
HAL Id: in2p3-01917564
https://hal.in2p3.fr/in2p3-01917564

Submitted on 9 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using TensorFlow for amplitude fits
Adam Morris, Anton Poluektov, Andrea Mauri, Andrea Merli, Abhijit

Mathad, Maurizio Martinelli

To cite this version:
Adam Morris, Anton Poluektov, Andrea Mauri, Andrea Merli, Abhijit Mathad, et al.. Using Ten-
sorFlow for amplitude fits: The TensorFlowAnalysis package. PyHEP workshop, Jul 2018, Sofia,
Bulgaria. �10.5281/zenodo.1415413�. �in2p3-01917564�

https://hal.in2p3.fr/in2p3-01917564
https://hal.archives-ouvertes.fr

Using TensorFlow for amplitude fits
The TensorFlowAnalysis package

Adam Morris1, on behalf of the TensorFlowAnalysis developers

Anton Poluektov2, Andrea Mauri3, Andrea Merli4, Abhijit Mathad2, Maurizio Martinelli5, Adam Morris1

1Aix Marseille Univ, CNRS/IN2P3, CPPM
2University of Warwick

3Universität Zürich
4Università degli Studi e INFN Milano

5European Organization for Nuclear Research

PyHEP Workshop, Sofia, 7–8 July, 2018

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 1

Overview

1 Amplitude analysis

2 TensorFlow

3 TensorFlowAnalysis

4 Performance

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 2

Amplitude analysis

Amplitude analysis

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 3

Amplitude analysis

Amplitude analysis: introduction

Amplitude fits:
• Extract information about intermediate states in multi-body decays
• PDFs can be computationally expensive to evaluate

• Complex models (in both meanings of ‘complex’)
• Many free parameters
• Multi-dimensional phase space
• Often numerically integrated

• Writing fitters can be labour-intensive without the right framework
Used in:

• Hadron spectroscopy
• Discovery of pentaquarks

• Measurement of CKM parameters
• CP violation
• γ angle

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 4

Amplitude analysis

Amplitude analysis: tools

Amplitude fitting:
• Laura++: https://laura.hepforge.org/

• C++ with ROOT as its only dependency
• Powerful tool for Dalitz plot fits
• Can do time-dependent fits
• Single-threaded, but many clever optimisations

• MINT: https://twiki.cern.ch/twiki/bin/view/Main/MintTutorial
• C++ interface
• Can do 3- and 4-body final states
• Can be used as a generator in the LHCb simulation package Gauss

Generic GPU-based fitting:
• GooFit: https://github.com/GooFit

• C++ with python bindings
• Has a third-party library for amplitude fits

• Ipanema-β: https://gitlab.cern.ch/bsm-fleet/Ipanema
• Based on pyCUDA
• HEP-specific functions
• Lacks amplitude analysis functions

Tool for covariant tensors:
• qft++: https://github.com/jdalseno/qft

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 5

https://laura.hepforge.org/
https://twiki.cern.ch/twiki/bin/view/Main/MintTutorial
https://github.com/GooFit
https://arxiv.org/abs/1702.06735
https://gitlab.cern.ch/bsm-fleet/Ipanema
https://github.com/jdalseno/qft

Amplitude analysis

Amplitude analysis: tools

Existing frameworks lack functionality and/or flexibility to cover all cases that might be
encountered in amplitude anlaysis. Users may spend a lot of time altering the framework itself
to suit their needs, e.g.:

• Non-scalars in the initial/final states
• Complicated relationships between parameters
• Fitting projections of the full phase space
• Fitting partially-reconstructed decays

For n-body final states with complicated models, we need:
• Speed (of computation)
• Speed (of development)
• Flexibility

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 6

Amplitude analysis

Amplitude analysis: similarities with machine learning

Maximum-likelihood fitting (particularly amplitude analysis) is very similar to machine-learning:
• Large amounts of data — many evaluations of the same function
• Complicated models
• Optimisable parameters
• Minimisation (cost function/NLL)
• Both abbreviate to ‘ML’

Many of the challenges faced in amplitude anlaysis have been overcome for machine learning

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 7

TensorFlow

TensorFlow

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 8

TensorFlow

TensorFlow: introduction

Open source library developed by Google: https://www.tensorflow.org/
• Primarily a machine learning library, but the core functionality is suitable

for other tasks
• Symbolic mathematics

• High-performance numerical computation using dataflow graphs
• Calling functions builds a directed graph, which can then be optimised and

compiled
• TF can find analytic derivatives of a graph
• Python, C++ and Java interfaces
• Runs on many architectures out-of-the-box, including GPUs

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 9

https://www.tensorflow.org/

TensorFlow

TensorFlow: principles

Functions: symbolic dataflow graphs
• Each node is an operation
• Edges represent the flow of data

Data: tensors (n-dimensional arrays)
• Input and output of mathematical operations
• Operations are vectorised

Input:
• Placeholders: used to represent data when building dataflow graphs.
• Variables: can change value during a session, e.g. fit parameters.

