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Abstract. Phytoplankton plays a crucial role in both cli-
mate regulation and marine biodiversity, yet it faces esca-
lating threats due to climate change. Understanding future
changes in phytoplankton biomass and productivity under
climate change requires the utilization of Earth system mod-
els capable of resolving marine biogeochemistry. These mod-
els often differ significantly from one another, and most stud-
ies typically use the average response across an ensemble of
models as the most reliable projection. However, in the North
Atlantic, this straightforward method falls short of provid-
ing robust projections of phytoplankton net primary produc-
tion (NPP) over the 21st century. A new inter-comparison ap-
proach was therefore developed and applied to eight models
from the sixth phase of the Coupled Model Intercomparison
Project (CMIP6) exhibiting substantial divergence in their
NPP projections in the North Atlantic. The basin was first
divided into three bioregions tailored to the characteristics of
each model using a novel method based on a clustering pro-
cedure. The mechanisms controlling NPP projections were
then identified in each model and in each bioregion, revealing
two mechanisms responsible for a large part of model diver-
gence: diazotrophy in the subtropical region and the presence
of an ammonium pool in the subpolar region. This allowed
for an informed selection of models in each region based on
the way they represent these two mechanisms, resulting in re-
duced projection uncertainty, enhanced total NPP decrease in
the subtropical region, and a strengthened increase in small

phytoplankton NPP in the subpolar North Atlantic. These
model selections enhanced the decreases in carbon export
and phytoplankton biomass but had no impact on zooplank-
ton biomass. This innovative approach has strong synergies
with other widely used inter-comparison techniques, such as
emergent constraints, and their combination would provide
valuable insights into the future trajectory of the Earth’s cli-
mate system.

1 Introduction

The world’s oceans are facing increasing pressures due to cli-
mate change, leading to significant alterations in their phys-
ical and biogeochemical conditions. Sea surface temperature
(SST) has risen by an average of 0.88 °C between 1850–1900
and 2011–2020 (Fox-Kemper et al., 2021), pH has declined
by 0.016 to 0.020 units per decade in the subtropical regions
since the 1980s (Canadell et al., 2021), and upper-ocean
stratification has increased by 5.5± 1.0 % between 1960 and
2018 (Li et al., 2020). These changes pose a threat to the
oceans’ ability to provide essential environmental services
that many people rely on, such as fisheries or carbon seques-
tration. Phytoplankton is key to many of these services, and
understanding how climate change will impact it is of pri-
mary importance but still remains an open question.
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The global distribution of phytoplankton is highly het-
erogeneous and is strongly influenced by ocean dynamics.
The North Atlantic Ocean displays sharp contrasts, featur-
ing a true “sea desert” in its subtropical section and one of
the most productive regions on Earth in its subpolar part
(Behrenfeld and Falkowski, 1997; Westberry et al., 2008).
This high productivity is notably facilitated by a nutrient
stream associated with the Atlantic Meridional Overturning
Circulation (AMOC), which transports nutrients from equa-
torial and southern regions to the North Atlantic (Williams
et al., 2006, 2011; Palter and Lozier, 2008), and by deep con-
vection areas that bring large quantities of nutrients to the
surface (Abot et al., 2023). This elevated productivity sup-
ports rich ecosystems and, combined with ocean dynamics,
enables the North Atlantic Ocean to sequester large amounts
of organic carbon through the biological carbon pump (Now-
icki et al., 2022).

Climate change has both direct and indirect effects on
phytoplankton net primary production (NPP). Directly, NPP
increases with rising temperatures (Eppley, 1972; Sauterey
et al., 2023). Indirectly, climate change impacts nutrient
supply and light availability. Nutrient fluxes are influenced
locally and regionally by increased vertical stratification,
which reduces vertical supplies (Bopp et al., 2013), and glob-
ally by the projected decrease in the AMOC intensity (Whitt,
2019). Sea ice retreat reduces light limitation in the polar re-
gion (Vancoppenolle et al., 2013), while zooplankton grazing
is also affected by global warming (Laufkötter et al., 2015;
Rohr et al., 2023). The impacts of these mechanisms vary
regionally and affect the different phytoplankton groups dif-
ferently, potentially causing shifts in community structures
and total abundance (Kléparski et al., 2023; Benedetti et al.,
2021).

Given this intricate complexity, projecting the precise im-
pact of climate change on phytoplankton NPP poses signifi-
cant challenges. Earth system models (ESMs) from the Cou-
pled Model Intercomparison Project (CMIP) include most
of the above processes and thus offer a comprehensive ap-
proach to evaluating climate change impact on NPP. CMIP
provides standardized experimental protocols (Eyring et al.,
2016) based on shared socioeconomic pathways (O’Neill
et al., 2014, 2016), enabling comparison of projections across
models. Traditionally, all available models from the same
CMIP phase are studied together and are used to assess a
projection uncertainty around the multi-model mean (Bopp
et al., 2013; Fu et al., 2016; Kwiatkowski et al., 2020; Tagli-
abue et al., 2021). Each model is given the same weight, and
the multi-model mean is often considered the best available
projection, as it is assumed to be less impacted by the par-
ticular sets of parameterizations used in individual models.
However, Kwiatkowski et al. (2020) have shown that in the
case of NPP projections with models from the sixth phase of
CMIP (CMIP6), there was a strong divergence in NPP pro-
jections between models at the global scale. This was con-
firmed in particular regions such as the Indian and Atlantic

oceans by Tagliabue et al. (2021). Thus, in terms of NPP, the
multi-model mean contains little information and may not
be considered a reliable estimate of its future evolution. An
approach different from the multi-model mean is therefore
needed to assess how NPP will respond to climate change
under a given projection scenario.

Several approaches have already been proposed and shown
to effectively reduce projection uncertainty. Some studies ad-
vocate for model weighting based on their ability to repli-
cate past observations (Sanderson et al., 2017; Knutti et al.,
2017), while others highlight the use of emergent constraints
as a promising method for reducing projection uncertainty
(Eyring et al., 2019; Kwiatkowski et al., 2017). Additionally,
in-depth analyses have been conducted to explore the phys-
ical drivers of NPP, attributing model discrepancies to vari-
ations in ocean physics and their interactions with biogeo-
chemical variables (Whitt, 2019; Xiu et al., 2018; Mousing
et al., 2023). However, many of these studies tend to over-
look the significant differences in the biogeochemical com-
ponents of CMIP6 models (Kearney et al., 2021; Séférian
et al., 2020). Yet, it is well-established that certain processes,
depending on their inclusion and parameterization, can sub-
stantially influence NPP projections (Bopp et al., 2022; Rohr
et al., 2023).

Building on these insights, the present study seeks to go a
step further by linking part of the divergence in NPP projec-
tions to specific differences in the biogeochemical processes
and pools represented across CMIP6 models. To achieve this,
we identify the processes driving long-term NPP evolution
under the SSP5-8.5 scenario in each model and use these
insights to assess the reliability of their projections. This
process-based evaluation will then inform a model selection
aimed at reducing projection uncertainties.

The North Atlantic Ocean, a highly productive region
with significant future divergence between model projections
(Tagliabue et al., 2021), will serve as a case study. Given that
the processes controlling NPP vary across different regions,
we divide the North Atlantic Basin into three bioregions
(polar, subpolar, and subtropical) using a clustering method
and evaluate each subregion individually. Finally, we explore
how our revised estimates of NPP projections influence car-
bon export and plankton biomass – key indicators of the bio-
logical carbon pump and marine ecosystem health – and how
our approach integrates with the other methods mentioned
above.

2 Methodology

2.1 CMIP6 models

All the CMIP6 models assessed in this study include an
ocean biogeochemistry component. For both the historical
period and the SSP5-8.5 scenario (O’Neill et al., 2016), a
prerequisite for each model was to have a minimum of three
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ensemble members with available outputs for primary pro-
duction and for the five clustering variables employed to con-
struct bioregions (chlorophyll a surface concentrations, sea
surface temperature (SST), mixed-layer depth (MLD), sea
ice concentration, and nitrate surface concentrations). Out of
the 16 models with primary production projections under the
SSP5-8.5 scenario, only 8 fulfill these criteria. Among the
eight excluded models, six have only one member, and the
remaining two (CNRM-ESM2-1 and MIROC-ES2L) lack
one clustering variable for several or all members. Details
about the characteristics of the remaining eight models can
be found in Table 1.

