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Abstract

A search for the Standard Model Higgs boson is carried out on 176.4 pb−1 of
data collected by the L3 detector at a center-of-mass energy of 189 GeV. The data
are consistent with the expectations of Standard Model processes and no evidence
of a Higgs signal is observed. Combining the results of this search with those at
lower center-of-mass energies, a lower limit on the mass of the Standard Model
Higgs boson of 95.3 GeV is set at the 95% confidence level.
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1 Introduction

In the Standard Model [1], a single Higgs doublet [2] gives rise to a neutral scalar, the Higgs
boson, with a mass, mH, that is a free parameter of the theory. Searches in e+e− collisions for
the Standard Model Higgs boson have been reported up to center-of-mass energies of 183 GeV
by L3 [3] and other experiments [4]. No evidence of a signal has been found and a combined
lower limit of 89.7 GeV [5] is set at the 95% confidence level. In this letter, the results of a
Higgs search performed on the data sample collected by L3 at

√
s = 189 GeV are reported,

significantly extending the accessible range of mH.
The dominant Higgs production mode,

e+e−→Z∗→HZ ,

as well as the smaller production processes of W+W− and ZZ fusion, are considered. All
significant signal decay modes are considered in the search. Four-fermion final states from W-
and Z-pair production, as well as e+e−→qq̄, make up the largest sources of background.

2 Data and Monte Carlo samples

The data were collected using the L3 detector [6] at LEP during 1998. The integrated luminosity
is 176.4 pb−1 at an average center-of-mass energy of 188.6 GeV.

Higgs production cross sections and branching ratios are calculated using the HZHA gen-
erator [7], whereas for the efficiency studies, Monte Carlo samples of Higgs events are gen-
erated using PYTHIA [8]. Standard Model background estimates are made with the follow-
ing Monte Carlo programs: PYTHIA (e+e− → qq̄(γ)), KORALW [9] (e+e−→W+W−), KO-
RALZ [10] (e+e−→ τ+τ−), PYTHIA and PHOJET [11] (e+e−→ e+e−qq̄), EXCALIBUR [12]
(e+e−→ f f̄ ′f ′′ f̄ ′′′) and PYTHIA and EXCALIBUR (e+e−→Ze+e−). The number of simulated
events for the most important background channels is at least 100 times the number of col-
lected data events for such processes, while the number of signal events is at least 300 times
the number expected to be observed in the data with this integrated luminosity.

The response of the L3 detector is simulated using the GEANT 3.15 program [13], taking into
account the effects of multiple scattering, energy loss and showering in the detector. Hadronic
interactions in the detector are modeled using the GHEISHA program [14].

3 Analysis procedures

The search procedure is dictated by the four event topologies representing approximately 98%
of the HZ decay modes: qq̄qq̄, qq̄νν̄, qq̄`+`− (` = e, µ, τ) and τ+τ−qq̄. With the exception
of HZ→τ+τ−qq̄, the analyses for each channel are optimized for H → bb̄, since this repre-
sents about 85% of the Higgs branching fraction in the mass range of interest. However, the
efficiencies for the smaller contributions from H→cc̄, gg are also considered.

The analyses for all the channels are performed in three stages. First, a high multiplicity
hadronic event selection is applied, greatly reducing the large background from two-photon
processes, while at the same time maintaining a high efficiency for the Higgs signal over a
broad range of masses. Second, a tighter set of cuts specific to the topology in question is used
to further enrich the sample of events while still maintaining signal efficiencies on the order of
50%. Finally, a discriminating variable is built for each analysis. These discriminants include
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the results of a kinematic fit of the event, imposing 4-momentum conservation, and depend on
the mass hypothesis value, mH. The spectra of the discriminants are computed for the observed
data and the Monte Carlo backgrounds and signals at each value of mH considered, in the range
50 GeV ≤ mH ≤ 100 GeV.

