1 Creating Datalog Rules Directly

An intuitive design objective for a rewriting algorithm is to ensure that the algorithm produces
only Datalog rules, without deriving any intermediate non-full TGDs in the process. In this subsec-
tion, we present one such algorithm. Similar algorithms have appeared in the literature [5]. After
presenting our algorithm, we discuss the shortcomings of such an approach.

Definition 5.4. The Full Datalog Rewriting inference rule FullDR can be applied in two ways, de-

pending on the types of TGDs it takes.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:19

• The (COMPOSE) variant of the FullDR inference rule takes full TGDs

τ = ∀�x[β → A] and τ ′ = ∀�z[A′ ∧ β ′ → H ′]

and a substitution θ such that

– θ (A) = θ (A′),
– dom(θ) = �x ∪ �z, and

– rng(θ) ⊆ �w ∪ consts(τ) ∪ consts(τ ′) where �w is a vector of hwidth(Σ) + |consts(Σ)| vari-

ables different from �x ∪ �z,

and it derives

θ (β) ∧ θ (β ′) → θ (H ′).

• The (PROPAGATE) variant of the FullDR inference rule takes TGDs

τ = ∀�x[β → ∃�y η ∧A1 ∧ · · · ∧An] and τ ′ = ∀�z[A′
1 ∧ · · · ∧A′

n ∧ β ′ → H ′]

and a substitution θ such that

– θ (Ai) = θ (A
′
i) for each i with 1 ≤ i ≤ n,

– dom(θ) = �x ∪ �z,

– rng(θ) ⊆ �w ∪ �y ∪ consts(τ) ∪ consts(τ ′) where �w is a vector of hwidth(Σ) + |consts(Σ)|
variables different from �x ∪ �y ∪ �z,

– θ (�x) ∩ �y = ∅, and

– vars(θ (β ′)) ∩ �y = ∅ and vars(θ (H ′)) ∩ �y = ∅,

and it derives

θ (β) ∧ θ (β ′) → θ (H ′).

Theorem 5.5. Each FullDR-rewriting of each finite set of GTGDs Σ is a Datalog rewriting of Σ.

Moreover, FullDR(Σ) can be computed in timeO(br d ·(w+c)da
) for r the number of relations in Σ, a the

maximum relation arity in Σ, w = width(Σ), c = |consts(Σ)|, and some constants b and d .

Proof of Correctness. Fix an arbitrary finite set of GTGDs Σ, fix an arbitrary Σ′ ⊆ FullDR(Σ)
that contains FullDR(Σ) up to redundancy, and let Σ′′ be the set of Datalog TGDs of Σ′. It is easy
to see that FullDR(Σ) is a logical consequence of Σ, so Σ′ and Σ′′ are logical consequences of Σ
as well. Moreover, Σ′′ contains each full GTGD of Σ up to redundancy, so each full GTGD of Σ
is logically entailed by Σ′′. We next consider an arbitrary base instance I and a one-pass tree-like
chase sequence for I and Σ, and we show the following property:

(�) for each loopTi , . . . ,Tj at some vertexv with output fact F , there exist a full GTGD
β → H ∈ Σ′ and a substitution σ such that σ (β) ⊆ Ti (v) and F = σ (H).

Since Σ′′ contains all Datalog rules of Σ′ and this property holds for the root vertex r ,
Proposition 4.7 ensures that Σ′′ is a Datalog rewriting of Σ.

Our proof is by induction on the length of the loop. The base case and the inductive step have the
same structure, so we consider them jointly. Thus, consider an arbitrary loop Ti ,Ti+1, . . . ,Tj−1,Tj

at vertexv , and assume that the claim holds for all shorter loops. By the definition of a loop, chase
tree Ti+1 is obtained from Ti by applying a chase step to some non-full TGD ∀�x[β0 → ∃�y η0] ∈ Σ.
Let σ0 and σ ′

0 be the substitutions used in this chase step, and let v ′ be the child of v introduced
in Ti+1. Note that Ti+1(v

′) contains at most hwidth(Σ) + |consts(Σ)| distinct terms. We show by
another induction on k that the following property holds for each k with i < k ≤ j − 1:

(♦) for each factG ∈ Tk (v
′) \Ti+1(v

′), there exist a full TGD ∀�x[β → H] ∈ Σ′ of width
at most width(Σ) and a substitution σ such that σ (β) ⊆ Ti+1(v

′) and σ (H) = G.

For the base case k = i + 1, property (♦) holds vacuously because Tk (v
′) \Ti+1(v

′) = ∅. For the
inductive step, assume that (♦) holds for some k and consider the possible ways to obtain Tk+1

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:20 M. Benedikt et al.

from Tk . Property (♦) holds by the inductive hypothesis if Tk+1(v
′) = Tk (v

′)—that is, if the step
involves a descendant of v ′. Otherwise, Tk+1(v

′) = Tk (v
′) ∪ {G} where fact G is obtained in one

of the following two ways.

• A full TGD in Σ derives G from Tk (v
′). Set Σ′ contains this TGD up to redundancy, so

by Definition 5.1 there exist a full TGD β ′′ → H ′ ∈ Σ′ and a substitution σ such that
σ (β ′′) ⊆ Tk (v

′) and σ (H ′) = G.
• Fact G is the output of a loop at vertex v ′. But then, this loop is shorter than Ti , . . . ,Tj

so, by property (�), there exists a full TGD β ′′ → H ′ ∈ Σ′ and a substitution σ such that
σ (β ′′) ⊆ Tk (v

′) and σ (H ′) = G.

Either way, the width of the rule β ′′ → H ′ is bounded by width(Σ), and we can assume that
β ′′ → H ′ is of the form A′

1 ∧ · · · ∧A′
n ∧ β ′ → H ′ where σ (A′

�
) ∈ Tk (v

′) \Ti+1(v
′) for each

1 ≤ � ≤ n, and σ (β ′) ⊆ Ti+1(v
′). By property (♦), for each 1 ≤ � ≤ n there exist a full TGD

β� → H� ∈ Σ′ and a substitution σ� such that σ�(β�) ⊆ Ti+1(v
′) and σ�(H�) = γ (A

′
�
). Moreover, set

rng(σ�) contains at most hwidth(Σ) + |consts(Σ)| distinct terms. But then, there exist substitutions
θ1, . . . ,θn that allow us to iteratively apply the (COMPOSE) variant of the FullDR inference rule
to A′

1 ∧ · · · ∧A′
n ∧ β ′ → H ′ and all β� → H� to obtain a substitution σ1 and a full TGD that is

subsumed by some τ ∈ Σ′ such that τ and σ1 satisfy property (♦).
To complete the proof, consider an arbitrary fact F ∈ Tj−1(v

′) \Ti+1(v
′) that is propagated

from v ′ to v in Tj , and let β ′′ → H ′ ∈ Σ′ and σ be the TGD and substitution whose existence
is guaranteed by property (♦). Now if σ (β ′′) ⊆ Ti+1(v

′) \ σ ′
0(η0), then TGD β ′′ → H ′ satisfies

property (�). Otherwise, we can assume that the rule is of the form A′
1 ∧ · · · ∧A′

n ∧ β ′ → H ′

where σ (A′
i) ∈ σ ′

0(η0) for each 1 ≤ i ≤ n, and σ (β ′) ⊆ Ti+1(v
′) \ σ ′

0(η0). Moreover, rng(σ) clearly
contains at most hwidth(Σ) + |consts(Σ)| distinct terms. But then, there exists a substitution θ
that allows us to apply the (PROPAGATE) variant of the FullDR inference rule to β0 → ∃�y η0 and
A′

1 ∧ · · · ∧A′
n ∧ β ′ → H ′ to obtain a full TGD subsumed by some TGD τ ∈ Σ′ and substitution σ1

such that τ and σ1 satisfy property (�). �

Proof of Complexity. Fix Σ, r , w , c , and a as stated in the theorem. The number of different
body atoms of arity a constructed using r relations, w variables, and c constants is clearly
bounded by � = r · (w + c)a . The number of variables in each GTGD in the input, as well as in
each TGD produced by the FullDR inference rule is bounded by w . Although the latter TGDs
have just one head atom, the GTGDs in the input can contain several head atoms so, to simplify
our calculation, we consider all TGDs as possibly having multiple head atoms. Then, the head
and the body of each TGD corresponds to a subset of these � atoms, so the number of different
TGDs up to variable renaming is bounded by ℘ = 2� · 2� . Thus, the FullDR inference rule needs to
be applied to at most ℘2 = 24� pairs of TGDs. To apply the (PROPAGATE) variant, for each such
pair we might need to consider each possible way to match at most � body atoms of τ ′ to � head

atoms of τ , and there are at most �� ≤ 2�
2

of these. Consequently, substitution θ may need to be

computed at most 24� · 2�
2
≤ 25�2

= 32�
2

times. Each such θ is defined on at most 2w variables
�x ∪ �z. Moreover, each variable is mapped to one of thew + c variables or to one of the c constants

in consts(Σ). Hence, there are at most (w + 2c)2w ≤ 4(w+2c)·w ≤ 4(w+c)2 different substitutions
θ . Consequently, the (PROPAGATE) variant of the FullDR inference rule can be applied at most

32�
2
· 4(w+c)2 < 32n ·(w+c)2a+1

times. The number of applications of the (COMPOSE) variant can be
bounded analogously. Finally, all other steps require linear time. �

The FullDR algorithm has several obvious weak points. First, it considers all possible ways to
compose Datalog rules as long as this produces a rule with at most hwidth(Σ) + |consts(Σ)| vari-
ables. This may seem unnecessary, but the (COMPOSE) variant of the FullDR inference rule cannot

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:21

be simply dropped while retaining completeness. To understand why, consider an arbitrary loop
Ti , . . . ,Tj at vertexv with childv ′ and output fact F in a one-pass chase proof. The (PROPAGATE)
variant of the FullDR inference reflects only the chase step that derives the loop’s output F , but the
derivation of F in v ′ may depend on the prior derivation of another fact F ′ in v ′. The (COMPOSE)
variant allows us to produce F in v ′ without F ′, rendering it eligible for (PROPAGATE) again. Sec-
ond, it is not clear how to efficiently select the atoms A1, . . . ,An and A′

1, . . . ,A
′
n participating in

the (PROPAGATE) variant. Third, the number of substitutions θ in the (COMPOSE) and (PROPA-
GATE) variants of the FullDR inference rule can be very large. Example 5.6 illustrates this for the
(COMPOSE) variant, but the (PROPAGATE) variant suffers from analogous issues.

Example 5.6. Consider the derivations of the FullDR algorithm on the set of GTGDs (21)–(23).

R(x1,x2) → ∃y1,y2 S(x1,x2,y1,y2) ∧T (x1,x2,y2) (21)

S(x1,x2,x3,x4) → U (x4) (22)

T (z1, z2, z3) ∧U (z3) → P(z1) (23)

The (COMPOSE) variant of the FullDR inference rule should be applied to GTGDs (22) and (23),
but it is not clear which substitution θ , identifying variables zi in the latter with variables xi in
the former, one should use. The standard resolution inference rule from first-order theorem prov-
ing would consider only the MGU θ that maps z3 to x4; however, this would produce the resolvent
S(x1,x2,x3,x4) ∧T (z1, z2,x4) → P(z1) containing more than hwidth(Σ) = 4 variables, so this rule is
not derived by the (COMPOSE) variant. Eliminating the upper bound on the number of variables
would allow the derivation of full TGDs with an unbounded number of variables, which would
prevent termination. Instead, the (COMPOSE) variant requires us to consider every possible sub-
stitution θ that maps variables x1, . . . ,x4, z1, . . . , z3 to at most hwidth(Σ) variables. Consequently,
74 = 2401 substitutions are considered, deriving rules

S(x1,x2,x3,x4) ∧T (x1,x2,x4) → P(x1), (24)

S(x1,x2,x3,x4) ∧T (x2,x1,x4) → P(x2), (25)

S(x1,x2,x3,x4) ∧T (x1,x3,x4) → P(x1), (26)

and so on. This is the main obstacle to using the FullDR algorithm in practice. In Sections 5.2–5.4
we present three additional algorithms, neither of which exhibits such behavior on GTGDs (21)–
(23). �

Despite these drawbacks, the FullDR algorithm is useful because it illustrates the complexities
introduced by the desire to produce only Datalog rules. Moreover, as we show in Section 6, the
algorithm is still able to compute a rewriting of many nontrivial inputs.

5.2 The Existential-Based Rewriting

We next present the ExbDR rewriting algorithm that promises to be more practical than FullDR.
Unlike FullDR, ExbDR generates intermediate non-full GTGDs that are eventually discarded.
We first discuss the intuition by means of the properties of the one-pass chase. In particular, in
Section 4 we argued that each loopTi , . . . ,Tj at vertex v in a one-pass chase sequence can be seen
as taking Ti (v) as input and producing one fact included in Tj (v) as output. Let v ′ be child of v
introduced inTi+1. The idea behind the ExbDR algorithm is to derive all GTGDs such that, for each
k with i < k ≤ j, all facts of Tk (v

′) can be derived from the input Ti (v) in one step. The output of
the loop can then also be derived from Ti (v) in one step by a full GTGD, so this GTGD provides
us with the desired loop “shortcut”. Before formalizing this idea, we slightly adapt the notion of
unification.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:22 M. Benedikt et al.