Ensemble means for each model were computed to elimi-
nate a maximum amount of natural variability, allowing us
to focus on the impact of anthropogenic climate change.
Trends were derived by averaging ensemble mean outputs
over 20-year periods every 5 years from 1950–1970 to 2080–
2100. These trends were calculated over the region between
10–80° N and 270–360° E, referred to as the North Atlantic
Ocean in the subsequent analysis. The period 1950–1970 was
taken as the reference, and all projections were expressed as
the evolution between this reference period and 2080–2100.

The complexity of ESM marine biogeochemistry compo-
nents varies significantly from one model to another. Among
the eight models selected (Table 1), the simplest model
(CMOC) only includes one nutrient and one phytoplank-
ton class (Zahariev et al., 2008), whereas the most complex
model (MARBL-BEC) features five nutrients and three phy-
toplankton classes (Moore et al., 2001; see Kearney et al.
(2021) for a summary of the biogeochemistry components
of CMIP6 models). Due to these differences, each model
is studied individually to comprehensively grasp the mech-
anisms controlling NPP projections.

Three phytoplankton groups were considered in this study:
diatoms, diazotrophs, and small phytoplankton. The last cat-
egory encompasses classes labeled nanophytoplankton, pi-
cophytoplankton, and bulk phytoplankton when sensitivity
to silicate is absent. In MPI-ESM1-2-LR, the bulk phyto-
plankton class is grouped with diatoms due to its reliance on
SiO2 (Ilyina et al., 2013), along with the large phytoplank-
ton class in CanESM5-CanOE, despite the absence of SiO2
in the model (Christian et al., 2022). Furthermore, CMIP6
models can be categorized into three groups based on their
representation of diazotrophy:

– Models without any diazotrophy. These include
ACCESS-ESM1-5 and UKESM1-0-LL.

– Models with an explicit group of diazotrophs. These in-
clude CESM2, CESM2-WACCM, and MPI-ESM1-2-
LR. In these models, diazotroph growth rate is not con-
strained by nitrogen; they can utilize atmospheric N2
but depend on PO4 and Fe availability (Moore et al.
(2001) for CESM2 and CESM2-WACCM; Paulsen et al.
(2017) for MPI-ESM1-2-LR).

– Models with an implicit representation of dia-
zotrophs. These include IPSL-CM6A-LR, CanESM5,
and CanESM5-CanOE. N2 fixation is parameterized,
and its interaction with other nutrients varies based on
this parameterization. In IPSL-CM6A-LR, the initial
parameterization from PISCES v2 was used (Aumont
et al., 2015; Bopp et al., 2022).

CMIP6 models can also be distinguished based on how
they represent nitrogen and phosphorus (Table 1). Among the
eight models studied, three (ACCESS-ESM1-5, CanESM5,
and UKESM1-0-LL) use a unique bulk nutrient meant to rep-
resent both nitrogen and phosphorus. In contrast, three others
(IPSL-CM6A-LR, CESM2, and CESM2-WACCM) include
a PO4 pool along with two nitrogen pools, NO3 and NH4.
The CanESM5-CanOE model includes two nitrogen pools
(NO3 and NH4) but lacks a PO4 pool. Lastly, MPI-ESM1-
2-LR represents both a PO4 and an NO3 pool but does not
include NH4. In these CMIP6 models, over our study region,
there is an almost-perfect correlation between projected sur-
face NO3 concentrations and those integrated over the first
100 m (not shown). This makes surface nutrient concentra-
tions an excellent proxy for changes occurring throughout
the euphotic layer. Therefore, we chose to use surface con-
centrations for simplicity in the following analysis.

2.2 Construction of bioregions

The processes governing changes in NPP vary across dif-
ferent regions, necessitating a regional approach. Bioregions
are the most suitable framework for conducting such a study
because each bioregion corresponds to a specific production
regime. However, their boundaries align with physical phe-
nomena such as oceanic currents and sea ice, the precise
localization of which varies among models. Consequently,
fixed bioregions, like those established by Longhurst (2007)
and used in Tagliabue et al. (2021), have limitations for inter-
comparison studies.

To address this limitation, a novel approach was developed
to establish bioregions tailored to the characteristics of each
model. They were constructed using the self-organizing map
(SOM)+ hierarchical agglomerative clustering (HAC) pro-
cedure (defined in the following section), a robust method for
extracting temporal and spatial patterns from large datasets.
This procedure was first applied to the observed mean sea-
sonal cycles over the recent historical period of five cluster-
ing variables, chosen for their relevance in explaining long-
term NPP evolution and their availability in CMIP6 model
outputs. The bioregions obtained were then replicated in each
model. By employing this method, we ensured that each
bioregion corresponded to a similar production regime across
all models.
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2.2.1 The SOM + HAC procedure

The SOM algorithm (Kohonen, 2013) is widely used for pat-
tern identification and clustering analysis for large multi-
variate datasets. In environmental sciences, it has been
used to study precipitation patterns (Derouiche et al., 2022;
Dilmi et al., 2017), monsoon weather regimes (Guèye et al.,
2011)), phytoplankton biomes (El Hourany et al., 2021; Hof-
mann Elizondo et al., 2021), the oceanic circulation (Jouini
et al., 2016), and aerosol concentrations (Yahi et al., 2013) or
to identify biophysical regions in the Beaufort Sea (Hilborn
and Devred, 2022). Similar to classical vector quantization
procedures, such as k-means clustering, the SOM algorithm
condensates the information contained in a multi-variate
dataset into an optimal number of “neurons”, each associated
with a vector characterizing a subset of the initial dataset.
However, unlike k-means clustering, the neurons in the SOM
algorithm are not independent. They are distributed over a
2D map with a topological constraint such that close neurons
on the map are similar. Practically, this constraint means that,
during the learning phase, neurons are not updated alone but
as batches of close neurons, thus allowing the propagation
of local updates to the global neuron map. This topological
constraint allows for the preservation of the topological prop-
erties of the initial dataset. An advantage of the SOM algo-
rithm over k-means clustering procedures is that it is robust
to missing data (Vatanen et al., 2015), making it particularly
interesting in the regions seasonally covered by sea ice.

When handling environmental data, the specific quantity
of classes or neurons is not predetermined. In cases where
the SOM is employed for vector quantization, a large number
of neurons are utilized, each assigned to a geographic sub-
region. To determine major patterns among these neurons,
an HAC is employed on them while preserving the topologi-
cal constraints. This procedure is denoted SOM+HAC here-
after. The HAC produces a dendrogram offering various sug-
gestions for estimating the number of classes. A balance is
struck between the number of classes that can be logically
explained and the number required to encompass the data’s
embedded information. This approach has demonstrated suc-
cess in numerous studies (Farikou et al., 2015; Jouini et al.,
2016; El Hourany et al., 2021; Baaklini et al., 2022).

2.2.2 The datasets used to build bioregions

To ensure that the bioregions obtained in each model were
similar, they were first constructed from the observations be-
fore being reproduced in the models (see the following sub-
section). Here, we describe the datasets of observations used
to build these bioregions.

Surface chlorophyll a concentrations were ex-
tracted from the GlobColour merged product dis-
tributed by the Copernicus Marine Service (MULTI-
OBS_GLO_PHY_TSUV_3D_MYNRT_015_012; Guinehut
et al., 2012; Mulet et al., 2012). It provides daily outputs

of surface chlorophyll concentrations over the global ocean
from September 1997 to the present. Data from the period
2000–2020 were used.

Sea surface temperature and mixed-layer depth data
were extracted from the Multi Observation Global Ocean
3D product from the Copernicus Marine Service (MUL-
TIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012). It pro-
vides weekly and monthly values of six variables, includ-
ing SST and MLD, over the global ocean between 1993
and 2023, built from both in situ and satellite observations.
Again, data from the period 2000–2020 were used.

