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PACS numbers: to be defined

Many properties of the atomic nucleus, such as
vibrations, rotations and incompressibility can be
interpreted as due to a two-component quantum
liquid of protons and neutrons. Electron scatter-
ing measurements on stable nuclei demonstrate
that their central densities are saturated, as for
liquid drops. In exotic nuclei near the limits of
mass and charge, with large imbalances in their
proton and neutron numbers, the possibility of
a depleted central density, or a “bubble” struc-
ture, was discussed in a recurrent manner since
the seventies. Here we report first experimental
evidence that points to a depletion of the central
density of protons in the short-lived nucleus 34Si.
The proton-to-neutron density asymmetry in 34Si
offers the possibility to place constraints on the
density and isospin dependence of the spin-orbit
force - on which nuclear models have disagreed
for decades- and on its stabilizing effect towards
limits of nuclear existence.

Microscopic systems composed of atoms or clusters
can exhibit intrinsic structures that are bubble-like, with
small or depleted central densities. For example, the
fullerene molecules, composed of C atoms, are structures
with extreme central depletion [1]. In nuclear physics,
depletions also arise in nuclei with well-developed clus-
ter structures when clusters are arranged in a triangle
or ring-like structure - such as in the triple-a Hoyle
state [2, 3]. Unlike such a non-homogeneous, clustered
system, central density depletions or bubble-like struc-
tures would be much more surprising in homogeneous
systems, such as typical atomic nuclei with properties
characteristic of a quantum liquid [4].

This hindrance of bubble formation in atomic nuclei is

inherent in the nature of the strong force between nucle-
ons, which is strongly repulsive at short distances (below

0.7 fm), attractive at medium range (~1.0 fm) and van-
ishes at distances beyond 2 fm. In a classical picture, the
medium-ranged attraction of nuclear forces implies that
nucleons interact strongly and attractively only with im-
mediate neighbors, leading to a saturation of the nuclear
central density, pp. Quantum mechanically, the delocal-
ization of nucleons [5] leads to a further homogeneity
of the density. Extensive precision electron scattering
studies from stable nuclei [6] confirm that their central
densities are essentially constant, with pg ~ 0.16 fm~3,
independent of the number of nucleons A. As a conse-
quence, like a liquid drop, the nuclear radii and volumes
increase as A'/3 and as A, respectively. Thus, a priori,
bubble-like nuclei with depleted central densities are un-
expected.

Historically, the possibility of forming bubble nuclei
was investigated theoretically in intermediate-mass [7—
10], superheavy [11] and hyperheavy systems [12]. In
general, central depletions will arise from a reduced oc-
cupation of single particle orbits with low angular mo-
mentum ¢. These wave functions extend throughout the
nuclear interior whereas those with high-¢ are more ex-
cluded by centrifugal forces. For example, in a compari-
son of the charge densities of 2°6Pb and 205T1, the contri-
bution from ¢=0 orbits (there 3s) is peaked at the nuclear
center [13]. The amplitude of this central depletion in
20571 is of order 11%. A much larger central depletion of
protons, of about 40% compared to stable 36S, was pro-
posed in 34Si [10, 14] using various mean field approaches,
arising from the proton occupancy of the 2s;,, orbital.
However, recent theoretical calculations suggest that nu-
clear correlations act to smoothen these orbital occupan-
cies in both the heavy and superheavy nuclei [15, 16] and
in 34Si [17]. Here, we use the one-proton removal (—1p)
reaction technique to show that the 2s; /5 proton orbit in
34Gi is in fact essentially empty, in contrast to 3¢S where



this 25 /5 orbit is almost fully occupied by 1.7(4) protons
compared to the maximum occupancy of 2 [18, 19].

A beam of 4 x 10° 34Si nuclei per second was pro-
duced by the fragmentation of a 140 MeV/u *®Ca pri-
mary beam on a 846 mg-cm~? thick ?Be target at the
Coupled Cyclotron Facility at the National Supercon-
ducting Cyclotron Laboratory. The 34Si then impinged
on a “Be secondary target (100 mg-cm~2) producing 33 Al
nuclei through the (—1p) reaction. These 33Al residues
were identified through their measured energy-loss in an
ionization chamber located at the focal plane of the S800
spectrograph, and their time-of-flight between two scin-
tillators placed at the object and image focal planes of
the device. Their trajectories were obtained from their
positions measured at two cathode-readout drift cham-
bers.