Fig. 3. Deriving “shortcuts” for the loop T0–T4 in ExbDR

Definition 5.7. For X a set of variables, an X -unifier and an X -MGU θ of atoms A1, . . . ,An and

B1, . . . ,Bn are defined as in Section 3, but with additionally requiring that θ (x) = x for each x ∈ X .

It is straightforward to see that an X -MGU is unique up to the renaming of variables not con-
tained in X , and that it can be computed as usual while treating the variables in X as if they were
constants. We are now ready to formalize the ExbDR algorithm.

Definition 5.8. The Existential-Based Datalog Rewriting inference rule ExbDR takes two GTGDs

τ = ∀�x[β → ∃�y η ∧A1 ∧ · · · ∧An] and τ ′ = ∀�z[A′
1 ∧ · · · ∧A′

n ∧ β ′ → H ′]

withn ≥ 1 and, for θ a �y-MGU ofA1, . . . ,An andA′
1, . . . ,A

′
n , if θ (�x) ∩ �y = ∅ and vars(θ (β ′)) ∩ �y = ∅,

it derives

θ (β) ∧ θ (β ′) → ∃�y θ (η) ∧ θ (A1) ∧ · · · ∧ θ (An) ∧ θ (H ′).

Example 5.9. Consider the set Σ of GTGDs from Example 4.3; for convenience, we repeat Σ
below using the same equation numbers as before.

A(x1,x2) → ∃y B(x1,y) ∧C(x1,y) (8)

C(x1,x2) → D(x1,x2) (9)

B(x1,x2) ∧ D(x1,x2) → E(x1) (10)

A(x1,x2) ∧ E(x1) → ∃y1,y2 F (x1,y1) ∧ F (y1,y2) (11)

E(x1) ∧ F (x1,x2) → G(x1) (12)

B(x1,x2) ∧G(x1) → H (x1) (13)

The idea behind the ExbDR algorithm is illustrated in Figure 3, which summarizes the steps of the
loop T0,T1,T2,T3,T4 from Figure 1. We denote the vertices by r and v1 as in Example 4.3.

Fact A(a,b) is the input to the loop, and the first step of the loop derives B(a,n1) and C(a,n1)
using GTGD (8). Next, GTGD (9) evolves vertex v1 by deriving D(a,n1). To capture this, the
ExbDR inference rule combines (8), the GTGD that creates v1, with (9), the GTGD that evolves
v1. This produces GTGD (27), which derives all facts of v1 from the input fact in one step. Vertex
v1 is evolved further using GTGD (10) to derive E(a). To reflect this, the ExbDR inference rule
combines (27) and (10) to produce (28), which again derives all facts of v1 from the loop’s input in
one step.

A(x1,x2) → ∃y B(x1,y) ∧C(x1,y) ∧ D(x1,y) (27)

A(x1,x2) → ∃y B(x1,y) ∧C(x1,y) ∧ D(x1,y) ∧ E(x1) (28)

Fact E(a) does not contain the labeled null n1 that is introduced when creating v1, so it can be
propagated to the root vertex r as the output of the loop. This is reflected in (28): atom E(x1) does
not contain any existential variables. Definition 5.3 requires each derived GTGD to be brought

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:23

into head-normal, so (28) is broken up into (27) and (14). The latter GTGD is full, and it provides
us with the desired shortcut for the loop.

Next, (12) and atom F (x1,y1) of (11) produce (29), and transformation into head-normal form
produces (11) and (15). Moreover, (8) and (13) produce (30), and transformation (30) into head-
normal form produces (16) and (31).

A(x1,x2) ∧ E(x1) → ∃y1,y2 F (x1,y1) ∧ F (y1,y2) ∧G(x1) (29)

A(x1,x2) ∧G(x1) → ∃y B(x1,y) ∧C(x1,y) ∧ H (x1) (30)

A(x1,x2) ∧G(x1) → ∃y B(x1,y) ∧C(x1,y) (31)

GTGD (31) is subsumed by (8) so it can be dropped. No further inferences are possible after this,
so all derived full GTGDs are returned as the rewriting of Σ. �

Example 5.10. Unlike FullDR, the ExbDR algorithm not does need to explore a potentially very
large number of substitutions θ . Consider applying the ExbDR algorithm to GTGDs (21)–(23) from
Example 5.6. The algorithm uses (21) and (22) to produce (32), and it then uses (23) and (32) to
produce (33). Finally, transforming (33) into head-normal form produces (32) and (34).

R(x1,x2) → ∃y1,y2 S(x1,x2,y1,y2) ∧T (x1,x2,y2) ∧U (y2) (32)

R(x1,x2) → ∃y1,y2 S(x1,x2,y1,y2) ∧T (x1,x2,y2) ∧U (y2) ∧ P(x1) (33)

R(x1,x2) → P(x1) (34)

No further inferences are possible after this, so (22), (23), and (34) are returned as the rewriting.�

Before proceeding, we present an auxiliary result that captures certain key properties of the
ExbDR inference rule.

Proposition 5.11. Each application of the ExbDR inference rule to τ , τ ′, and θ as in Definition 5.8

satisfies the following properties.

(1) Some atom A′
i with 1 ≤ i ≤ n is a guard in τ ′.

(2) For each 1 ≤ i ≤ n such thatA′
i is a guard ofτ ′, and forσ the �y-MGU ofA′

i and the corresponding

atom Ai such that σ (�x) ∩ �y = ∅, it is the case that vars
(
σ (A′

j)
)
∩ �y � ∅ for each 1 ≤ j ≤ n.

(3) The rule produces a GTGD whose body-width and head-width are at most bwidth(Σ) and

hwidth(Σ), respectively.

Note that, in the second claim, σ unifies only Ai and A′
i , whereas θ unifies all A1, . . . ,An and

A′
1, . . . ,A

′
n ; thus, σ and θ are not necessarily the same.

Proof of Claim 1. LetG be a guard for τ ′. For the sake of a contradiction, assume thatG is not
one of the atomsA′

1, . . . ,A
′
n—that is,G ∈ β ′. Sincen ≥ 1, atomA′

1 in the body of τ ′ is matched toA1

in the head of τ . Since τ is in head-normal form, A1 contains at least one variable y ∈ �y. Moreover,
the conditions of the ExbDR inference rule ensure θ (y) = y. Since y does not occur in A′

1 and θ
unifies A′

1 and A1, atom A′
1 contains at some position a variable z such that θ (z) = y. Since G is a

guard for τ ′, variable z occurs in G. Therefore, we have vars(θ (G)) ∩ �y � ∅, which contradicts the
requirement vars(θ (β ′)) ∩ �y = ∅ of the ExbDR inference rule. �

Proof of Claim 2. Consider arbitrary i such that 1 ≤ i ≤ n and A′
i is a guard of τ ′, and let σ

be an MGU of A′
i and the corresponding atom Ai of τ . Since θ is a unifier of A′

i and Ai as well as
of other pairs of atoms, there clearly exists a substitution ρ such that θ = ρ ◦ σ . Now consider an
arbitrary A′

j with 1 ≤ j ≤ n in τ ′. Substitution θ matches A′
j to the corresponding atom Aj in the

head of τ . Since TGD τ is in head-normal form, atom Aj contains at least one variable y ∈ �y. Since
θ (y) = y, we necessarily have y ∈ vars(θ (A′

j)). Consequently, atom A′
j contains some variable z

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:24 M. Benedikt et al.

such that θ (z) = y. Since A′
i is a guard for τ ′, variable z occurs in A′

i . Now assume for the sake of
a contradiction that σ (z) � y. Then σ (z) = σ (x) for some x ∈ vars(Ai) and

y = θ (z) = ρ(σ (z)) = ρ(σ (x)) = θ (x).

However, this contradicts the requirement θ (�x) ∩ �y = ∅ of the ExbDR inference rule. �

Proof of Claim 3. By Claim 1, there exists i with 1 ≤ i ≤ n such that atom A′
i is a guard for

τ ′. Thus, vars(β ′) ∪ vars(H ′) ⊆ vars(A′
i). The ExbDR inference rule ensures vars(θ (β ′)) ∩ �y = ∅,

which in turn ensures vars(θ (β ′)) ⊆ vars(θ (A′
i)) \ �y. Now let G be a guard for τ . We clearly have

vars(θ (β)) ⊆ vars(θ (G)). Moreover, θ (yi) = yi and θ (x) ∩ �y = ∅ ensure

vars(θ (η)) ∪ vars(θ (Ai)) ⊆ vars(θ (G)) ∪ �y.

Thus, θ (G) is a guard for the TGD produced by the ExbDR inference rule. Finally, sinceG contains
all variables of τ , the widths of the resulting TGD and τ are equal. �

The third claim of Proposition 5.11 is needed to prove termination of ExbDR, and the first two
claims can be used to guide the application of the ExbDR inference rule. Consider an attempt to
apply the ExbDR inference rule to two candidate GTGDs τ = β → ∃�y η and τ ′ = β ′ → H ′. The first
claim of Proposition 5.11 tells us that a guard of τ ′ will definitely participate in the inference. Thus,
we can choose one such guardG ′ ∈ β ′ of τ ′ and try to find a �y-MGU σ ofG ′ and a counterpart atom
G ∈ η from the head of τ . Next, we need to check whether σ (�x) ∩ �y = ∅; if not, there is no way
for θ (�x) ∩ �y = ∅ to hold so the inference is not possible. By the second claim of Proposition 5.11,
all candidates for the atoms participating in the inference will contain a variable that is mapped
by σ to a member of �y; thus, S ′ =

{
σ (A′) | A′ ∈ β ′ ∧ vars(σ (A′)) ∩ �y � ∅

}
is the set of all relevant

side atoms. Note that we apply σ to the atoms in S ′ to simplify further matching. The next step is
to identify the corresponding head atoms of τ . To achieve this, for each atom A′ ∈ S ′ of the form
R(t1, . . . , tn), we identify the set C[A′] of candidate counterpart atoms as the set of atoms of the
form R(s1, . . . , sn) ∈ σ (η) such that, for each argument position i with 1 ≤ i ≤ n, if either ti ∈ �y or
si ∈ �y, then ti = si . Finally, we consider each possible combination S of such candidates, and we
try to find an MGU θ of sets S and S ′. If unification succeeds, we derive the corresponding GTGD.

Theorem 5.12. Each ExbDR-rewriting of each finite set of GTGDs Σ is a Datalog rewriting of Σ.

Moreover, ExbDR(Σ) can be computed in timeO(br d ·(wb+c)da ·r d ·(wh+c)da
) for r the number of relations

in Σ,a the maximum relation arity in Σ,wb = bwidth(Σ),wh = hwidth(Σ), c = |consts(Σ)|, and some

constants b and d .

Proof of Correctness. Fix an arbitrary finite set of GTGDs Σ, fix an arbitrary Σ′ ⊆ ExbDR(Σ)
that contains ExbDR(Σ) up to redundancy, and let Σ′′ be the set of Datalog TGDs of Σ′. It is easy
to see that ExbDR(Σ) is a logical consequence of Σ, so Σ′ and Σ′′ are logical consequences of Σ
as well. Moreover, Σ′′ contains each full GTGD of Σ up to redundancy, so each full GTGD of Σ
is logically entailed by Σ′′. We next consider an arbitrary base instance I and a one-pass tree-like
chase sequence for I and Σ, and we show the following property:

(�) for each loopTi , . . . ,Tj at some vertexv with output fact F , there exist a full GTGD
β → H ∈ Σ′ and a substitution σ such that σ (β) ⊆ Ti (v) and F = σ (H).

Since Σ′′ contains all Datalog rules of Σ′ and this property holds for the root vertex r , Proposi-
tion 4.7 ensures that Σ′′ is a Datalog rewriting of Σ.

Our proof is by induction on the length of the loop. The base case and the inductive step have the
same structure, so we consider them jointly. Thus, consider an arbitrary loop Ti ,Ti+1, . . . ,Tj−1,Tj

at vertexv , and assume that the claim holds for all shorter loops. By the definition of a loop, chase
tree Ti+1 is obtained from Ti by applying a chase step to some non-full TGD ∀�x[β0 → ∃�y η0] ∈ Σ.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:25

Let σ0 and σ ′
0 be the substitutions used in this chase step, let N = nulls(rng(σ ′

0)) \ nulls(rng(σ0)),
let v ′ be the child of v introduced in Ti+1, and let S ⊆ Ti (v) be the facts that are copied to Ti+1(v

′)
because they are Σ-guarded by σ ′

0(η0). Thus, we haveTi+1(v
′) = S ∪ σ ′

0(η0). By Proposition 4.8 and
the fact that a chase step is applied only if propagation to the parent is not applicable, the output
fact of the loop is added to Tj−1(v

′) in step j − 1, and in Tj this fact is propagated back to Tj (v).
In other words, for each k with i < k < j − 1, each fact in Tk (v

′) \ S contains at least one labeled
null from N , or the fact would be Σ-guarded by Ti (v) and thus propagated back to v . We show
that, in the loop Ti ,Ti+1, . . . ,Tj−1,Tj fixed above, the following property holds for each k with
i < k < j − 1:

(♦) there exist a GTGD ∀�x[β → ∃�y η] ∈ Σ′, a substitution σ such that σ (β) ⊆ Ti (v),
and a substitution σ ′ that extends σ by mapping �y to fresh labeled nulls such that
Tk (v

′) ⊆ S ∪ σ ′(η).