NO3 concentrations were extracted from the World Ocean
Atlas 2018 database (Garcia et al., 2018), while sea ice con-
centration data came from the EUMETSAT OSI SAF SSMIS
product v2.0, distributed by the Copernicus Climate Change
Service, and covered the period 1998–2015.

2.2.3 Application of the clustering procedure

The SOM+HAC was first applied to the historical mean
seasonal cycles of five clustering variables (surface chloro-
phyll concentrations, surface nitrate concentrations, mixed-
layer depth, sea ice concentration, and sea surface tempera-
ture) computed from the datasets previously described. They
were regridded to 1°× 1° regular grids, concatenated, and
the coastal areas were excluded by removing values from
grid cells adjacent to the continents. The North Atlantic
Ocean was thus represented by 3335 grid points, each as-
sociated with a vector of dimension 60, corresponding to
the five successive climatological seasonal cycles. To ensure
equal weighting of all variables in the clustering process, the
dataset was normalized beforehand. Several normalization
methods, such as those outlined in Derouiche et al. (2022),
Dilmi et al. (2017), and Hilborn and Devred (2022), can be
employed. It was decided to normalize each seasonal cycle
by dividing it by the absolute maximum value reached over
the entire period and region. This normalization method has
the advantage of preserving the dataset structure while ensur-
ing all values fall within the range of−1 and 1. The selection
of clustering variables resulted from a compromise between
their relevance in explaining primary production variability
in the North Atlantic Ocean and their availability in CMIP6
model outputs. For instance, silicate concentration was ex-
cluded, despite its acknowledged impact on primary produc-
tion in the subpolar gyre (Hátún et al., 2017; Sieracki et al.,
1993), as only five out of eight models provided the output.

The neurons obtained from the observations were then
used to replicate similar bioregions in the CMIP6 models.
In each model, a matrix akin to that of the observations was
reproduced with the average seasonal cycles over the period
2000–2020, using the same normalization method and con-
stants. Each grid point in each model was subsequently as-
signed to its nearest neuron based on Euclidean distance and
to the cluster associated with that neuron, thereby reproduc-
ing the bioregions in each model. This assignment was car-

https://doi.org/10.5194/bg-22-841-2025 Biogeosciences, 22, 841–862, 2025
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ried out regardless of the distance between the grid point and
the neuron. Consequently, the regions obtained were the clos-
est to those built from the observations but could be rather
different from them.

3 Results

3.1 Global projections

Primary production projections over the whole North At-
lantic Ocean with CMIP6 models exhibit a large spread
(Fig. 1a). Among the eight models, five (UKESM1-0-
LL, CESM2, CESM2-WACCM, MPI-ESM1-2-LR, and
CanESM5) project a strong decrease in net primary produc-
tion (from−33.6 to−11.4 gm−2 yr−1 in 2080–2100 with re-
spect to 1950–1970), while the remaining three (CanESM5-
CanOE, IPSL-CM6A-LR, ACCESS-ESM1-5) project an in-
crease (from+8.0 to+17.0 gm−2 yr−1). On average, CMIP6
models project an NPP decrease of −10.4 gm−2 yr−1. This
range is similar to the one obtained with the first member of
the 16 models used in Tagliabue et al. (2021). Therefore, the
selected subset of eight models is considered representative
of the broader ensemble of CMIP6 models.

There is confidence in the sign of NPP projections in the
northeastern section of the subtropical gyre and along Green-
land’s eastern coast only (Fig. 1d). Confidence is defined
here, following Kwiatkowski et al. (2020), as at least 80 % of
the projections having the same sign. Models disagree on the
sign of the future evolution of NPP in most of the subpolar
gyre and in the southern subtropical gyre. This lack of con-
fidence happens despite agreement between models on the
sign of the long-term evolution of MLD and surface nitrate
concentrations, particularly in the subpolar North Atlantic
Ocean (Fig. 1e and f). On average over the region, all models
project a decrease in MLD and NO3 concentrations, with a
multi-model mean decrease of−22.1 m and−1.3 mmolm−3,
respectively.

3.2 Construction of the bioregions

The SOM+HAC procedure identified an optimal number
of four bioregions in the observations: one subtropical re-
gion, one polar region, and two subpolar regions (Fig. 2).
The subtropical bioregion, the largest at 20.8 million km2,
exhibits an oligotrophic regime characterized by very low
nitrate and chlorophyll a concentrations (maximum annual
values of 0.87 mmolm−3 and 0.16 mgm−3, respectively). It
is situated over the subtropical gyre and the Caribbean Sea,
bordered by the North Atlantic Current to the north. The po-
lar region, the smallest at 1.0 million km2, stands out due to
the extensive presence of sea ice during winter and is further
divided into two subregions: the Baffin Sea and the eastern
Greenland Sea. The two subpolar regions, with surfaces of
3.3 and 4.8 million km2, respectively, correspond to the in-
tergyre region with the northern part of the Labrador Sea and

the northern subpolar gyre with the Norwegian Sea. The lat-
ter region exhibits a deeper winter mixed layer, higher nitrate
surface concentrations, and a delayed bloom compared to the
former. However, the two regions do not significantly differ
in terms of annual maximum chlorophyll a concentrations
(0.76 mgm−3 in August for the former and 0.80 mgm−3 in
September for the latter).

Qualitatively, the models reproduce the historical biore-
gions obtained from observations fairly well, in terms of
both localization and physical boundaries, despite variations
in surfaces (Fig. 2). The subtropical region’s surface ranges
from 19.1 million km2 in MPI-ESM1-2-LR to 24.1 mil-
lion km2 in CanESM5, while the polar region’s surface varies
from 0.9 million km2 in MPI-ESM1-2-LR to 2.0 million km2

in CanESM5. The overall subpolar region is relatively con-
sistent across different models, but the relative importance
of the subregions varies significantly from one model to an-
other. It was decided to merge the subpolar subregions into
one large subpolar region, supported by strong inter-model
correlations between the projections of NPP in the two re-
gions (r = 0.91; p= 0.002), indicating a similar dominant
mechanism. The three resulting bioregions are presented for
the observations and each model in Fig. 2. Each of these
bioregions will now be studied successively to determine the
mechanisms controlling NPP projections.

3.3 Regional analysis

3.3.1 Subtropical region

NPP projections strongly diverge in the subtropical re-
gion, with three models projecting an increase (up to
+19.5 gm−2 yr−1 in 2080–2100 with respect to the 1950–
1970 mean), while the remaining five project a decrease
(down to −33.4 gm−2 yr−1) (Fig. 3a). These divergent
groups align with those observed for the entire North At-
lantic Ocean (Fig. 1a), suggesting that the subtropical region
predominantly influences the basin-scale divergence of pro-
jections.

This substantial discrepancy occurs despite coherent evo-
lutions across models for other crucial physical and biogeo-
chemical variables (Fig. 3). Notably, sea surface temperature
(SST) increases in all models (ranging from+2.7 °C in MPI-
ESM1-2-LR to 5.3 °C in CanESM5), while surface NO3 con-
centrations and surface PO4 concentrations decrease (NO3
concentrations from −0.19 to −0.69 mmolm−3; PO4 con-
centrations from −0.01 to −0.13 mmolm−3). Mixed-layer
depth and carbon export at 100 m depth both decrease in all
models but one (ACCESS-ESM1-5 and IPSL-CM6A-LR, re-
spectively), in which they increase after a period of decrease.

Small phytoplankton’s NPP exhibits a strong discrepancy.
The only variable able to cause this divergence is N2 fixation,
for which a clear separation appears between models with an
implicit representation of diazotrophs, which project a strong
increase in N2 fixation, and those with an explicit representa-
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Figure 1. Projections of NPP (a), mixed-layer depth (b), and surface NO3 concentrations (c) in the eight CMIP6 models over the whole
North Atlantic Ocean. The dotted black lines are the multi-model means (MMMs), and the shaded area in the NPP panel corresponds to the
range of projections with the first member of the 16 models used in Tagliabue et al. (2021). Multi-model means of the projected changes in
NPP (d), mixed-layer depth (e), and surface NO3 concentrations (f) between 1950–1970 and 2080–2100. Stippling indicates areas of robust
projections, defined by an 80 % agreement in the sign of change across models.

tion, which project a decrease in diazotrophs’ NPP (Fig. 3).
As detailed in the Methodology section, CMIP6 models can
be categorized into three groups according to their represen-
tation of N2 fixation. We now examine each of these groups
individually.