Prompt v-rays, originating from the in-flight decay of
excited 33Al produced during the reaction, were detected
in coincidence with the 33 Al residues in the seven modules
of the GRETINA array [20] that surrounded the target at
angles near 90° and 58°. Event-by-event Doppler recon-
struction was performed using the deduced 33Al velocity
at the mid-target position, the position reconstruction on
the target, and the -ray detection angle — determined
from the position of the greatest energy deposition in the
GRETINA array. An absolute in-flight efficiency of 6.5%
and an energy resolution of ¢ ~ 2 keV, respectively, were
obtained at 1 MeV, based on the use of calibrated sources
and GEANT4 simulations [21] to account for the Lorentz
boost. A systematic uncertainty of 0.25% is estimated on
the v energy centroid.

The -~y singles (first row of Fig. 1), v — v coincidences
(second to third rows of Fig. 1), and the relative ~ inten-
sities were used to establish the level scheme of excited
states in 33Al, shown in the left part of Fig. 2. Energies
and branching ratios are given for each populated 33Al
final state. The energy of seven y-rays match, within un-
certainties, those observed in the 3-decay of 33Mg [22].
However, the level scheme proposed in Fig. 2 differs sig-
nificantly from that of Ref. [22] where, unlike in the
present work, v — 7y coincidences were rarely exploited.

The orbital angular momenta ¢ of the protons removed
from 34Si are determined by comparing, in the right panel
of Fig. 2, the experimental (y-gated) and theoretical
longitudinal momentum distributions (p|) of the 33Al.
The latter are described in the Section 'Methods’. The
ground state momentum distribution in Fig. 2 is ob-
tained by subtracting contributions from excited states.
The p) distributions of the 0-, 1621-, and 1651-keV states
are characteristic of £=2 proton removal. The much nar-
rower p| of the 210- and 3704-keV states suggest (=0
assignments.

Normalized spectroscopic factors, C2S¢*2  and pro-
ton occupancies of the orbits are derived from the exper-
imental cross sections, as described in Section 'Methods’.
The summed spectroscopic factors for the first three £=2
states is 5.5 £ 1.0, consistent, within uncertainties, with
a full occupancy (2.J 4 1=6) of the 1ds/, orbit. The weak
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FIG. 1. Gamma-ray spectra of **Al. Singles (first row)
and v-gated (second to third rows) Doppler-corrected ~-ray
spectra of 33Al. The ~-rays labeled with an empty triangle,
accounting for 5.8 % of the cross section, are not produced by
the one-proton removal mechanism and are not relevant for
determining the proton occupancies. Their origin is discussed
in Ref. [19].

population of the 3926 keV state, with a spectroscopic
factor of 0.11(3), is tentatively attributed to an /=2 pro-
ton knockout from the 1ds/, orbit. A proton occupancy
of the 2s; /5 orbital of 0.17(3) is deduced from the two
observed /=0 excited states at 2101 and 3704 keV. As-
suming, though very unlikely, that the four (unassigned)
weakly populated states at 2666, 2696, 2816 and 3193
keV were also /=0, this occupancy would be increased
by only 0.07 (3). This very small proton occupancy of
the 2s1 /5 orbital, 10% of that in *°S, results in a large
depletion of the central density of protons in 34Si.

On the other hand, the neutron 2s;,, orbit is essen-
tially fully occupied in 34Si, with a summed spectroscopic
factor value of 2.0(3) being deduced from the correspond-
ing neutron removal reaction from 34Si [23]. Thus, 34Si
exhibits a large proton-to-neutron density asymmetry
that, to our knowledge, has not been revealed in any
other nucleus. It is favored because 34Si can be viewed
as a doubly-magic nucleus in which mixing between nor-
mally occupied and valence orbits is very limited [23, 24].
The high energy of its first excited state (3.3 MeV), its
low reduced transition probability B(E2;0T — 27) [25]
and the small electric monopole strength p(E0; 0] — 07)
[26] complete this picture of double magicity. Fig. 3 visu-
alizes the changed proton densities and almost unchanged
neutron densities between 34Si and 35S from Relativistic



0.11(2)
C3S= 0.08(2) 14(3) 3926 (3/2%)

B%)=14(3) 3704 (112%)
511

0.5(3)¥ 3193 2305
0.2(1) 2816
0‘31122666 0.3(1) 2696
2080 595 2366
1045 [0.083)) T
1195 1.5(4) 5(1/2%)
2101
0.9(2)
13.8(2.0)(5/2* V1621
1651 -
31 2366
2101
1651 1621
4.6(9) l
v77.5(2.2) L 2 5/2+
BAL 0

FIG. 2.