We prove (♦) by induction on k . We have already proved the base case k = i + 1 above. For the
inductive step, assume that (♦) holds for some k , so there exists a GTGD ∀�x[β → ∃�y η] ∈ Σ′ and
substitutions σ and σ ′ satisfying (♦) for k . Now consider Tk+1. Property (♦) holds by the induc-
tive hypothesis if Tk+1(v

′) = Tk (v
′)—that is, if the step involves a descendant of v ′. Otherwise,

Tk+1(v
′) = Tk (v

′) ∪ {G} where fact G is obtained in one of the following two ways.

• A full GTGD in Σ derives G from Tk (v
′). Set Σ′ contains this GTGD up to redundancy,

so by Definition 5.1 there exist a full GTGD β ′′ → H ′ ∈ Σ′ and a substitution ρ such that
ρ(β ′′) ⊆ Tk (v

′) and ρ(H ′) = G.
• Fact G is the output of a loop at vertex v ′. But then, this loop is shorter than Ti , . . . ,Tj

so, by property (�), there exists a full GTGD β ′′ → H ′ ∈ Σ′ and a substitution ρ such that
ρ(β ′′) ⊆ Tk (v

′) and ρ(H ′) = G.

Since η is in head-normal form, each atom in σ ′(η) contains at least one labeled null of N . Now
let A′

1, . . . ,A
′
n be the atoms of β ′′ that are matched to the atoms in σ ′(η). Atom ρ(H ′) contains

at least one labeled null of N , so n ≥ 1. Thus, we can assume that β ′′ → H ′ is of the form
A′

1 ∧ · · · ∧A′
n ∧ β ′ → H ′ where {ρ(A′

1), . . . , ρ(A
′
n)} ⊆ σ ′(η) and ρ(β ′) ⊆ S . Also, since β ′′ → H ′

is guarded, at least one of A′
i is a guard for β ′′ → H ′. Let A1, . . . ,An be the atoms of η such that

σ ′(Ai) = ρ(A′
i) for 1 ≤ i ≤ n. Since σ ′ maps eachy ∈ �y to a distinct labeled null that does not occur

in Ti , we have σ ′(�x) ∩ σ ′(�y) = ∅. Thus, there exists a �y-MGU θ of A1, . . . ,An and A′
1, . . . ,A

′
n satis-

fying θ (�x) ∩ �y = ∅. Conjunction ρ(β ′) does not contain a labeled null of N , so vars(θ (β ′)) ∩ �y = ∅
holds. Thus, the preconditions of the ExbDR inference rule are satisfied for ∀�x[β → ∃�y η] and
A′

1 ∧ · · · ∧A′
n ∧ β ′ → H ′, so the rule derives τ = θ (β) ∧ θ (β ′) → ∃�y θ (η) ∧ θ (H ′). Moreover, some

A′
i is a guard so all variables of A′

1 ∧ · · · ∧A′
n ∧ β ′ → H ′ participate in unification, and thus

we can extend σ and σ ′ to substitutions ζ and ζ ′, respectively, covering these variables such
that ζ (θ (β)) ∪ ζ (θ (β ′)) ⊆ Ti (v) and Tk+1(v

′) ⊆ S ∪ ζ ′(θ (η)) ∪ ζ ′(θ (H ′)). Set Σ′ contains τ up to
redundancy. Since G � Tk (v

′), GTGD τ is not a syntactic tautology, so there exists a GTGD
∀�x1[β1 → ∃�y1 η1] ∈ Σ′ and substitution μ such that dom(μ) = �x1 ∪ �y1, μ(�x1) ⊆ �x2, μ(�y1) ⊆ �y1 ∪ �y2

and μ(y) � μ(y ′) for distinct y and y ′ in �y1, and μ(β1) ⊆ θ (β) ∧ θ (β ′) and μ(η1) ⊇ θ (η) ∧ θ (H ′).
Now let σ1 be the substitution defined on �x such that σ1(x) = ζ (μ(x)) on each x ∈ �x , and let σ ′

1
be the extension of σ1 to �y1 such that σ ′

1(y) = ζ ′(μ(y)) for each y ∈ �y. Clearly, σ1(β1) ⊆ Tk (v
′) and

Tk+1(v
′) ⊆ S ∪ σ ′

1(η1) hold, so property (♦) is satisfied.
To complete the proof, consider now the derivation ofTj−1. By property (♦), there exist a GTGD

∀�x[β → ∃�y η] ∈ Σ′ and substitutions σ and σ ′ such that σ (β) ⊆ Ti (v) and Tj−2(v
′) = S ∪ σ ′(η).

Then, as above, Σ′ contains a full TGD of the form A′
1 ∧ · · · ∧A′

n ∧ β ′ → H ′ such that, for some
substitution ρ, we have ρ(A′

1) ∪ · · · ∪ ρ(A′
n) ⊆ σ ′(η) and ρ(β ′) ⊆ S . A minor difference is that

ρ(H ′) does not contain a labeled null introduced by σ ′(η0), so n = 0 is possible; however, in such

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:26 M. Benedikt et al.

a case, this TGD immediately satisfies property (�). Moreover, if n > 0, then β → ∃�y η can again
be resolved with A′

1 ∧ · · · ∧A′
n ∧ β ′ → H ′ to produce

θ (β) ∧ θ (β ′) → ∃�y θ (η) ∧ θ (H ′) ∈ Σ′

satisfying vars(θ (H ′)) ∩ �y = ∅. This TGD is transformed into head-normal form by Definition 5.3,
so ∀�x[θ (β) ∧ θ (β ′) → θ (H ′)] is contained in Σ′ up to redundancy. But then, Σ′ contains a full
GTGD that satisfies property (�) by the same argument as above. �

Proof of Complexity. Fix Σ, r , wb , wh , c , and a as in the theorem. The number of body
atoms of arity a constructed using r relations, wb variables, and c constants is bounded by
�b = r · (wb + c)

a . By the third claim of Proposition 5.11, the number of variables in the head of
each TGD is bounded by wh , so the number of head atoms is bounded by �h = r · (wh + c)

a . The
body (resp. head) of each GTGD corresponds to a subset of these atoms, so number of different
GTGDs up to variable renaming is bounded by ℘ = 2�b · 2�h . Thus, the ExbDR inference rule
needs to be applied to at most ℘2 = 22(�b+�h) pairs of GTGDs. For each such pair, one might need
to consider each possible way to match the �b body atoms of τ ′ to �h head atoms of τ , and there
are at most (�h)

�b ≤ 2�b ·�h of these. Consequently, unifier θ may need to be computed at most
22(�b+�h) · 2�b ·�h ≤ 25�b ·�h = 32�b ·�h times. Finally, unification of atoms requires time linear in a,
and all other steps require linear time too. �

Program ExbDR(Σ) can thus be large in the worst case. In Section 7 we show empirically that
rewritings are suitable for practical use. From a theoretical point of view, checking fact entailment
via ExbDR(Σ) is worst-case optimal. To see why, let r , a, and c be as in Theorem 5.12, and consider
a base instance I with c ′ constants. The fixpoint of ExbDR(Σ) on I contains at most r (c + c ′)a facts,
and it can be computed in time O(r (c + c ′)a · |ExbDR(Σ)|): each rule τ ∈ ExbDR(Σ) is guarded so
we can apply a chase step with τ by matching a guard and then checking the remaining body
atoms. Hence, we can compute ExbDR(Σ) and find its fixpoint in 2ExpTime, in ExpTime if the
relation arity is fixed, and in PTime if Σ is fixed (i.e., if we consider data complexity). These results
match the lower bounds for checking fact entailment for GTGDs [42].

5.3 Using Skolemization

The ExbDR algorithm exhibits two drawbacks. First, applications of the ExbDR inference rule can
introduce head atoms, so the rule heads can get very long. Second, each inference requires match-
ing a subset of body atoms of τ ′ to a subset of the head atoms of τ ; despite the optimizations
outlined after Proposition 5.11, this can be costly, particularly when rule heads are long.

We would ideally derive GTGDs with a single head atom and unify just one body atom of τ ′

with the head atom of τ , but this does not seem possible if we stick to manipulating GTGDs. For
example, atomsC(y) and D(y) of GTGD (27) refer to the same labeled null (represented by variable
y), and this information would be lost if we split (27) into two GTGDs. We thus need a way to refer
to the same existentially quantified object in different logical formulas. This can be achieved by
replacing existentially quantified variables by Skolem terms, which in turns gives rise to the SkDR
algorithm from Definition 5.14. Before presenting the algorithm, in Definition 5.13 we generalize
the notion of guardedness to rules.

Definition 5.13. Rule ∀�x[β → H] is guarded if each function symbol in the rule is a Skolem symbol,

the body β contains a Skolem-free atom A ∈ β such that vars(A) = �x , and each Skolem term in the

rule is of the form f (�t) where vars
(
f (�t)

)
= �x and �t is function-free.

Definition 5.14. The Skolem Datalog Rewriting inference rule SkDR takes two guarded rules

τ = β → H and τ ′ = A′ ∧ β ′ → H ′

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:27

such that

• β is Skolem-free and H contains a Skolem symbol, and

• A′ contains a Skolem symbol, or τ ′ is Skolem-free and A′ contains all variables of τ ′,

and, for θ an MGU of H and A′, it derives

θ (β) ∧ θ (β ′) → θ (H ′).

Example 5.15. We illustrate how the SkDR inference rule is applied to the set Σ of GTGDs from
Example 4.3; again, for the sake of readability, we repeat Σ using the same equation numbers.

A(x1,x2) → ∃y B(x1,y) ∧C(x1,y) (8)

C(x1,x2) → D(x1,x2) (9)

B(x1,x2) ∧ D(x1,x2) → E(x1) (10)

A(x1,x2) ∧ E(x1) → ∃y1,y2 F (x1,y1) ∧ F (y1,y2) (11)

E(x1) ∧ F (x1,x2) → G(x1) (12)

B(x1,x2) ∧G(x1) → H (x1) (13)

Skolemizing GTGDs (8) and (11) produces rules (35)–(36), and (37)–(38), respectively.

A(x1,x2) → B(x1, f (x1,x2)) (35)

A(x1,x2) → C(x1, f (x1,x2)) (36)

A(x1,x2) ∧ E(x1) → F (x1,д(x1,x2)) (37)

A(x1,x2) ∧ E(x1) → F (д(x1,x2),h(x1,x2)) (38)

Intuitively, rules (35) and (36) jointly represent the facts introduced by the non-full GTGD (8):
functional term f (x1,x2) allows both rules to “talk” about the same labeled nulls. This allows the
SkDR inference rule to simulate the ExbDR inference rule while unifying just pairs of atoms. In
particular, SkDR combines (35) and (10) to obtain (39); it combines (36) and (9) to obtain (40); and
it combines (39) and (40) to obtain the “shortcut” rule (14).

A(x1,x2) ∧ D(x1, f (x1,x2)) → E(x1) (39)

A(x1,x2) → D(x1, f (x1,x2)) (40)

The rules with Skolem-free bodies derived in this way allow us to reconstruct derivations in one
step analogously to Example 5.9, and the rules with Skolem symbols in body atoms capture the
intermediate derivation steps. For example, rule (39) captures the result of matching the first body
atom of rule (10) to the fact produced by rule (35). To complete the rewriting, SkDR combines (37)
with (12) to obtain (15), and it combines (35) with (13) to derive (16).

However, SkDR also combines (10) and (40) into (41), which with (35) derives (14) the second
time. Analogously to (39), rule (41) captures the result of matching the second body atom of rule
(10) to the fact produced by rule (40). However, all of these inferences are superfluous: they just
process the two body atoms of (10) in a different order. Also, SkDR combines (12) and (38) into
rule (42), which is a “dead-end” in that it does not further contribute to a Datalog rule.

A(x1,x2) ∧ B(x1, f (x1,x2)) → E(x1) (41)

A(x1,x2) ∧ E(x1) ∧ E(д(x1,x2)) → G(д(x1,x2)) (42)

Our HypDR algorithm in Subsection 5.4 can avoid these overheads, but at the expense of using
more than two rules at a time. �

Proposition 5.16 and Theorem 5.17 capture the relevant properties of the SkDR algorithm.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:28 M. Benedikt et al.

Proposition 5.16. Each application of the SkDR inference rule to rules τ and τ ′ as in Defini-

tion 5.14 produces a guarded rule.

