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Amplitude analysis

Amplitude analysis
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Amplitude analysis

Amplitude analysis: introduction

Amplitude fits:
• Extract information about intermediate states in multi-body decays
• PDFs can be computationally expensive to evaluate

• Complex models (in both meanings of ‘complex’)
• Many free parameters
• Multi-dimensional phase space
• Often numerically integrated

• Writing fitters can be labour-intensive without the right framework
Used in:

• Hadron spectroscopy
• Discovery of pentaquarks

• Measurement of CKM parameters
• CP violation
• γ angle
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Amplitude analysis

Amplitude analysis: tools

Amplitude fitting:
• Laura++: https://laura.hepforge.org/

• C++ with ROOT as its only dependency
• Powerful tool for Dalitz plot fits
• Can do time-dependent fits
• Single-threaded, but many clever optimisations

• MINT: https://twiki.cern.ch/twiki/bin/view/Main/MintTutorial
• C++ interface
• Can do 3- and 4-body final states
• Can be used as a generator in the LHCb simulation package Gauss

Generic GPU-based fitting:
• GooFit: https://github.com/GooFit

• C++ with python bindings
• Has a third-party library for amplitude fits

• Ipanema-β: https://gitlab.cern.ch/bsm-fleet/Ipanema
• Based on pyCUDA
• HEP-specific functions
• Lacks amplitude analysis functions

Tool for covariant tensors:
• qft++: https://github.com/jdalseno/qft
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Amplitude analysis

Amplitude analysis: tools

Existing frameworks lack functionality and/or flexibility to cover all cases that might be
encountered in amplitude anlaysis. Users may spend a lot of time altering the framework itself
to suit their needs, e.g.:

• Non-scalars in the initial/final states
• Complicated relationships between parameters
• Fitting projections of the full phase space
• Fitting partially-reconstructed decays

For n-body final states with complicated models, we need:
• Speed (of computation)
• Speed (of development)
• Flexibility
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Amplitude analysis

Amplitude analysis: similarities with machine learning

Maximum-likelihood fitting (particularly amplitude analysis) is very similar to machine-learning:
• Large amounts of data — many evaluations of the same function
• Complicated models
• Optimisable parameters
• Minimisation (cost function/NLL)
• Both abbreviate to ‘ML’

Many of the challenges faced in amplitude anlaysis have been overcome for machine learning
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TensorFlow

TensorFlow: introduction

Open source library developed by Google: https://www.tensorflow.org/
• Primarily a machine learning library, but the core functionality is suitable

for other tasks
• Symbolic mathematics

• High-performance numerical computation using dataflow graphs
• Calling functions builds a directed graph, which can then be optimised and

compiled
• TF can find analytic derivatives of a graph
• Python, C++ and Java interfaces
• Runs on many architectures out-of-the-box, including GPUs
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TensorFlow

TensorFlow: principles

Functions: symbolic dataflow graphs
• Each node is an operation
• Edges represent the flow of data

Data: tensors (n-dimensional arrays)
• Input and output of mathematical operations
• Operations are vectorised

Input:
• Placeholders: used to represent data when building dataflow graphs.
• Variables: can change value during a session, e.g. fit parameters.

Output:
• Numpy arrays

p

tf.add

w

tf.multiply

a

tf.multiply

x

tf.sin

a*tf.sin(w*x+p)
Evaluation:

• Construct a ‘session’
• Run the session by passing a graph and a dict relating placeholders to data samples
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TensorFlow

TensorFlow: build and execute a graph

import tensorflow as tf

# Define input data (x) and model parameters (w,p,a)
x = tf.placeholder(tf.float32, shape = ( None ) )
w = tf.Variable(1.)
p = tf.Variable(0.)
a = tf.Variable(1.)

# Build graph
f = a*tf.sin(w*x+p)

# Create TF session and initialise variables
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

# Run calculation of y by feeding data to tensor x
f_data = sess.run(f, feed_dict = {x: [1., 2., 3., 4.]})
print f_data # [ 0.84147096, 0.90929741, 0.14112, -0.7568025 ]
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TensorFlow

TensorFlow: features for amplitude analysis

Vectorisation:
• Most functions will calculate element-wise over a tensor
• Ideal for maximum-likelihood fits, where the same function must be evaluated repeatedly for

a large number of points
Analytic gradient:

• TF can derive analytic gradients from graphs
• Greatly speed up convergence when passed to a minimiser

Partial execution:
• TF can cache parts of a graph unaffected by changes in parameters
• In practice, this does not work as expected, but one can manually inject the value of a

tensor when running a session
Minimisation:

• TF has minimisers for training machine-learning algorithms...
• ... which not particularly suitable for fitting

• No uncertainties on parameters
• Cannot do likelihood scans
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TensorFlowAnalysis
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TensorFlowAnalysis

TensorFlowAnalysis: introduction

TensorFlow alone is almost a suitable framework for amplitude fits. TensorFlowAnalysis
(https://gitlab.cern.ch/poluekt/TensorFlowAnalysis/) adds some crucial features:

• Read/write ROOT ntuples
• Fit parameter class (extends tf.Variable)
• Interface to Minuit
• Toy generation
• Fit fractions
• Functions commonly for calculating amplitudes

• Kinematics: lorentz vectors, boosts, rotations, two-body momenta, helicity angles...
• Dynamics: lineshapes, form factors...
• Helicity amplitudes, LS couplings, Zemach tensors...
• Elements of covariant formalism (polarisation vectors, γ matrices...)