The two models with no diazotrophy project different pri-
mary production evolutions (ACCESS-ESM1-5 projects an
increase of 10.0 g m−2 yr−1, while UKESM1-0-LL projects
a decrease of −33.4 gm−2 yr−1). In UKESM1-0-LL, the
production of both small phytoplankton and diatoms de-
creases (Fig. 3). This discrepancy is mainly attributed to dif-
ferences in annual maximum surface nitrate concentrations
(1.0 and 0.3 mmol m−3 on average, respectively, in 2000–
2020, whereas, according to the World Ocean Atlas 2018,
the real value is 0.4 mmolm−3). In UKESM1-0-LL, nitrates
are strongly limiting, and their declining trend (see Fig. 3g)
leads to a decreased primary production for all phytoplank-
ton groups. In ACCESS-ESM1-5, nitrates are not a strong
limitation on average across the entire subtropical region,

and the mechanisms causing NPP increase are more com-
plex. Between 1950 and 2020, the opposing effects of rising
SST and decreasing surface nutrient concentrations – partly
due to mixed-layer shallowing – largely balance each other
out, resulting in stable NPP. However, from 2020 to 2100,
a recovery in MLD slows the decline in nutrient concentra-
tions, allowing the SST effect to dominate, which leads to an
increase in NPP.

The three models with an explicit representation of dia-
zotrophs all project a decrease in both total primary produc-
tion and N2 fixation. This decrease affects both diazotrophs
and diatoms in these models, while small phytoplankton pri-
mary production in CESM2 and CESM2-WACCM initially
increases before decreasing (Fig. 3b, c, and f). This coher-
ence across phytoplankton groups suggests that the mecha-
nism influencing primary production evolution could affect
all of them, ruling out nitrates as a potential candidate, as
they do not impact diazotrophs. The only variable capable
of explaining these evolutions is PO4 concentrations, influ-
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Figure 2. Bioregions built with the SOM+HAC procedure from the historical seasonal cycles of chlorophyll a concentrations, nitrate
concentrations, SST, MLD, and sea ice concentration and their reproduction in CMIP6 models for the period 2000–2020. The subtropical
region is in green, the subpolar region is in red, and the polar region is in cyan. The dotted black lines indicate the boundary between the two
original subpolar bioregions.

encing all phytoplankton groups, consistently decreasing in
all three models and known to limit N2 fixation in the re-
gion in CESM models (Wang et al., 2019). Additionally,
in CESM2 and CESM2-WACCM, small phytoplankton has
a lower PO4 half-saturation constant than diazotrophs and
diatoms (0.00025, 0.0005, and 0.00125 mmolm−3, respec-
tively; Moore et al., 2001), enabling them to thrive in en-
vironments with low PO4 concentrations. This explains the
initial increase in their primary production before declining
when PO4 concentrations become too low. Consequently, in
models with an explicit representation of diazotrophs, de-
creasing PO4 concentrations lead to a reduction in over-
all primary production, including diazotrophs, subsequently
causing a decrease in N2 fixation.

The three models with parameterized diazotrophy exhibit
contrasting behaviors in their total NPP projections. While
IPSL-CM6A-LR and CanESM5-CanOE project an increase
in total NPP, CanESM5 projects a decrease (Fig. 3a). In
IPSL-CM6A-LR, the absence of effective control of PO4
concentrations over N2 fixation was identified as being re-
sponsible for the substantial increase in diazotrophy and pri-

mary production in subtropical oceans (Bopp et al., 2022).
The increase in N2 fixation replenishes the NH4 pool (Au-
mont et al., 2015), leading to a greater proportion of total
NPP being supported by NH4 rather than NO3 as a nitrogen
source (Fig. 5a). This mechanism primarily benefits small
phytoplankton, which are more efficient at consuming nu-
trients at low concentrations, such as NH4 (Aumont et al.,
2015). As a result, small phytoplankton NPP increases in
IPSL-CM6A-LR despite the decline in NO3 concentrations.
The slight decrease in surface NH4 concentrations can be ex-
plained by the increased consumption by small phytoplank-
ton. However, this process does not benefit diatoms, whose
long-term growth is regulated by PO4 (Fig. 4a), leading to a
decline in their NPP. In CanESM5-CanOE, N2 fixation sim-
ilarly replenishes the ammonium pool, and the same trends
as in IPSL-CM6A-LR are observed for small phytoplankton
NPP and surface NH4 concentrations. Although we cannot
compute the proportion of total NPP based on NH4 versus
NO3 for CanESM5-CanOE due to the lack of data (Fig. 5),
the similar behaviors between the models suggest that the
mechanism is the same: the additional NH4 from N2 fixa-
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Figure 3. Projections over the subtropical bioregion of total NPP (a), diatom NPP (b), small phytoplankton NPP (c), SST (d), MLD (e),
diazotrophs NPP/N2 fixation (f), surface nitrate concentrations (g), surface phosphate concentrations (h), and surface ammonium concen-
trations (i). The average value over 1950–1970 is taken as the reference. The dotted lines represent models without diazotrophy, dashed
lines correspond to models with parameterized N2 fixation, and solid lines indicate models with an explicit diazotroph group. In panel (f),
diazotroph NPP is shown on the left axis for models with an explicit diazotroph group, while N2 fixation is plotted on the right axis for
models with parameterized N2 fixation. In panel (b), CanESM5-CanOE is represented by a dashed–dotted line to distinguish it from the
other models. This distinction is made because it is the only model that includes a diatom group without SiO2 and in which both diatoms and
small phytoplankton are equally efficient at utilizing NH4.

tion supports the increase in small phytoplankton NPP. How-
ever, unlike IPSL-CM6A-LR, CanESM5-CanOE also shows
an increase in diatom NPP. This can be attributed to the ab-
sence of PO4 in CanESM5-CanOE, which cannot control di-
atom NPP, and the fact that, unlike in IPSL-CM6A-LR, the
half-saturation constants for ammonium are the same for di-
atoms and small phytoplankton (Christian et al., 2022). As a
result, diatoms are as efficient as small phytoplankton in con-
suming NH4, allowing them to benefit from N2 fixation and
leading to a rise in their NPP. Finally, in CanESM5, a single
nitrogen pool combines both ammonium and nitrate. Despite
the strong increase in N2 fixation, nitrogen concentrations in

the subtropical region decrease overall (Fig. 3g), resulting in
a decline in total NPP (Fig. 3a).

Diatom NPP decreases and is almost perfectly correlated
with the evolution of surface PO4 concentrations (r ≥ 0.99,
p� 0.01) in all models except CanESM5-CanOE (Fig. 4a).
As explained in the previous paragraph, the different behav-
ior of the diatom group in CanESM5-CanOE is explained by
the absence of PO4 in the model and by its high sensitivity
to NH4. In the remaining models, the inter-model spread in
diatom NPP projections is primarily driven by differences in
the sensitivity of diatoms to declining PO4 concentrations.
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Figure 4. Scatter plots representing the change in diatom NPP relative to 1950–1970 versus the change in surface PO4 concentrations in
the subtropical region (a) and NO3 concentrations in the subpolar region (b). CanESM5-CanOE appears only in the subpolar panel due to
the absence of PO4 in the model. The dashed lines represent linear regressions, all of which are significant at the p < 0.05 level, and show
correlations greater than 0.96, except for CanESM5-CanOE, where the correlation is not significant (p= 0.11).

Figure 5. Projections of the proportion of total NPP using NH4 rather than NO3 as a nitrogen source in the subtropical (a), subpolar (b), and
polar (c) regions. The average value over 1950–1970 is taken as the reference. CanESM5-CanOE is not included in this figure, despite its
representation of NH4, because the variable “intppnitrate”, used to construct this figure, is not available for that model.