Output:
• Numpy arrays

p

tf.add

w

tf.multiply

a

tf.multiply

x

tf.sin

a*tf.sin(w*x+p)
Evaluation:

• Construct a ‘session’
• Run the session by passing a graph and a dict relating placeholders to data samples

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 10

TensorFlow

TensorFlow: build and execute a graph

import tensorflow as tf

Define input data (x) and model parameters (w,p,a)
x = tf.placeholder(tf.float32, shape = (None))
w = tf.Variable(1.)
p = tf.Variable(0.)
a = tf.Variable(1.)

Build graph
f = a*tf.sin(w*x+p)

Create TF session and initialise variables
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

Run calculation of y by feeding data to tensor x
f_data = sess.run(f, feed_dict = {x: [1., 2., 3., 4.]})
print f_data # [0.84147096, 0.90929741, 0.14112, -0.7568025]

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 11

TensorFlow

TensorFlow: features for amplitude analysis

Vectorisation:
• Most functions will calculate element-wise over a tensor
• Ideal for maximum-likelihood fits, where the same function must be evaluated repeatedly for

a large number of points
Analytic gradient:

• TF can derive analytic gradients from graphs
• Greatly speed up convergence when passed to a minimiser

Partial execution:
• TF can cache parts of a graph unaffected by changes in parameters
• In practice, this does not work as expected, but one can manually inject the value of a

tensor when running a session
Minimisation:

• TF has minimisers for training machine-learning algorithms...
• ... which not particularly suitable for fitting

• No uncertainties on parameters
• Cannot do likelihood scans

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 12

TensorFlowAnalysis

TensorFlowAnalysis

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 13

TensorFlowAnalysis

TensorFlowAnalysis: introduction

TensorFlow alone is almost a suitable framework for amplitude fits. TensorFlowAnalysis
(https://gitlab.cern.ch/poluekt/TensorFlowAnalysis/) adds some crucial features:

• Read/write ROOT ntuples
• Fit parameter class (extends tf.Variable)
• Interface to Minuit
• Toy generation
• Fit fractions
• Functions commonly for calculating amplitudes

• Kinematics: lorentz vectors, boosts, rotations, two-body momenta, helicity angles...
• Dynamics: lineshapes, form factors...
• Helicity amplitudes, LS couplings, Zemach tensors...
• Elements of covariant formalism (polarisation vectors, γ matrices...)

• Phase space classes
• Check if a datapoint is within the phase space
• Generate uniform distributions
• Return/calculate specific variables from a datapoint

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 14

https://gitlab.cern.ch/poluekt/TensorFlowAnalysis/

TensorFlowAnalysis

TensorFlowAnalysis: fitting

• Simple 2D Dalitz plot model:

Phase space object
phsp = DalitzPhaseSpace(ma, mb, mc, md)
Fit parameters
mass = Const(0.770)
width = FitParameter("width", 0.150, 0.1, 0.2, 0.001)
a = Complex(FitParameter("Re(A)", ...), FitParameter("Im(A)", ...))
Fit model as a function of 2D tensor of data
def model(x) :

m2ab = phsp.M2ab(x) # Phase space class provides access to
m2bc = phsp.M2bc(x) # individual kinematic variables
ampl = a*BreitWigner(mass, width, ...)*Zemach(...) + ...
return Density(ampl)

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 15

TensorFlowAnalysis

TensorFlowAnalysis: fitting

• Using MC integration for the normalisation:

Call the model on placeholders to build the dataflow graphs
model_data = model(phsp.data_placeholder)
model_norm = model(norm.data_placeholder)
Assemble into a negative log-likelihood graph to be minmised
nll = UnbinnedNLL(model_data, Integral(model_norm))

• Input data samples are numpy arrays:

Both samples of the form data[event][variable]
data_sample = ReadNTuple(tree, [branches...])
norm_sample = sess.run(phsp.RectangularGridSample(400, 400))

• Minimise the NLL with Minuit:

result = RunMinuit(sess, nll, {phsp.data_placeholder: data_sample,
phsp.norm_placeholder: norm_sample})

WriteFitResults(result, "result.txt")

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 16

TensorFlowAnalysis

TensorFlowAnalysis: fitting

Straightforward to modify the NLL to add functionality, e.g.:
• Weighted fit:

Assume the weight is the last element in the list
def event_weight(datapoint, norm = 1.):

return tf.transpose(datapoint)[-1] * norm
integral = WeightedIntegral(model_norm, event_weight(norm_ph))
weight_correction = sum([dp[-1] for dp in data_sample])

/sum([dp[-1]**2 for dp in data_sample])
nll = UnbinnedWeightedNLL(model_data, integral,

event_weight(data_ph, norm = weight_correction))

• Simultaneous fit:

norm = Integral(model1_norm) + Integral(model2_norm)
nll = UnbinnedNLL(model1_data, norm) + UnbinnedNLL(model2_data, norm)

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 17

TensorFlowAnalysis

TensorFlowAnalysis: fitting

• Complex combinations of parameters:

def HelicityCouplingsFromLS(ja, jb, jc, lb, lc, bls):
a = 0.
for ls, b in bls.iteritems():

Where b is a Complex(FitParameter(...), FitParameter(...))
l = ls[0]
s = ls[1]
coeff = math.sqrt((l+1)/(ja+1))*Clebsch(jb, lb, jc, -lc, s, lb-lc)

*Clebsch(l, 0, s, lb-lc, ja, lb-lc)
a += Const(coeff)*b

return a

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 18

TensorFlowAnalysis

TensorFlowAnalysis: higher-level features

Some recent features allow the user to quickly build an amplitude model of an n-body decay.

The Particle class:
• Holds intrinsic properties and mother/daughter relationships
• Useful to quickly define different decay chains within an amplitude model
• Handles rotations and boosts

HelicityMatrixDecayChain:
• Takes the head Particle of the decay chain and a dict of helicity amplitude parameters
• Builds a dict of matrix elements in the helicity formalism for a specific decay chain

PHSPGenerator and NBody:
• Construct a phase space object given the mother mass and a list of final-state daughter

masses

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 19

TensorFlowAnalysis

TensorFlowAnalysis: limitations

Some issues with using TensorFlow for amplitude fits:
• Python 2 only (for now)
• TF not readily available on LXplus

• Binary distributions available from debian-based distros and Mac
• Available from pip without machine-specific optimisations
• Can install from source: tricky (especially with CUDA) but possible.

• Memory usage can be several GB:
• Especially with anlaytic gradient/large datasets/complicated models
• Limiting for consumer-grade GPUs

• Double precision essential
• Limiting for consumer-grade GPUs

• Slow RAM–VRAM transfer
• Has been mitigated since earlier versions of TFA

• Errors at graph execution time are hard to debug
• Dedicated debugger: https://www.tensorflow.org/programmers_guide/debugger

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 20

https://www.tensorflow.org/programmers_guide/debugger

TensorFlowAnalysis

TensorFlowAnalysis: plans

• Port to python 3
• Expand the library

• K-matrix formalism
• Analytical coupled-channel approaches

• Save/load compiled graphs
• Graph-building can sometimes take longer than minimisation

• Optimisations of CPU and memory usage; better caching
• More symbolic maths

• Sympy, in particular, works well with TF
• Self-documentation

• Generate LaTeX description of formulae entering the fit
• Automatic code generation: share standalone models with theorists

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 21

Performance

Performance

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 22

Performance

Performance

Benchmark runs (fit time only), compare 2 machines:
• CPU1: Intel Core i5-3570 (4 cores), 3.4GHz, 16 Gb RAM

GPU1: NVidia GeForce 750Ti (640 CUDA cores), 2 Gb VRAM
• CPU2: Intel Xeon E5-2620 (32 cores), 2.1GHz, 64 Gb RAM

GPU2: NVidia Quadro p5000 (2560 CUDA cores), 16 Gb VRAM
Two isobar models:

• D0→ K0
Sπ

+π−: 18 resonances, 36 free parameters
• Λb→ D0pπ−: 3 resonances, 4 non-resonant amplitudes, 28 free parameters

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 23

Performance

Performance

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 24

Summary

Summary

• TensorFlow is a good basis for an amplitude fitting framework
• High-performance architectures can be exploited without expert knowledge
• Models written in TFA are portable and can, with small effort, work standalone from TF: easy

to share with theorists
• Flexibility of TFA allows for rapid and simple development of complicated fits
• TensorFlowAnalysis package: library to perform amplitude analysis fits. In active

development, used for a few ongoing baryonic decay analyses at LHCb.

Adam Morris (CPPM) Using TensorFlow for amplitude fits PyHEP, 7–8 July, 2018 25

	Amplitude analysis
	TensorFlow
	TensorFlowAnalysis
	Performance