Proof. In our proof, we reuse the results by de Nivelle [26] about unification of atoms in guarded
rules. The variable depth [26, Definition 3] of an atom is defined as −1 if the atom is ground, or as
the maximum number of nested function symbols that contain a variable of the atom. Moreover,
an atom is weakly covering [26, Definition 6] if each non-ground functional subterm of the atom
contains all variables of the atom. Finally, Theorem 1 by de Nivelle [26] says that, for θ an MGU of
weakly covering atoms A and B, atomC = θ (A) = θ (B) is also weakly covering, the variable depth
of C is bounded by the variable depth of A and B, and the number of variables of C is bounded by
the number of variables of A and B too.

Now consider arbitrary rules τ = β → H and τ ′ = A′ ∧ β ′ → H ′ and an MGU θ of H and A′

satisfying the preconditions of the SkDR inference rule. Atom H thus contains a Skolem symbol,
and rule τ is guarded; consequently, atom H is weakly covering, it contains a term of the form f (�t)
where �t consists of constants and all variables of the rule, and the variable depth of H is at most
one. The corresponding atom A′ can be of the following two forms.

• Atom A′ is Skolem-free. But then, A′ contains all variables of τ ′, and it is clearly weakly cov-
ering. By Theorem 1 of de Nivelle [26], atom θ (A′) is weakly covering and has variable depth
at most one; hence, each atom in rule θ (A′) ∧ θ (β ′) → θ (H ′) is weakly covering and has vari-
able depth at most one. Moreover, the variable depth of θ (H) is also at most one, which can
be only if θ maps each variable in H to another variable or a constant. Thus, each atom in
rule θ (β) → θ (H) is weakly covering and has variable depth at most one; moreover, θ (β)
contains an atom that contains all variables of the rule. But then, rule θ (β) ∧ θ (β ′) → θ (H ′)
is guarded, as required.

• Atom A′ contains a Skolem symbol. But then, A′ is weakly covering by the definition of
guarded rules, and its variable depth is at most one. By Theorem 1 of de Nivelle [26], atom
θ (H) = θ (A′) is weakly covering and has variable depth at most one, which can be only if
θ maps all variables to other variables or constants. Consequently, rules θ (β) → θ (H) and
θ (A′) ∧ θ (β ′) → θ (H ′) are both guarded. But then, rule θ (β) ∧ θ (β ′) → θ (H ′) is guarded, as
required. �

Theorem 5.17. Each SkDR-rewriting of each finite set of GTGDs Σ is a Datalog rewriting of Σ.

Moreover, SkDR(Σ) can be computed in time O(br d ·(e+wb+c)da
) for r the number of relations in Σ,

a the maximum relation arity in Σ, e the number of existential quantifiers in Σ, wb = bwidth(Σ),
c = |consts(Σ)|, and some constants b and d .

Proof of Correctness. Fix an arbitrary finite set of GTGDs Σ, fix an arbitrary Σ′ ⊆ SkDR(Σ)
that contains SkDR(Σ) up to redundancy, and let Σ′′ be the set of Skolem-free Datalog rules of Σ′.
It is easy to see that SkDR(Σ) is a logical consequence of the Skolemization of Σ, so Σ′ and Σ′′ are
logical consequences of the Skolemization of Σ as well. Moreover, Σ′′ contains each full GTGD
of Σ up to redundancy, so each full GTGD of Σ is logically entailed by Σ′′. We next consider an
arbitrary base instance I and a one-pass tree-like chase sequence for I and Σ, and we show the
following property:

(�) for each loop Ti , . . . ,Tj at some vertex v with output fact F , there exist a Skolem-
free rule β → H ∈ Σ′ and a substitution σ such that σ (β) ⊆ Ti (v) and F = σ (H).

Since Σ′′ contains all Skolem-free rules of Σ′ and this property holds for the root vertex r , Propo-
sition 4.7 ensures that Σ′′ is a rewriting of Σ.

Our proof is by induction in the length of the loop. The base case and the inductive step have the
same structure, so we consider them jointly. Thus, consider an arbitrary loop Ti ,Ti+1, . . . ,Tj−1,Tj

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:29

at vertex v , and assume that the claim holds for all shorter loops. By the definition of a loop,
chase tree Ti+1 is obtained from Ti by applying a chase step to some non-full GTGD τ ∈ Σ and
substitution γ . Let v ′ be the child of v introduced in Ti+1, let S ⊆ Ti (v) be the facts that are copied
to Ti+1(v

′) because they are Σ-guarded by the instantiated head of τ , let N = {n1, . . . ,nm} be
the set of labeled nulls introduced in the chase step for the existentially quantified variables
y1, . . . ,ym of τ , let ν be a function that maps each labeled null ni to the ground term fi (γ (�x))
where fi is the symbol used in the Skolemization of yi . For U a set of facts, let ν (U) be the
result of replacing each occurrence of a labeled null n ∈ dom(ν) in U with ν (n) and eliminating
any duplicate facts in the result. Clearly, the inverse function ν− is well-defined, and we define
ν−(U) for U a set of facts in the obvious way. By Proposition 4.8 and the fact that propagation
is applied eagerly, the output fact of the loop is added to Tj−1(v

′) in step j − 1, and in Tj this
fact is propagated back to Tj (v). In other words, for each k with i < k < j − 1, each fact in
Tk (v

′) \ S contains at least one labeled null from N , or the fact would be Σ-guarded by Ti (v) and
would thus be propagated back to v . We now show that the following property holds for each k
with i < k ≤ j − 1:

(♦) for each fact G ∈ Tk (v
′) \ S , there exist a rule β → H ∈ Σ′ and a substitution σ

such that β is Skolem-free, σ (β) ⊆ ν (Ti (v)), and σ (H) = ν (G).

Property (♦) implies (�): fact F does not contain a labeled null from N , so the rule β → H ∈ Σ′

whose existence is implied by (♦) for k = j − 1 is actually a Skolem-free rule that satisfies (�).
We next prove property (♦) by a nested induction on k . For the base case k = i + 1, property

(♦) holds due to the fact that Σ′ contains the rules obtained by Skolemizing GTGD τ . For the
inductive step, assume that (♦) holds for some k and consider the possible ways to obtain Tk+1

from Tk . Property (♦) holds by the inductive hypothesis if Tk+1(v
′) = Tk (v

′)—that is, if the step
involves a descendant of v ′. Otherwise, Tk+1(v

′) = Tk (v
′) ∪ {G} where fact G is obtained in one

of the following two ways.

• A full TGD in Σ derives G from Tk (v
′). Set Σ′ contains this TGD up to redundancy, so by

Definition 5.1 there exist a Skolem-free rule β ′′ → H ′ ∈ Σ′ and a substitution σ ′ such that
σ ′(β ′′) ⊆ ν (Tk (v

′)) and σ ′(H ′) = ν (G).
• Fact G is the output of a loop at vertex v ′. But then, this loop is shorter than Ti , . . . ,Tj so,

by property (�), there exist a Skolem-free rule β ′′ → H ′ ∈ Σ′ and a substitution σ ′ such
that σ ′(β ′′) ⊆ ν (Tk (v

′)) and σ ′(H ′) = ν (G).

Now let W = {B′ ∈ β ′′ | σ ′(B′) � S}. We next show that set Σ′ contains up to redundancy the
result of “resolving away” each atom B′ ∈W . A slight complication arises due to the fact that
the SkDR inference rule considers only two rules at a time, and that the result of each inference
is contained in Σ′ up to redundancy. Thus, we will achieve our goal by showing that the SkDR
inference rule can be applied up to n = |W | times. Our proof is by induction on 1 ≤ � ≤ n. Towards
this goal, we shall define n rules β ′′

�
→ H ′

�
, substitutions σ ′

�
, and sets of atomsW =W0 � · · · �Wn

for � with 0 ≤ � ≤ n satisfying the following invariant:

(∗) σ ′
�
(β ′′

�
) ⊆ S ∪ {σ ′(B′) | B′ ∈W�} and σ ′

�
(H ′

�
) = σ ′(H ′).

For � = n, we haveWn = ∅, and so property (∗) implies property (♦), as required. Our construction
proceeds as follows.

For the base case � = 0, property (∗) clearly holds for β ′′
0 = β ′′, σ ′

0 = σ ′, and let W0 =W . For
the induction step, assume that (∗) holds for some 0 ≤ � < n, so β ′′

�
→ H ′

�
, σ ′

�
, and W� satisfying

(∗) have been defined. First, assume that there exists B′ ∈W� such that σ ′(B′) � σ ′
�
(β ′

�
). Then,

property (∗) clearly holds for β ′′
�+1 = β ′′

�
, H ′

�+1 = H ′
�
, σ ′

�+1 = σ ′
�
, andW�+1 =W� \ {B

′}. Otherwise,
we consider the following possibilities.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:30 M. Benedikt et al.

• If rule β ′′
�
→ H ′

�
is Skolem-free, the rule is of the form A′

�
∧ β ′

�
→ H ′

�
where A′

�
contains all

variables of the rule.
• Otherwise, rule β ′′

�
→ H ′

�
is of the form A′

�
∧ β ′

�
→ H ′

�
where atom A′

�
contains a Skolem

symbol, in which case this atom contains all variables of the rule.

Either way, there exists B′ ∈W� such that σ ′
�
(A′

�
) = σ ′(B′) ∈ Tk (v

′) \ S . Thus, by property (♦),
there exist a rule β� → H� ∈ Σ′ and a substitution σ� such that β� is Skolem-free, σ�(β�) ⊆ ν (Ti (v)),
and σ�(H�) = σ ′(B′); the last observation ensures that H� contains a Skolem symbol. Moreover,
there exists an MGU θ� of H� and A′

�
, so the SkDR inference rule is applicable to β� → H�

and A′
�
∧ β ′

�
→ H ′

�
, and Σ′ contains rule θ�(β�) ∧ θ�(β

′
�
) → θ�(H�) up to redundancy. Now

let ζ� = (σ� ∪ σ ′
�
) ◦ θ be the composition of σ� ∪ σ ′

�
and θ ; note that substitution σ� ∪ σ ′

�
is

correctly defined because rules β� → H� and A′
�
∧ β ′

�
→ H ′

�
do not share variables. Now let

W�+1 =W� \ {B
′}. We clearly have ζ�(θ�(β�)) ⊆ S , ζ�(θ�(β

′
�
)) ⊆ S ∪ {σ ′(C ′) | C ′ ∈W�+1}, and

ζ�(θ�(H)) = σ ′(H ′). Since G � Tk (v
′), rule θ�(β�) ∧ θ�(β

′
�
) → θ�(H�) is not a syntactic tautology.

Thus, Definition 5.1 ensures that there exist a rule β ′′
�+1 → H ′

�+1 ∈ Σ′ and substitution μ�+1 such
that μ�+1(β

′′
�+1) ⊆ θ�(β�) ∪ θ�(β

′
�
) and μ�+1(H

′
�+1) = θ�(H

′
�
). Now let σ ′

�+1 be the substitution where
σ ′
�+1(x) = ζ�(μ�+1(x)) for each variable x in β ′′

�+1 → H ′
�+1. Then, property (∗) clearly holds for

β ′′
�+1 → H ′

�+1, σ ′
�+1, andW�+1, as required. �

Proof of Complexity. Fix Σ, r , wb , e , c , and a as stated in the theorem. Skolemizing a GTGD
∀�x[β → ∃�y η] produces guarded rules in which each atom is of the form R(t1, . . . , tn) such that
each ti is a constant, a variable from �x , or a term of the form f (�x) where f is a Skolem symbol.
Moreover, each atom obtained from R(t1, . . . , tn) by the SkDR inference rule is obtained by replac-
ing a variable in �x with another variable or a constant. Thus, atom R(t1, . . . , tn) cannot contain
more than | �x | variables. Since the number of different symbols obtained by Skolemization is clearly
bounded by e , the number of different atoms of such form is bounded by � = r · (wb + e + c)

a . The
body of each guarded rule corresponds to a subset of these atoms, so the number of different rules
up to variable remaining is bounded by 2� · � ≤ 2� · 2� = 22� = ℘. By Definition 5.3, the result of
applying the SkDR inference rule is retained in set Σ′ only if the set does not contain a variable
renaming of the result. Thus, the SkDR inference rule needs to be applied to at most ℘2 = 24� pairs
of rules. For each pair, one might need to unify at most � body atoms of one rule with the head atom
of the other rule, so the unifier θ may need to be computed at most ℘2 · � ≤ ℘2 · 2� = 25� = 32�

times. Finally, unification of atoms requires time that is linear in a, and all other steps require linear
time too. �

It is natural to wonder whether SkDR is guaranteed to be more efficient than ExbDR. We next
show that neither algorithm is generally better: there exist families of inputs on which SkDR per-
forms exponentially more inferences than ExbDR, and vice versa. Note that no GTGD derived by
ExbDR in the proof of Propositions 5.18 is redundant, whereas the rules derived by SkDR in the
proof of Proposition 5.19 become redundant once the rule (52) is defined.

Proposition 5.18. There exists a family {Σn}n∈N of finite sets of GTGDs such that |ExbDR(Σn)|
is Ω(2n) times larger than |SkDR(Σn)| for each n > 1.