The b-tagging variable, used to identify b quarks, plays a major role in the computation
of the final discriminant. A neural network [15, 16] is used to calculate the b-tag for each
hadronic jet from the three-dimensional decay lengths, semileptonic information and jet-shape
variables. The b-tag variable used for the entire event is a combination of the individual jet-tag
probabilities.

3.1 The HZ→bb̄qq̄ channel

Events from this channel usually consist of four jets, two of which contain b hadrons, while
the other two have a mass consistent with the Z mass. Standard Model processes which mimic
these events are typically four-jet final states from qq̄ with hard gluons, W+W− and ZZ events,
especially those where one of the Z bosons decayed into b quarks.

Two independent analyses of this channel are performed, a neural network approach and a
cut-based likelihood analysis. The cut-based analysis is the primary one used in this channel.
The neural network analysis achieves similar performance and a description of the analysis
technique can be found in Reference [3].

First, a preselection designed to accept high multiplicity hadronic events is applied by
requiring at least 15 charged tracks and 20 calorimetric clusters. The visible energy, Evis, must
be between 0.6

√
s and 1.4

√
s. The missing energy parallel and perpendicular to the beam

direction has to be less than 0.3Evis. Finally, the energy of the most energetic photon or lepton
must be less than 65 GeV.

At this stage, all the events passing the preselection are forced to have four jets using the
DURHAM [17] clustering algorithm and a kinematic fit requiring 4-momentum conservation is
performed. An automated procedure [15, 18] is used to optimize the selection criteria, which
differentiates the Higgs signal from background based mainly on kinematic differences and large
b-tag values. The cuts chosen by the optimizer, which do not depend on the mH hypothesis,
are as follows. To reject gluonic jets in qq̄ events, the dijet masses must be between 0.13

√
s

and 0.63
√

s; the minimum jet energy must be larger than 0.14
√

s and the maximum energy
difference between any two jets must be less than 0.22

√
s. To enhance the four-jet nature of

the events, the Ycut parameter in the DURHAM scheme where the event goes from a three-jet
to a four-jet topology, Y D

34 , is required to be larger than 0.0086. Finally, there must be at least
22 charged tracks. As in previous publications [18], the χ2-probability that depends on mH and
mZ is used to quantify the consistency of the event with a given mH hypothesis. A loose cut is
placed on this variable, but more importantly, it is used along with the b-tag to calculate the
mass-dependent final discriminant.

At this point, 682 events remain in the data and 703 in the Monte Carlo background, with
85% of these from W+W− events. These four-jet W+W− events are characterized by their
low b-tag values and the consistency of the dijet masses with mW. With this in mind, the
optimizer splits the surviving events into high purity and low purity samples using a sliding
cut on the reconstructed dijet mass, M5C

eq , from a kinematic fit assuming the five constraints
(5C) of 4-momentum conservation and equal masses for the two dijet systems. If M5C

eq >
0.74mH + 21.7 GeV, then the event is placed into the high purity category, otherwise it is
placed into the low purity category. The low purity sample contains most of the properly
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reconstructed W+W− events, isolating a large component of the dominant background. In the
high purity sample, the optimizer chooses b-tag values to be larger than 0.09, while in the low
purity sample the cut is 0.41. The b-tag spectra for these two samples are shown in Figures 1(a)
and 1(b).

After the final set of cuts, the high purity category contains 26 candidates with 31.0 expected
from Standard Model processes and a signal efficiency of 28% for HZ→bb̄qq̄ with mH = 95 GeV.
The low purity category has 263 candidates, 239 expected background events and a 34% signal
efficiency.

Once the final set of cuts has been applied, the weighted probability [15,18] that an event is
consistent with the background distributions of both the b-tag and the mass variable is calcu-
lated. Since the weighted combination depends on the mass hypothesis, mH, the distributions
of this discriminant are calculated for each test mass, an example of which can be found in
Figures 1(c) and 1(d). The observed candidates in the HZ→bb̄qq̄ channel are consistent with
the Monte Carlo background predictions.