The interactions between N2 fixation, phosphates, and
small phytoplankton therefore appear to be a strong diverg-
ing factor between models, with the potential to partially de-
couple total NPP from NO3 concentrations. The models with
the most realistic representations of diazotrophy (CESM2,
CESM2-WACCM, and MPI-ESM1-2-LR) all project a de-
crease in NPP because of the declining PO4 concentrations.
The strong increases observed in some models are caused by
either nitrate concentrations that are too high when no dia-
zotrophy is represented or their unchecked influence by PO4
concentrations, making such scenarios unlikely.

3.3.2 Subpolar region

NPP projections also significantly diverge in the subpo-
lar region (Fig. 6a). Three models (CESM2, CESM2-
WACCM, and UKESM1-0-LL) project a substantial de-
crease (−54.3, −53.7, and −44.7 gm−2 yr−1, respectively,
in 2080–2100 with respect to 1950–1970), while three
others (IPSL-CM6A-LR, CanESM5-CanOE, and ACCESS-
ESM1-5) project a modest increase (+5.4, +6.6, and
+3.8 gm−2 yr−1, respectively). The remaining two models
project an intermediate decline (−12.7 gm−2 yr−1 in MPI-
ESM1-2-LR and −10.0 gm−2 yr−1 in CanESM5). This dis-
parity persists despite consistent trends across models for
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other physical and biogeochemical variables, such as SST,
MLD, AMOC intensity, and NO3 and PO4 surface concen-
trations (Fig. 6). However, the breakdown of NPP projec-
tions into the different phytoplankton groups highlights that
it is predominantly small phytoplankton that explains the
model disagreement on the sign of total NPP future evolu-
tion (Fig. 6).

Five out of seven models project an increase in small
phytoplankton NPP, despite a consistent decrease in NO3
and PO4 concentrations across models (Fig. 6). Of these
five, four (IPSL-CM6A-LR, CanESM5-CanOE, CESM2,
and CESM2-WACCM) include an ammonium pool. In IPSL-
CM6A-LR, CESM2, and CESM2-WACCM, the proportion
of total NPP derived from NH4 rather than NO3 significantly
increases (Fig. 5b). As observed in the subtropical region,
this rise offsets the impact of decreasing NO3 concentrations,
leading to an increase in small phytoplankton NPP, along
with a decrease in surface NH4 concentrations in CESM2 and
CESM2-WACCM. However, in these models, diatoms are
strongly dependent on NO3 (Fig. 4), and their NPP declines
accordingly. For CanESM5-CanOE, it is not possible to com-
pute the proportion of total NPP supported by NH4 versus
NO3, but it can be hypothesized that NH4 similarly sustains
NPP, which would explain the slight increase in small phy-
toplankton NPP and the stagnation in diatom NPP. Notably,
only in IPSL-CM6A-LR does the rise in small phytoplank-
ton NPP fully compensate for the decline in diatom NPP, ex-
plaining the overall positive trend in total NPP.

The increased NPP of small phytoplankton in ACCESS-
ESM1-5, where there is no NH4 pool, was attributed to
the absence of nitrate limitation (minimum annual concen-
tration of 1.5 mmol m−3 over 2080–2100 despite a consis-
tent decrease throughout the 21st century). The elevation
in SST and the reduction in light limitation due to the
shallowing of MLD can consequently enhance NPP. Con-
versely, in UKESM1-0-LL and CanESM5, nitrates exert
strong limitations (minimum annual concentration of 0.04
and 0.003 mmolm−3, respectively, over 2080–2100), and
their depletion leads to a reduction in NPP.

Diatom NPP consistently decreases across all models ex-
cept CanESM5-CanOE. In all models but CanESM5-CanOE,
projections of diatom NPP are strongly and significantly cor-
related with maximum annual surface NO3 concentrations
(r > 0.96, p� 0.01; Fig. 4b). Therefore, as in the subtrop-
ical region, the inter-model spread in diatom NPP projec-
tions is primarily driven by differences in the sensitivity of
diatoms to declining NO3 concentrations. In contrast, the in-
crease in diatom NPP in CanESM5-CanOE, along with its
lack of correlation with surface NO3 concentrations, is likely
influenced by NH4. Unlike IPSL-CM6A-LR, CESM2, and
CESM2-WACCM, CanESM5-CanOE uses identical ammo-
nium uptake half-saturation constants for both small phyto-
plankton and diatoms (Christian et al., 2022). As a result,
in this model, diatoms can utilize ammonium as efficiently
as small phytoplankton, leading to similar behavior between

the two groups. This likely explains why CanESM5-CanOE
is the only model where the long-term evolution of diatoms
is not controlled by macro-nutrient concentrations.

The strong increase in small phytoplankton’s NPP ob-
served in some CMIP6 models is therefore made possible by
the presence of an ammonium pool, which is an alternative
source of nitrogen and sustains NPP. NH4 is only present in
small concentrations but is quickly regenerated and is there-
fore preferentially used by small phytoplankton rather than
diatoms, except in CanESM5-CanOE. This explains why di-
atoms cannot benefit from it and why they decrease with
macro-nutrient concentrations.

3.3.3 Polar region

Primary production increases in all models in the polar re-
gion, ranging from +6.2 to +25.5 gm−2 yr−1 in 2080–2100
with respect to 1950–1970 (Fig. 7). These increases are
mainly caused by sea ice retreat (on average, 36.4 % of
the initial polar regions are still covered in sea ice in the
winters of 2080–2100 against 95.5 % in 1950–1970), which
leaves space for phytoplankton’s growth and thus leads to
an increase in NPP. Surface concentrations of NO3 and
PO4 decrease across all models (Fig. 7g and h), driven by
both changes in ocean physics and increased consumption
by phytoplankton. The proportion of NPP relying on NH4
rather than NO3 increases in IPSL-CM6A-LR, CESM2, and
CESM2-WACCM (Fig. 5c), thus leading to a decrease in sur-
face NH4 concentrations in the three models.

This increase in total NPP is observed in all models for
small phytoplankton but not for diatoms, for which three
models (CESM2, CESM2-WACCM, and UKESM1-0-LL)
project a decrease in their primary production after an ini-
tial increase (Fig. 7). These three models are the most sen-
sitive to a decrease in NO3 concentrations, as they have the
highest NO3 half-saturation constants for diatoms of the six
models (2.5 mmolm−3 for CESM2 and CESM2-WACCM,
Moore et al., 2001; 0.75 mmolm−3 for UKESM1-0-LL, Yool
et al., 2013). Moreover, they all reach very low annual min-
imum NO3 concentrations (0.02, 0.02, and 0.19 mmolm−3,
respectively, in 2080–2100 (not shown)), indicating a termi-
nation of the bloom by nitrates. Therefore, in these three
models, after a first period in which the retreat of sea ice
leads to an increase in primary production through the reduc-
tion in light limitation, nitrates become the main controlling
factor of primary production, which leads to its decrease. In
IPSL-CM6A-LR, nitrate concentrations are even lower than
in the previous models (annual minimum of 0.01 mmolm−3

in 2080–2100), but diatoms are less sensitive to low nitrate
concentrations (half-saturation constant of 0.39 mmolm−3,
Aumont et al., 2015), and their primary production can keep
increasing under the reduction in light limitation. In MPI-
ESM1-2-LR and CanESM5-CanOE, nitrate concentrations
are high throughout the 21st century (annual minimum con-
centration of 1.18 and 0.47 mmolm−3, respectively, in 2080–
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Figure 6. Projections over the subpolar bioregion of total NPP (a), diatom NPP (b), small phytoplankton NPP (c), SST (d), MLD (e),
AMOC (f), surface nitrate concentrations (g), surface phosphate concentrations (h), and surface ammonium concentrations (i). The average
value over 1950–1970 is taken as the reference. The dashed lines represent models with an ammonium pool, and solid lines indicate models
without NH4. In panel (b), CanESM5-CanOE is represented by a dashed–dotted line to distinguish it from the other models. This distinction
is made because it is the only model that includes a diatom group without SiO2 and in which both diatoms and small phytoplankton are
equally efficient at utilizing NH4.

2100 despite a consistent decrease throughout the century)
and never become limiting. Diatom primary production can
therefore freely increase with sea ice retreat.