• Phase space classes
• Check if a datapoint is within the phase space
• Generate uniform distributions
• Return/calculate specific variables from a datapoint
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TensorFlowAnalysis

TensorFlowAnalysis: fitting

• Simple 2D Dalitz plot model:

# Phase space object
phsp = DalitzPhaseSpace(ma, mb, mc, md)
# Fit parameters
mass = Const(0.770)
width = FitParameter("width", 0.150, 0.1, 0.2, 0.001)
a = Complex( FitParameter("Re(A)", ...), FitParameter("Im(A)", ...) )
# Fit model as a function of 2D tensor of data
def model(x) :

m2ab = phsp.M2ab(x) # Phase space class provides access to
m2bc = phsp.M2bc(x) # individual kinematic variables
ampl = a*BreitWigner(mass, width, ...)*Zemach(...) + ...
return Density(ampl)
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TensorFlowAnalysis

TensorFlowAnalysis: fitting

• Using MC integration for the normalisation:

# Call the model on placeholders to build the dataflow graphs
model_data = model(phsp.data_placeholder)
model_norm = model(norm.data_placeholder)
# Assemble into a negative log-likelihood graph to be minmised
nll = UnbinnedNLL(model_data, Integral(model_norm))

• Input data samples are numpy arrays:

# Both samples of the form data[event][variable]
data_sample = ReadNTuple(tree, [branches...])
norm_sample = sess.run(phsp.RectangularGridSample(400, 400))

• Minimise the NLL with Minuit:

result = RunMinuit(sess, nll, {phsp.data_placeholder: data_sample,
phsp.norm_placeholder: norm_sample})

WriteFitResults(result, "result.txt")
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TensorFlowAnalysis

TensorFlowAnalysis: fitting

Straightforward to modify the NLL to add functionality, e.g.:
• Weighted fit:

# Assume the weight is the last element in the list
def event_weight(datapoint, norm = 1.):

return tf.transpose(datapoint)[-1] * norm
integral = WeightedIntegral(model_norm, event_weight(norm_ph))
weight_correction = sum([dp[-1] for dp in data_sample])

/sum([dp[-1]**2 for dp in data_sample])
nll = UnbinnedWeightedNLL(model_data, integral,

event_weight(data_ph, norm = weight_correction))

• Simultaneous fit:

norm = Integral(model1_norm) + Integral(model2_norm)
nll = UnbinnedNLL(model1_data, norm) + UnbinnedNLL(model2_data, norm)
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TensorFlowAnalysis

TensorFlowAnalysis: fitting

• Complex combinations of parameters:

def HelicityCouplingsFromLS(ja, jb, jc, lb, lc, bls):
a = 0.
for ls, b in bls.iteritems():

# Where b is a Complex(FitParameter(...), FitParameter(...))
l = ls[0]
s = ls[1]
coeff = math.sqrt((l+1)/(ja+1))*Clebsch(jb, lb, jc, -lc, s, lb-lc)

*Clebsch(l, 0, s, lb-lc, ja, lb-lc)
a += Const(coeff)*b

return a
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TensorFlowAnalysis

TensorFlowAnalysis: higher-level features

Some recent features allow the user to quickly build an amplitude model of an n-body decay.

The Particle class:
• Holds intrinsic properties and mother/daughter relationships
• Useful to quickly define different decay chains within an amplitude model
• Handles rotations and boosts

HelicityMatrixDecayChain:
• Takes the head Particle of the decay chain and a dict of helicity amplitude parameters
• Builds a dict of matrix elements in the helicity formalism for a specific decay chain

PHSPGenerator and NBody:
• Construct a phase space object given the mother mass and a list of final-state daughter

masses
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TensorFlowAnalysis

TensorFlowAnalysis: limitations

Some issues with using TensorFlow for amplitude fits:
• Python 2 only (for now)
• TF not readily available on LXplus

• Binary distributions available from debian-based distros and Mac
• Available from pip without machine-specific optimisations
• Can install from source: tricky (especially with CUDA) but possible.

• Memory usage can be several GB:
• Especially with anlaytic gradient/large datasets/complicated models
• Limiting for consumer-grade GPUs

• Double precision essential
• Limiting for consumer-grade GPUs

• Slow RAM–VRAM transfer
• Has been mitigated since earlier versions of TFA

• Errors at graph execution time are hard to debug
• Dedicated debugger: https://www.tensorflow.org/programmers_guide/debugger
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TensorFlowAnalysis

TensorFlowAnalysis: plans

• Port to python 3
• Expand the library

• K-matrix formalism
• Analytical coupled-channel approaches

• Save/load compiled graphs
• Graph-building can sometimes take longer than minimisation

• Optimisations of CPU and memory usage; better caching
• More symbolic maths

• Sympy, in particular, works well with TF
• Self-documentation

• Generate LaTeX description of formulae entering the fit
• Automatic code generation: share standalone models with theorists
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Performance
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Performance

Performance

Benchmark runs (fit time only), compare 2 machines:
• CPU1: Intel Core i5-3570 (4 cores), 3.4GHz, 16 Gb RAM

GPU1: NVidia GeForce 750Ti (640 CUDA cores), 2 Gb VRAM
• CPU2: Intel Xeon E5-2620 (32 cores), 2.1GHz, 64 Gb RAM

GPU2: NVidia Quadro p5000 (2560 CUDA cores), 16 Gb VRAM
Two isobar models:

• D0→ K0
Sπ

+π−: 18 resonances, 36 free parameters
• Λb→ D0pπ−: 3 resonances, 4 non-resonant amplitudes, 28 free parameters
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Performance
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Summary

Summary

• TensorFlow is a good basis for an amplitude fitting framework
• High-performance architectures can be exploited without expert knowledge
• Models written in TFA are portable and can, with small effort, work standalone from TF: easy

to share with theorists
• Flexibility of TFA allows for rapid and simple development of complicated fits
• TensorFlowAnalysis package: library to perform amplitude analysis fits. In active

development, used for a few ongoing baryonic decay analyses at LHCb.
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