3.2 The HZ→bb̄νν̄ channel

This channel is characterized by two acoplanar jets and large missing transverse energy. The
missing mass is consistent with mZ and the hadronic jets typically contain b hadrons.

Two independent analyses of this channel are carried out, a neural network and a cut-based
likelihood analysis. The analyses have similar performance and lead to consistent results. In
this letter, the neural network analysis is described.

First, high multiplicity hadronic events with more than 3 charged tracks and at least 15
calorimetric energy clusters are selected. Using the DURHAM algorithm, all energy clusters in
the event are combined to form two hadronic jets. The reconstructed mass of each of these jets
must exceed 40 GeV. These cuts reduce contributions from purely leptonic two-fermion final
states, as well as two-photon interactions, while keeping a significant fraction of hadronic events
from e+e−→qq̄(γ) and W-pair production. These latter contributions are further reduced by
requiring the visible mass to be less than 120 GeV and the mass recoiling against the hadronic
system to lie between 50 GeV and 130 GeV.

Events from e+e−→ qq̄(γ) are further suppressed with missing-energy requirements. The
missing energy transverse to the beam axis should be greater than 5 GeV, the missing momen-
tum vector must be at least 16◦ from this axis and the longitudinal missing energy is required
to be less than 0.7

√
s. The opening angle between the two jets has to be greater than 69◦ and

the angle between the jet-jet plane and the beam-axis must be greater than 3◦. The energy
in the forward luminosity calorimeter is required to be smaller than 15 GeV. In addition, the
event b-tag must be larger than 0.5. The b-tag spectra for data and Monte Carlo are shown in
Figure 2(a). After this final set of cuts, there remain 109 data events, with 116 expected from
Standard Model processes and an efficiency of 62% for HZ→bb̄νν̄ with mH = 95 GeV.

A mass-independent neural network [3] is then used to further separate the signal from
background. A kinematic fit imposing 4-momentum conservation and requiring the missing
mass to be mZ is performed, yielding the hadronic mass, M5C

H . The neural network output is
shown in Figure 2(b), and the distribution of M5C

H is shown in Figure 2(c). The M5C
H mass is

combined with the neural network output to form the purity variable [3]. This purity variable
plays the role of the final discriminant in the HZ→bb̄νν̄ analysis and is shown in Figure 2(d)
for the mass hypothesis mH = 95 GeV. The observed data in the HZ→bb̄νν̄ analysis are
compatible with the Monte Carlo background expectations.
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3.3 The HZ→bb̄e+e− and HZ→bb̄µ+µ− channels

The signatures for HZ→bb̄e+e− and HZ→bb̄µ+µ− are a pair of high energy electrons or muons,
with an invariant mass near mZ, and two hadronic b jets.

A hadronic event selection is applied requiring at least 5 charged tracks, 15 calorimetric
clusters and two well identified electrons or muons. The visible energy must be larger than
0.7
√

s for the electron analysis and 0.4
√

s for the muon analysis. In the HZ→bb̄e+e− analysis,
the electron pair must have an opening angle greater than 100◦, while for HZ→bb̄µ+µ−, the
muon pair must have an opening angle greater than 90◦. In addition, there must be less than
0.4
√

s of missing energy perpendicular to the beam direction. Both analyses must have values
of Y D

34 larger than 0.0009. Finally, the invariant mass of the leptonic system after a kinematic
fit imposing 4-momentum conservation must be between 60 GeV and 110 GeV for the electrons
and 50 GeV and 125 GeV for the muons. After this final set of cuts, the number of remaining
candidates in the electron channel is 15, with 13.2 expected from Standard Model backgrounds
and a signal efficiency for HZ→bb̄e+e− of 77% for mH = 95 GeV. The corresponding numbers
for the muon channel are 5 candidates with 5.5 background expected and a signal efficiency for
HZ→bb̄µ+µ− of 57%.