Proof. For each n ∈ N, let Σn contain the following GTGDs.

A(x) → ∃�y B1(x ,y1) ∧ · · · ∧ Bn(x ,yn) (43)

Bi (x1,x2) ∧Ci (x1) → Di (x1,x2) for 1 ≤ i ≤ n (44)

On Σn , ExbDR derives a GTGD of the form (45) for each subset {k1, . . . ,km} ⊆ {1, . . . ,n}, and there
are 2n such TGDs. In contrast, the Skolemization of (43) consists of n rules shown in equation (46),

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:31

so SkDR derives just n rules shown in equation (47).

A(x) ∧
m∧

i=1

Cki
(x) → ∃�y

n∧

i=1

Bi (x ,yi) ∧

m∧

i=1

Dki
(x ,yki

) (45)

A(x) → Bi (x , fi (x)) for 1 ≤ i ≤ n (46)

A(x) ∧Ci (x) → Di (x , fi (x)) for 1 ≤ i ≤ n � (47)

Proposition 5.19. There exists a family {Σn}n∈N of finite sets of GTGDs such that |SkDR(Σn)| is

Ω(2n) times larger than |ExbDR(Σn)| for each n > 1

Proof. For each n ∈ N, let Σn contain the following GTGDs.

A(x) → ∃y B1(x ,y) ∧ · · · ∧ Bn(x ,y) (48)

B1(x1,x2) ∧ · · · ∧ Bn(x1,x2) → C(x1) (49)

On Σn , ExbDR derives just GTGD (50) in one step. In contrast, the Skolemization of (48) consists
of n rules of the form (51) for each 1 ≤ i ≤ n. Thus, SkDR combines these with (49) to derive 2n −1
rules of the form (52), one for each subset {k1, . . . ,km} � {1, . . . ,n}.

A(x) → C(x) (50)

A(x) → Bi (x , f (x)) (51)

A(x) ∧ Bk1 (x , f (x)) ∧ · · · ∧ Bkm
(x , f (x)) → C(x) � (52)

5.4 Combining Several SkDR Steps into One

The SkDR algorithm can produce many rules with Skolem symbols in the body, which is the main
reason for Proposition 5.19. We next present the HypDR algorithm, which uses the hyperresolution

inference rule as a kind of “macro” to combine several SkDR steps into one. We show that this can
be beneficial for several reasons.

Definition 5.20. The Hyperresolution Rewriting inference rule HypDR takes guarded rules

τ1 = β1 → H1, . . . τn = βn → Hn , and τ ′ = A′
1 ∧ · · · ∧A′

n ∧ β ′ → H ′

such that

• for each i with 1 ≤ i ≤ n, conjunction βi is Skolem-free and atom Hi contains a Skolem symbol,

and

• rule τ ′ is Skolem-free,

and, for θ an MGU of H1, . . . ,Hn and A′
1, . . . ,A

′
n , if conjunction θ (β ′) is Skolem-free, it derives

θ (β1) ∧ · · · ∧ θ (βn) ∧ θ (β ′) → θ (H ′).

Example 5.21. The HypDR inference rule simulates chase steps in the child vertex of a loop
analogously to ExbDR: all body atoms matching a fact introduced in the child vertex are resolved
in one step. We can see two benefits of this on the set Σ of GTGDs from Example 4.3.

First, HypDR derives (40) from (36) and (9), and it derives (14) from (10), (35), and (40). Rule
(14) is derived just once, and without intermediate rules (39) and (41). In other words, the HypDR
inference rule does not resolve the body atoms of a rule in every possible order. As Proposition 5.24
below shows, this can reduce the number of derived rules by an exponential factor.

Second, HypDR derives only rules with Skolem-free bodies, and thus does not derive the “dead-
end” rule (42). In other words, all consequences of HypDR derive in one step one fact in the child
vertex of a loop from the loop’s input Ti (v).

The downside of HypDR is that more than two rules can participate in an inference. This requires
more complex unification and selection of candidates that can participate in an inference. �

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:32 M. Benedikt et al.

Proposition 5.22 and Theorem 5.23 capture the properties of HypDR, and Proposition 5.24 com-
pares it to SkDR.

Proposition 5.22. Each application of the HypDR inference rule to rules τ1, . . . ,τn and τ ′ as in

Definition 5.20 produces a guarded rule.

Proof. Consider arbitrary rules τi = βi → Hi with 1 ≤ i ≤ n such that βi is Skolem-free and
Hi contains a Skolem symbol, a Skolem-free rule τ ′ = A′

1 ∧ · · · ∧A′
n ∧ β ′ → H ′, and an MGU θ

of H1, . . . ,Hn and A′
1, · · ·A

′
n satisfying the preconditions of the HypDR inference rule. Rule τ1

contains a term with a Skolem symbol in the head, and this term is unified with a variable, say
x , occurring in a Skolem-free body atom A′

1 of rule τ ′. Moreover, rule τ ′ is guarded, so the body
of the rule contains a Skolem-free atom G that contains all variables of the rule; thus, G also
contains x . Since θ (x) contains a Skolem symbol, θ (G) contains a Skolem symbol too. However,
θ (β ′) is Skolem-free, so G must be one of the atoms A′

1, . . . ,A
′
n from the body of rule τ ′ that are

participating in the HypDR inference rule. But then, we can show that the result of the inference
is guarded analogously to the proof of Proposition 5.16. �

Theorem 5.23. Each HypDR-rewriting of each finite set of GTGDs Σ is a Datalog rewriting of Σ.

Moreover, HypDR(Σ) can be computed in time O(br d ·(e+wb+c)da
) for r the number of relations in Σ,

a the maximum relation arity in Σ, e the number of existential quantifiers in Σ, wb = bwidth(Σ),
c = |consts(Σ)|, and some constants b and d .

Proof of Correctness. The correctness proof for HypDR is almost identical to the correctness
proof in Theorem 5.17, so we outline just the differences. In particular, we wish to prove proper-
ties (�) and (♦) exactly as stated in Theorem 5.17 using the same proof structure. In the proof
of property (♦), we establish existence of a Skolem-free rule β ′′ → H ′ ∈ Σ′ and a substitution σ ′

such that σ ′(β ′′) ⊆ ν (Tk (v
′)) and σ ′(H ′) = ν (G) in exactly the same way. The difference to the

proof of Theorem 5.17 is that we “resolve away” all relevant body atoms of β ′′ in one step. To this
end, let A′

1, . . . ,A
′
n be precisely the atoms of β ′′ such that σ ′(A′

i) � S for each 1 ≤ i ≤ n. Thus, we
can assume that the rule is of the form A′

1 ∧ · · · ∧A′
n ∧ β ′ → H ′, and σ ′(β ′) ⊆ S clearly holds. By

property (♦), for each 1 ≤ � ≤ n, there exist a rule β� → H� ∈ Σ′ and substitution σ� such that β�
is Skolem-free and σ�(H�) = σ ′(A′

�
); the last observation ensures that H� contains a Skolem sym-

bol. Finally, there exists an MGU θ of H1, . . . ,Hn and A′
1, . . . ,A

′
n . Since σ ′(β ′) ⊆ S , conjunction

θ (β ′) is Skolem-free. Thus, the HypDR inference rule is applicable to β1 → H1, . . . , βn → Hn and
A′

1 ∧ · · · ∧A′
n ∧ β ′ → H ′, so set Σ′ contains rule θ (β1) ∧ · · · ∧ θ (βn) ∧ θ (β ′) → θ (H ′) up to redun-

dancy. Since no premises share variables, substitution σ1 ∪ · · · ∪ σn ∪ σ ′ is correctly defined, so let
ζ be the composition of σ1 ∪ · · · ∪ σn ∪ σ ′ and θ . Clearly, we have

ζ (θ (β1)) ∪ · · · ∪ ζ (θ (βn)) ∪ ζ (θ (β ′)) ⊆ S

and ζ (θ (H ′)) = σ ′(H ′) = ν (G). Since G � Tk (v
′), rule θ (β1) ∧ · · · ∧ θ (βn) ∧ θ (β ′) → θ (H ′) is not a

syntactic tautology so, by Definition 5.1, there exist a rule β → H ∈ Σ′ and substitution μ such that
μ(β) ⊆ θ (β1) ∪ · · · ∪ θ (βn) ∪ θ (β ′) and μ(H) = θ (H ′). Letσ be the substitution defined on each vari-
able x in β → H such that σ (x) = ζ (μ(x)). Then, σ (β) ⊆ S and σ (H) = σ ′(H ′) = ν (G), as required
for property (♦). �

Proof of Complexity. Fix Σ, r , wb , e , c , and a as stated in the theorem. In the same way
as in the complexity proof of Theorem 5.17, the number of different atoms can be bounded by
� = r · (wb + e + c)

a , and the number of different rules can be bounded by ℘ = 22� . Now we can
apply the HypDR inference rule as follows: we choose one of the ℘ rules that plays the role of τ ′

and then, for each of the at most � body atoms in τ ′, we select one of the ℘ rules that play the role of

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:33

rules τi . Hence, there are at most ℘ · ℘� = ℘�+1 different applications of the HypDR inference rule.

Thus, we may need to compute the unifier θ at most (22�)�+1 = 22�2+2� ≤ 23�2
times. Finally, the

times needed for unification and all other steps can be bounded analogously as in the complexity
proof of Theorem 5.17. �

Regarding the relative efficiency of HypDR and ExbDR, Proposition 5.18 equally applies to
HypDR since this algorithm performs the same inferences as SkDR on the GTGDs considered
in the proof. For the converse relation, we conjecture that each HypDR inference corresponds to
an ExbDR inference, but proving this seems nontrivial: the HypDR inference rule is applied to n
rules τ1, . . . ,τn with Skolem symbols, while an analogous ExbDR inference is applied to just one
non-full GTGD τ , and the relation between these rules/GTGDs is not obvious.

Regarding the relative efficiency of HypDR and SkDR, one can see that SkDR derives exponen-
tially more rules on the GTGDs from the proof of Proposition 5.19, but only if redundant rules
are not eliminated. Proposition 5.24 proves a slightly stronger result: HypDR can be more effi-
cient even with redundancy elimination. Furthermore, Proposition 5.25 shows that SkDR always
performs as many inferences as HypDR when redundant rules are not eliminated. With redun-
dancy elimination, we found analyzing this relationship difficult because the outputs of the two
algorithms then depend on when and how redundant clauses are discarded.

Proposition 5.24. There exists a family {Σn}n∈N of finite sets of GTGDs such that |SkDR(Σn)| is

Ω(2n) times larger than |HypDR(Σ)| for each n > 1.

Proof. For each n ∈ N, let Σn contain the following GTGDs.

A(x) → ∃y B(x ,y) (53)

B(x1,x2) ∧Ci (x1) → Di (x1,x2) for 1 ≤ i ≤ n (54)

D1(x1,x2) ∧ · · · ∧ Dn(x1,x2) → E(x1) (55)

Skolemizing (53) produces (56). Thus, SkDR combines (56) with each (54) to derive each (57), and
it uses (57) and (55) to derive 2n − 1 rules of the form (58) for each set of indexes I satisfying
∅ � I ⊆ {1, . . . ,n}; note that none of these rules are redundant.

A(x) → B(x , f (x)) (56)

A(x) ∧Ci (x) → Di (x , f (x)) for 1 ≤ i ≤ n (57)

A(x) ∧
∧

i ∈I

Ci (x) ∧
∧

j ∈{1, ...,n }\I

D j (x , f (x)) → E(x) (58)

In contrast, HypDR derives each (57) just like SkDR, and it combines in one step (55) and all (57)
to derive (58) for I = {1, . . . ,n}. �

Proposition 5.25. For each finite set of GTGDs Σ, it is the case that HypDR(Σ) ⊆ SkDR(Σ).

Proof. The proof is by a simple induction on the construction of HypDR(Σ). The base case
holds trivially. For the induction step, consider an arbitrary subset Σ′ ⊆ HypDR(Σ) containing
rules τi = βi → Hi for 1 ≤ i ≤ n and rule τ ′ = A′

1 ∧ · · · ∧A′
n ∧ β ′ → H ′ such that the precondi-

tions of the HypDR inference rule from Definition 5.20 are satisfied for the MGU θ , and the result-
ing rule τ = θ (β1) ∧ · · · ∧ θ (βn) ∧ θ (β ′) → θ (H ′) is not contained in Σ′ up to variable renaming.
Since θ (β ′) is Skolem-free and the head of each τi contains a Skolem symbol, at least one atom
among A′

1, . . . ,A
′
n must contain all variables of τ ′; without loss of generality, we can assume this

to be atomA′
1. Moreover, each θ (A′

i) contains a Skolem symbol. But then, it should be clear that we
can derive θ by successively applying the SkDR rule to τ1 and τ ′, τ2 and the result of the previous
step, and so on. �

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:34 M. Benedikt et al.