(b) 1621 keV
L=2
-4,
zﬁ (©) 1651 keM (d) 2101 keV
oS L=2 L=0
=
3
©
_._‘ t = }
() 3704 keV (f) 3926 keV
L=0 L=2
——
14 145 14 145
p, (GeVic) p, (GeVic)

Level scheme of **Al with parallel momentum distributions of the strongest populated states. Left:

Level scheme of 33Al, obtained from the ~-y coincidence spectra of Fig. 1, with energies (in keV) and branching ratios beO

(in %). Error bars on the bff O values result from the uncertainty in extracting the intensity of the ~ transitions decaying
from the corresponding levels. When these levels are fed from higher lying states, the corresponding feeding contribution was
subtracted, inducing larger error bars. As fed by many transitions, the branching ratio to the ground state therefore has the
largest error bar. The J™ assignments and experimental spectroscopic factors C2S¢%P, . of the strongest populated states are
shown. Uncertainties on the C2S¢%2, . values are derived from Equation . They include those on b? © discussed above and on the
empirical quenching factor Rs, that amounts to about 20%. Right (a-f): Experimental parallel momentum, p, distributions
for the strongest populated states in *Al (black crosses) are compared to theory, assuming removal of an =0 (red curves) or
£=2 (blue curves) proton from the *'Si ground state. As explained in Section 'Methods’, the high momentum part of p| is
considered in this comparison. Momentum distributions for weakly populated states (bfc{ ° < 1%) have insufficient statistics to
be exploited. Horizontal bars correspond to the binning on the p) value. Vertical error bars are deduced from uncertainties on

b}{o per bin of p; value.

Hartree-Fock Bogoliubov (RHFB) calculations that use
the PKO2 energy density functional [27] and which pre-
dict very similar proton and neutron occupancies to those
deduced here. It should however be noted that mean field
calculations do not all predict similar neutron and proton
density profiles in 34Si. Indeed they are very sensitive to
the size of the proton and neutron gaps derived from the
choice of functionals, as well as to the treatment of pair-
ing and quadrupole correlations that act to reduce the
central density depletion, as found in Ref. [17]. Indeed,
this model-dependence of the predictions of the existence
of a central depletion was a major motivation to perform
the present experiment.

With this differential two-fluid behavior, 3*Si offers
unique possibilities to test the density and proton-to-
neutron (isospin) dependence of the nuclear spin or-
bit (SO) potential — which generates most of the shell
gaps that stabilize magic nuclei in the chart of nuclides
[28, 29]. In most theoretical models, the SO potential
can be expressed in terms of the derivative of the pro-
ton and neutron densities, with coefficients that differ by
a factor of as much as two between various relativistic
or non-relativistic approaches (see e.g. the discussions
in [11, 29, 31-34]). These as yet unknown density and

isospin dependences of the SO interaction strongly im-
pact (i) the evolution of the spin-orbit interaction and
magic numbers as one approaches the drip lines [31, 33],
where the surface diffuseness is increased and conse-
quently the SO interaction is expected to be reduced.
This influences the binding energies, the lifetimes, and
nuclear capture rates of the nuclei close to the neutron
drip line that are involved in the synthesis of elements
in the Universe beyond Fe through the rapid neutron
capture process. This also impacts (ii) the location of a
possible island of stability for superheavy nuclei [11] that
differ strongly depending on the theoretical models used,
and (iii) the puzzling discontinuity in the isotope shifts
observed for the Pb isotopes [30, 32], a phenomenon that
seems to be accounted for only by a certain category of
models. These aspects of the SO force have not pre-
viously been accessible to experimental scrutiny as, in
the vast majority of nuclei, the saturation of the nuclear
forces implies (a) a near-constant central density for pro-
tons and neutrons, and (b) an almost universal surface
diffuseness. The result is a SO force peaked at the pro-
ton and neutron surfaces having a similar strength for
all models. The central proton density depletion in 34Si
drives an additional (interior) component of the SO force,



o B4gi
0.1 0.1
T T Y
£ 005 £ 005 |
s / & / e
] oL
5 0 5 5 e 5
~_— 0 : 0
a)z(m) > B yim) b)zm) 5 5 x(im)
,\\\\7\ 368
01, 0.1
A | A
£ 005 | £ 005
QC “ CLQ-
o/ 0
5 S A 5 ) .
0 0

o) z(im 3 5 yitm dzim "2 5 ym

FIG. 3. Neutron and proton density distributions of
the *'Si and *°S nuclei. Neutron (a) and proton (b) density
distributions of 3*Si computed using RHFB calculations with
the PKO?2 interaction. (c) and (d) are those for **S. While the
proton and neutron density distributions are similar in 3¢S,
they are significantly different in 3*Si, with a sizeable central
depletion of protons. Orbital occupancies obtained from these
calculations are very similar to those deduced experimentally,
providing a visualization of the proton and neutron density
distributions in the two nuclei.