To summarize, climate change leads to an increase in small
phytoplankton NPP in all CMIP6 models because of sea ice
retreat. The fate of diatoms is the result of a compromise be-
tween their sensitivities to light and nitrates and the evolu-
tions of NO3 concentrations and sea ice, as was already the
case in CMIP5 (Vancoppenolle et al., 2013). However, only a
small portion of the Arctic was included in this study, and the
results found cannot be expanded to the total Arctic Ocean.

3.4 Toward more robust NPP projections

The model representation of small phytoplankton emerged
as the main cause of divergence in NPP projections between
models in the subtropical and subpolar North Atlantic Ocean.
In the subtropical basin, differing representations of diazotro-
phy explain model disparities. When not adequately regu-
lated by nutrients like PO4, it has the potential to signifi-
cantly boost small phytoplankton’s NPP, while other nutri-
ent concentrations decline. Only the three models explicitly
representing diazotrophs represent these controls and project
a decrease in NPP. The three models with an implicit repre-
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Figure 7. Projections over the polar bioregion of total NPP (a), diatom NPP (b), small phytoplankton NPP (c), SST (d), MLD (e), carbon
export at 100 m (f), surface nitrate concentration (g), surface phosphate concentration (h), and sea ice concentration (i). The average value
over 1950–1970 is taken as the reference for all variables except sea ice concentration. In panel (b), CanESM5-CanOE is represented by a
dashed–dotted line to distinguish it from the other models. This distinction is made because it is the only model that includes a diatom group
without SiO2 and in which both diatoms and small phytoplankton are equally efficient at utilizing NH4.

sentation of diazotrophs and no effective control from PO4
are therefore not reliable for studying the evolution of small
phytoplankton’s NPP in the region. Among the models with-
out diazotrophy, ACCESS-ESM1-5 emerged as overly rich in
nutrients on average across the subtropical region, making it
unreliable for projecting average NPP evolution. Thus, only
four out of the eight models appeared dependable for project-
ing small phytoplankton’s NPP evolution in the region (MPI-
ESM1-2-LR, CESM2, CESM2-WACCM, and UKESM1-0-
LL). They project an average decrease of −4.8 gm−2 yr−1

(from −26.0 to +6.4 gm−2 yr−1) against +2.2 gm−2 yr−1

(from −26.0 to +20.4 gm−2 yr−1) with all models (Fig. 8c).

This selection also leads to a strengthening of diatom pro-
jected NPP decrease (Fig. 8b), thus resulting in a total NPP
decrease of−24.9 (−33.4 to−20.3) gm−2 yr−1 against−8.2
(−33.4 to +19.5) gm−2 yr−1 (Fig. 8a; Table 2).

In the subpolar region, NH4 appeared to be able to sus-
tain small phytoplankton’s NPP in the models where it is
present (IPSL-CM6A-LR, CanESM5-CanOE, CESM2, and
CESM2-WACCM). If we hypothesize that ammonium will
indeed play such a role in reality, models without an am-
monium pool then tend to overestimate the impact of de-
creasing NO3 concentrations on small phytoplankton. We
can therefore set them aside and obtain narrowed estimates
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Figure 8. New estimates of total NPP (a, d), diatom NPP (b, e), and small phytoplankton’s NPP (c, f) projections with the selected CMIP6
models in the subtropical (a–c) and subpolar (d–f) regions. The gray-shaded areas and the dotted black lines correspond to the projection inter-
model spreads with all models and the associated multi-model means, respectively. The colored shaded areas and the plain lines correspond
to the new inter-model spreads and multi-model means with the selected models. In the subtropical region, the selected models include
MPI-ESM1-2-LR, CESM2, CESM2-WACCM, and UKESM1-0-LL. For the subpolar region, the selected models are IPSL-CM6A-LR,
CanESM5-CanOE, CESM2, and CESM2-WACCM.

Table 2. Comparison of the mean projections of total NPP, carbon export at 100 m, and phytoplankton and zooplankton biomasses between
1950–1970 and 2080–2100 in the subtropical and subpolar regions for all models and for the subsets determined in each region (see Fig. 8).
The values within the brackets correspond to inter-model spread.

Total NPP Export C (100 m) Phytoplankton biomass Zooplankton biomass
(gm−2 yr−1) (gm−2 yr−1) (g-Cm−3) (g-Cm−3)

North Atlantic
Ocean

All models −10.4 [−33.7 to +17.0] −3.9 [−8.7 to +0.3] −0.22 [−0.64 to +0.21] −0.16 [−0.56 to −0.01]

Subtropical region All models −8,2 [−33.4 to +19.5] −3.5 [−7.2 to +0.6] −0.16 [−0.63 to +0.24] −0.17 [−0.59 to −0.01]
Subset −24.9 [−33.4 to −20.3] −5.7 [−7.2 to −2.9] −0.27 [−0.63 to −0.13] −0.22 [−0.59 to −0.08]

Subpolar region All models −20.0 [−54.3 to +6.6] −6.1 [−15.3 to −0.8] −0.48 [−0.86 to +0.07] −0.17 [−0.6 to +0.0]
Subset −24.0 [−54.3 to +6.6] −8.4 [−15.3 to −1.4] −0.50 [−0.68 to +0.07] −0.13 [−0.48 to +0.0]

of small phytoplankton’s NPP projections:+21.4 gm−2 yr−1

(from +6.4 to +35.0 gm−2 yr−1) instead of 7.3 gm−2 yr−1

(from −28.2 to +35.0 gm−2 yr−1) with all models (Fig. 8f).
However, such a hypothesis would have no impact on to-
tal NPP because it would not affect diatoms (Fig. 8e):
−24.0 gm−2 yr−1 (from −54.3 to +6.6 gm−2 yr−1) instead
of −20.0 gm−2 yr−1 (from −54.3 to +6.6 gm−2 yr−1) with
all models (Fig. 8d and Table 2).

The selection of models based on the processes governing
small phytoplankton NPP thus leads to narrowed projections
for diatoms and total NPP in the subtropical region but not
in the subpolar one. In the polar region, no discriminating
mechanism was identified, and it was not possible to narrow
projections using the same method.
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3.5 Impact on carbon export and plankton biomass

NPP is closely linked with carbon export and plankton
biomass, which are crucial variables for comprehending the
future trajectory of the biological carbon pump and the ef-
fects of climate change on marine ecosystems. Consequently,
the process-based selection of NPP models made previously
can be used to estimate new projections of these other two
variables.

Projections for carbon export across the global North
Atlantic Ocean reveal significant disparities, ranging from
−8.7 to +0.3 gm−2 yr−1, with an average decrease of
−3.9 gm−2 yr−1. However, there is less uncertainty regard-
ing the direction of its future changes compared to NPP pro-
jections (Table 2). While some models anticipate a slight
increase in the subtropical region, all models project a de-
cline in carbon export in the subpolar region. The model se-
lection allows for a reduction in projection uncertainties in
the subtropical region, resulting in a larger average decrease
(−5.7 gm−2 yr−1 on average compared to −3.5 gm−2 yr−1

with all models). In the subpolar region, it does not reduce
projection uncertainties but strengthens the average decrease
(Table 2). The slight global increase in carbon export pro-
jected by some models is therefore explained by the strong
increase in NPP they project in the subtropical region and is
therefore unlikely to happen. The NPP process-based selec-
tion of models thus strengthens carbon export decrease at the
end of the 21st century in the North Atlantic Ocean.

Phytoplankton biomass projections also exhibit a strong
discrepancy, similar to that of NPP for the global North At-
lantic Ocean and for the subtropical region (Table 2). How-
ever, the future evolution of phytoplankton biomass in the
subpolar region is less uncertain compared to NPP, despite
considerable model divergence (Table 2). The selection of
models leads to a significant reduction in projection uncer-
tainties in the subtropical region, where a new inter-model
agreement on a future decrease in phytoplankton biomass
emerges. The strong increases projected by some models are
therefore caused by their inadequate representation of dia-
zotrophy in the subtropical region, making such projections
improbable.

All models agree on a decrease in zooplankton biomass
across the global North Atlantic Ocean and in the two indi-
vidual regions (Table 2). Both selections only slightly narrow
projections in the two regions. This limited impact is due to
the varying representations of zooplankton in CMIP6 models
(Rohr et al., 2023), leading to a relative inter-model decou-
pling of phytoplankton and zooplankton. An analysis similar
to the one conducted here should therefore be done to fully
understand zooplankton projections in CMIP6 models.