After performing a kinematic fit requiring 4-momentum conservation and constraining the
mass of the lepton pair to mZ, the mass of the jet-jet system is combined with the b-tags of jet
1 and jet 2. For each event class j (ZZ, W+W−, qq̄, Ze+e−, HZ), a probability density function
f i

j is constructed, where i denotes the b-tag of jet 1, the b-tag of jet 2, or the dijet mass. The
probability of an event to belong to class j, based solely on the value of the variable i, is then
defined as

pi
j =

f i
j∑

k f i
k

. (1)

Finally, the probabilities for the individual variables are combined by calculating the likelihood
that the event belongs to the signal class HZ:

FHZ =

∏
i p

i
HZ∑

k

∏
i p

i
k

. (2)

The spectra for this final discriminant, FHZ, in the electron and muon channels are shown in
Figures 3(a) and 3(b) for the data, background and a 95 GeV Higgs signal. The observed
candidates are consistent with the Monte Carlo background predictions.

3.4 The HZ→bb̄τ+τ− and HZ→τ+τ−qq̄ channels

The HZ→bb̄τ+τ− and HZ→τ+τ−qq̄ final states are very similar and can be distinguished
only with mass and b-tag information. The semileptonic W- and Z-pair decays are the most
significant background sources.

Two inclusive selections are performed, one based on a tau identification (particle-based
selection) and one relying more on the event kinematics (jet-based selection). Events are
accepted if they pass either of the two selections.

First, a common preselection is applied, requiring more than 4 charged tracks, more than
14 clusters and a visible energy of more than 0.4

√
s. The events are subject to the DURHAM

algorithm, keeping only those with Y D
34 larger than 0.0025. Background from e+e− → qq̄(γ)

is reduced by rejecting events containing photons with energies greater than 40 GeV. The
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contribution of W+W−→ qq̄`ν (` = e, µ) is reduced by requiring the energy of electrons and
muons to be smaller than 40 GeV.

In the particle-based selection, tau leptons are identified via their decay into electrons or
muons, or as an isolated low-multiplicity jet with 1 or 3 tracks and unit charge. In the jet-
based selection, the event is forced into four jets using the DURHAM algorithm. Two of the
jets must each have less than 4 tracks. These jets are considered as tau candidates, but at least
one of them must coincide with a tau candidate defined in the particle-based selection within
a 3◦ cone. Both taus must be separated from the hadronic jets by at least 25◦. Background
contamination from fully hadronic W+W− decays is reduced by rejecting events where both
taus decay into 3 charged particles and by requiring the visible energy to be smaller than
0.95

√
s for the particle-based and smaller than 0.9

√
s for the jet-based selection. Moreover, in

the jet-based selection, the polar angle of the missing momentum vector, Θmiss, must satisfy
| cos Θmiss| ≤ 0.95 in order to reduce qq̄(γ) contamination.

The invariant masses of the tau-tau and the jet-jet systems are obtained from a kinematic
fit which imposes 4-momentum conservation. An event qualifies for the HZ→bb̄τ+τ− channel
if the invariant mass of the tau-tau system is consistent with the mass of the Z boson by lying
between 70 GeV and 125 GeV. Similarly, an event qualifies for the HZ→τ+τ−qq̄ channel if
the jet-jet mass fulfills this same requirement. Furthermore, the opening angle of the particles
or jets assigned to the Higgs boson must be larger than 70◦ and those assigned to the Z must
be at least 100◦ apart. Cross-efficiencies on the HZ→bb̄e+e− and the HZ→bb̄µ+µ− channels
(up to 3%) are taken into account by rejecting events which were already selected in those
analyses. In total, 12 candidate events are selected, with 17.1 events expected from Standard
Model background processes passing either of the tau selections, and an efficiency of 30% for
both HZ→bb̄τ+τ− and HZ→τ+τ−qq̄ at mH = 95 GeV.