ALGORITHM 1: Computing an Inf-rewriting of a finite set of GTGDs Σ

1: W = ∅
2: U = the head-normal form or the Skolemization of Σ
3: while U � ∅ do

4: Choose some τ ∈ U and remove it from U
5: W =W ∪ {τ }
6: Let E be the result of applying Inf to τ and a subset of W

and transforming the result into head-normal form
7: for each τ ′ ∈ E do

8: if τ ′ is not contained in W ∪U up to redundancy then

9: Remove from W and U each τ ′′ subsumed by τ ′

10: U = U ∪ {τ ′}

11: return {τ ∈ W | τ is a Skolem-free Datalog rule}

6 Implementation and Optimizations

In this section, we discuss numerous issues that have to be addressed to make the computation of
a rewriting feasible for nontrivial sets of input GTGDs.

Computing a Small Inf-Rewriting in Practice. Definition 5.3 does not specify how to compute the
set Σ′, and redundancy elimination makes this question nontrivial. When Inf derives a TGD/rule τ ,
we can apply subsumption in two ways. First, we can discard τ if τ is subsumed by a previously de-
rived TGD/rule; this is known as forward subsumption. Second, if τ is not discarded, we can discard
each previously derived TGD/rule that is subsumed by τ ; this is known as backward subsumption.
The set of derived TGD/rules can thus grow and shrink, so the application of Inf must be carefully
structured to ensure that all inferences are performed eventually.

We address this problem by a variant of the Otter loop [44] that is widely used in first-order
theorem provers. The pseudo-code is shown in Algorithm 1. The algorithm maintains two sets of
TGDs/rules: the worked-off set W contain TGDs/rules that have been processed by Inf, and the
unprocessed set U contains TGDs/rules that still need to be processed. Set W is initially empty
(line 1), and set U is initialized to the head-normal form of Σ if Inf manipulates TGDs, or to the
Skolemization of Σ if Inf manipulates rules. Next, the algorithm processes each τ ∈ U iteratively
until setU becomes empty (lines 3–10). It is generally beneficial to process shorter TGDs/rules first
as that improves chances of redundancy elimination. After moving τ to W (line 5), the algorithm
applies Inf to τ and W and transforms the results into head-normal form (line 6). The algorithm
discards each resulting τ ′ ∈ E that is a syntactic tautology or is forward-subsumed by an element
of W ∪U (line 8). If τ ′ is not discarded, the algorithm applies backward subsumption to τ ′, W,
and U (line 9) and adds τ ′ to U (line 10). When all TGDs/rules are processed, the algorithm returns
all Skolem-free Datalog rules from W (line 11). The result of applying Inf to TGDs/rules in W is
thus contained in W ∪U up to redundancy at all times so, upon termination, set W satisfies the
condition on Σ′ from Definition 5.3.

Checking Subsumption. Checking whether TGD/rule τ1 subsumes τ2 is NP-complete [39], and
the main difficulty is in matching the variables of τ1 to the variables of τ2. Thus, we use an approx-
imate check in our implementation. First, we normalize each TGD to use fixed variables x1,x2, . . .
and y1,y2, . . .: we sort the body and head atoms by their relations using an arbitrary, but fixed or-
dering and breaking ties arbitrarily, and then we rename all variables so that the ith distinct occur-
rence of a universally (respectively existentially) quantified variable from the left to the right is xi

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:35

(respectively yi). To see whether τ1 = β1 → ∃�y η1 subsumes τ2 = β2 → ∃�y η2, we determine
whether β1 ⊆ β2 and η1 ⊇ η2 holds, which requires only polynomial time. We use an analogous ap-
proximation for rules. Variable normalization ensures termination, and using a modified subsump-
tion check does not affect the correctness of the rewriting: set W may contain more TGDs/rules
than strictly necessary, but these are all logical consequences of (the Skolemization of) Σ.

Subsumption Indexing. Sets W and U can be large, so we use a variant of feature vector indexing

[52] to retrieve subsumption candidates in W ∪U. For brevity, we discuss next only TGDs, but
rules can be handled analogously. A TGD τ1 can subsume TGD τ2 only if the set of relations occur-
ring in the body of τ1 (respectively the head of τ2) is a subset of the set of relations occurring in the
body of τ2 (respectively the head of τ1). Thus, retrieving subsumption candidates can be reduced to
following problem: given a domain set D, a set N of subsets of D, a subset S ⊆ D, and �� ∈ {⊆, ⊇},
retrieve each S ′ ∈ N satisfying S ′ �� S . The set-trie data structure [51] can address this problem.
The idea is to order D in an arbitrary, yet fixed way, so that we can treat each subset of N as a
word over D. We then index N by constructing a trie over the words representing the elements of
N . Finally, we retrieve all S ′ ∈ N satisfying S ′ �� S by traversing the trie, where the ordering on D
allows us to considerably reduce the number of vertices we visit during the traversal.

A minor issue is that retrieving TGDs that subsume a given TGD requires both subset and
superset testing for body and head relations, respectively, and vice versa for retrieval of subsumed
TGDs. To address this, we introduce a distinct symbol Rb and Rh for each relation R occurring in
Σ, and we represent each TGD τ as a feature vector Fτ of these symbols corresponding to the body
and head of τ . Moreover, we combine the subset and superset retrieval algorithms in the obvious
way. For example, when searching for a TGD τ ′ ∈ W ∪U that subsumes a given TGD τ , we use
the subset retrieval for the symbols Rb and the superset retrieval for symbols Rh . Finally, we order
these symbols by the decreasing frequency of the order of the symbols’ occurrence in the set Σ of
input TGDs, and moreover we order each Rb before all Rh .

Relation Clustering. Since our subsumption indexes can get very large, index traversal can be-
come a significant source of overhead. To reduce the index size, we group the symbols Rb and Rh

into clustersCb andCh , respectively. Then, the feature vector Fτ associated with each TGD τ con-
sists of all clusters Cb and Ch containing a relation occurring in the body and head, respectively,
of τ . We also adapt the trie traversal algorithms in the obvious way. The number of clusters is
computed using the average numbers of symbols and atoms in the input TGDs, and clusters are
computed with the aim of balancing the number of TGDs stored in each leaf vertex.

Unification Indexing. We construct indexes over W that allow us to quickly identify TGDs/rules
that can participate in an inference with some τ . For TGDs, we maintain a hash table that maps
each relation R to a set of TGDs containing R in the body, and another hash table that does the
same but for TGD heads. To index rules, we use a variant of a path indexing [53]: each atom in a
rule is represented as a sequence of relations and function symbols occurring in the atom, and such
sequences are entered into two tries, one for the body and one for the head atoms. Then, given rule
τ , we consider each body and head atom A of τ , we convert A into the corresponding sequence
that we use to query the relevant trie for all candidates participating in an inference with τ on A.

Cheap Lookahead Optimization. Consider an application of the ExbDR inference rule to GTGDs
τ and τ ′ as in Definition 5.8, producing a GTGD τ ′′ where vars(θ (H ′)) ∩ �y � ∅ and the relation of
H ′ does not occur in the body of a GTGD in Σ. In each one-pass chase sequence for Σ, no GTGD
of Σ can be applied to a fact obtained by instantiating θ (H ′), so deriving this fact is redundant.
Consequently, we can drop such τ ′′ as soon as we derive it in line 6. Analogously, when the SkDR

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:36 M. Benedikt et al.

Table 1. Input GTGDs at a Glance

Inputs # Full TGDs # Non-Full TGDs
Min Max Avg Med Min Max Avg Med

428 1 171,905 11,030 789 2 156,743 5,255 283

inference rule is applied to rules τ and τ ′ as in Definition 5.14, we can drop the resulting rule
whenever θ (H ′) is not full and θ (H ′) contains a relation not occurring in the body of a GTGD in Σ.

7 Experimental Evaluation

We implemented a system that can produce a Datalog rewriting of a set of GTGDs using our
algorithms, and we conducted an empirical evaluation using a comprehensive collection of 428
synthetic and realistic inputs. Our objectives were to show that our algorithms can indeed rewrite
complex GTGDs, and that the rewriting can be successfully processed by modern Datalog systems.
In Subsection 7.1 we describe the test setting. Then, in Subsection 7.2 we discuss the rewriting ex-
periments with GTGDs obtained from ontologies, and in Subsection 7.3 we validate the usefulness
of the rewriting approach end-to-end. Finally, in Subsection 7.4 we discuss rewriting GTGDs of
higher arity. Due to the very large number of inputs, we can only summarize our results in this
paper; however, our complete evaluation setup and results are available online [19].

7.1 Input GTGDs, Competitors, & Test Setting

Before discussing our results, we next describe our test setting.

Input GTGDs. We are unaware of any publicly available sets of GTGDs that we could readily use
in our evaluation, so we derived the input GTGDs for our evaluation from the ontologies in the
Oxford Ontology Library [48]. At the time of writing, this library contained 787 ontologies, each
assigned a unique five-digit identifier. After removing closely-related ontology variants, we were
left with 428 core ontologies. We loaded each ontology using the parser from the Graal system [11],
discarded axioms that cannot be translated into GTGDs, and converted the remaining axioms into
GTGDs. We used the standard translation of description logics into first-order logic [8], where
class and properties correspond to unary and binary relations, respectively. We thus obtained 428
sets of input GTGDs with properties shown in Table 1.

To evaluate our algorithms on TGDs containing relations of arity higher than two, we devised a
way to “blow up” relation arity. Given a set of GTGDs and a blowup factor b, our method proceeds
as follows. First, in each atom of each GTGD, it replaces each variable argument with b fresh
variables uniquely associated with the variable; for example, for b = 2, atomA(x ,y) is transformed
into atom A(x1,x2,y1,y2). Next, the method randomly introduces fresh head and body atoms over
the newly introduced variables; in doing so, it ensures that the new atoms do not introduce patterns
that would prevent application of the ExbDR inference rule.

Competitors. We compared the FullDR, ExbDR, SkDR, and HypDR algorithms, implemented as
described in Section 6. As noted in Section 2, no existing system we are aware of implements a
Datalog rewriting algorithm for GTGDs. However, the KAON2 system [36, 46, 47] can rewrite
GTGDs obtained from OWL ontologies, so we used KAON2 as a baseline in our experiments with
OWL-based GTGDs. We made sure that all inputs to KAON2 and our algorithms include only
GTGDs that all methods can process.

Test Setting. We conducted all experiments on a laptop with an Intel Core i5-6500 CPU @
3.20 GHz and 16 GB of RAM, running Ubuntu 20.04.4 LTS and Java 11.0.15. In each test run, we

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:37

loaded a set of GTGDs, we measured the wall-clock time required to compute the rewriting, and
we saved the resulting Datalog program. We used a timeout of ten minutes for each test run.

7.2 Experiments with GTGDs from Ontologies

We computed the Datalog rewriting of GTGDs obtained from OWL ontologies using our four
algorithms and KAON2. Figure 4 shows the number of inputs that each algorithm processed in
a given time, provides information about the inputs and outputs of each system, and compares
the performance among systems. The input size for FullDR and ExbDR is the number of GTGDs
after transforming the input into head-normal form, and for SkDR and HypDR it is the number
of rules after Skolemization. The input size is not available for KAON2 since this system reads an
OWL ontology and transforms it into GTGDs internally. The output size is the number of Datalog
rules in the rewriting. Finally, the blowup is the ratio of the output and input sizes. Each input
GTGD contained at most seven body atoms. Out of 428 inputs, 220 inputs were processed by all
five systems within the ten-minute limit. After excluding FullDR, 349 inputs were processed by our
remaining three systems, and 334 inputs were processed by our three systems and KAON2. Finally,
32 inputs, consisting of between 20,270 and 221,648 GTGD, were not processed by any system.

The Performance of FullDR. As one can see in Figure 4, FullDR is a clear outlier: it could process
considerably fewer inputs than all other algorithms, its running times were considerably higher,
and the computed rewritings were considerably larger. The main obstacle in FullDR is indeed the
need to consider a large number of substitutions θ , as we outlined in Example 5.6. Nevertheless, the
algorithm could still process around half of the inputs, some containing more than 10k+ GTGDs—
that is, it could process not only “toy” inputs.

The Remaining Algorithms. After excluding FullDR, the remaining algorithms were able to com-
pute the rewriting of large inputs containing 100k+ GTGDs. Moreover, for the vast majority of
inputs that were successfully processed, the size of the rewriting and the number of body atoms
in the rewriting are typically of the same order of magnitude as the input. Hence, the worst-case
exponential blowup from Theorems 5.12, 5.17, and 5.23 does not appear in practice: the size of the
rewriting seems to be determined primarily by the input size.

Relative Performance. No system can be identified as universally the best, but HypDR seems to
offer superior performance on average. The algorithm was able to process most inputs; it was at
least 35% faster than the other systems on the slowest input; it was never slower by an order of
magnitude; there were only 14 inputs that could be processed by some other algorithm but not
HypDR; and the output of HypDR does not differ significantly from the output of SkDR. This is in
line with our motivation for HypDR outlined in Example 5.21. Specifically, HypDR derives rules
with just one head atom, but it does not derive intermediate rules with function symbols in body
atoms. The main source of overhead in HypDR seems to be the more complex selection of rules
participating in an inference.