4 Discussion

4.1 Model democracy and emergent constraints

NPP projections in the North Atlantic Ocean emerged
as a case where the traditional approach of model inter-
comparison studies through “model democracy” may not be
adapted. This approach assumes that all ESMs are equally
relevant and reliable for projecting future climate evolution
(Knutti, 2010), whereas we showed here that some mod-
els, due to their representation or lack thereof of certain
processes, are not dependable for projecting NPP in the re-
gion. A democratic multi-model mean computed with equal
weights attributed to all models, as is done in Kwiatkowski
et al. (2020) and Tagliabue et al. (2021), would therefore not
be the optimal estimate of the future evolution of NPP.

However, we did not entirely set aside the model democ-
racy approach because it was applied to model subsets in
both regions. This application is questionable because it as-
sumes independence among selected models, which is of-
ten not the case (Eyring et al., 2019). Some CMIP6 mod-
els are essentially variations of a similar base model (e.g.,
CESM2 and CESM2-WACCM) and share components and
parameterizations (Masson and Knutti, 2011; Bishop and
Abramowitz, 2013; Alexander and Easterbrook, 2015). This
lack of independence results in systematic biases within the
multi-model mean when model democracy is adopted. To
address this issue, various studies have attempted to assign
different weights to models based on their independence
and ability to reproduce historical observations (Sanderson
et al., 2015, 2017). While such efforts have sometimes im-
proved agreement between multi-model means and observa-
tions (Räisänen et al., 2010; Knutti et al., 2017), the question
of the validity of weighting methods for future projections re-
mains unresolved. For example, in the context of NPP projec-
tions in the subtropical North Atlantic Ocean, the divergence
of diazotrophy between models with effective PO4 control
and those without only arises around the year 2020 (Fig. 3).
Consequently, weighting based solely on observations would
likely overlook this divergence. Thus, process-based model
selections, such as the one conducted here, and weighting
methods are complementary techniques that should ideally
be used together to combine their respective advantages.

Moreover, our approach failed at improving total NPP pro-
jections in the subpolar North Atlantic Ocean because we
were not able to constrain diatoms. The discrepancy of di-
atom NPP projections arises from differences in sensitivity
to a similar mechanism (Fig. 4), which prevents a process-
based approach. However, it might set a good framework for
an emergent constraint approach, which consists of exploit-
ing an inter-model correlation between an observable vari-
able and the response of another variable to climate change
to constrain projections (Eyring et al., 2019; Sanderson et al.,
2021). Emergent constrains have successfully been used to
constrain projections of climate sensitivity (Cox et al., 2018),
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sea ice extent (Qu and Hall, 2014), extreme-precipitation
events (O’Gorman, 2012), and NPP in the tropical ocean
(Kwiatkowski et al., 2017). But, the reliability of emergent
constraint outcomes is often hindered by the presence of sys-
tematic biases in large ensembles, stemming from model in-
terdependence (Sanderson et al., 2021). Nevertheless, it is
sometimes possible to enhance this reliability with the iden-
tification of a robust mechanism explaining the correlation
used. Emergent constraints and process-based approaches
are therefore complementary, particularly when competing
mechanisms coexist. The case of NPP projections in the sub-
polar North Atlantic Ocean thus seems to be an ideal situa-
tion for combining a process-based method applied to small
phytoplankton, carried out in this study, with an emergent
constraint approach applied to the differing sensitivities of
diatom NPP to nitrate concentrations. This will be the objec-
tive of a future study.

4.2 The influence of oceanic physics on NPP projection
divergence

Divergences in NPP projections might in principle result
from differences in both biogeochemical model components
and the representation of physical processes, which may ei-
ther amplify or mitigate the effects of biogeochemistry. In
this study, we focused on the former, largely setting aside the
latter. Our focus was motivated by the observation that, un-
like NPP, the evolution with climate change of key oceanic
parameters known to influence NPP, such as temperature,
MLD, nutrient concentrations, and sea ice cover, had the
same sign across all models. Specifically, all models indi-
cated an increase in temperature, a decrease in nutrient con-
centrations, a reduction in MLD, and a decline in sea ice
cover, while some projected an increase in NPP and others
a decrease. However, we should point out that agreement on
the sign of the evolution of these variables does not necessar-
ily rule out their contribution to diverging NPP projections.
The response of NPP to changes in MLD, for instance, is not
always monotonic (Llort et al., 2019), and non-monotonicity
may also result from complex interactions between phys-
ical and biogeochemical processes on seasonal timescales
(Mousing et al., 2023). Future efforts are therefore needed
to fully assess how differing physical mechanisms control
NPP, further refining projection reliability and reducing un-
certainty.

4.3 Estimation of climate change impacts on high
trophic levels

CMIP model output serves as data inputs for the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP), an
exercise aimed at examining the effects of climate change on
human societies and ecosystems (Frieler et al., 2024). In the
context of studying fisheries and marine ecosystems, CMIP
models are used as inputs for marine ecosystem models. The

connecting variable between plankton and higher trophic lev-
els could be either NPP or the biomass of phytoplankton
and zooplankton, depending on the marine ecosystem model
employed (Tittensor et al., 2021). Additionally, some mod-
els rely on total NPP or biomass (Carozza et al., 2016),
while others require inputs for each phytoplankton and zoo-
plankton group, providing information on species composi-
tion (Cheung et al., 2016). Only a limited selection of CMIP
models is incorporated into these studies. For the third phase
of ISIMIP, specifically, only four CMIP6 models were cho-
sen for marine ecosystem studies: GFDL-ESM4, UKESM1-
0-LL, MPI-ESM1-2-HR, and IPSL-CM6A-LR. The biases
exhibited by these models in projecting NPP and plankton
biomass consequently influence the marine ecosystem mod-
els that employ them to investigate climate change impacts.

We demonstrated that IPSL-CM6A-LR lacks reliability
in projecting NPP in the subtropical region due to its fail-
ure to represent PO4 control over N2 fixation. Conversely,
UKESM1-0-LL lacks an NH4 pool, likely resulting in an
overestimation of NPP decrease in the subpolar region. These
model deficiencies in projecting NPP directly affect phyto-
plankton biomass, and similar issues may arise for zooplank-
ton biomass due to their disparate representations across
CMIP6 models (Rohr et al., 2023). Such biases could sig-
nificantly impact ISIMIP outcomes, which are subsequently
used by policymakers to develop adaptation measures to cli-
mate change. Hence, it is imperative to identify these biases,
assess the reliability of CMIP models in projecting variables
used in ISIMIP studies, and estimate the repercussions of
CMIP biases for ISIMIP results.

4.4 Perspectives on the future evolution of the
biological carbon pump

Carbon export caused by the sinking of particulate organic
matter is a key feature of the biological carbon pump, which
helps to store carbon in the deep ocean and reduces atmo-
spheric CO2 concentrations. Depending on the remineraliza-
tion depth of organic matter and the residency time of in-
organic carbon in the deep ocean (Wilson et al., 2022), a
decrease in carbon export caused by climate change might
reduce the amount of carbon stored in the deep ocean and in-
crease atmospheric CO2 concentrations, thus forming a posi-
tive feedback mechanism. However, the sequestration time of
the exported organic carbon strongly varies spatially (Now-
icki et al., 2022). In the subtropical North Atlantic Ocean,
it is only stored for a few decades, whereas it remains se-
questered for several hundreds of years in the subpolar North
Atlantic Ocean.

The strengthened decrease in carbon export obtained in
both regions in this study therefore means that the North At-
lantic biological carbon pump might be more affected by cli-
mate change than previously anticipated and on particularly
long timescales for the subpolar region. However, because
we were not able to reduce diatom NPP projection uncer-
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tainties in the region, the spread in carbon export projections
remains very large.

Nevertheless, there is no quantitative relationship between
carbon export and the efficiency of the biological carbon
pump (DeVries et al., 2012). A reduction in the former does
not necessarily mean a decrease in the latter. Further work is
therefore needed to understand how the decrease in carbon
export in the North Atlantic Ocean would affect the biologi-
cal carbon pump, in both the short and the long term.