The final discriminant for the HZ→bb̄τ+τ− channel is defined similarly to the likelihood
used in the HZ→bb̄e+e− and HZ→bb̄µ+µ− analyses, using Equations 1 and 2. For the
HZ→τ+τ−qq̄ channel, the mass distribution of the tau pair, after constraining the invari-
ant mass of the jets to mZ, is used as the final discriminant. Events that pass both decay
hypotheses are placed into the channel with the larger value of the likelihood, FHZ, defined
in Equation 2. Distributions of these discriminants can be found in Figures 3(c) and 3(d) for
data, background and a 95 GeV Higgs signal. No evidence of a signal is seen in either of the
tau channels.

4 Combined results

The results of all the previously described analyses are combined in this section. For illustrative
purposes, in Figure 4(a) the reconstructed Higgs mass is shown for a sample of signal-like
events selected by the analyses after making a mass-independent requirement, such as a large
b-tag value or large neural network output. In Figures 4(b) and 4(c), the results of the mass-
dependent selections are illustrated by plotting the reconstructed Higgs mass for events with
large discriminant values (signal-over-background ratio greater than 0.25) for the 90 GeV and
95 GeV mass hypotheses. No evidence of a signal is present in any of the analyses and a
global confidence level (CL) on the absence of a signal is calculated from the spectra of final
discriminants from all the analyses in a scan over mH from 50 GeV to 100 GeV. The CL is
calculated using the techniques of References [16,19], which also allow correlated and statistical
errors to be easily accounted for in the computation of CL.

The statistical and systematic errors on the signal and background are considered using the
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same procedure as previous Standard Model Higgs searches by L3 [3,16]. The overall systematic
error is estimated at 10% on the number of background events and 5% on the number of
signal events. The statistical error on the background from the finite number of generated
Monte Carlo events is larger, but is uncorrelated from bin to bin in the final discriminant
distributions, and has little effect on the CL. Bins with a signal-over-background ratio smaller
than 0.05 are not considered during the calculation of CL. This cut was chosen to maximize the
average CL, as calculated from a large number of Monte Carlo experiments, thereby minimizing
the degradation of the result due to these systematic and statistical errors for this integrated
luminosity and center-of-mass energy. The results of all the analyses after such a signal-over-
background cut are summarized in Table 1 for the data, Monte Carlo background and signal.
The number of signal events includes cross-efficiencies from other channels, fusion processes
and charm and gluonic Higgs decays.

The measured value of CL as a function of the Standard Model Higgs boson mass, in the
range 85 ≤ mH ≤ 100 GeV, is shown in Figure 5(a), along with the median of the CL distribu-
tion as calculated from a large sample of Monte Carlo experiments assuming a background-only
hypothesis. The number of Higgs events expected to be observed, as a function of mH, and
the number of excluded signal events at the 95% CL are shown in Figure 5(b). The results of
previous L3 Standard Model Higgs searches at lower center-of-mass energies [3,16,20] have been
included in the calculation of these confidence levels. Values of mH from 50 GeV to 85 GeV
are excluded to greater than the 99.999% confidence level by the 189 GeV data alone and have
been previously excluded by the L3 analyses at lower center-of-mass energies. The median CL
represents the sensitivity of the global analysis and is equal to 95% at mH = 94.8 GeV, while
the average CL is 95% at 92.7 GeV. Where the observed CL falls below 95%, the probability
to observe a higher limit is 37%.

The lower limit on the Standard Model Higgs boson mass is set at

mH > 95.3 GeV at 95% CL.