Impact of Subsumption. All algorithms spend a considerable portion of their running time check-
ing TGD/rule subsumption, so it is natural to wonder whether this overhead is justified. To answer
this question, we reran ExbDR, SkDR, and HypDR with a slight modification of Algorithm 1: we
replaced the check for containment up to redundancy in line 8 with just checking τ ′ �W ∪U,
and we removed line 9. Note that our normalization of variables described in Section 6 still guar-
antees termination. This change significantly increased the number of derivations: the numbers
of derived TGDs/rules increased on average by a factor of 104, 185, and 103 on ExbDR, SkDR, and
HypDR, respectively. Interestingly, this increase did not affect the performance uniformly. While
SkDR was able to process 12 inputs an order of magnitude faster, ExbDR and HypDR timed out on

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:38 M. Benedikt et al.

FullDR ExbDR SkDR HypDR KAON2

of Processed Inputs 223 367 377 382 362
Max. Processed Input Size 11,846 185,515 324,092 324,092 N/A
Max. Output Size 229,597 196,594 124,846 124,846 61,964
Max. Size Blowup 3670.83 8.95 8.85 8.85 N/A
Max. Body Atoms in Output 9 7 6 6 4
Blowup ≥ 1.5 186 26 14 16 N/A

T
im

e
(s

) Min. 0.08 0.05 0.05 0.04 0.21
Max. 601.34 582.18 584.79 404.34 547.53
Avg. 316.71 23.23 14.34 6.38 18.66
Med. 1.83 0.82 0.52 0.55 0.49

time(Y)/time(X) ≥ 10 X and Y both fail

X
Y

FullDR ExbDR SkDR HypDR KAON2 FullDR ExbDR SkDR HypDR KAON2

FullDR 2 0 0 0 205
ExbDR 172 19 0 19 58 61
SkDR 205 37 0 26 51 33 51

HypDR 221 37 12 31 46 35 43 46
KAON2 164 35 15 0 66 37 47 46 66

Fig. 4. Results for TGDs Derived from Ontologies

72 and 17 additional inputs, respectively. This, we believe, is due to how different inference rules
select inference candidates. The SkDR rule is applied to just pairs of rules, and candidate pairs can
be efficiently retrieved using unification indexes. In contrast, ExbDR requires matching several
head atoms with as many body atoms, which makes developing a precise index for candidate pair
retrieval difficult; thus, as the number of derived TGDs increases, the number of false candidates
retrieved from the index increases as well. Finally, HypDR is applied to many rules, so selecting
inference candidates clearly becomes more difficult as the number of candidates increases.

Impact of Structural Transformation. KAON2 uses structural transformation [9] to simplify ontol-
ogy axioms before translating them into GTGDs. For example, axiomA � ∃B.∃C .D is transformed

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:39

Table 2. Computing the Fixpoint of the Rewriting

Ont. ID # Rules # Input Facts # Output Facts Time (s)

00387 63,422 4,403,105 51,439,424 53
00448 67,986 5,510,444 107,235,697 110
00470 75,146 10,532,943 141,396,446 242
00471 78,977 11,077,423 128,954,126 253
00472 75,146 10,533,008 141,396,576 279
00473 78,977 11,077,459 128,954,198 291
00573 113,959 9,197,254 155,118,592 206
00682 68,461 5,183,460 105,431,952 101
00684 81,553 6,057,017 66,981,628 109
00686 124,846 10,402,324 166,366,039 238

into A � ∃B.X and X � ∃C .D for X a fresh class. The resulting axioms have simpler structure,
which is often beneficial to performance. To see how this transformation affects our algorithms,
we reran ExbDR, SkDR, and HypDR while transforming the input axioms in the same way as in
KAON2. This indeed improved the performance of SkDR by one order of magnitude on 22 ontolo-
gies, and it did not hurt the performance of HypDR. The main challenge is to generalize this trans-
formation to arbitrary GTGDs: whereas description logic axioms exhibit syntactic nesting that
lends itself naturally to this transformation, it is unclear how to systematically transform TGDs
where heads and bodies consist of “flat” conjunctions. We leave this question for future work.

7.3 End-to-End Experiments

To validate our approach end-to-end, we selected ten ontologies on which ExbDR produced the
largest rewritings; the IDs that can be used to identify these ontologies in the Oxford Ontology
Library [48] are given in Table 2. For each ontology, we generated a large base instance using the
WatDiv [3] generator, and we computed the fixpoint of the rewriting and the instance using the
RDFox [54] Datalog system v5.4. Table 2 summarizes our results.

All programs used in this experiment are at least several orders of magnitude larger than what
is usually encountered in practical Datalog applications, but RDFox nevertheless computed all
fixpoints in a few minutes. Although the fixpoints seem to be an order of magnitude larger than
the base instance, this is not a problem for highly optimized systems such as RDFox. Furthermore,
all rewriting algorithms preserve the entailment of exactly the same facts, so using a different
rewriting algorithm should not affect the fixpoint size. However, the rewritings produced by SkDR
and HypDR are generally smaller than the rewritings produced by ExbDR, which typically allows
for faster fixpoint computation. Consequently, checking fact entailment via rewritings produced
by our algorithms is feasible in practice.

7.4 GTGDs With Relations of Higher Arity

Finally, we computed the rewriting of GTGDs obtained by blowing up relation arity as described
in Subsection 7.1 using a blowup factor of five. The FullDR algorithm performed very poorly on
higher-arity inputs: increasing the arity increases the width of the input GTGDs, which addition-
ally exacerbates the problems outlined in Example 5.6. Moreover, KAON2 supports relations of
arity at most two and is thus not applicable to this experiment. Thus, we report the results for
ExbDR, SkDR, and HypDR only. Figure 5 summarizes our results. Out of 428 inputs, 187 were pro-
cessed within the ten-minute limit by our three systems, and 128 inputs were not processed by
any system.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:40 M. Benedikt et al.

50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

No. of Processed Sets o TGDs

T
im

e
(s
)

ExbDR

SkDR

HypDR

ExbDR SkDR HypDR

of Processed Inputs 274 238 199
Max. Processed Input Size 69,046 182,569 38,362
Max. Output Size 58,749 171,832 38,335
Max. Size Blowup 9.00 5.84 5.84
Blowup ≥ 1.5 26 5 3

T
im

e
(s

) Min. 0.06 0.05 0.04
Max. 591.82 504.49 557.75
Avg. 26.70 38.39 17.05
Med. 0.61 1.65 1.72

time(Y)/time(X) ≥ 10 X and Y both fail

X
Y

ExbDR SkDR HypDR ExbDR SkDR HypDR

ExbDR 61 87 154
SkDR 11 21 128 190

HypDR 6 4 148 184 229

Fig. 5. Results for TGDs with Higher-Arity Relations.

While HypDR was best-performing on GTGDs derived from ontologies, Figure 5 shows it to be
worst-performing on higher-arity GTGDs: it could process only 199 inputs within the ten-minute
timeout, while SkDR and ExbDR processed 238 and 274 inputs, respectively. This is due to the
body atoms introduced by our “blowup” method: these increase the number of rules participating
in an application of the HypDR inference rule, which makes selecting the participating rules
harder.

This experiment proved to be more challenging, as most problems discussed in Section 6 became
harder. For example, in ExbDR, higher arity of atoms increases the likelihood that an atom retrieved
through a unification index does not unify with a given atom, and that the atoms of the selected
GTGDs cannot be successfully matched. Subsumption indexing is also more difficult for similar
reasons. However, the inputs used in this experiment consist of a large number of GTGDs with
relations of arity ten, so they can be seen as a kind of “stress test”. Our algorithms were able to

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

Rewriting the Infinite Chase for Guarded TGDs 14:41

process more than half of such inputs, which leads us to believe that they can also handle more
well-behaved GTGDs used in practice.

8 Conclusion

In this paper, we presented four algorithms for rewriting a finite set of guarded TGDs into a Datalog
program that entails the same base facts on each base instance. Our algorithms are based on a new
framework that establishes a close connection between Datalog rewritings and a particular style
of the so-called one-pass chase. We also presented the results of an empirical evaluation of our
algorithms based on a new test set consisting of both real and synthetic GTGDs.

In our experiments, we compared our algorithms to KAON2, which is also based on rewriting.
Fact entailment, however, can be solved using approaches other than rewriting (e.g., using forward
chaining with blocking), so it would be interesting to compare the overall performance of fact
entailment of such approaches and rewriting. For the class of guarded TGDs that we consider in
this paper, we are not aware of any related approach that could be competitive with rewriting on
base instances of nontrivial sizes. In our future work, however, we will aim to implement a forward
chaining approach for GTGDs and then compare its performance to rewriting, analogously to how
this was done recently for other classes of TGDs [2].

In addition, we plan to generalize our framework to wider classes of TGDs, such as frontier-
guarded TGDs, as well as provide Datalog rewritings for conjunctive queries under certain answer
semantics. Note that Datalog rewritings are known to exist for general conjunctive queries even
for frontier-guarded TGDs [13, 14], but developing realistic algorithms is considerably more chal-
lenging than for fact entailment. Finally, we shall investigate the extension of our framework to
disjunctive guarded TGDs. We presented an analog of the one-pass chase for disjunctive GTGDs, as
well as an analog of the Skolem-based rewriting in an unpublished work [38]. It remains to be seen
whether these ideas can be used to obtain practical algorithms for rewriting disjunctive guarded
TGDs into disjunctive Datalog, analogously to how this was achieved for description logics [47].

Acknowledgments

This work was funded by the EPSRC grants OASIS (EP/S032347/1), QUINTON (EP/T022124/1), UK
FIRES (EP/S019111/1), AnaLOG (EP/P025943/1), and Concur (EP/V050869/1). For the purpose of
Open Access, the authors have applied a CC BY public copyright licence to any Author Accepted
Manuscript (AAM) version arising from this submission.

References

[1] Shqiponja Ahmetaj, Magdalena Ortiz, and Mantas Simkus. 2018. Rewriting Guarded Existential Rules into Small

Datalog Programs. In Proc. of the 21st Int. Conf. on Database Theory (ICDT 2018) (LIPIcs), Benny Kimelfeld and Yael

Amsterdamer (Eds.), Vol. 98. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Vienna, Austria, 4:1–4:24.

[2] Afnan G. Alhazmi, Tom Blount, and George Konstantinidis. 2022. ForBackBench: A Benchmark for Chasing vs.

Query-Rewriting. Proc. VLDB Endow. 15, 8 (2022), 1519–1532.

[3] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. 2014. Diversified Stress Testing of RDF Data

Management Systems. In Proc. of the 13th Int. Semantic Web Conf. (ISWC 2014) (LNCS), Peter Mika, Tania Tudorache,

Abraham Bernstein, Chris Welty, Craig A. Knoblock, Denny Vrandecic, Paul Groth, Natasha F. Noy, Krzysztof Janow-

icz, and Carole A. Goble (Eds.), Vol. 8796. Springer, Riva del Garda, Italy, 197–212.

[4] Mario Alviano, Nicola Leone, Marco Manna, Giorgio Terracina, and Pierfrancesco Veltri. 2012. Magic-Sets for Datalog

with Existential Quantifiers. In Proc. of the 2nd Int. Workshop on Datalog in Academia and Industry (Datalog 2.0 2012)

(LNCS), Pablo Barceló and Reinhard Pichler (Eds.), Vol. 7494. Springer, Vienna, Austria, 31–43.

[5] Antoine Amarilli and Michael Benedikt. 2022. When Can We Answer Queries Using Result-Bounded Data Interfaces?

Log. Methods Comput. Sci. 18, 2 (2022), 14:1–14:81.

[6] Hajnal Andréka, Johan van Benthem, and István Németi. 1998. Modal Languages and Bounded Fragments of

Predicate Logic. J. Philos. Log. 27 (1998), 217–274.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

14:42 M. Benedikt et al.

[7] F. Baader, S. Brandt, and C. Lutz. 2005. Pushing the EL Envelope. In Proc. of the 19th Int. Joint Conference on Artificial

Intelligence (IJCAI 2005), L. Pack Kaelbling and A. Saffiotti (Eds.). Morgan Kaufmann Publishers, Edinburgh, UK,

364–369.

[8] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider (Eds.). 2007. The Description Logic Hand-

book: Theory, Implementation and Applications (2nd ed.). Cambridge University Press, Cambridge, UK.

[9] M. Baaz, U. Egly, and A. Leitsch. 2001. Normal Form Transformations. In Handbook of Automated Reasoning,

John Alan Robinson and Andrei Voronkov (Eds.). North-Holland, Amsterdam, Chapter 5, 273–333.

[10] Leo Bachmair and Harald Ganzinger. 2001. Resolution Theorem Proving. In Handbook of Automated Reasoning,

John Alan Robinson and Andrei Voronkov (Eds.). North-Holland, Amsterdam, Chapter 2, 19–99.