5 Conclusion

NPP is a key biogeochemical variable for which large un-
certainties exist regarding its future evolution under climate
change, particularly in the North Atlantic Ocean. The tra-
ditional approach to this problem, based on a multi-model
mean computed through the model democracy approach,
fails to provide informative projections for NPP in the re-
gion. We therefore developed a new methodology to exploit
CMIP6 model diversity in order to gain new insights into the
way NPP will be affected by climate change in the region.
Thanks to an innovative regionalization of the North Atlantic
Ocean, we were able to identify the processes responsible
for the divergence of model projections and assess their like-
lihood of occurrence. This analysis allowed us to proceed to
an informed selection of models in each bioregion, which
gave us new estimates of the future evolution of NPP, along
with carbon export and plankton biomasses, in the subtropi-
cal and subpolar bioregions.

CMIP6 model diversity was essential for conducting such
an approach because it allowed us to identify the mechanisms
responsible for projection divergence. The models set aside
in the different bioregions should therefore not be discarded
from the CMIP6 ensemble. Nevertheless, it is necessary to
recognize that all models are not equally relevant depend-
ing on the region, the variable considered, and the question
asked. A direct model democracy approach is therefore lim-
ited and should only be regarded as a first step in an inter-
comparison study. It should be completed by more advanced
methods, such as informed model selection, observation-
based weighting, or emergent constraints, and by their com-
bination. Moreover, when CMIP6 model outputs are used to
assess the impacts climate change will have on ecosystems
or human societies, the reliability of the models used to con-
duct these studies should be assessed in order to avoid strong
biases stemming from CMIP6 models affecting the results.
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Orešič, M., Honkela, T., and Lähdesmäki, H.: Self-organization
and missing values in SOM and GTM, Neurocomputing, 147,
60–70, https://doi.org/10.1016/j.neucom.2014.02.061, 2015.

Wang, W.-L., Moore, J. K., Martiny, A. C., and Primeau, F. W.:
Convergent estimates of marine nitrogen fixation, Nature, 566,
205–211, https://doi.org/10.1038/s41586-019-0911-2, 2019.

Westberry, T., Behrenfeld, M. J., Siegel, D. A., and Boss,
E.: Carbon-based primary productivity modeling with verti-
cally resolved photoacclimation, Global Biogeochem. Cy., 22,
2007GB003078, https://doi.org/10.1029/2007GB003078, 2008.

Whitt, D. B.: On the Role of the Gulf Stream in the Chang-
ing Atlantic Nutrient Circulation During the 21st Century,
in: Geophysical Monograph Series, 1 edn., edited by: Nagai,
T., Saito, H., Suzuki, K., and Takahashi, M., Wiley, 51–82,
https://doi.org/10.1002/9781119428428.ch4, 2019.

Williams, R. G., Roussenov, V., and Follows, M. J.: Nutrient
streams and their induction into the mixed layer: NUTRIENT
STREAMS AND INDUCTION, Global Biogeochem. Cy., 20,
GB1016, https://doi.org/10.1029/2005GB002586, 2006.

Williams, R. G., McDonagh, E., Roussenov, V. M., Torres-Valdes,
S., King, B., Sanders, R., and Hansell, D. A.: Nutrient streams
in the North Atlantic: Advective pathways of inorganic and dis-
solved organic nutrients, Global Biogeochem. Cy., 25, GB4008,
https://doi.org/10.1029/2010GB003853, 2011.

Wilson, J. D., Andrews, O., Katavouta, A., de Melo Virís-
simo, F., Death, R. M., Adloff, M., Baker, C. A., Black-
ledge, B., Goldsworth, F. W., Kennedy-Asser, A. T., Liu,
Q., Sieradzan, K. R., Vosper, E., and Ying, R.: The biologi-
cal carbon pump in CMIP6 models: 21st century trends and
uncertainties, P. Natl. Acad. Sci. USA, 119, e2204369119,
https://doi.org/10.1073/pnas.2204369119, 2022.

Xiu, P., Chai, F., Curchitser, E. N., and Castruccio, F. S.: Future
changes in coastal upwelling ecosystems with global warming:
The case of the California Current System, Sci. Rep., 8, 2866,
https://doi.org/10.1038/s41598-018-21247-7, 2018.

Yahi, H., Marticorena, B., Thiria, S., Chatenet, B., Schmechtig,
C., Rajot, J. L., and Crepon, M.: Statistical relationship be-

https://doi.org/10.5194/bg-22-841-2025 Biogeosciences, 22, 841–862, 2025

https://doi.org/10.1038/s43247-023-00871-w
https://doi.org/10.1038/s43247-023-00871-w
https://doi.org/10.1175/JCLI-D-14-00361.1
https://doi.org/10.5194/gmd-10-2379-2017
https://doi.org/10.5194/gmd-10-2379-2017
https://doi.org/10.5194/esd-12-899-2021
https://doi.org/10.1016/j.ecolmodel.2023.110437
https://doi.org/10.1007/s40641-020-00160-0
https://doi.org/10.1029/2019MS001739
https://doi.org/10.1016/0967-0645(93)90014-E
https://doi.org/10.5194/gmd-12-4823-2019
https://doi.org/10.3389/fclim.2021.738224
https://doi.org/10.1038/s41558-021-01173-9
https://doi.org/10.1038/s41558-021-01173-9
https://doi.org/10.1002/gbc.20055
https://doi.org/10.1016/j.neucom.2014.02.061
https://doi.org/10.1038/s41586-019-0911-2
https://doi.org/10.1029/2007GB003078
https://doi.org/10.1002/9781119428428.ch4
https://doi.org/10.1029/2005GB002586
https://doi.org/10.1029/2010GB003853
https://doi.org/10.1073/pnas.2204369119
https://doi.org/10.1038/s41598-018-21247-7


862 S. Doléac et al.: Toward more robust NPP projections in the North Atlantic Ocean

tween surface PM10 concentration and aerosol optical depth
over the Sahel as a function of weather type, using neural
network methodology, J. Geophys. Res.-Atmos., 118, 13265–
13281, https://doi.org/10.1002/2013JD019465, 2013.

Yool, A., Popova, E. E., and Anderson, T. R.: MEDUSA-2.0: an
intermediate complexity biogeochemical model of the marine
carbon cycle for climate change and ocean acidification studies,
Geosci. Model Dev., 6, 1767–1811, https://doi.org/10.5194/gmd-
6-1767-2013, 2013.

Zahariev, K., Christian, J. R., and Denman, K. L.: Preindustrial,
historical, and fertilization simulations using a global ocean
carbon model with new parameterizations of iron limitation,
calcification, and N2 fixation, Prog. Oceanogr., 77, 56–82,
https://doi.org/10.1016/j.pocean.2008.01.007, 2008.

Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman,
R. W., Dix, M., Stevens, L., Wang, Y.-P., and Srbinovsky, J.:
The Australian Earth System Model: ACCESS-ESM1.5, Journal
of Southern Hemisphere Earth Systems Science, 70, 193–214,
https://doi.org/10.1071/ES19035, 2020.

Biogeosciences, 22, 841–862, 2025 https://doi.org/10.5194/bg-22-841-2025

https://doi.org/10.1002/2013JD019465
https://doi.org/10.5194/gmd-6-1767-2013
https://doi.org/10.5194/gmd-6-1767-2013
https://doi.org/10.1016/j.pocean.2008.01.007
https://doi.org/10.1071/ES19035

	Abstract
	Introduction
	Methodology
	CMIP6 models
	Construction of bioregions
	The SOM+HAC procedure
	The datasets used to build bioregions
	Application of the clustering procedure


	Results
	Global projections
	Construction of the bioregions
	Regional analysis
	Subtropical region
	Subpolar region
	Polar region

	Toward more robust NPP projections
	Impact on carbon export and plankton biomass

	Discussion
	Model democracy and emergent constraints
	The influence of oceanic physics on NPP projection divergence
	Estimation of climate change impacts on high trophic levels
	Perspectives on the future evolution of the biological carbon pump

	Conclusion
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