This new lower limit improves upon and supersedes our previously published results.
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W.Krenz,1 A.Kunin,14,26 P.Lacentre,45,\,] P.Ladron de Guevara,24 I.Laktineh,23 G.Landi,15 K.Lassila-Perini,46

P.Laurikainen,20 A.Lavorato,36 M.Lebeau,16 A.Lebedev,14 P.Lebrun,23 P.Lecomte,46 P.Lecoq,16 P.Le Coultre,46

H.J.Lee,8 J.M.Le Goff,16 R.Leiste,45 E.Leonardi,34 P.Levtchenko,35 C.Li,19 C.H.Lin,48 W.T.Lin,48 F.L.Linde,2

L.Lista,27 Z.A.Liu,7 W.Lohmann,45 E.Longo,34 Y.S.Lu,7 K.Lübelsmeyer,1 C.Luci,16,34 D.Luckey,14 L.Lugnier,23
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Table 1: The number of expected signal (SIG), background (BG) events and observed candi-
dates (DATA) for the

√
s = 189 GeV data after a cut on the final discriminant corresponding to

a signal-over-background ratio greater than 0.05. The number of signal events includes cross-
efficiencies from other signal channels, events from fusion processes, charm and gluonic Higgs
decays. Events are uniquely assigned to a channel.

Mass hypothesis
Selection mH = 85 GeV mH = 90 GeV mH = 95 GeV

H Z SIG BG DATA SIG BG DATA SIG BG DATA

bb̄ qq̄ 21.2 73.3 78 17.6 78.4 90 8.6 53.7 51
bb̄ νν̄ 9.0 21.3 22 5.9 16.0 17 2.3 9.2 4
bb̄ e+e− 1.8 3.0 3 1.2 3.5 1 0.6 2.3 1
bb̄ µ+µ− 1.7 5.5 5 1.1 3.0 3 0.5 1.9 1
bb̄ τ+τ− 0.7 1.2 0 0.4 0.8 0 0.2 0.5 0
τ+τ− qq̄ 1.6 5.0 3 1.1 4.0 3 0.4 2.4 2
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Figure 1: The b-tag distributions for the (a) high purity and (b) low purity analyses, and
the final discriminant for the (c) high purity and (d) low purity analyses of HZ→bb̄qq̄. The
points are the 189 GeV data, the open histograms are Monte Carlo background and the hatched
histograms are the Higgs signal. The signal is shown for HZ→bb̄qq̄ with mH = 95 GeV and
is normalized to the number of expected events. The last bin in each histogram contains the
overflows.
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Figure 2: Distributions of the (a) b-tag, (b) neural network output, (c) hadronic mass, M5C
H ,

and (d) purity variable for the HZ→bb̄νν̄ analysis. The points are the 189 GeV data, the open
histograms the background and the hatched histograms are for HZ→bb̄νν̄ with mH = 95 GeV,
normalized to the number of expected events.
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Figure 3: Distributions of the final discriminant for the (a) HZ→bb̄e+e−, (b) HZ→bb̄µ+µ−,
(c) HZ→bb̄τ+τ− and (d) HZ→τ+τ−qq̄ channels for the 189 GeV data, background and a
Higgs signal of 95 GeV, normalized to the number of expected events. The signal events in the
HZ→bb̄τ+τ− and HZ→τ+τ−qq̄ plots include the branching-ratio-corrected cross-efficiencies
for these channels. Events are uniquely assigned to only one of these channels.
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Figure 4: Reconstructed Higgs mass distributions in the 189 GeV data for the most signif-
icant signal-like events of the various analyses: (a) after mass-independent cuts on b-tag or
neural network output to select candidates; (b-c) after cuts on the final discriminant (signal-
over-background ratio greater than 0.25) for the mass hypothesis (b) mH = 90 GeV and (c)
mH = 95 GeV. In all plots, the points are the data, the solid histograms are the Monte Carlo
background and the dashed histograms are the Monte Carlo background plus Higgs signal.
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Figure 5: (a) The observed and expected median confidence levels as a function of the Higgs
mass. (b) The number of expected and excluded signal events. Both plots include results from
lower center-of-mass energies. The lower limit on the Higgs mass is set at mH > 95.3 GeV at
the 95% CL.
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