with a sign opposite to that at the surface. Therefore,
low-¢ nucleons, that can probe the interior of the bub-
ble, should encounter a much weaker overall SO force
(e.g. [11, 35]) and display a significantly reduced SO
splitting. This prediction is in line with the observed
reduction of the neutron 2ps/o — 2p; /2 splitting in 3563
[24], when compared to neighbouring N = 21 isotones.
Such a sudden change by a factor of two in amplitude is
unique on the chart of nuclides and seems clearly con-
nected to the change in central nuclear density observed
here. Moreover, having different proton and neutron cen-
tral densities, *Si can be used to constrain the isospin
dependence of the SO interaction in an unprecedented
manner, for example, by identifying models that predict
the correct amplitude of the SO reduction.

Finally, atomic nuclei are usually highly incompress-
ible, the corresponding monopole modes involving very
high excitation energies [36, 37]. Exhibiting a central
density that is significantly lower than the saturation
density, 3Si may present new (soft) compression modes
at low energy with the potential to shed light on the
recently observed fragmentation of the giant monopole
at low energy in the neutron-rich Ni nucleus [38]. This
information would in turn be useful for testing different
models of the nuclear equation of state at a density
below the saturation density, important for instance in
the modeling of the neutron star crust.

METHODS

The eikonal model and choice of parameters used to calculate
the proton removal single-particle cross sections, o2f, and the
parallel momentum, p, distributions of the residues are de-
tailed in Ref. [39]. The shapes of the high momentum parts
of these distributions are used in the comparisons with ex-
periment in Fig. 2 as more dissipative collisions, treated only
approximately in the eikonal model, affect measured distribu-
tions at the lower momenta [40]. In comparing to experiment,
the theoretical p; distributions are convoluted with (i) the
momentum dispersion of the secondary beam, (ii) the beam
straggling in the target, and (iii) the momentum broadening
due the reaction’s position within in the target.

The experimental partial cross sections, b oe? ., cor-
respond to the removal of a proton with quantum numbers
nly from the ground state of 3*Si. Here Time o is the ex-
perimental inclusive removal cross section, that amounts to
27.7(1.0) mb, and ¥ is the experimental branching ratio
(in %) for populating final state f. Following Ref. [19], the
normalized knockout spectroscopic factors are expressed as:

KO _exp

2 f Tinc,KO
C™Srobm = ?:%a (1)

where 0?’ is the theoretical single-particle knockout cross
section [39]. R, accounts for the systematic quenching of
measured nucleon knockout cross sections when compared to
those calculated when combining these eikonal model a;p with

shell model spectroscopy and C?S [41]. With this normaliza-
tion, the C2S¢%P, . sum rule (or orbit occupancies) to states
in ®3Al are normalized to the maximal occupancy of a given
sub-shell, that is 2J + 1.

We are aware that short-range correlations [42] and cou-
pling to collective degrees of freedom [43] usually complicate
the determination of spectroscopic factors (or their related
shell occupancies and vacancies), which are not directly ob-
servable [44-46]. Moreover, present reaction models use ef-
fective potentials that do not capture the full microscopic
complexity of the nucleus and often induce uncertainties in
the deduced results. However, under the reasonable assump-
tion that these effects are similar between neighboring nuclei,
here between the closed-shell nuclei ¢S and 3*Si, the consid-
eration of a differential evolution of spectroscopic strengths
and occupancies is sensible, a view supported by tests of sum
rules for occupancy and vacancy of orbitals derived from ex-
perimental cross sections [47]. Error bars on the occupancy
values quoted in the main document include statistical and
systematical errors, the latter being derived from Ref. [41].

We note that the measured inclusive cross section for the
removal of an ¢ = 0 proton is about 12 times larger in 35S
than in 3'Si. This directly measured cross-section ratio, at-
tributed to the almost complete depletion of the 2s, 5 proton
orbit between the two nuclei, has a value that is very similar
to the ratio of occupancies derived from the reaction model
calculations presented.

It is hoped that the present study will stimulate new
developments in the modeling of nuclear reactions and their
application to nuclear spectroscopy and further motivate the
construction of a high-luminosity electron - radioactive nuclei
collider facility that would enable a more direct experimental
determination of the proton density distribution in 34Si.

Data availability: Raw data were obtained at the Coupled
Cyclotron Facility at the National Superconducting Cyclotron Labo-



ratory, Michigan State University, USA. All other derived data used
to support the findings of this study are available from the authors

upon request and a thorough explanation of the analysis method can
be found in Ref.[48].
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