[11] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, Swan Rocher, and Clément Sipieter. 2015. Graal: A Toolkit

for Query Answering with Existential Rules. In Proc. of the 9th Int. Symposium on Rule Technologies: Foundations, Tools,

and Applications (RuleML 2015) (LNCS), Nick Bassiliades, Georg Gottlob, Fariba Sadri, Adrian Paschke, and Dumitru

Roman (Eds.), Vol. 9202. Springer, Berlin, Germany, 328–344.

[12] Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and Michaël Thomazo. 2011. Walking the Complexity

Lines for Generalized Guarded Existential Rules. In Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI

2011), Toby Walsh (Ed.). AAAI Press, Barcelona, Spain, 712–717.

[13] Vince Bárány, Michael Benedikt, and Balder ten Cate. 2013. Rewriting Guarded Negation Queries. In Proc. of the 38th

Int. Symposium on Mathematical Foundations of Computer Science (MFCS 2013) (LNCS), Krishnendu Chatterjee and

Jirí Sgall (Eds.), Vol. 8087. Springer, Klosterneuburg, Austria, 98–110.

[14] Vince Bárány, Michael Benedikt, and Balder ten Cate. 2018. Some Model Theory of Guarded Negation. J. Symb. Log.

83, 4 (2018), 1307–1344.

[15] Pablo Barceló, Gerald Berger, Carsten Lutz, and Andreas Pieris. 2018. First-Order Rewritability of Frontier-Guarded

Ontology-Mediated Queries. In Proc. of the 27th Int. Joint Conf. on Artificial Intelligence (IJCAI 2018), Jérôme Lang

(Ed.). ijcai.org, Stockholm, Sweden, 1707–1713.

[16] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. 2018. The Vadalog System: Datalog-based Reasoning for

Knowledge Graphs. Proc. VLDB Endow. 11, 9 (2018), 975–987.

[17] Michael Benedikt, Maxime Buron, Stefano Germano, Kevin Kappelmann, and Boris Motik. 2022. Datalog Rewriting

for Guarded TGDs. In Proc. of the 4th Int. Workshop on the Resurgence of Datalog in Academia and Industry (Datalog

2.0 2022) (CEUR Workshop Proceedings), Mario Alviano and Andreas Pieris (Eds.), Vol. 3203. CEUR-WS.org, Genova-

Nervi, Italy, 104–113.

[18] Michael Benedikt, Maxime Buron, Stefano Germano, Kevin Kappelmann, and Boris Motik. 2022. Rewriting the Infi-

nite Chase. Proc. VLDB Endow. 15, 11 (2022), 3045–3057.

[19] Michael Benedikt, Maxime Buron, Stefano Germano, Kevin Kappelmann, and Boris Motik. 2024. Experiments on

Guarded Saturation. (2024). https://doi.org/10.5281/zenodo.13742630

[20] Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris Motik, Paolo Papotti, Donatello Santoro, and

Efthymia Tsamoura. 2017. Benchmarking the Chase. In Proc. of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems (PODS 2017), Emanuel Sallinger, Jan Van den Bussche, and Floris Geerts (Eds.). ACM,

Chicago, IL, USA, 37–52.

[21] Andrea Calì, Georg Gottlob, and Michael Kifer. 2013. Taming the Infinite Chase: Query Answering under Expressive

Relational Constraints. J. Artif. Intell. Res. 48 (2013), 115–174.

[22] Andrea Calì, Domenico Lembo, and Riccardo Rosati. 2003. Query rewriting and answering under constraints in data

integration systems. In Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), Georg Gottlob and Toby

Walsh (Eds.). Morgan Kaufmann, Acapulco, Mexico, 16–21.

[23] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Davide Lanti, Martin Rezk, Mariano

Rodriguez-Muro, and Guohui Xiao. 2017. Ontop: Answering SPARQL Queries over Relational Databases. Semantic

Web 8, 3 (2017), 471–487.

[24] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati. 2007. Tractable

Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family. J. Autom. Reason. 39, 3 (2007),

385–429.

[25] David Carral, Larry González, and Patrick Koopmann. 2019. From Horn-SRIQ to Datalog: A Data-Independent

Transformation That Preserves Assertion Entailment. In Proc. of the 33rd AAAI Conference on Artificial Intelligence

(AAAI 2019), Pascal Van Hentenryck and Zhi-Hua Zhou (Eds.). AAAI Press, Honolulu, HI, USA, 2736–2743.

[26] Hans de Nivelle. 1998. A Resolution Decision Procedure for the Guarded Fragment. In Proc. of the 15th Int. Conf. on

Automated Deduction (CADE 1998) (LNCS), Claude Kirchner and Hélène Kirchner (Eds.), Vol. 1421. Springer, Lindau,

Germany, 191–204.

[27] A. Deutsch, L. Popa, and V. Tannen. 2006. Query reformulation with constraints. SIGMOD Rec. 35, 1 (2006), 65–73.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

https://doi.org/10.5281/zenodo.13742630

Rewriting the Infinite Chase for Guarded TGDs 14:43

[28] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. 2005. Data exchange: semantics and query answering. Theor. Comput.

Sci. 336, 1 (2005), 89–124.

[29] Mohamed Gaha, Arnaud Zinflou, Christian Langheit, Alexandre Bouffard, Mathieu Viau, and Luc Vouligny. 2013.

An Ontology-Based Reasoning Approach for Electric Power Utilities. In Proc. of the 7th Int. Conf. on Web Reasoning

and Rule Systems (RR 2013) (LNCS), Wolfgang Faber and Domenico Lembo (Eds.), Vol. 7994. Springer, Mannheim,

Germany, 95–108.

[30] Harald Ganzinger and Hans de Nivelle. 1999. A Superposition Decision Procedure for the Guarded Fragment with

Equality. In Proc. of the 14th Annual IEEE Symposium on Logic in Computer Science (LICS 1999), Giuseppe Longo (Ed.).

IEEE Computer Society, Trento, Italy, 295–303.

[31] Georg Gottlob, Sebastian Rudolph, and Mantas Simkus. 2014. Expressiveness of guarded existential rule languages.

In Proc. of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2014), Richard

Hull and Martin Grohe (Eds.). ACM, Snowbird, UT, USA, 27–38.

[32] Alon Y. Halevy. 2001. Answering Queries Using Views: A Survey. VLDB J. 10, 4 (2001), 270–294.

[33] Alon Y. Halevy, Anand Rajaraman, and Joann J. Ordille. 2006. Data Integration: The Teenage Years. In Proc. of the

32nd Int. Conf. on Very Large Data Bases (VLDB 2006), Umeshwar Dayal, Kyu-Young Whang, David B. Lomet, Gustavo

Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun Cha, and Young-Kuk Kim (Eds.). ACM, Seoul, Korea, 9–16.

[34] Colin Hirsch. 2002. Guarded Logics: Algorithms and Bisimulation. Ph.D. Dissertation. RWTH Aachen, Aachen,

Germany. Retrieved July 4, 2022 from http://www.umbrialogic.com/hirsch-thesis.pdf

[35] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. 2004. Reducing SHIQ−-Description Logic to Disjunctive Datalog

Programs. In Proc. of the 9th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2004), Didier

Dubois, Christopher A. Welty, and Mary-Anne Williams (Eds.). AAAI Press, Whistler, BC, Canada, 152–162.

[36] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. 2007. Reasoning in Description Logics by a Reduction to Disjunctive

Datalog. J. Autom. Reason. 39, 3 (2007), 351–384.

[37] David S. Johnson and Anthony C. Klug. 1984. Testing Containment of Conjunctive Queries under Functional and

Inclusion Dependencies. J. Comput. Syst. Sci. 28, 1 (1984), 167–189.

[38] Kevin Kappelmann. 2019. Decision Procedures for Guarded Logics. CoRR abs/1911.03679 (2019), 92.

[39] Deepak Kapur and Paliath Narendran. 1986. NP-Completeness of the Set Unification and Matching Problems. In Proc.

of the 8th Int. Conf. on Automated Deduction (CADE 1986) (LNCS), Jörg H. Siekmann (Ed.), Vol. 230. Springer, Oxford,

UK, 489–495.

[40] Yevgeny Kazakov, Markus Krötzsch, and Frantisek Simancik. 2014. The Incredible ELK: From Polynomial Procedures

to Efficient Reasoning with EL Ontologies. J. Autom. Reason. 53, 1 (2014), 1–61.

[41] Alon Y. Levy. 2000. Logic-Based Techniques in Data Integration. Kluwer Academic Publishers, Norwell, MA, USA,

575–595.

[42] Thomas Lukasiewicz, Andrea Calì, and Georg Gottlob. 2012. A General Datalog-Based Framework for Tractable

Query Answering over Ontologies. J. Web Semant. 14, 0 (2012), 57–83.

[43] Bruno Marnette. 2012. Resolution and Datalog Rewriting Under Value Invention and Equality Constraints. CoRR

abs/1212.0254 (2012), 12.

[44] William McCune and Larry Wos. 1997. Otter—The CADE-13 Competition Incarnations. J. Autom. Reason. 18, 2 (1997),

211–220.

[45] M. Meier. 2014. The backchase revisited. VLDB J. 23, 3 (2014), 495–516.

[46] Boris Motik. 2006. Reasoning in Description Logics using Resolution and Deductive Databases. Ph.D. Dissertation. Karl-

sruhe Institute of Technology, Karlsruhe, Germany. Retrieved July 4, 2022 from http://digbib.ubka.uni-karlsruhe.de/

volltexte/1000003797

[47] Boris Motik. 2022. The KAON2 System. (2022). Retrieved July 4, 2022 from http://kaon2.semanticweb.org/

[48] Oxford KR group. 2021. Oxford Ontology Library. (2021). Retrieved July 4, 2022 from http://krr-nas.cs.ox.ac.uk/

ontologies/

[49] Mike Paterson and Mark N. Wegman. 1978. Linear Unification. J. Comput. Syst. Sci. 16, 2 (1978), 158–167.

[50] John Alan Robinson. 1965. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12, 1 (1965), 23–41.

[51] Iztok Savnik. 2013. Index Data Structure for Fast Subset and Superset Queries. In Proc. of the 5th Cross-Domain Conf.

on Availability, Reliability, and Security in Information Systems and HCI (CD-ARES 2013) (LNCS), Alfredo Cuzzocrea,

Christian Kittl, Dimitris E. Simos, Edgar R. Weippl, and Lida Xu (Eds.), Vol. 8127. Springer, Regensburg, Germany,

134–148.

[52] Stephan Schulz. 2013. Simple and Efficient Clause Subsumption with Feature Vector Indexing. In Automated Reason-

ing and Mathematics—Essays in Memory of William W. McCune (LNCS), Maria Paola Bonacina and Mark E. Stickel

(Eds.), Vol. 7788. Springer, Berlin, Heidelberg, 45–67.

[53] Mark E. Stickel. 1989. The Path-Indexing Method for Indexing Terms. Technical Report. SRI. Retrieved July 27, 2022

from https://apps.dtic.mil/sti/citations/ADA460990

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

http://www.umbrialogic.com/hirsch-thesis.pdf
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000003797
http://kaon2.semanticweb.org/
http://krr-nas.cs.ox.ac.uk/ontologies/
https://apps.dtic.mil/sti/citations/ADA460990

14:44 M. Benedikt et al.

[54] Oxford Semantic Technologies. 2022. The RDFox System. (2022). Retrieved July 4, 2022 from https://www.

oxfordsemantic.tech/

[55] Moshe Y. Vardi. 1996. Why is Modal Logic So Robustly Decidable?. In Proc. of a DIMACS Workshop on Descriptive

Complexity and Finite Models (DIMACS Series in Discrete Mathematics and Theoretical Computer Science), Neil Immer-

man and Phokion G. Kolaitis (Eds.), Vol. 31. DIMACS/AMS, Princeton, NJ, USA, 149–183.

[56] Roberto De Virgilio, Giorgio Orsi, Letizia Tanca, and Riccardo Torlone. 2012. NYAYA: A System Supporting the

Uniform Management of Large Sets of Semantic Data. In Proc. of the 28th Int. IEEE Conference on Data Engineering

(ICDE 2012), Anastasios Kementsietsidis and Marcos Antonio Vaz Salles (Eds.). IEEE Computer Society, Washington,

DC, USA, 1309–1312.

[57] Zhe Wang, Peng Xiao, Kewen Wang, Zhiqiang Zhuang, and Hai Wan. 2020. Query Answering for Existential Rules

via Efficient Datalog Rewriting. In Proc. of the 29th Int. Joint Conf. on Artificial Intelligence (IJCAI 2020), Christian

Bessiere (Ed.). ijcai.org, Yokohama, Japan (Virtual event), 1933–1939.

[58] Sen Zheng and Renate A. Schmidt. 2020. Deciding the Loosely Guarded Fragment and Querying Its Horn Fragment

Using Resolution. In Proc. of the 34th AAAI Conf. on Artificial Intelligence (AAAI 2020), Vincent Conitzer and Fei Sha

(Eds.). AAAI Press, New York, NY, USA, 3080–3087.

Received 26 January 2023; revised 27 February 2024; accepted 9 September 2024

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 14. Publication date: November 2024.

https://www.oxfordsemantic.tech/

